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1 Introduction

The AdS/CFT correspondence provides an important framework for studying the be-
haviour of strongly coupled quantum field theories. Recently the possible applications
to condensed matter physics have received particular attention. One focus has been on the
phase structure of conformal field theories when held at non-zero chemical potential with
respect to a global abelian symmetry. At high temperatures the CFTs are described by
electrically charged AdS-Reissner-Nordström (AdS-RN) black branes. As the temperature
is lowered these black branes can become unstable giving rise to new black brane solutions
which then describe new phases of the dual field theory.

A well studied class of instabilities of the electrically charged AdS-RN black branes
lead to the spontaneous breaking of the global abelian symmetry and hence to superfluid
phases. Such instabilities can occur when the metric and gauge field are coupled to charged
fields and the superfluid phases are described by electrically charged AdS black branes with
additional charged hair. These instabilities and the back reacted black branes were first
studied in a bottom up context in [1–3] and then subsequently embedded into D=11 and
D=10 supergravity in [4–7]. They were studied using D-brane probes in [8].

In this paper we will present a new class of instabilities of electrically charged AdS-
RN black branes in D = 4 which lead to phases that spontaneously break the spatial
translation invariance of the dual field theory. Such phases appear in condensed matter
physics in a variety of settings. More precisely, the phases spontaneously break some or
all of the symmetries of the underlying lattice. Examples include charged density wave
(CDW) phases and spin density wave (SDW) phases which involve, as the names suggest,
a spatial modulation of the charge density and the spin density, respectively (see [9, 10]
for reviews). Other orders include staggered flux phases [11] and more general density
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waves with non-zero angular momentum [12]. These orders have been discussed in the
context of both heavy fermion and the cuprate superconductors. In particular, it is well
established that the cuprate superconductors are characterised by a rich set of competing
orders. The undoped materials are antiferromagnetic Mott insulators, but doping leads
to superconductivity and striped phases, in which there is unidirectional charge and spin
density waves. There are also additional ordered phases, including nematic phases and
circulating current phases which do not break the translational invariance of the lattice. A
review of this area can be found in [13] and a historical overview can be found in [14].

The new instabilities of the AdS-RN black branes that we discuss here will lead to
black brane solutions that are holographically dual to striped phases. More precisely, near
the temperature Tc at which these “striped black branes” appear, the d = 3 current of
the global symmetry in the CFT, dual to the bulk gauge field, spontaneously acquires a
spatially modulated vev of the form

〈jt〉 − j̄t ∝ cos(2kcx), 〈jx〉 = 0 〈jy〉 ∝ sin(kcx) (1.1)

where j̄t is a spontaneously generated constant component. Note that the translation
invariance in the x direction is spontaneously broken but it is preserved in the y direction.
These stripes combine a CDW (corresponding to the spatially modulated part of jt) with a
“current density wave”1 (corresponding to the spatial modulation of jx, jy). As one moves
away from Tc higher harmonics will appear, but the spatial modulation of the CDW will
have a period that is half of the current density wave.

The simplest setting in which these striped instabilities can occur is when the metric
and gauge field are coupled to a neutral pseudo-scalar ϕ. Indeed a key coupling driving the
instability is the coupling ϕF ∧ F , where F is the field strength of the abelian gauge field.
In the context of Kaluza-Klein reductions of D = 10 and D = 11 supergravity these types
of couplings are commonplace and so we expect that the instabilities that we discuss, and
straightforward generalisations thereof, will be widespread. Here we will show that they are
present in the context of the infinite class of skew-whiffed AdS4×SE7 solutions of D = 11
supergravity, where SE7 is a seven-dimensional Sasaki-Einstein space. It has been shown
in [5, 6, 15] that there is a consistent Kaluza-Klein truncation of D = 11 supergravity on
an arbitrary SE7 to a D = 4 theory of gravity involving a metric, a gauge field, a neutral
pseudo-scalar and a charged scalar. We show that this model exhibits spatially modulated
instabilities, with vanishing charged scalar, and we determine the highest temperature
at which they can occur. Although this demonstrates that such instabilities are indeed
present in a top down context, it should be noted that for this particular class of theories,
the known superfluid instability involving the charged scalar field, found in [5, 6], already
sets in at a higher temperature.

We will also consider a more general class of models which couple the metric, a gauge
field and neutral pseudo-scalar to an additional massive vector field. These models naturally
appear in N = 2 gauged supergravity models coupled to a vector multiplet plus additional
hypermultiplets, and we discuss some explicit examples.

