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Abstract: We examine the Hawking effect by studying the asymptotic entanglement

of two mutually independent two-level atoms placed at a fixed radial distance outside

a Schwarzschild black hole in the framework of open quantum systems. We treat the

two-atom system as an open quantum system in a bath of fluctuating quantized massless

scalar fields in vacuum and calculate the concurrence, a measurement of entanglement,

of the equilibrium state of the system at large times, for the Unruh, Hartle-Hawking and

Boulware vacua respectively. We find, for all three vacuum cases, that the atoms turn

out to be entangled even if they are initially in a separable state as long as the system

is not placed right at the even horizon. Remarkably, only in the Unruh vacuum, will the

asymptotic entanglement be affected by the backscattering of the thermal radiation off the

space-time curvature. The effect of the back scatterings on the asymptotic entanglement

cancels in the Hartle-Hawking vacuum case.
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1 Introduction

Classically, black holes are described as massive objects with such a strong gravitational

field that even light cannot escape from them. However, Hawking finds, in the framework

of quantum field theory in curved spacetime, that a black hole is not completely black, but

emits thermal radiation with a black body spectrum due to quantum effects [1, 2]. Ever

since this surprising discovery, the Hawking effect has attracted widespread interest in the

physics community and extensive works have been done trying to understand it in various

different physical contexts (See for example, ref. [1–13]).

In this paper, we will try to examine the Hawking effect in terms of the entangle-

ment generation in the framework of open quantum systems. The open system we are

going to study consists of two mutually independent static two-level atoms subjected to

a bath of fluctuating quantized massless scalar fields in vacuum outside a Schwarzschild

black hole. We will analyze the time evolution of the density matrix describing the sys-

tem using the well-known techniques in the theory of open quantum systems. Let us note

that the reduced dynamics of a single static detector (a two-level atom) placed outside a

Schwarzschild black hole interacting with quantized massless scalar fields in the Unruh,

Hartle-Hawking and Boulware vacua has been recently investigated [13] and it has been

found that in both the Unruh and Hartle-Hawking vacua, the detector will spontaneously

excite with a nonvanishing probability as if there were thermal radiation at the Hawking

temperature. An another way to look at the issue is to study the equilibrium state of the

detector. In this regard, it has been shown that the detector is asymptotically driven to

a thermal state at the Hawking temperature in the spatial asymptotic region, regardless

of its initial state [14]. This approach has also been applied to reproduce both the Unruh

effect and the Gibbons-Hawking effect, in ref. [15] and [16], respectively.

If the single atom is replaced by two independent two-level atoms, the situation be-

comes physically more interesting. A study of the reduced dynamics of the two-atom system
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may reveal whether the asymptotic equilibrium state of the system will be entangled or

not. It is known that an environment usually leads to decoherence and noise, which may

cause entanglement that might have been created before to disappear. However, in certain

circumstances, the environment may enhance entanglement rather than destroying it [17–

22]. The reason is that an external environment can also provide an indirect interaction

between otherwise totally uncoupled subsystems through correlations that exist. It is of

interest to see whether a bath of fluctuating vacuum scalar fields outside a Schwarzschild

black hole can provide such an indirect coupling to enhance the entanglement. This is

what we are going to pursue in the present paper. We will, in the hope of gaining new

understanding of the Hawking effect from a different perspective, examine the asymptotic

entanglement of the two-atom system in a bath of massless scalar fields in the Unruh [23],

Hartle-Hawking [24], and Boulware [25] vacuums outside a black hole. Let us note here

that a similar issue related to the Unruh effect has already been worked out by Benatti and

Floreanini, in which they have studied a uniformly accelerating two-atom system [15] and

found that the two initially separable atoms will become entangled, just as if they were

immersed in a thermal bath at the Unruh temperature.

