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1 Introduction

Nowadays the phenomenological importance of Beyond the Standard Model (BSM) physics

at the TeV scale is recognised by the global experimental effort at the Large Hadron

Collider (LHC).

It is common belief that a Z ′ boson is among the first new objects that can potentially

be detected at the LHC. The existing extensive literature is testimonial to the growing

interest in them (see e.g. [1–4]). A particularly interesting class of theoretical scenarios

incorporating a Z ′ boson are the so-called “(non-exotic/non-anomalous) Minimal Z ′ Mod-

els”, extensively studied in the recent years [5–10].

These models are based on an extension of the Standard Model (SM) gauge group with

a further U(1) symmetry factor. The anomaly cancellation conditions imply the inclusion

of three generations of right-handed neutrinos in the fermion sector, while the breaking of

the new gauge group is provided by an extra singlet Higgs boson (thereby making the Z ′

boson a massive state).

The purpose of this paper is to show that renormalisation group equation (RGE)

based techniques [11–15] as well as a standard perturbative unitarity criterion [16] can be

combined to give a dynamical way to constrain the two gauge couplings (g′1 and g̃) of a set

of Minimal Z ′ Models, with a particular attention devoted to some benchmark scenarios

such as the “minimal” U(1)B−L, the U(1)R (no fermion charge associated to the left-handed

fermions) and the SO(10)-inspired U(1)χ extensions (see [4] for an extensive overview).
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To this end, we propose a detailed study of the Goldstone and Higgs sectors of this

kind of models with a view to extract the most stringent bounds on the (evolving) gauge

couplings. We will make a comparison between this method and triviality arguments,

showing that calling for perturbative unitarity stability conditions gives stronger constraints

on g′1 and g̃ with respect to traditional triviality assumptions over most of the parameter

space. For an exhaustive description of the theoretical setup and of our conventions see [17],

where also the RGE equations can be found. Finally, regarding perturbative unitarity

techniques, we will expand below upon the methodology outlined in [18].

This work is organised as follows: in section 2 we introduce our parametrisation of

the Scalar Lagrangian of the Minimal Z ′ Models, in section 3 we describe the theoretical

methods adopted to constrain the gauge couplings, in section 4 we present our numerical

results while in the last section we give our conclusions; in appendix A we discuss the

gauge-fixing Lagrangian of Minimal Z ′ Models, in appendix B we list the set of Feynman

rules that is relevant in our calculation, and in appendix C we give some explicit analytical

results that have been used in this paper.

2 The parametrisation of minimal Z′ models

We describe here our parametrisation of the Minimal Z ′ Models. Following [17], the SM

gauge group is augmented by a U(1) factor, related to the Baryon minus Lepton (B − L)

gauged number. In the complete model, the classical gauge invariant Lagrangian, obeying

the SU(3)C × SU(2)L × U(1)Y × U(1)B−L gauge symmetry, can be decomposed as:

L = Ls + LYM + Lf + LY . (2.1)

In this paper we are mainly interested in the scalar part of the Lagrangian

Ls = (DµH)† DµH + (Dµχ)† Dµχ − V (H,χ) , (2.2)

with the scalar potential given by

V (H,χ) = m2H†H + µ2 | χ |2 +
(

H†H | χ |2
)( λ1

λ3

2
λ3

2 λ2

)(
H†H

| χ |2

)

= m2H†H + µ2 | χ |2 +λ1(H
†H)2 + λ2 | χ |4 +λ3H

†H | χ |2 , (2.3)

where H and χ are the complex scalar Higgs doublet and singlet fields, respectively.

We generalise the SM discussion of spontaneous Electro-Weak Symmetry Breaking

(EWSB) to the more complicated classical potential of equation (2.3). To determine the

conditions for V (H,χ) to be bounded from below, it is sufficient to study its behaviour

for large field values, controlled by the matrix in the first line of equation (2.3). Requiring

such a matrix to be positive-definite, we obtain the conditions:

4λ1λ2 − λ2
3 > 0 , (2.4)

λ1, λ2 > 0 . (2.5)
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If the above conditions are satisfied, we can proceed to the minimisation of V as a

function of constant Vacuum Expectation Values (V EV s) for the two Higgs fields. In the

Feynman gauge, we can parametrise the scalar fields as

H =
1√
2

(
−i(φ1 − iφ2)

v + (h + iφ3)

)
, χ =

1√
2

(
x + (h′ + iφ4)

)
, (2.6)

where w± = φ1 ∓ iφ2 are the would-be Goldstone bosons of W±, while φ3 and φ4 will mix

to give z and z′, the would-be Goldstone bosons of the Z and Z ′ bosons, respectively. The

real and non-negative V EV s are v and x, for the Higgs doublet and singlet, respectively.