1If one gauges the global symmetry in the boundary field theory, these currents would give rise to a

spatially modulated magnetic field.
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The instabilities will be identified by analysing perturbations of the electrically charged
D = 4 AdS-RN black brane solutions. A simple and powerful approach is to first consider
linearised perturbations in the AdS2 × R2 background, which arises as the IR limit of
the AdS-RN geometry at zero temperature. Depending on the explicit values of various
couplings, we find that there are modes which violate the BF bound for a range of non-
vanishing momentum k. This indicates that there are associated instabilities of the AdS-RN
black branes which set in at a non-zero temperature whose value will depend on k. For the
simple model with a single vector field, we explicitly construct the static normalisable zero
modes and show that there is a critical momentum kc which has the highest temperature,
Tc. At this temperature a new branch of striped black branes will appear, spontaneously
breaking translation invariance with a spatial modulation set, at Tc, by kc. These are dual
to a striped phase2 with spatial modulation of the vev of the dual d = 3 current (jt, jx, jy)
given, near Tc, by (1.1). As one moves away from Tc higher harmonics will appear, but
the spatial modulation of the CDW will have a period that is half of that of the current
density wave.

Before presenting our new results we note that spontaneous breaking of translation
invariance has been found in the context of electrically charged AdS-RN black banes of
D = 5 Einstein-Maxwell theory with a Chern-Simons term in [16, 17]. Related earlier work
appears in [18] and subsequent work appears in [19, 20]. Another3 holographic investigation
of spontaneous breaking of translation invariance in the presence of a magnetic field was
carried out for a D = 4 Einstein-Yang-Mills-Higgs model in [23].

2 Einstein-Maxwell-pseudo-scalar model

We consider a class of D = 4 theories that couples a metric, a gauge field A and a neutral
pseudo-scalar ϕ with Lagrangian given by

L =
1
2
R ∗ 1− 1

2
∗ dϕ ∧ dϕ− V (ϕ) ∗ 1− 1

2
τ (ϕ)F ∧ ∗F − 1

2
ϑ (ϕ)F ∧ F , (2.1)

where F = dA. The corresponding equations of motion are given by

Rµν − ∂µϕ∂νϕ− gµν V + τ

(
1
4
gµν FλρF

λρ − FµρFνρ
)

= 0

d (τ ∗ F + ϑF ) = 0

d ∗ dϕ+ V ′ ∗ 1 +
1
2
τ ′F ∧ ∗F +

1
2
ϑ′F ∧ F = 0 . (2.2)

2The existence of this striped phase obviously requires that the striped black branes appearing at T = Tc

are thermodynamically preferred. The thermodynamics of these black branes, as well as the properties of

other possible black brane solutions, will be investigated elsewhere.
3In [21, 22] studies were made where translation invariance is explicitly broken by sources.
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We will assume that the three functions V , τ and ϑ have the following expansions4

V = −6 +
1
2
m2
s ϕ

2 + . . . , τ = 1− n

12
ϕ2 + . . . , ϑ =

c1

2
√

3
ϕ+ . . . . (2.3)

The equations of motion (2.2) then admit the electrically charged AdS Reissner-Nordström
black brane solution

ds24 =− f dt2 +
dr2

f
+ r2

(
dx2 + dy2

)
A =

(
1− r+

r

)
dt , (2.4)

with ϕ = 0, where

f =2 r2 −
(

2r2+ +
1
2

)
r+
r

+
r2+
2r2

. (2.5)

In particular, we note that the equation of motion for ϕ in (2.2) is satisfied with ϑ′ 6= 0
because for the purely electric AdS-RN solution F ∧ F = 0 (which would not be true for
a dyonic AdS-RN black brane). We also note that we have scaled the chemical potential
to be unity, µ = 1, for convenience, and that the temperature of the black brane is T =
(1/8πr+)(12r2+ − 1). This solution describes a dual d = 3 CFT with a global abelian
symmetry, whose current, j, is dual toA, when held at non-vanishing chemical potential and
at high temperatures. Phase transitions can arise if this solution becomes unstable at some
critical temperature. We also note that ϕ is dual to an operator in the CFT with scaling
dimension ∆± = (1/2)[3± (9 + 2m2

s)
1/2], with ∆− only possible if −9/2 ≤ m2

s < −5/2.
An example of these models has already appeared in a top-down setting, specifically

in the context of skew-whiffed AdS4 × SE7 solutions of D = 11 supergravity. Recall that
these solutions generically do not preserve any supersymmetry, except in the special case
that SE7 = S7 in which case they preserve all of the supersymmetry. It was shown in [6],
building on [5, 15], that there is a consistent Kaluza-Klein reduction on an arbitrary SE7

space to a theory involving a metric, a gauge field, a charged scalar and a pseudo-scalar.
Any solution of this D = 4 theory can be uplifted to obtain an exact solution of D = 11
supergravity. In particular, there is an AdS4 vacuum solution which uplifts to the skew-
whiffed AdS4 × SE7 solution. It is consistent to further set the charged scalar to zero and
the resulting D = 4 model is then as in (2.1), (2.3) with n = 36, c1 = 6

√
2 and m2

s = −4.