2 The master equation

The system we study consists of two mutually independent static two-level atoms of van-

ishing separation in interaction with a bath of fluctuating quantum scalar fields in vacuum

outside a Schwarzschild black hole which is described by the following metric

ds2 =

(

1− 2M

r

)

dt2 − dr2

1− 2M/r
− r2(dθ2 + sin2 θdφ2) . (2.1)

Although the atoms are mutually independent, the fluctuating vacuum fields with which the

atoms are coupled may provide an indirect interaction and therefore a means to generate

entanglement between them. In this paper, we are particularly concerned with the issue

of whether the atoms can be entangled when system reaches an equilibrium state as time

becomes large. Generically, the total Hamiltonian of the system takes the form

H = Hs +Hφ + λ H ′ . (2.2)

Here Hs is the Hamiltonian of the two atoms,

Hs = H(1)
s +H(2)

s , H(α)
s =

ω

2
ni σ

(α)
i , (α = 1, 2), (2.3)

where σ
(1)
i = σi ⊗ σ0, σ

(2)
i = σ0 ⊗ σi, σi (i = 1, 2, 3) are the Pauli matrices, σ0 the

2 × 2 unit matrix, n = (n1, n2, n3) a unit vector, and ω0 the energy level spacing. Hφ

is the Hamiltonian of free massless scalar fields. The Hamiltonian H ′ that describes the

interaction between the two atoms with the external scalar fields is given by

H ′ =

3
∑

µ=0

[(σµ ⊗ σ0)Φµ(t,x1) + (σ0 ⊗ σµ)Φµ(t,x2) ] . (2.4)

– 2 –



J
H
E
P
0
8
(
2
0
1
1
)
1
3
7

We assume that the scalar fields can be expanded as

Φµ(x) =

N
∑

a=1

[χa
µφ

(−)(x) + (χa
µ)∗φ(+)(x)] , (2.5)

where φ(±)(x) are positive and negative energy field operators of the massless scalar field,

and χa
µ are the corresponding complex coefficients.

At the beginning, the whole system is characterized by the total density matrix

ρtot = ρ(0) ⊗ |0〉〈0|, in which ρ(0) is the initial reduced density matrix of the two-atom

system, and |0〉 is the vacuum state of field Φ(x). In the frame of the two-atom system,

the evolution in the proper time τ of the total density matrix ρtot satisfies

∂ρtot(τ)

∂τ
= −iLH [ρtot(τ)] , (2.6)

where the symbol LH represents the Liouville operator associated with H

LH [S] ≡ [H,S] . (2.7)

We assume that the interaction between the atoms and the field is weak, i.e., the coupling

constant λ in (2.2) is small. In the limit of weak coupling, the evolution of the reduced

density matrix ρ(τ) can be written in the Kossakowski-Lindblad form [15, 21, 26–28]

∂ρ(τ)

∂τ
= −i

[

Heff , ρ(τ)
]

+ L[ρ(τ)] , (2.8)

with

Heff = Hs −
i

2

2
∑

α,β=1

3
∑

i,j=1

Hij σ
(α)
i σ

(β)
j , (2.9)

and

L[ρ] =
1

2

2
∑

α,β=1

3
∑

i,j=1

Cij

[

2σ
(β)
j ρ σ

(α)
i − σ(α)

i σ
(β)
j ρ− ρ σ(α)

i σ
(β)
j

]

. (2.10)

The coefficients of the matrix Cij and Hij are determined by the Fourier and Hilbert

transforms of the field correlation functions

Gij(x− y) = 〈0|Φi(x)Φj(y)|0〉 , (2.11)

which are defined as follows

Gij(λ) =

∫ ∞

−∞
dτ eiλτ Gij(τ) , (2.12)

Kij(λ) =

∫ ∞

−∞
dτ sign(τ) eiλτ Gij(τ) =

P

πi

∫ ∞

−∞
dω
Gij(ω)

ω − λ , (2.13)

in which P denotes principal value. It can be shown that the Kossakowski matrix Cij can

be written explicitly as

Cij =
∑

ξ=+,−,0

3
∑

k,l=1

Gkl(ξω)ψ
(ξ)
ki ψ

(−ξ)
lj , (2.14)
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where

ψ
(0)
ij = ni nj , ψ

(±)
ij =

1

2

(

δij − ni nj ± iǫijknk

)

. (2.15)

Similarly, the coefficients of Hij can be obtained by replacing Gkl(ξω) with Kkl(ξω) in the

above equations.