We denote by h1 and h2 the scalar fields of definite masses, mh1
and mh2

respectively,

and we conventionally choose m2
h1

< m2
h2

. After standard manipulations, the explicit

expressions for the scalar mass eigenvalues and eigenvectors are:

m2
h1

= λ1v
2 + λ2x

2 −
√

(λ1v2 − λ2x2)2 + (λ3xv)2 , (2.7)

m2
h2

= λ1v
2 + λ2x

2 +
√

(λ1v2 − λ2x2)2 + (λ3xv)2 , (2.8)
(

h1

h2

)
=

(
cos α − sin α

sin α cos α

)(
h

h′

)
, (2.9)

where −π
2 ≤ α ≤ π

2 fulfils:1

sin 2α =
λ3xv√

(λ1v2 − λ2x2)2 + (λ3xv)2
, (2.10)

cos 2α =
λ1v

2 − λ2x
2

√
(λ1v2 − λ2x2)2 + (λ3xv)2

. (2.11)

For our numerical study of the extended Higgs sector, it is useful to invert equa-

tions (2.7), (2.8) and (2.10) to extract the parameters in the Lagrangian in terms of the

physical quantities mh1
, mh2

and α:

λ1 =
m2

h2

4v2
(1 − cos 2α) +

m2
h1

4v2
(1 + cos 2α),

λ2 =
m2

h1

4x2
(1 − cos 2α) +

m2
h2

4x2
(1 + cos 2α),

λ3 = sin 2α

(
m2

h2
− m2

h1

2xv

)
. (2.12)

In order to determine the covariant derivative, we must introduce LYM, in which the

the non-Abelian field strengths therein are the same as in the SM whereas the Abelian

ones can be written as follows:

L
Abel
YM = −1

4
FµνFµν − 1

4
F ′µνF ′

µν , (2.13)

1In all generality, the whole interval 0 ≤ α < 2π is halved because an orthogonal transformation is

invariant under α → α+π. We could re-halve the interval by noting that it is invariant also under α → −α

if we permit the eigenvalues inversion, but this is forbidden by our convention m2
h1

< m2
h2

. Thus α and −α

are independent solutions.
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where

Fµν = ∂µBν − ∂νBµ , (2.14)

F ′
µν = ∂µB′

ν − ∂νB
′
µ . (2.15)

In this field basis, the covariant derivative is:

Dµ ≡ ∂µ + igSTαG α
µ + igT aW a

µ + ig1Y Bµ + i(g̃Y + g′1YB−L)B′
µ . (2.16)

To determine the boson spectrum, we have to expand the scalar kinetic terms like for

the SM . As for the gauge bosons, we expect that there exists a mass-less gauge boson, the

photon, whilst the other gauge bosons become massive. The extension we are studying is

in the Abelian sector of the SM gauge group, so that the charged gauge bosons W± will

have masses given by their usual SM expressions, being related to the SU(2)L factor only.

The gauge boson spectrum is then extracted from the kinetic terms in equation (2.2):

(DµH)† DµH
∣∣∣
gauge

=
1

2
∂µh∂µh +

1

8
(h + v)2

(
0 1
)[

gW µ
a σa + g1B

µ + g̃B′µ
]2
(

0

1

)

=
1

2
∂µh∂µh +

1

8
(h + v)2

[
g2 |W µ

1 − iW µ
2 |2

+
(
gW µ

3 − g1B
µ − g̃B′µ

)2]
, (2.17)

and

(Dµχ)† Dµχ
∣∣∣
gauge

=
1

2
∂µh′∂µh′ +

1

2
(h′ + x)2(g′12B

′µ)2 , (2.18)

where we have taken Y B−L
χ = 2 in order to guarantee the gauge invariance of the Yukawa

terms (see [19, 20] for details). In equation (2.17) we can recognise the SM charged gauge

bosons W±, with MW = gv/2 as in the SM . The other gauge boson masses are not so

simple to identify, because of mixing. In fact, in analogy with the SM , the fields of definite

mass are linear combinations of Bµ, W µ
3 and B′µ. The explicit expressions are:




Bµ

W µ
3

B′µ


 =




cos ϑw − sinϑw cos ϑ′ sin ϑw sin ϑ′

sin ϑw cos ϑw cos ϑ′ − cos ϑw sin ϑ′

0 sinϑ′ cos ϑ′







Aµ

Zµ

Z ′µ


 , (2.19)

with −π
4 ≤ ϑ′ ≤ π

4 , such that:

tan 2ϑ′ =
2g̃
√

g2 + g2
1

g̃2 + 16(x
v )2g

′2
1 − g2 − g2

1

(2.20)

and

MA = 0 ,

M2
Z,Z′ =

1

8

(
Cv2 ∓

√
−D + v4C2

)
, (2.21)
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where

C = g2 + g2
1 + g̃2 + 16

(x

v

)2
g
′2
1 , (2.22)

D = 64v2x2(g2 + g2
1)g

′2
1 . (2.23)

As for the Goldstone boson spectrum, it is possible to find a convenient way to write

the mass matrix. Being H ∼ (1, 2, 1
2 , 0) and χ ∼ (1, 1, 0, 2) the Higgs representations

associated to each gauge group, in the gauge-Goldstone2 bosons basis we find the following

representation of the co-variant derivative:

D =




v
2g 0 0 0

0 v
2g 0 0

0 0 v
2g 0

0 0 −v
2g1 0

0 0 −v
2 g̃ −2xg′1




. (2.24)

In the t’Hooft-Feynman gauge, it can be verified that the vector boson mass matrix is

given by m2
V = D(D)T . The related Goldstones mass matrix can as well be evaluated as

m2
v = (D)TD , (2.25)

therefore we get

m2
v =




v2

4 g2 0 0 0

0 v2

4 g2 0 0

0 0 v2

4 (g2 + g12 + g̃2) xvg̃g′1
0 0 xvg̃g′1 4x2(g′1)

2


 . (2.26)