2.1 Perturbative instabilities of AdS2 × R2

The near horizon limit of the extremal (T = 0) AdS-RN black brane (2.4) is the following
AdS2 × R2 solution

ds24 = − 12r2 dt2 +
dr2

12r2
+ dx2 + dy2

F = 2
√

3 dr ∧ dt , (2.6)

4If we ignore the Einstein-Hilbert term in (2.1), the D = 4 models generalise the dimensional reduction

of the D = 5 Maxwell models with a Chern-Simons term considered in [16], by the addition of m2
s and n. In

particular, the tachyonic instability in a uniform electric field in flat space at finite momentum, considered in

section 2 of [16], has an immediate extension to D = 4 massive axions coupled to the electromagnetic field.
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with ϕ = 0 and we have scaled the spatial coordinates by a factor of 2
√

3 for convenience.
We now examine the following coupled system of perturbations involving the metric, gauge
field and scalar field:

δgty =2
√

3rhty (t, r) sin (kx)

δgxy =hxy (t, r) cos (kx)

δAy =a (t, r) sin (kx)

δϕ =w (t, r) cos (kx) , (2.7)

Note that the subscripts on h are simply to label specific functions of t and r.
Substituting into the equations of motion (2.2) we find that the fluctuations (2.7)

satisfy

2
√

3k2rhty − k∂thxy − 24
√

3r
(
∂r
(
r2∂rhty

)
+ 2r∂ra

)
=0 (2.8)

2
√

3 ∂ta+
√

3 ∂thty + r
(

6kr ∂rhxy +
√

3∂r∂thty
)

=0 (2.9)

−2
√

3kr ∂thty + ∂2
t hxy − 144r2∂r

(
r2∂rhxy

)
=0 (2.10)

− 1
12r2

∂2
t a− k2a+ c1kw + 12

(
hty + ∂r

(
r2∂ra

)
+ r∂rhty

)
=0 (2.11)

− 1
12r2

∂2
tw + c1ka−

(
m2
s + n+ k2

)
w + 12 ∂r

(
r2∂rw

)
=0 . (2.12)

One can check that equation (2.10) is implied by equations (2.8) and (2.9). Observe that
m2
s and n only appear in the combination

m̃2
s ≡ m2

s + n . (2.13)

It is illuminating to now introduce the field redefinition

6kφxy = −
√

3∂r (rhty)− 2
√

3a . (2.14)

We then see that (2.9) implies
r2∂rhxy = ∂tφxy. (2.15)

We also find that (2.11), (2.12) and the r derivative of (2.8) can now be packaged in the
following way. Defining the three vector v = (φxy, a, w) we have

�AdS2v −M2v = 0 , (2.16)

where �AdS2 is the scalar Laplacian on the AdS2 space with radius squared equal to 1/12,
and the mass matrix M2 is given by

M2 =

 k2 1√
3
k 0

24
√

3k 24 + k2 −c1k
0 −c1k k2 + m̃2

s

 . (2.17)

Thus a diagnostic for an instability is if the mass matrix has an eigenvalue m2 that
violates the AdS2 BF bound

m2 ≥ −3 . (2.18)
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Figure 1: The shaded region in the (m̃2
s, c1) plane has unstable perturbative modes in

the AdS2 × R2 background. The green region has unstable modes including k = 0 while
the cyan region only has unstable modes with k 6= 0. The blue circle, lying just inside the
cyan region, represents the model associated with skew-whiffed AdS4×SE7 solutions. The
other symbols are explained in the text.

To be more precise, we have shown that (2.16), (2.17) are implied by (2.8)–(2.12). In
appendix A we show that, conversely, (2.16), (2.17) includes all of the perturbations of
interest. Thus, for fixed parameters m̃2

s, c1 we are looking for ranges of momenta k in which
the smallest root of the characteristic polynomial of M2, violates (2.18). In particular, we
see that the off-diagonal term in M2 provides a mechanism, when both c1 6= 0 and k 6= 0,
to drive down the smallest eigenvalue.