If we assume that the field components Φi(x) are independent, or the coefficients χa
µ

satisfy
N

∑

a=1

χa
µ(χa

ν)∗ = δµν , (2.16)

the field correlation functions in (2.11) are diagonal such that

Gij(x− y) = δijG(x− y) , (2.17)

in which G(x − y) is the standard Wightman function, and the Kossakowski matrix Cij

can be written as [15]

Cij = A δij − iB ǫijknk + C ninj , (2.18)

where

A =
1

2
[G(ω0) + G(−ω0)] , B =

1

2
[G(ω0)− G(−ω0)] , C = G(0) −A . (2.19)

3 The asymptotic entanglement

In order to figure out whether the entanglement will be generated between the atoms and

whether it can persist asymptotically through the analysis of the master equation governing

the density matrix, we need to calculate the coefficients Cij which are determined by the

field correlation function in the vacuum state. However, when a vacuum state is concerned

in a curved spacetime, a delicate issue then arises as to how the vacuum state of the

quantum fields is determined. Normally, a vacuum state is associated with non-occupation

of positive frequency modes. However, the positive frequency of field modes is defined

with respect to the time coordinate. Therefore, to define positive frequency, one has to

first specify a definition of time. In a spherically symmetric black hole background, three

different vacuum states, i.e., the Boulware [25], Unruh [23] and Hartle-Hawking [24] vacuum

states, have been defined, each corresponding to a different choice of time coordinate. In

the next section, we examine the asymptotic entanglement for the atoms in all vacuums.

3.1 The Unruh vacuum

Let us begin our discussion with the Unruh vacuum which is supposed to be the vacuum

state best approximating the state following the gravitational collapse of a massive body

to a black hole. In order to analyze the asymptotic state of the system, we will deal

with the master equation (2.8) and see how the reduced density matrix of the two-atom

system ρ evolves.
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Generally, we can write the reduced density matrix of the two-atom system in the

form of

ρ(τ) =
1

4

[

σ0 ⊗ σ0 + ρ0i(τ) σ0 ⊗ σi + ρi0(τ)σi ⊗ σ0 + ρij(τ)σi ⊗ σj

]

, (3.1)

which is normalized as Tr(ρ) = 1 with det(ρ) ≥ 0 . Here we are interested in the final equilib-

rium density matrix ρ∞, which does not change with time, i.e., ∂τρ
∞ = 0. Let us note that

the unitary term involving Hamiltonian Heff in the master equation can be ignored since

it does not give rise to the entanglement phenomena [15] and we only need to examine the

effects produced by the dissipative term L[ρ] in (2.8). As a result, the equilibrium condition

becomes L[ρ∞] = 0. After some direct calculations, one obtains the components of ρ∞ [15]

ρ∞0i = ρ∞i0 = − R

3 +R2
(τ∗ + 3)ni ,

ρ∞ij =
1

3 +R2
[(τ∗ −R2)δij +R2(τ∗ + 3)ninj] , (3.2)

where R = B/A, τ∗ is the trace of the density matrix τ∗ = Σ3
i=1ρii(τ), which is actually a

constant of motion, and the positivity of ρ(0) requires −3 ≤ τ∗ ≤ 1.

In order to determine whether the final equilibrium state is entangled or not, we

take the concurrence as a measurement of the entanglement, which is defined as C[ρ] =

max{0, λ1 − λ2 − λ3 − λ4} , where λµ (µ = 1, 2, 3, 4 ) are the square roots of the non-

negative eigenvalues of the matrix ρ(σ2⊗σ2)ρ
T (σ2⊗σ2) in decreasing order, and T stands

for transposition. The value of C[ρ] ranges from 0, for separable states, to 1, for maximally

entangled states. For the current case, the concurrence is

C(ρ∞) = max

{

(3−R2)

2(3 +R2)

[

5R2 − 3

3−R2
− τ∗

]

, 0

}

, (3.3)

which is non-zero provided τ∗ obeys

τ∗ <
5R2 − 3

3−R2
. (3.4)

This result implies that as long as the condition (3.4) is satisfied, the equilibrium state will

turn out to be entangled, even if the initial state is separable.

In order to make our discussion more concise, let us come to a simple example. The

initial state of the system is taken to be a separable state provided by the direct product

of two pure states:

ρ(0) = ρn ⊗ ρm , ρn =
1

2

(

1 + ~n · ~σ
)

, ρm =
1

2

(

1 + ~m · ~σ
)

, (3.5)

where ~n and ~m are two unit vectors. Here τ∗ = ~n · ~m, so the asymptotic entanglement is

maximized when ~n = −~m:

C[ρ∞] =
2R2

3 +R2
. (3.6)
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Eq. (3.6) shows that, in our simple case, the concurrence increases with R monotonically

when R ranges from 0 to 1, and it reaches its maximum C[ρ∞] = 1/2 for R = 1. So, we

need only evaluate R in order to analyze the entanglement of the system.