The mass matrix in equation (2.26) shows that the Goldstones of the W -boson have

a mass that is equivalent to the SM one, while the φ3 and φ4 fields mix, as it happens for

the related gauge bosons. We can diagonalise the neutral Goldstone block by means of a

rotation of angle αg, defined by:

tan 2αg =
−8x

v g̃ g′1

g2 + g2
1 + g̃2 − 16

(
x
v g′1
)2 , (2.27)

obtaining, as expected, the neutral gauge boson masses as eigenvalues of the neutral Gold-

stone boson sub-matrix. As for the neutral gauge boson sector, the Goldstones mix only if

g̃ 6= 0. Finally, the neutral Goldstone bosons fulfil
(

z

z′

)
=

(
cos αg sinαg

− sinαg cos αg

)(
φ3

φ4

)
. (2.28)

Now that the scalar Lagrangian has been presented in the Feynman gauge, we have all

the elements to carry on with our analysis. Although not relevant for the latter, we also

present for completeness the gauge-fixing Lagrangian in appendix A.

2The 5 × 4 matrix follows from the five gauge bosons W i|i=1,3, Z, Z′ and the four Goldstone

bosons φi|i=1,4.
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Model Parametrisation

U(1)B−L g̃EW = 0

U(1)χ g̃EW = −4/5g′1
U(1)R g̃EW = −2g′1

Table 1: Specific parametrisations of the Minimal Z ′ Models: U(1)B−L, U(1)χ and U(1)R.

The generic model that has been previously introduced spans over a continuous set of

minimal U(1) extensions of the SM , that can be labelled by the properties of the charge

assignments to the particle content.

As any other parameter in the Lagrangian, g̃ and g′1 are running parameters, therefore

their values have to be set at some scale. A discrete set of popular Z ′ models (see, e.g. [4, 5])

can be recovered by a suitable definition of both g̃ and g′1.

Even though we present results in the generic (g′1–g̃) space, we will comment on a

subset of particular interest: the “pure” B − L extension U(1)B−L (g̃EW = 0) has a

vanishing mixing between the massive neutral gauge bosons at tree-level at the EW scale,

the SO(10)-inspired extension U(1)χ (g̃EW = −4/5g′1) preserves the mixing ratio at any

energy scale and the R minimal extension U(1)R (g̃EW = −2g′1) in which a Z ′ is coupled

to right-handed fermions only. In table 1 we summarise these models emerging from our

parametrisation.

3 Constraining the g′

1
− g̃ space

Since it has been proven that perturbative unitarity violation at high energy occurs only

in vector and Higgs boson elastic scatterings, our interest is focused on the corresponding

sectors that have been already presented in section 2.

Following the Becchi-Rouet-Stora (BRS) invariance (see [21]), the amplitude for emis-

sion or absorption of a “scalarly” polarised gauge boson becomes equal to the amplitude

for emission or absorption of the related would-be-Goldstone boson, and, in the high en-

ergy limit (s ≫ m2
W±,Z,Z′), the amplitude involving the (physical) longitudinal polarisation

(the dominant one at high energies) of gauge bosons approaches the (unphysical) scalar

one, proving the so-called Equivalence Theorem (ET ), see [22]. Therefore, the analysis

of the perturbative unitarity of two-to-two particle scatterings in the gauge sector can be

performed, in the high energy limit, by exploiting the Goldstone sector instead (further

details of this formalism can be found in [18]).

Moreover, since we want to focus on g′1 and g̃ limits, we assume that the two Higgs

bosons of the model have masses such that no significant contribution to the spherical

partial wave amplitude (see below) will come from the scalar four-point and three-point

functions (that is m1,2 ≪ 700 according to [18]), i.e. the Higgs masses are well below the

Lee-Quigg-Tacker (LQT ) limit [16]. It is important to remark that relatively high values of

the Higgs masses, far below the unitarity limit, tend to lead to quartic coupling to values

that become non-perturbative at high scales. On a side, this could considerably refine the
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unitarity bounds. On the other side, it could be non-consistent by triviality arguments

(as a general rule, the larger the cut-off, the smaller the acceptable value of the Higgs

mass). Beyond any doubt, given a cut-off energy, a good choice for the Higgs masses is the

one explored in [17]. With this choice we exclude any other source of unitarity violation

different from the size of the g′1 and g̃ gauge couplings.

Firstly, we focus on the techniques that we have used to obtain the aforementioned

unitarity bounds in combination with the RGE analysis: for this, it is crucial to define the

evolution of the gauge couplings via the RGEs and their boundary conditions. As already

established in [17, 23], the RGEs of g, g1, g′1 and g̃ are:

d(g)

d(log Λ)
=

1

16π2

[
−19

6
g3

]
,

d(g1)

d(log Λ)
=

1

16π2

[
41

6
g3
1

]
,

d(g′1)

d(log Λ)
=

1

16π2

[
12g′31 + 2

16

3
g′21 g̃ +

41

6
g′1g̃

2

]
,

d(g̃)

d(log Λ)
=

1

16π2

[
41

6
g̃ (g̃2 + 2g2

1) + 2
16

3
g′1(g̃

2 + g2
1) + 12g′21 g̃

]
, (3.1)

where g(EW ) ≃ 0.65 and g1(EW ) ≃ 0.36. This fully fixes the evolution of g′1 and g̃ with

the energy scale Λ.