In figure 1 we show part of the domain in the
(
m̃2
s, c1

)
plane for which there exists

a range of momenta such that one of the corresponding AdS2 masses is below the BF
bound (2.18). The characteristic polynomial of M2 is independent of the sign of k and
this leads to two cases. In the first case, marked in green in figure 1, the range of k with
unstable modes is of the form (−kmax, kmax) and in particular contains unstable modes
with k = 0. It is worth noting, though, that it is not necessarily the case that the k = 0
mode is the one with the smallest AdS2 mass squared. In the second case, marked in cyan
in figure 1, all of the unstable modes have k 6= 0 and the range of k for which there are
unstable modes consists of two disjoint regions: (kmin, kmax) and its reflection k → −k.

2.2 Perturbative instabilities of the AdS-RN black brane

The presence of perturbative instabilities in the AdS2×R2 background that we established
in the last subsection suggests that the AdS-RN black brane (2.4), (2.5) should have anal-
ogous perturbative instabilities appearing, for a given k, at some specific temperature. In
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particular we shall look for the appearance of static normalisable zero modes which signal
the onset of a dynamical instability. Inspired by the analysis in the AdS2×R2 background,
we consider the fluctuation

δgty =λ [r (r − r+)h (r) sin (kx)]

δAy =λ [a (r) sin (kx)]

δϕ =λ [w (r) cos (kx)] . (2.19)

Here λ is a small expansion parameter and note that we have not included a time indepen-
dent perturbation for gxy, as suggested by (2.15).

Expanding around the black brane background (2.4) we obtain a linear system of ordi-
nary differential equations which we wish to numerically integrate from the outer horizon,
r = r+, to asymptotic infinity, r → ∞. In order for the fluctuations (2.19) to be regular,
the functions hty, a and w should remain finite on the horizon at r = r+

h (r) =h+ +O (r − r+)

a (r) =a+ +O (r − r+)

w (r) =w+ +O (r − r+) . (2.20)

To see that the metric is regular at the horizon one can use the in-going Eddington-
Finkelstein type coordinates v, r where v ≈ t+ ln(r − r+).

Unlike in the AdS2 × R2 background, the linear ODEs now depend on ms and n

separately. For illustration we will focus on the case m2
s = −4 and quantise so that ϕ

corresponds to an operator in the dual CFT with scaling dimension ∆ = 2. By varying n
we can still vary m̃2

s. The most general asymptotic expansion of the functions in (2.19) as
r →∞ is

h =h0 + · · ·+ h3

r3
+ . . .

a =a0 + . . .+
a1

r
+ . . .

w =
w1

r
+ . . .+

w2

r2
+ . . . . (2.21)

The parameters h0, a0 and w1 correspond to deforming the dual field theory by the opera-
tors dual to the fields, while h3, a1 and w2 correspond to the operators acquiring vev’s. We
are interested in looking for instabilities that spontaneously break translational invariance
so we set h0 = a0 = w1 = 0.

We have three second order linear ODE’s to solve and so a solution is specified by six in-
tegration constants. Now, for a given k, we have seven parameters r+, h+, a+, w+, h3, a1, w2

entering the ODEs (since λ drops out). However, since the equations are linear we can al-
ways scale one of these parameters to unity. Hence, for a given k we expect a normalisable
zero mode to appear, if at all, at a specific temperature.

We have numerically studied the existence of normalisable modes for various specific
values of n and c1. We begin with a case with n = 0. We choose c1 = 4.5 to illustrate
the affect of turning on c1. Note that this case is marked by the square in the green
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0.012
T

(a) n = 0, c1 = 4.5

0.8 1.0 1.2 1.4 1.6 1.8 2.0
k

0.01

0.02

0.03

0.04

T

(b) n = 36, various c1

0.8 1.0 1.2 1.4 1.6
k

0.002

0.004

0.006

0.008

0.010

0.012

0.014

T

(c) c1 = 6
√

2, various n

Figure 2: Plots of critical temperatures T versus k for the existence of normalisable static
perturbations about the electrically charged AdS-RN black brane. All cases have m2

s = −4.
With reference to figure 1, figure (a) corresponds to the square, figure (b) corresponds to
the rhombi and figure (c) corresponds to the triangles.

area in figure 1. When k = 0 (and hence c1k = 0), this case was already analysed in [4]
(∆ = 2 and q = 0 in their language). There it was shown that normalisable perturbative
modes with k = 0 are present with critical temperature T < 10−3. Here we find that
perturbative static normalisable zero modes also exist for a range of k, with the critical
temperatures depending on k as shown in figure 2a. The highest critical temperature occurs
for wavenumber k ≈ 0.53 and has Tc ≈ 0.012. At this temperature, a new branch of black
branes will appear that spontaneously break translation symmetry.