Now let us begin to compute R in the Unruh vacuum case. The Wightman function

for massless scalar fields in the Unruh vacuum is given by [29–31]

G+(x, x′) =
∑

ml

∫ ∞

−∞

e−iω∆t

4πω
|Ylm(θ, φ) |2

[ | −→Rl(ω, r) |2
1− e−2πω/κ

+ θ(ω)|←−Rl(ω, r) |2
]

dω , (3.7)

where κ = 1/4M is the surface gravity of the black hole. Its Fourier transform is

G(λ) =

∫ ∞

−∞
eiλτG+(x, x′)dτ

=
1

8πλ

∞
∑

l=0

[

θ(λ
√
g00)(1 + 2l)|←−Rl(λ

√
g00, r) |2 +

(1 + 2l)| −→Rl(λ
√
g00, r) |2

1− e−2πλ
√

g00/κ

]

, (3.8)

where we have used the relation

l
∑

m=−l

|Ylm( θ, φ ) |2 =
2l + 1

4π
, (3.9)

and here κr is defined as κ/
√
g00 . The above Fourier transform, which is needed in our

computation of R, is hard to evaluate, since we do not know the exact form of the radial

functions
−→
Rl(ω, r) and

←−
Rl(ω, r). Here, we choose to compute it both close to the event

horizon and at infinity. For this purpose, let us recall that the radial functions have the

following properties in asymptotic regions [31]:

∞
∑

l=0

(2l + 1) |−→R l(ω, r ) |2 ∼























4ω2

1− 2M
r

, r → 2M ,

1

r2

∞
∑

l=0

(2l + 1) |Bl (ω) |2 , r→∞ ,

(3.10)

∞
∑

l=0

(2l + 1) |←−R l(ω, r ) |2 ∼























1

4M2

∞
∑

l=0

(2l + 1) |Bl (ω) |2, r → 2M ,

4ω2

1− 2M
r

, r →∞ .

(3.11)

Inserting eq. (3.8) into eq. (2.19), and using eq. (3.10) and (3.11), one finds that

r → 2M :











A ≈ ω0

4π
[1 + g00 f(ω0

√
g00, 2M) +

2

e2πω0/κr − 1
] ,

B ≈ ω0

4π
[1 + g00 f(ω0

√
g00, 2M)] ,

(3.12)

and

r →∞ :











A ≈ ω0

4π
[1 + g00 f(ω0

√
g00, r) +

2

e2πω0/κr − 1
g00f(ω0

√
g00, r)] ,

B ≈ ω0

4π
[1 + g00 f(ω0

√
g00, r)] ,

(3.13)
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where f(ω, r) is defined as

f(ω, r) =
1

4 r2ω2

∞
∑

l=0

(2l + 1) |Bl (ω)|2 . (3.14)

Straightforward calculations then yield in the asymptotic regions,

R =
B

A
=























1 + g00f(ω0
√
g00, 2M)

1 + g00f(ω0
√
g00, 2M) + 2

e2πω0/κr−1

, r→ 2M ,

1 + g00f(ω0
√
g00, r)

1 + g00f(ω0
√
g00, r) + 2

e2πω0/κr−1
g00f(ω0

√
g00, r)

, r →∞ .

(3.15)

We can see that, in the vicinity of the event horizon, the first two terms in the denom-

inator are the same as their counter-parts in the numerator, and the third one is the

standard Planckian factor. At infinity, the Planckian factor is modified by a grey-body

factor g00f(ω0
√
g00, r) caused by the backscattering off the space-time curvature. This

suggests that at the horizon, there is a thermal flux going outwards, which is weakened by

the backscattering off the curvature on its way to infinity. Actually, it has been shown that,

in the framework of open quantum system, the spontaneous excitation rate per unit time of

a particle detector from the initial ground state i to the final excited state f is just [13, 15]

Γi→f = 2(A−B) = 2G(−ω0) . (3.16)

This means that the difference between the denominator and the numerator of R is pro-

portional to the spontaneous excitation rate per unit time of a particle detector, i.e., the

strength of the thermal radiation. The larger the difference between A and B, the stronger

the thermal radiation, and the less the two-atom system gets entangled.