In the search for the maximum g′1(EW ) and g̃(EW ) values allowed by theoretical

constraints, the contour condition

g′1(Λ), g̃(Λ) ≤ k, (3.2)

also known as the triviality condition, is the assumption that enables one to solve the above

system of equations and gives the traditional upper bound on the g′1-g̃(EW ) space at the

EW scale.

It is usually assumed either k = 1 or k =
√

4π, calling for a coupling that preserves

the perturbative convergence of the theory. Nevertheless, we stress again that this is

an “ad hoc” assumption. Our aim, instead, is to extract the boundary conditions by

perturbative unitarity arguments, showing that, under certain conditions, it represents a

stronger constraint on most of the gauge couplings parameter space. For this, we exploit

the theoretical techniques that are related with the perturbative unitarity analysis, since

they can be used to provide constraints on the theory, with a procedure that is not far

from the one firstly described in detail by [16].

A well known result is that, by evaluating the tree-level scattering amplitude of lon-

gitudinally polarised vector bosons, one finds that the latter grows with the energy of the

process and, in order to preserve unitarity, it is necessary to include some other (model

dependent) interactions (for example, in the SM one needs to add the Higgs boson) and

these must fulfil the unitarity criterion (again in the SM , the Higgs boson must have a

mass bounded from above by the LQT limit [24]).

As already intimated, we also know that the ET allows one to compute the amplitude

of any process with external longitudinal vector bosons VL (V = W±, Z, Z ′), in the limit
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z z z z′ z′z′ h1h1 h1h2 h2h2

z z 0 0 0 ∼ ∼ ∼
z z′ 0 0 0 ∼ ∼ ∼
z′z′ 0 0 0 ∼ ∼ ∼
h1h1 ∼ ∼ ∼ 0 0 0

h1h2 ∼ ∼ ∼ 0 0 0

h2h2 ∼ ∼ ∼ 0 0 0

Table 2: Scattering matrix: we have used the simbol ∼ just for illustrating the presence

of a non-zero element in the correspondent scattering channels.

m2
V ≪ s, by substituting each one of these with the related Goldstone boson v = w±, z, z′,

and its general validity has been proven in [22]. Schematically, if we consider a process with

four longitudinal vector bosons, we have that M(VLVL→VLVL)=M(vv→vv)+O(m2
V /s).

While in the search for the Higgs boson mass bound it is widely accepted to assume

small values for the gauge couplings and large Higgs boson masses, for our purpose we

reverse such argument with the same logic: we assume that the Higgs boson masses are

compatible with the unitarity limits and we study the two-to-two scattering amplitudes of

the whole scalar sector, pushing the size of g′1 and g̃ up to the unitarisation limit.

This limit is a consequence of the following argument: given a tree-level scattering

amplitude between two spin-0 particles, M(s, θ), where θ is the scattering (polar) angle,

we know that the partial wave amplitude with angular momentum J is given by

aJ =
1

32π

∫ 1

−1
d(cos θ)PJ(cos θ)M(s, θ), (3.3)

where PJ are Legendre polynomials, and it has been proven (see [24]) that, in order to

preserve unitarity, each partial wave must be bounded by the condition

|Re(aJ (s))| ≤ 1

2
. (3.4)

By direct computation, it turns out that only J = 0 (corresponding to the spherical

partial wave contribution) leads to some bound, so we will not discuss the higher partial

waves any further.

Assuming that the Higgs boson masses do not play any role in the perturbative uni-

tarity violation, we have verified that the only divergent contribution to the spherical

amplitude is due to the size of the g′1 and g̃ couplings in the t-channel intermediate Z and

Z ′ vector boson exchange contributions. In appendix B we list the relevant 3-point Feyn-

man rules that connect any of the two (external) scalars with either a Z or Z ′ (mediator).

Hence, the relevant channels are represented by the 6-dimensional (symmetric) scattering

matrix in table 2 plus the decoupled eigenchannel w+w− → w+w−.

– 8 –
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After explicit evaluation, the spherical amplitude of the decoupled w+w− eigenchannel,

in the high energy limit, is:

aw+w− =

{
f z

w+w−

16π

[
1 + 4 log

(
MZ

Λ

)]
+

f z′

w+w−

16π

[
1 + 4 log

(
MZ′

Λ

)]}
, (3.5)

and each element of the scattering matrix presents the following structure:

aij = SiSj

{
f z

i,j

16π

[
1 + 4 log

(
MZ

Λ

)]
+

f z′
i,j

16π

[
1 + 4 log

(
MZ′

Λ

)]}
, (3.6)

where S is a symmetry factor that becomes 1/
√

2 if the (initial or final) state has identical

particles, 1 otherwise, and Λ represents the scale of energy at which the scattering is

consistent with perturbative unitarity, i.e. it is the evolution energy scale cut-off. It is

important to notice that the masses of the Z and Z ′ act as a natural regulator that preserves

both the amplitude and the spherical partial wave from any t-channel collinear divergence

and that both of them are completely defined by the choice of the gauge couplings and

V EV s (see equation (2.21)). The non-vanishing coefficients of equations (3.5)–(3.6) are

listed in appendix C.

It is well-known3 that the most stringent unitarity bounds on the g′1-g̃ space are derived

from the requirement that the magnitude of the largest eigenvalue of the scattering matrix

does not exceed 1/2.

Finally, if we consider the contour of this inequality, we find exactly the boundary

conditions that solve the set of differential equations in (3.1), giving us the upper limits

for g′1 and g̃ at the EW scale. In the next section we will combine all these elements to

present a numerical analysis of the allowed domain of the gauge couplings.