We next consider the blue dot in figure 1, corresponding to the top-down models
associated with the skew-whiffed AdS4×SE7 solutions. The maximum critical temperature
Tc is very low for this case, so we illustrate what is going on by studying the sequence of
values of n and c1 given by the rhombi and triangles in figure 1. Plots of the critical
temperatures for different k for which there is a static perturbative normalisable mode are
given in figures 2b and 2c. For all these cases, we find that the range of momenta k for
which there is an unstable static zero mode does not include k = 0 as expected from the the
analysis in the AdS2 × R2 background. The figures indicate that the critical temperature
for the skew-whiffed case is going to be very low, but certainly for a non-zero value of k. It
is also worth noting that the maximum critical temperature is much lower than the critical
temperature for the known superfluid instability which is given by T ≈ 0.042.

2.3 Stripes

In the last subsection we constructed the normalisable zero modes in the AdS-RN black
brane background at leading order in perturbation theory. There is a critical value of
momentum kc which is associated with the highest critical temperature Tc at which the
zero modes appear (the maxima in figure 2). When T = Tc a new branch of black branes will
appear that spontaneously break translation invariance. In the leading order perturbations
given in (2.20) and (2.21) we find that w2, h3 and a1 are all non-zero, as the simple counting
of integration constants above indicated. w2 6= 0 implies that the scalar operator dual to ϕ
has acquired a spatially modulated vev. Similarly, h3 6= 0 implies that there is momentum
transfer in the x2 direction. Finally, a1 6= 0 implies that the dual current component 〈jy〉 is

– 8 –
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also acquiring a spatially modulated vev of the form (1.1). Thus, the new black branes are
dual to a current density wave phase with spatial modulation given, at Tc, by kc. As we
will now argue the phase is also a charge density wave (CDW) with 〈jt〉 of the form (1.1)
and hence, near Tc, a spatial modulation given by 2kc.

To see the CDW, we need to analyse the general structure of the equations arising in
the next to leading order in perturbation theory. One can show that a closed system of
equations is obtained if we take the second order perturbations to be given by

δgtt = λ2
[
h

(0)
tt (r) + h

(1)
tt (r) cos (2kx)

]
δgxx = λ2

[
h(0)
xx (r) + h(1)

xx (r) cos (2kx)
]

δgyy = λ2
[
h(0)
yy (r) + h(1)

yy (r) cos (2kx)
]

δAt = λ2
[
a

(0)
t (r) + a

(1)
t (r) cos (2kx)

]
. (2.22)

Plugging the total field expansion in the equations of motion (2.2) and expanding them
up to order O(λ2) we obtain an inhomogeneous system of ordinary differential equations,
being sourced by the O(λ) zero mode solution. More specifically, the functions h(α)

xx , h(α)
yy

and a
(α)
t satisfy second order equations, the function h

(0)
tt satisfies a first order equation

while h(1)
tt satisfies an algebraic equation and hence can be eliminated from the system.

We next need to impose regularity at the horizon and demand that the behaviour as
r →∞ corresponds to setting all source terms in the dual CFT to zero. A simple count of
parameters and integration constants then indicate that for a given k, and in particular for
k = kc, the zero mode found in the last subsection forms part of a one-parameter branch
of spatially modulated black brane solutions, where the parameter can be taken to be the
temperature. We will expand on the solutions to these ODEs in more detail elsewhere,
but the main point we wish to emphasise here is that, generically, the asymptotic falloff of
a

(1)
t (r) as r →∞, in particular, will be of the form

a
(1)
t (r) = 0 +

ā
(1)
t

r
+ . . . (2.23)

implying that there is a spontaneous spatial modulation of the charge density with,
from (2.22), characteristic wavenumber given by 2kc, at Tc, and in the same direction as
the current density wave. Note that a(0)

t in (2.22) will have a similar asymptotic behaviour
and the non-vanishing 1/r component will give rise to the j̄t piece in (1.1). Thus the new
branches of black brane solutions, assuming that they are thermodynamically preferred,
will be dual to striped phases incorporating both current density waves and CDWs.

