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Abstract: We survey the phenomenological constraints on abelian gauge bosons having
masses in the MeV to multi-GeV mass range (using precision electroweak measurements,
neutrino-electron and neutrino-nucleon scattering, electron and muon anomalous magnetic
moments, upsilon decay, beam dump experiments, atomic parity violation, low-energy
neutron scattering and primordial nucleosynthesis). We compute their implications for the
three parameters that in general describe the low-energy properties of such bosons: their
mass and their two possible types of dimensionless couplings (direct couplings to ordinary
fermions and kinetic mixing with Standard Model hypercharge). We argue that gauge
bosons with very small couplings to ordinary fermions in this mass range are natural in
string compactifications and are likely to be generic in theories for which the gravity scale
is systematically smaller than the Planck mass — such as in extra-dimensional models
— because of the necessity to suppress proton decay. Furthermore, because its couplings
are weak, in the low-energy theory relevant to experiments at and below TeV scales the
charge gauged by the new boson can appear to be broken, both by classical effects and
by anomalies. In particular, if the new gauge charge appears to be anomalous, anomaly
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theory. Furthermore, the charge can appear to be conserved in the low-energy theory,
despite the corresponding gauge boson having a mass. Our results reduce to those of other
authors in the special cases where there is no kinetic mixing or there is no direct coupling
to ordinary fermions, such as for recently proposed dark-matter scenarios.
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1 Introduction and summary of results

New particles need not have very large masses in order to have evaded discovery; they can
also be quite light provided they couple weakly enough to the other particles we do see.
This unremarkable observation has been reinforced by recent dark matter models, many
of which introduce new particles at GeV or lower scales in order to provide dark-matter
interpretations for various astrophysical anomalies [1–13]. This model-building exercise has
emphasized how comparatively small experimental efforts might close off a wide range of
at-present allowed couplings and masses for putative new light particles [14–16].

Light spin-one bosons. Spin-one gauge bosons are particularly natural kinds of par-
ticles to seek at low energies, since (unlike most scalars) these can have light masses in
a technically natural way. Furthermore, their couplings are reasonably restrictive, allow-
ing only two kinds of dimensionless interactions with ordinary Standard Model particles:
direct gauge couplings to ordinary matter and kinetic mixing [17] with Standard Model
gauge bosons. Most extant surveys of constraints on particles of this type assume the
existence of one or the other of these couplings, with older studies studying only direct
gauge-fermion interactions [18–20] and later studies (particularly for dark-matter moti-
vated models) [21–34] usually allowing only kinetic mixing.

In this paper we have both motivational and phenomenological goals. On the phe-
nomenological side, we analyze the constraints on new (abelian) gauge bosons, including
both direct gauge-fermion couplings and gauge-boson kinetic mixing. In this way we include
all of their dimensionless couplings, which (if all other things are equal) should dominate
their behaviour at low energies. We can follow the interplay of these couplings with one
another, and how this changes the bounds that can be inferred concerning the allowed pa-
rameter space. In particular we find in some cases (such as beam dump experiments) that
bounds derived under the assumption of the absence of the other coupling can sometimes
weaken, rather than strengthen, once the most general couplings are present.

Our motivational goal in this paper is twofold. First, we argue that the existence
of gauge bosons directly coupled to ordinary fermions is very likely to be a generic and
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robust property of any phenomenologically successful theory for which the gravity scale is
much smaller than the GUT scale [35–46]. Next, we argue that these gauge bosons often
very naturally have extremely weak gauge interactions within reasonable UV extensions
of the low-energy theory, such as extra-dimensional models [47, 48] and low-energy string
vacua [49]. Besides motivating the otherwise potentially repulsive feature of having very
small couplings, the smallness of these couplings (together with the low value for the
fundamental gravity scale) also naturally tends to make the corresponding gauge bosons
unusually light.