4 Results

The set of differential equations (3.1) has been integrated with the well-known Runge-Kutta

algorithm and both the unitarity (equation (3.4)) and triviality (equation (3.2)) conditions

have been imposed as a two-point boundary value with a simple shooting method, that

consisted in varying the initial gauge coupling values in dichotomous-converging steps until

the bounds were fulfilled.

Apart from the gauge couplings, other parameters play a role in the computation: the

V EV s have been chosen in such a way that both MZ and MZ′ are within the allowed

experimental range (see [26] and [27], respectively), and further that MZ′ lies in the O(1−
10) TeV range, so that it does not spoil the high energy approximation MZ′ ≪ Λ. By

direct computation we verified that the Higgs mixing angle α does not play any significant

role in the analysis, hence for each analysed point of the gauge couplings parameter space

we have averaged the spherical wave greatest eigenvalue over the range −1 < sin α < +1,

3The diagonalisation of the scattering matrix usually leads to stronger bounds not only in the SM -case

but also in BSM scenarios (e.g. [25]).
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Log10(Λ/GeV) 7 9 11 13 15 17 19

U(1)B−L
T 0.594 0.527 0.477 0.439 0.407 0.380 0.357

U 0.487 0.390 0.335 0.297 0.269 0.247 0.229

U(1)χ
T 0.682 0.620 0.573 0.535 0.504 0.479 0.457

U 0.531 0.424 0.364 0.324 0.295 0.272 0.254

U(1)R
T 0.362 0.328 0.300 0.276 0.254 0.235 0.218

U 0.429 0.344 0.293 0.258 0.232 0.210 0.192

Table 3: Triviality bounds (with k = 1) and unitarity bounds on g′1 in (non-exotic)

Minimal Z ′ Models, for several values of the energy scale Λ.

finding a standard deviation never greater than ∼ 2%. Finally, for illustrative purposes,

we have chosen the triviality condition to be fixed by k = 1.

As initial step of our numerical analysis, we have verified by direct computation that

the spherical wave associated to the decoupled eigenchannel w+w− → w+w− gives always

a negligible contribution with respect to the greatest eigenvalue of the spherical wave scat-

tering matrix in table 2. Therefore, in figure 1 we have overlapped the contour plots of

both the greatest eigenvalue of the spherical wave scattering matrix allowed by unitarity

and the gauge couplings allowed by triviality in the g′1-g̃ plane for the following values

of the evolution/cut-off energy: Λ = 1011 GeV (figure 1a), Λ = 1015 GeV (figure 1b),

Λ = 1019 GeV (figure 1c). It is clear that the boundary condition imposed by the pertur-

bative unitarity stability (dashed lines) constrains the parameter space considerably more

than the well-known triviality bound (dotted lines). In few cases the triviality bound is

(slightly) more important than the unitarity bound: this condition is realised at energies

≪ 1019 GeV and g̃ = hg′1 where |h| > 2 (see figure 1a–1b). Otherwise, the unitarity con-

dition noticeably refines the bounds on the allowed parameter space considerably, as it is

clear from figure 1d, in which the most stringent bounds are plotted for the aforementioned

values of the cut-off energy. In the same figure, we plotted three lines as reference for some

peculiar parametrisation of g̃ already mentioned in section 2: it is clear that for each one

of these models the unitarity condition is always more important than the triviality one.

As for these specific parametrisations, in figure 2 we have plotted the boundary value

of g′1 against the evolution/cut-off scale Λ, using both the perturbative unitarity stabil-

ity condition (dashed lines) and the triviality condition (dotted lines). For the U(1)B−L

(figure 2a) and the U(1)χ (figure 2b) extensions of the SM model, the unitarity bound is

always more stringent than the triviality one. For the U(1)R (figure 2c) extension, this is

only true if Λ > 1010 GeV. In figure 2d we have plotted the best bound on g′1 (and then g̃)

against the evolution/cut-off energy scale Λ.

In order to summarise these results, in table 3 we present a comparison between the

triviality and the unitarity bounds on g′1 for several values of the energy scale Λ for our

choice of Minimal Z ′ Models.
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Figure 1: Contour plot of both the greater eigenvalue of the spherical wave scattering ma-

trix (table 2) allowed by unitarity (dashed lines) and the gauge couplings allowed by trivi-

ality (dotted lines) for several values of the cut-off energy: Λ = 1011 GeV (light green/grey

lines, figure 1a), Λ = 1015 GeV (dark red/grey lines, figure 1b), Λ = 1019 GeV (black lines,

figure 1c). Figure 1d shows a summary of the most stringent bounds at different values of

the cut-off energy, with focus on some peculiar parametrisation of g̃ (table 1).
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Figure 2: The g′1 (g̃) couplings bounded either by triviality (dotted lines) or unitarity

(dashed lines) conditions plotted against the evolution/cut-off energy for several peculiar

choices of the gauge couplings parametrisation: U(1)B−L (black lines, g̃ = 0: figure 2a),

U(1)χ (dark red/grey lines, g̃ = −4/5g′1: figure 2b), U(1)R (light green/grey lines, g̃ =

−2g′1: figure 2c). Figure 2d shows a summary of the most stringent bounds at different

values of the considered parametrisations of g̃ (table 1).
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5 Conclusions

In this paper, we have shown that, by combining perturbative unitarity and RGE methods,

one can significantly constrain the gauge couplings (g′1 and g̃) of a generic/universal (non-

exotic/non-anomalous) Z ′ gauge boson, by imposing limits on their upper values that are

more stringent than standard triviality bounds. (Also notice that, as unitarity is more

constraining than triviality, the stability of the perturbative solutions obtained through

the former is already guaranteed by the latter.)