Note that the perturbative expansion parameter λ can be taken to be (T −Tc)/Tc. For
small λ, i.e. near Tc, we have argued that the wavenumber for the spatial modulation of
the current density wave will be kc and for the CDW will be 2kc. Following an analogous
discussion in [24], continuing to higher orders in the perturbative expansion we expect that
the wavenumber will receive corrections at order λ2. However, the spatial modulation of
the CDW will have a period that is always half that of the current density wave and in the
same direction.
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3 A pseudo-scalar coupled to two vector fields

We now consider a more general class of D = 4 theories that couple a metric, a pseudo-
scalar and two vector fields with Lagrangian given by

L =
1
2
R ∗ 1− 1

2
∗ dϕ ∧ dϕ− V (ϕ) ∗ 1− 1

2
τ (ϕ) F ∧ ∗F − 1

2
ϑ (ϕ) F ∧ F

− 1
2
G ∧ ∗G− 1

2
m2
v ∗B ∧B +

c2ϕ

2
√

3
F ∧G , (3.1)

where F = dA and G = dB. In the first line we take

V = −6 +
m2
s

2
ϕ2 + . . . , τ = 1− n

12
ϕ2 + . . . , ϑ =

c1

2
√

3
ϕ+ . . . , (3.2)

as in the last section, while in the second line we have introduced two new parameters
m2
v and c2. In the AdS4 vacuum with A = B = ϕ = 0, the gauge field A is massless,

while B has mass mv. These models admit the electrically charged AdS-RN black brane
solution, (2.4), (2.5) with B = ϕ = 0, as a solution. This solution describes a dual d = 3
CFT at high temperature and finite chemical potential with respect to the global abelian
symmetry whose current is dual to the gauge field A. The scalar field, ϕ, is dual to a scalar
operator with conformal dimension given before and the second vector field, B, is dual to
a vector operator with conformal dimension ∆ = (1/2)[3 + (1 + 2m2

v)
1/2].

We are interested in perturbative instabilities of the electrically charged AdS-RN black
brane solution. We first point out that (3.1) can be generalised in a number of obvious ways,
including adding a f(ϕ)G ∧G term, without affecting the linearised analysis that we cary
out below. Furthermore, we can also couple additional matter fields. Thus the instabilities
that we discuss for (3.1) will capture a large class of examples arising in string and M-
theory. For example, it overlaps with the following two cases that have been explicitly
considered in the literature that involve N = 2 gauged supergravity coupled to a vector
multiplet plus additional hypermultiplets.

The first case is the consistent truncation of D = 11 supergravity on a SE7 to a
D = 4 theory whose AdS4 vacuum uplifts to the supersymmetric AdS4 × SE7 solution of
D = 11 supergravity [15]. The matter content of the D = 4 theory consists of a metric,
two vectors and six scalars, which package together into an N = 2 gravity multiplet, a
vector multiplet and a hypermultiplet, and in particular the vector multiplet contains a
pseudo-scalar labelled as h in [15]. We find that the linearised perturbations for (3.1) that
we consider below arise in a sector of the D = 4 theory of [15]. To see this one should
identify the field strengths via Hthere = 1/2(F − G/

√
3), F there = 1/2(F +

√
3G), the

scalar h = −(
√

2/
√

3)ϕ and finally rescale the metric gthereµν = 1/2gµν . One then finds that
there are linearised perturbations involving the pseudo-scalar which are exactly the same
as those coming from (3.1) with

m2
s = 20, m2

v = 24, n = 12, c1 = 0, c2 = 2
√

6 . (3.3)

The second case is the consistent KK reduction of D = 11 supergravity on H3 × S4

where H3 is three-dimensional hyperbolic space [25] (in fact H3 can be replaced by an
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arbitrary quotient H3/Γ). The resulting D = 4 theory has an AdS4 vacuum solution
which uplifts to a supersymmetric AdS4 × H3 × S4 solution of D = 11 supergravity and
is dual to a d = 3 N = 2 SCFT that arises on M5-branes wrapping special Lagrangian
3-cycles H3 [26]. The matter content of this D = 4 theory consists of a metric, two vectors
and ten scalars, which package together into an N = 2 gravity multiplet, a vector multiplet
and two hypermultiplets, and in particular the vector multiplet contains a pseudo-scalar
labelled as β in [26]. We find that the linearised perturbations for (3.1) that we consider
below also arise in a sector of the D = 4 theory of [26]. To see this one should identify
the field strengths via H̃there = 2−3/4(F + G/

√
3), F there = 21/4(F − G/

√
3), the scalar

β = (1/
√

3)ϕ and finally choose the gauge coupling gthere = 23/4. One then finds that
there are linearised perturbations involving the pseudo-scalar which are exactly the same
as those coming from (3.1) with

m2
s = 4, m2

v = 8, n = 12, c1 = 0, c2 = 2
√

6 (3.4)