Here we note that, using the geometrical optics approximation [29], the transmission

amplitude Bl(ω) can be approximated as Bl(ω) ∼ θ(
√

27Mω − l), where θ(x) is the stan-

dard step function, which gives 0 for x < 0 and 1 for x > 0. So g00f(ω0
√
g00, r) can be

simplified as

g00f(ω0
√
g00, r) ≈

27M2g00
4r2

=
27M2

4r2

(

1− 2M

r

)

≡ f(r) , (3.17)

and in both the asymptotic regions, g00f(ω0
√
g00, r) → 0. Allowing for this, we have, in

the vicinity of the event horizon,

R =
e2πω0/κr − 1

e2πω0/κr + 1
. (3.18)

It is interesting to note that the R we obtain here is exactly the same as that in the case of a

two-atom system immersed in a thermal bath at the temperature T = κr/2π = TH/
√
g00 in

a flat space-time, where TH = κ/2π is the Hawking temperature [1, 2]. When r→ 2M , the

temperature T is divergent, since this effective temperature is a result of both the thermal

flux from the black hole and the Unruh effect due to that the system is accelerating with

– 7 –
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respect to the local free-falling inertial frame so as to maintain at a fixed distance from the

black hole, and the acceleration diverges at the horizon. In this case, the concurrence C[ρ∞]

approaches zero, which means that final equilibrium state of the two atom system, which

is very close to the event horizon, will not be entangled. As the atoms are placed farther,

then the thermal radiation becomes weaker due to the back scattering off the spacetime

curvature and the concurrence grows larger. At the infinity, the grey-body factor vanishes

and R approaches 1, so that the concurrence C[ρ∞] tends to reach its maximum 1/2. This

result suggests that, in the Unruh vacuum, no thermal radiation is felt at the infinity due to

the back scattering of the outgoing thermal radiation off the spacetime curvature. Here it

is clear that in the vicinity of the horizon, the entanglement of the system is enhanced due

to the back scattering, while in the infinity, the concurrence is smaller than its maximum

if we allow for the thermal radiation emitted from the horizon although it is back scattered

by the space-time curvature.

Compared with the case of a thermal bath in a flat space-time, we find that the

parameters A and B are modified by the grey-body factor f(ω, r), which is a function

of M and r for a given energy gap ω0. A similar result is derived when studying the

entanglement generation in atoms immersed in a thermal bath of external quantum scalar

fields with a reflecting boundary [32, 33]. This result implies that the back scattering of

vacuum field modes off the space-time curvature of the black hole manifests in much the

same way as the reflection of the field modes at the reflecting boundary in a flat space-time.

3.2 The Hartle-Hawking vacuum

Now let us move on to the Hartle-Hawking vacuum. The Wightman function is now given

by [29–31]

G+(x, x′) =
∑

ml

∫ ∞

−∞

|Ylm(θ, φ) |2
4πω

[

e−iω∆t

1− e−2πω/κ
| −→Rl(ω, r) |2 +

eiω∆t

e2πω/κ − 1
|←−Rl(ω, r) |2

]

dω ,

(3.19)

and its Fourier transform is

G(λ) =

∫ ∞

−∞
eiλτG+(x, x′)dτ

=

∞
∑

l=0

(1 + 2l)

8πλ

[ | −→Rl(λ
√
g00, r) |2

1− e−2πλ/κr
+
|←−Rl(−λ

√
g00, r) |2

1− e−2πλ/κr

]

, (3.20)

Similar calculations then lead to

r → 2M :











A ≈ ω0

4π

e2πω0/κr + 1

e2πω0/κr − 1
[1 + g00 f(ω0

√
g00, 2M)] ,

B ≈ ω0

4π
[1 + g00 f(ω0

√
g00, 2M)] ,

(3.21)

r → ∞ :











A ≈ ω0

4π

e2πω0/κr + 1

e2πω0/κr − 1
[1 + g00 f(ω0

√
g00, r)] ,

B ≈ ω0

4π
[1 + g00 f(ω0

√
g00, r)] ,

(3.22)
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and

R=
B

A
=























1 + g00f(ω0
√
g00, 2M)

1 + g00f(ω0
√
g00, 2M) + 2

e2πω0/κr−1
+ 2

e2πω0/κr−1
g00f(ω0

√
g00, 2M)

, r→ 2M ,

1 + g00f(ω0
√
g00, r)

1 + g00f(ω0
√
g00, r) + 2

e2πω0/κr−1
+ 2

e2πω0/κr−1
g00f(ω0

√
g00, r)

, r →∞ .