The present work, alongside [17, 18] and [28], is in particular part of the long-term

effort to establish the theoretical bounds on the parameter space of the B − L based U(1)

extension of the SM .
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A Gauge-fixing Lagrangian of minimal Z′ models

As for the Goldstone bosons sector, the mass matrix and interactions for the ghost fields

are defined by the matrix D, as in equation (2.24), via

m2
ghost = D(D)T . (A.1)

Notice that the m2
ghost and the m2

v of equation (2.26) have different numbers of zero-

eigenvalues, but their non-zero eigenvalues are in a one-to-one correspondence; furthermore,

the eigenvalues of the gauge-fixing mass matrix are the same of the gauge boson mass

matrix.

Then, the ghost Lagrangian is defined, in the t’Hooft-Feynman gauge, as

Lghost = −c̄a

[
(∂µDµ)ab + Da ·

(
Db + Sb

)T
]

cb , (A.2)

where the matrix S represents the link between the fluctuations (Goldstones) of the Higgses

around their V EV s and the gauge bosons; a convenient way to write this matrix is

(S)T =




g

2
h

g

2
φ3 −g

2
φ2 −g1

2
φ2 − g̃

2
φ2

−g

2
φ3

g

2
h

g

2
φ1

g1

2
φ1

g̃

2
φ1

g

2
φ2 −g

2
φ1

g

2
h −g1

2
h − g̃

2
h

0 0 0 0 −2h′g′1




. (A.3)

Finally, the ghost fields (
(−)
c ) read as

c =
(

wg
1 wg

2 wg
3 Bg (B′)g

)
. (A.4)
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B Feynman rules associated with a neutral gauge boson exchange in a

scalar two-body scattering

In the following we list the set of Feynman rules that enter in the calculation described

section 3; these have been obtained by means of implementing the information of the scalar

Lagrangian (see section 2 and appendix A) in the LanHEP package [29]; all the momenta

p’s are considered in-coming:

h1 − Z − z :⇒ −1

2cW sW

(
sW sθ′ cW cα cαg g̃ pµ

h − sW sθ′ cW cα cαg g̃ pµ
z

+cα cαg cθ′ e pµ
z − cα cαg cθ′ e pµ

h − 4sW sα sαg sθ′ cW g′1 pµ
h

+4sW sα sαg sθ′ cW g′1 pµ
z

)
(B.1)

h1 − Z − z′ :⇒ 1

2cW sW

(
sW sαg sθ′ cW cα g̃ pµ

h − sW sαg sθ′ cW cα g̃ pµ
z′

+sαg cα cθ′ e pµ
z′ − sαg cα cθ′ e pµ

h + 4sW sα sθ′ cW cαg g′1 pµ
h

−4sW sα sθ′ cW cαg g′1 pµ
z′

)
(B.2)

h1 − z − Z ′ :⇒ −1

2cW sW

(
sW cW cα cαg cθ′ g̃ pµ

h − sW cW cα cαg cθ′ g̃ pµ
z

−sθ′ cα cαg e pµ
z + sθ′ cα cαg e pµ

h − 4sW sα sαg cW cθ′ g′1 pµ
h

+4sW sα sαg cW cθ′ g′1 pµ
z

)
(B.3)

h1 − Z ′ − z′ :⇒ 1

2cW sW

(
sW sαg cW cα cθ′ g̃ pµ

h − sW sαg cW cα cθ′ g̃ pµ
z′

−sαg sθ′ cα e pµ
z′ + sαg sθ′ cα e pµ

h + 4sW sα cW cαg cθ′ g′1 pµ
h

−4sW sα cW cαg cθ′ g′1 pµ
z′

)
(B.4)

h2 − Z − z :⇒ −1

2cW sW

(
sW sα sθ′ cW cαg g̃ pµ

h − sW sα sθ′ cW cαg g̃ pµ
z

+sα cαg cθ′ e pµ
z − sα cαg cθ′ e pµ

h + 4sW sαg sθ′ cW cα g′1 pµ
h

−4sW sαg sθ′ cW cα g′1 pµ
z

)
(B.5)

h2 − Z − z′ :⇒ 1

2cW sW

(
sW sα sαg sθ′ cW g̃ pµ

h − sW sα sαg sθ′ cW g̃ pµ
z′

+sα sαg cθ′ e pµ
z′ − sα sαg cθ′ e pµ

h − 4sW sθ′ cW cα cαg g′1 pµ
h

+4sW sθ′ cW cα cαg g′1 pµ
z′

)
(B.6)

h2 − z − Z ′ :⇒ −1

2cW sW

(
sW sα cW cαg cθ′ g̃ pµ

h − sW sα cW cαg cθ′ g̃ pµ
z

−sα sθ′ cαg e pµ
z + sα sθ′ cαg e pµ

h + 4sW sαg cW cα cθ′ g′1 pµ
h

−4sW sαg cW cα cθ′ g′1 pµ
z

)
(B.7)
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h2 − Z ′ − z′ :⇒ 1

2cW sW

(
sW sα sαg cW cθ′ g̃ pµ

h − sW sα sαg cW cθ′ g̃ pµ
z′

−sα sαg sθ′ e pµ
z′ + sα sαg sθ′ e pµ

h − 4sW cW cα cαg cθ′ g′1 pµ
h

+4sW cW cα cαg cθ′ g′1 pµ
z′

)
(B.8)