Notice that both of these examples have c1 = 0. This was actually to be expected for
these supersymmetric examples. First observe that c1 = 0 is required in order to be able to
consistently truncate the theory (3.1) to the Einstein-Maxwell sector involving the metric
and the gauge field A (otherwise there would be a F ∧ F source term in the equation of
motion for ϕ). Second, we recall that for any AdS4 ×M solution of D = 10 or D = 11
supergravity which is dual to an N = 2 SCFT in d = 3, it is conjectured that there is a
consistent Kaluza-Klein truncation on M to N = 2 D = 4 minimal gauged supergravity,
and this has been proven for several different classes [27]. The relevant gauge field is dual
to a canonical “Reeb” Killing vector of M . Since the bosonic sector of minimal gauged
supergravity is simply Einstein-Maxwell theory, the more general N = 2 supergravity
theories with A the canonical gauge field must have5 c1 = 0.

We now investigate instabilities of the electrically charged AdS-RN black brane solution
of (3.1) by considering the following linearised perturbations in the AdS2×R2 background:

δgty =2
√

3r hty (t, r) sin (kx)

δgxy =hxy (t, r) cos (kx)

δAy =a (t, r) sin (kx)

δBy =b (t, r) sin (kx)

δϕ =w (t, r) cos (kx) . (3.5)

After substituting into the equations of motion arising from (3.1) we are lead to a system
of six linear equations, one of which is implied by the others. It is again useful to now
introduce the field redefinition as in (2.14). Then, similar to before, after defining the four

5Recall that in section 2 we argued that associated with the skew-whiffed AdS4 × SE7 solutions, which

generically don’t preserve supersymmetry, there is a truncation with c1 = 6
√

2. For the special case when

SE7 = S7 the models preserve N = 8 supersymmetry. This is consistent with the discussion here because

the gauge field being kept is not a canonical gauge field dual to a Reeb vector compatible with the orientation

of the S7.
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vector v = (φxy, a, w, b), the remaining independent equations imply that

�AdS2v −M2v = 0 , (3.6)

where �AdS2 is the scalar Laplacian on the AdS2 space with radius squared equal to 1/12,
and the mass matrix M2 is given by

M2 =


k2 1√

3
k 0 0

24
√

3k 24 + k2 −c1k 0
0 −c1k m̃2

s + k2 c2k

0 0 c2k m2
v + k2

 (3.7)

and m̃2
s ≡ m2

s + n.
This mass matrix can have eigenvalues violating the AdS2 BF bound (2.18) for non-zero

values of k. The key features are the off-diagonal entries c1k and c2k. The general analysis
is not that illuminating so we shall not present it here. Instead we make the following
observations. We first notice that when c2 = 0, the second vector field, B, decouples at
the linearised level. Indeed when c2 = 0 the upper 3 × 3 block is exactly the same as we
found in (2.17) in the last section.

We next consider the special case with c1 = 0, which in particular arises in the KK
truncations of D = 11 supergravity associated with the supersymmetric AdS4 ×H3 × S4

and AdS4 × SE7 solutions. Notice that the mass matrix (3.7) is now block diagonal and
that possible BF violating modes must appear in the lower 2× 2 block. In particular, we
see that the gravitational perturbations have decoupled from this sector.6 The eigenvalues
of this block are given by

m2
± =

1
2

(
2k2 + m̃2

s +m2
v ±

√
(2c2k)2 + (m̃2

s −m2
v)

2

)
. (3.8)

One can easily show that for c42 >
(
m̃2
s −m2

v

)2 the branch m2
− develops a minimum at a

non-zero value of k given by

k = ±

√
c42 − (m̃2

s −m2
v)

2

2c2
, (3.9)

with the minimum AdS2 mass given by

m2
min = − 1

4c22

[
c42 +

(
m̃2
s −m2

v

)2 − 2c22
(
m̃2
s +m2

v

)]
. (3.10)

We now see that for sufficiently large c2 one can always have m2
min < −3 violating the

BF bound (2.18). For the explicit parameters arising in the KK truncations associated
with the supersymmetric AdS4 × SE7 and AdS4 × H3 × S4 solutions that were given
in (3.3) and (3.4), respectively, we see that these perturbations involving the pseudo-scalar

6In the context of AdS × sphere solutions instabilities at finite momentum that are decoupled from

gravitational perturbations have been studied in [28].
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do not violate the BF bound. It would be interesting to know whether or not there are
supersymmetric top down models with c1 = 0 and large enough c2 to give instabilities.