(3.23)

Unlike that in the Unruh vacuum case, here R is the same in both the asymptotic regions.

We have two Planckian terms in the denominator. One is the standard one and the other

is a Planckian factor modified by a grey-body factor caused by the backscattering off the

space-time curvature. This suggests that there are thermal radiation outgoing from the

horizon and that incoming from infinity, both of which are weakened by the backscattering

off the curvature on their way. Therefore, the Hartle-Hawking vacuum is actually a state

that describes a black hole in equilibrium with an infinite sea of blackbody radiation [31].

Here we notice that eq. (3.23) can be simplified as

R =
B

A
=
e2πω0/κr − 1

e2πω0/κr + 1
. (3.24)

At close to the horizon, i.e., when r → 2M , R → 0, which means that final state of the

two-atom system is not entangled. When r → ∞, R → e2πω0/κ−1
e2πω0/κ+1

, which is the maximal

value it can reach in this case and it is nonzero, so two atoms will be entangled even if

they are separable initially. Here, although both A and B are modified by a grey-body

factor f(ω, r), the modification cancels when we evaluate R. So, R is the same as what

we get in the case of a thermal bath. This result shows that, both in the vicinity of the

horizon and at infinity, the impact of the black hole to the equilibrium entanglement of

the system is the same as that of a thermal bath at temperature T = TH/
√
g00 in a flat

space-time. As r →∞, the effective temperature becomes the Hawking temperature, since

the acceleration needed to maintain the two-atom system at a fixed distance vanishes, and

the temperature is purely due to the thermal bath the black hole immersed in.

3.3 The Boulware vacuum

For the Boulware vacuum, the Wightman function is given by [29–31]

G+(x, x′) =
∑

lm

∫ ∞

0

e−iω∆t

4πω
|Ylm(θ, φ) |2

[

| −→Rl(ω, r) |2 + |←−Rl(ω, r) |2
]

dω . (3.25)

The Fourier transform with respect to the proper time is

G(λ) =

∫ ∞

−∞
eiλτG+[x(τ)]dτ =

∑

ml

2l + 1

8πλ

[

| −→Rl(λ
√
g00, r) |2 + |←−Rl(λ

√
g00, r) |2

]

θ(λ) , (3.26)

where θ(λ) is the step function. Plugging eq. (3.26) into Eq (2.19), we have

A = B =

∞
∑

l=0

2l + 1

16πω

[

| −→Rl(ω, r) |2 + |←−Rl(ω, r) |2
]

. (3.27)

– 9 –
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So

R =
B

A
= 1 , (3.28)

everywhere outside the event horizon, and the concurrence of the equilibrium state is

C[ρ∞] = C[ρ∞]max =
1

2
(3.29)

which is the same as that in a Minkowski vacuum. No thermal radiation is present.

4 Conclusion

In summary, we have examined the asymptotic entanglement between two mutually inde-

pendent two-level atoms at a fixed radial distance outside a Schwarzschild black hole in the

paradigm of open quantum systems. We treat the two-atom system as an open quantum

system in a bath of fluctuating quantized massless scalar fields in vacuum and have studied

the Boulware, Unruh, and Hartle-Hawking vacua respectively.

In the Hartle-Hawking and the Unruh vacuum cases, the concurrence attains a non-

zero value less than 1/2 as long as the two-atom system is not placed right at the event

horizon, indicating that the two atoms will turn out to be entangled even if they are ini-

tially separable. For the Unruh vacuum case, the concurrence is the same as if there were

an outgoing thermal flux of radiation from the event horizon, which is backscattered by

the curvature of the space-time. For the Hartle-Hawking vacuum case, the concurrence

behaves as if the atom were in a thermal bath of radiation at a proper temperature which

reduces to the Hawking temperature in the spatial asymptotic region. Remarkably, only

in the Unruh vacuum, will the asymptotic entanglement be affected by the backscattering

of the thermal radiation off the space-time curvature. The effect of the back scatterings on

the asymptotic entanglement cancels in the Hartle-Hawking vacuum case.
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