w+ − w− − Z :⇒ i

2cW sW

(
(1 − 2s2

W ) cθ′ e pµ
w− + sW sθ′ cW g̃ pµ

w−

−(1 − 2sW
2) cθ′ e pµ

w+ − sW sθ′ cW g̃ pµ
w+

)
(B.9)

w+ − w− − Z ′ :⇒ −i

2cW sW

(
(1 − 2s2

W ) sθ′ e pµ
w− − sW cW cθ′ g̃ pµ

w−

−(1 − 2s2
W ) sθ′ e pµ

w+ + sW cW cθ′ g̃ pµ
w+

)
(B.10)

In the previous formulae, we have used the following notation:

cW (sW ) → cos θW (sin θW ),

cα(sα) → cos α(sin α),

cαg(sαg) → cos αg(sin αg), (B.11)

cθ′(sθ′) → cos θ′(sin θ′),

e → gg1√
g2 + g2

1

.

C Explicit value of the f
z,z′

i,j coefficients of equations (3.5)–(3.6)

The non-vanishing coefficients related to the structure of equation (3.6), in the high energy

limit, for each entry of the scattering matrix are the following:

f z
zz,h1h1

=
1

4

(
−c2

αc2
αgc

2
θ′
(
g2 + g2

1

)
+ (cαcαgg̃ − 4g′1sαsαg)

2s2
θ′
)
, (C.1)

f z′

zz,h1h1
=

1

4

(
16c2

θ′(g
′
1)

2s2
αs2

αg − 8cαcαgcθ′g
′
1sαsαg

(
cθ′ g̃ +

√
g2 + g2

1sθ′

)

+ c2
αc2

αg

(
c2
θ′ g̃

2 + 2cθ′

√
g2 + g2

1 g̃sθ′ +
(
g2 + g2

1

)
s2
θ′

))
, (C.2)

f z
zz,h1h2

=
1

4

(
4cαgg

′
1s

2
αsαgsθ′

(
cθ′

√
g2 + g2

1 − g̃sθ′

)

+ 4c2
αcαgg

′
1sαgsθ′

(
−cθ′

√
g2 + g2

1 + g̃sθ′

)

+ cαsα

(
−16(g′1)

2s2
αgs

2
θ′+c2

αg

(
c2
θ′
(
g2+g2

1

)
−2cθ′

√
g2+g2

1 g̃sθ′+g̃2s2
θ′

)))
, (C.3)
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f z′

zz,h1h2
=

1

4

(
4c2

αcαgcθ′g
′
1sαg

(
cθ′ g̃ +

√
g2 + g2

1sθ′

)

− 4cαgcθ′g
′
1s

2
αsαg

(
cθ′ g̃ +

√
g2 + g2

1sθ′

)

+ cαsα

(
−16c2

θ′(g
′
1)

2s2
αg+c2

αg

(
c2
θ′ g̃

2+2cθ′

√
g2+g2

1 g̃sθ′+
(
g2+g2

1

)
s2
θ′

)))
, (C.4)

f z
zz,h2h2

=
1

4

(
c2
αgc

2
θ′
(
g2 + g2

1

)
s2
α − 2c2

αgcθ′

√
g2 + g2

1 g̃s2
αsθ′

− 8cαcαgcθ′

√
g2 + g2

1g
′
1sαsαgsθ′ + (cαg g̃sα + 4cαg′1sαg)

2s2
θ′

)
(C.5)

f z′

zz,h2h2
=

1

4

(
c2
θ′(cαg g̃sα + 4cαg′1sαg)

2 − c2
αg

(
g2 + g2

1

)
s2
αs2

θ′
)
, (C.6)

f z
zz′,h1h1

=
1

4

(
16cαg(g

′
1)

2s2
αsαgs

2
θ′ + 4cαg′1sα

(
c2
αg + s2

αg

)
sθ′

(
cθ′

√
g2 + g2

1 − g̃sθ′

)

+ c2
αcαgsαg

(
c2
θ′
(
g2 + g2

1

)
− 2cθ′

√
g2 + g2

1 g̃sθ′ + g̃2s2
θ′

))
, (C.7)

f z′

zz′,h1h1
=

1

4

(
16cαgc

2
θ′(g

′
1)

2s2
αsαg − 4cαcθ′g

′
1sα

(
c2
αg + s2

αg

)(
cθ′ g̃ +

√
g2 + g2

1sθ′

)

+ c2
αcαgsαg

(
c2
θ′ g̃

2 + 2cθ′

√
g2 + g2

1 g̃sθ′ +
(
g2 + g2

1

)
s2
θ′

))
, (C.8)

f z
zz′,h1h2

=
1

4

(
4g′1s

2
αs2

αgsθ′

(
cθ′

√
g2 + g2

1 − g̃sθ′

)
+ 4c2

αc2
αgg

′
1sθ′

(
−cθ′

√
g2 + g2

1 + g̃sθ′

)

+ cαcαgsαsαg

(
c2
θ′
(
g2 + g2

1

)
− 2cθ′

√
g2 + g2

1 g̃sθ′ +
(
−16(g′1)