Returning to the general analysis, as in the last section, we find that the instabilities in
the AdS2×R2 background are associated with static normalisable zero modes appearing in
the AdS-RN black brane at, for a given k, some critical temperature. We have investigated
some specific examples and the results are similar to those presented in figure 2.

4 Discussion

In this paper we have identified new instabilities of D = 4 electrically charged AdS-RN
black branes in a broad class of models involving pseudo-scalars. Generically, the instabil-
ities appear at non-vanishing spatial momentum. The static normalisable modes that we
identified correspond to the appearance of new branches of striped black brane solutions
with the spatial modulation of the CDW being half that of the current density wave and in
the same direction. It will be interesting to investigate the thermodynamics of the striped
black branes and establish the conditions for which they are thermodynamically preferred
over the AdS-RN black branes. We expect at least in some cases that the phase transitions
are second order and we will be able to verify this by developing the perturbative expansion
we have used in this paper. However, if they are first order we would need to construct
the fully back reacted branes by solving PDEs. This will also be necessary to be able to
follow the striped phases to their ultimate zero temperature ground states. Alternatively,
perhaps it is possible to construct candidate zero temperature ground states directly.

We showed that spatially modulated instabilities are present in a D = 4 model associ-
ated with the skew-whiffed AdS4×SE7 solutions of D = 11 supergravity. We showed that
the maximal critical temperature at which the instabilities appear is lower than the critical
temperature associated with the superfluid instability. However, it seems likely that the
two instabilities will compete, possibly after a deformation by a relevant operator, and will
lead to thermodynamically preferred striped phases which may also be superconducting.
We find this a particularly interesting direction to pursue given the potential similarities
with what is seen in the heavy fermion and the high temperature superconductors.
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A A converse result

We showed that (2.8)–(2.12) imply (2.16), (2.17). Let us now prove a converse result. We
start with a regular perturbation in the AdS2×R2 background satisfying (2.16), (2.17). We
can then integrate (2.15) and (2.14) to define r hty and hxy up to two arbitrary integration
functions of time, z1(t) and z2(t). Note that (2.9) is automatically satisfied. On the other
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hand, we find that demanding that (2.8) is satisfied, and furthermore demanding that
r hty = 0 at r = 0 (i.e. the perturbation (2.7) is regular at r = 0), fixes z1 and z2. Indeed
we find that

r hty = −
∫ r

0
dr
(

2a+ 2
√

3k ϕxy
)
,

hxy =
∫

dt

[
144r2 ∂rϕxy −

∫ r

0
dr
(

4
√

3k a+ 12k2 ϕxy

)]
. (A.1)

In order to make the asymptotic behaviour of (A.1) more transparent we will use
the three normal modes, sα, α = 1, 2, 3, coming from diagonalising the system of equa-
tions (2.16). Specifically, if the eigenvalues of the mass matrix (2.17) are m2

α we have

�AdS2sα −m2
α sα = 0 (A.2)

We can then rewrite (A.1) as

r hty = −2
√

3k
∑
α

cα

∫ r

0
drm2

αsα

hxy = 12
∑
α

cα

∫
dt

[
1
12
r2∂rsα −

∫ r

0
drm2

αsα

]
(A.3)

for some constants cα. We now focus on a specific mode, s, and assume a time dependence
of the form e−iωt. The normalisable modes of (A.2) will behave as

s ≈ 1
rδ(k)

(A.4)

with δ(k) > 1/2 for non-tachyonic modes and Re(δ(k)) = 1/2 for tachyonic modes. Using
explicit expressions for s in terms of Bessel functions we have the schematic expansions

rhty ≈ e−iωt
[
−2
√

3
k
A+

f1

rδ(k)−1

]

hxy ≈ e−iωt
[
−12iA

ω
+

f2

rδ(k)+1

]
(A.5)

where A is a finite constant. Finally, we point out that the dependence on A in (A.5) is
actually a gauge artifact and hence is not modifying the AdS2 × R2 asymptotics. Indeed
it can be eliminated by performing the (perturbative) coordinate change

y → y +
12i
kω

e−iωtAQ (r) sin (kx) (A.6)

with Q a sufficiently smooth function such that the first few derivatives vanish at r = 0 and
r =∞ and also Q(0) = 0, Q(∞) = 1. Note that this change of coordinates also introduces
a non-zero δgry perturbation, but it has support only in the bulk and vanishes at both the
origin and boundary and is thus benign.
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