2 + g̃2
)
s2
θ′

))
, (C.9)

f z′

zz′,h1h2
=

1

4

(
4c2

αc2
αgcθ′g

′
1

(
cθ′ g̃ +

√
g2 + g2

1sθ′

)
− 4cθ′g

′
1s

2
αs2

αg

(
cθ′ g̃ +

√
g2 + g2

1sθ′

)

+ cαcαgsαsαg

(
c2
θ′
(
−16(g′1)

2 + g̃2
)

+ 2cθ′

√
g2 + g2

1 g̃sθ′ +
(
g2 + g2

1

)
s2
θ′

))
, (C.10)

f z
zz′,h2h2

=
1

4

(
4cαg′1sαs2

αgsθ′

(
cθ′

√
g2+g2

1−g̃sθ′

)
−4cαc2

αgg
′
1sαsθ′

(
cθ′

√
g2+g2

1−g̃sθ′

)

+ cαgsαg

(
c2
θ′
(
g2+g2

1

)
s2
α−2cθ′

√
g2+g2

1 g̃s2
αsθ′+

(
−16c2

α(g′1)
2+g̃2s2

α

)
s2
θ′

))
, (C.11)

f z′

zz′,h2h2
=

1

4

(
−16c2

αcαgc
2
θ′(g

′
1)

2sαg + 4cαcθ′g
′
1sα(c2

αg − s2
αg)

(
cθ′ g̃ +

√
g2 + g2

1sθ′

)

+ cαgs
2
αsαg

(
c2
θ′ g̃

2 + 2cθ′

√
g2 + g2

1 g̃sθ′ +
(
g2 + g2

1

)
s2
θ′

))
, (C.12)

f z
z′z′,h1h1

=
1

4

(
c2
αc2

θ′
(
g2 + g2

1

)
s2
αg + 8cαcαgcθ′

√
g2 + g2

1g
′
1sαsαgsθ′

− 2c2
αcθ′

√
g2 + g2

1 g̃s2
αgsθ′ + (−4cαgg

′
1sα + cαg̃sαg)

2s2
θ′

)
, (C.13)
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f z′

z′z′,h1h1
=

1

4

(
16c2

αgc
2
θ′(g

′
1)

2s2
α − 8cαcαgcθ′g

′
1sαsαg

(
cθ′ g̃ +

√
g2 + g2

1sθ′

)

+ c2
αs2

αg

(
c2
θ′ g̃

2 + 2cθ′

√
g2 + g2

1 g̃sθ′ +
(
g2 + g2

1

)
s2
θ′

))
, (C.14)

f z
z′z′,h1h2

=
1

4

(
4cαgg

′
1s

2
αsαgsθ′

(
cθ′

√
g2 + g2

1 − g̃sθ′

)

+ 4c2
αcαgg

′
1sαgsθ′

(
−cθ′

√
g2 + g2

1 + g̃sθ′

)

+ cαsα

(
c2
θ′
(
g2+g2

1

)
s2
αg−2cθ′

√
g2+g2

1 g̃s2
αgsθ′−

(
16c2

αg(g
′
1)

2−g̃2s2
αg

)
s2
θ′

))
, (C.15)

f z′

z′z′,h1h2
=

1

4

(
4c2

αcαgcθ′g
′
1sαg

(
cθ′ g̃ +

√
g2 + g2

1sθ′

)

−4cαgcθ′g
′
1s

2
αsαg

(
cθ′ g̃ +

√
g2 + g2

1sθ′

)

+ cαsα

(
−16c2

αgc
2
θ′(g

′
1)

2+s2
αg

(
c2
θ′ g̃

2+2cθ′

√
g2+g2

1 g̃sθ′+
(
g2+g2

1

)
s2
θ′

)))
, (C.16)

f z
z′z′,h2h2

=
1

4

(
c2
θ′
(
g2 + g2

1

)
s2
αs2

αg − 2cθ′

√
g2 + g2

1sαsαg(4cαcαgg
′
1 + g̃sαsαg)sθ′

+ (4cαcαgg
′
1 + g̃sαsαg)

2s2
θ′
)
, (C.17)

f z′

z′z′,h2h2
=

1

4

(
16c2

αc2
αgc

2
θ′(g

′
1)

2 + 8cαcαgcθ′g
′
1sαsαg

(
cθ′ g̃ +

√
g2 + g2

1sθ′

)

+ s2
αs2

αg

(
c2
θ′ g̃

2 + 2cθ′

√
g2 + g2

1 g̃sθ′ +
(
g2 + g2

1

)
s2
θ′

))
. (C.18)

The non-vanishing coefficients related to the structure of equation (3.5), in the high

energy limit, are the following:

f z
w+w− =

c2
θ′
(
g2 − g2

1

)2√
g2 + g2

1 + 2cθ′
(
g4 − g4

1

)
g̃sθ′ +

(
g2 + g2

1

)3/2
g̃2s2

θ′

4
(
g2 + g2

1

)3/2
, (C.19)

f z′

w+w− =
c2
θ′
(
g2 + g2

1

)3/2
g̃2 − 2cθ′

(
g4 − g4

1

)
g̃sθ′ +

(
g2 − g2

1

)2√
g2 + g2

1s
2
θ′

4
(
g2 + g2

1

)3/2
. (C.20)

In the previous equations, we have used the notation of equations (B.11).
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