The remainder of this paper is organized as follows. The rest of this section, sec-
tion 1, briefly summarizes the basic motivational arguments and phenomenological results.
Section 2 then provides a more detailed theoretical background that motivates the sizes
and kinds of couplings we consider, which may be skipped for those interested only in the
bounds themselves. In section 3 we briefly summarize the basic properties of the new gauge
boson, with details given in an appendix. By diagonalizing all kinetic terms and masses
we identify the physical combination of couplings that are bounded in the subsequent sec-
tions. The next three sections, section 4, section 5 and section 6, then explore the bounds
on these couplings that are most restrictive for successively lighter bosons, starting at the
weak scale and working down to MeV scales.

1.1 Motivational summary

Why consider light gauge bosons that couple directly to ordinary fermions? And why should
their couplings be so small? We here briefly summarize the more lengthy motivations given
below, in section 2.

Low-scale gravity and proton decay. Weakly coupled gauge bosons are likely to be
generic features of any (phenomenologically viable) UV physics for which the fundamental
gravity scale is systematically small relative to the GUT scale, MGUT ∼ 1015 GeV. Such
bosons arise because of the difficulty of reconciling a low gravity scale with the observed
stability of the proton. After all, higher-dimension baryon- and lepton-violating inter-
actions that generically cause proton decay are not adequately suppressed if they arise
accompanied by a gravity scale that is much smaller than MGUT. Similarly, global symme-
tries cannot themselves stop proton decay if the present lore about the absence of global
symmetries in quantum gravity [50] should prove to be true (as happens in string theory,
in particular [51, 52]).

This leaves low-energy gauge symmetries as the remaining generic mechanism for sup-
pressing proton decay. Indeed, extra gauge bosons are often found in string vacua, and
when the string scale is much smaller than the GUT scale, Ms � MGUT, these bosons
typically play a crucial role in protecting protons from decaying. Furthermore, very weak
gauge couplings appear naturally in such string compactifications, once modulus stabi-
lization is included. In these systems the gauge couplings can be small because they are
often inversely proportional to the volume of some higher-dimensional cycle, whose volume
gets stabilized at very large values [53, 54]. Similar things can also occur in non-stringy
extra-dimensional models [55, 56].
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Unbroken gauge symmetry without unbroken gauge symmetry. We believe there
is a generic low-energy lesson to be drawn from how proton decay is avoided in phenomeno-
logical string constructions. This is because in these models, even though proton decay is
forbidden by conservation of a gauged charge, the gauge boson that gauges this symmetry
is not massless [49]. This combines the virtues of an unbroken symmetry (no proton de-
cay), with the virtues of a broken symmetry (no new forces mediated by a massless gauge
boson).1 Usually this happy situation arises in the string examples because the gauge
symmetry in question is anomalous, if judged solely by the light fermion content, with
anomaly freedom restored through Green-Schwarz anomaly cancellation. But in four di-
mensions Green-Schwarz anomaly cancellation relies on the existence of a Goldstone boson,
whose presence also ensures that the gauge boson acquires a nonzero mass.

For these constructions the effective lagrangian obtained just below the string scale
from matching to the stringy UV completion is invariant under the symmetry apart from
an anomaly-cancelling term that breaks the symmetry in just the way required to cancel the
fermion loop anomalies. Section 2 argues that this property remains true (to all orders in
perturbation theory) as one integrates out modes down to low energies. Leading symmetry
breaking contributions arise non-perturbatively, exponentially suppressed by the relevant
gauge couplings. Consequently they remain negligibly small provided only that the gauge
groups involved in the anomalies are weakly coupled. Although supersymmetry also plays
a role in the explicit string examples usually examined, our point here is that this is
not required for the basic mechanism that allows massive gauge bosons to coexist with
conservation of the corresponding gauge charge.

1.2 Phenomenological summary

We next summarize, for convenience of reference, the combined bounds obtained from the
constraints examined throughout the following sections.

Mass vs coupling. Figure 1 presents a series of exclusion plots in the αX −MX plane,
where αX = g2

X/4π is the gauge-fermion coupling and MX is the gauge boson mass. Each
panel shows these bounds for different fixed values of the kinetic mixing parameter, sh η
(for details on the definition of variables, see section 3). The figure shows the collective
exclusion area of all of the different bounds considered in this paper. For concreteness they
are calculated for a vector-like charge assignment, XfL = XfR, with the choice X = B−L
denoted by a lighter shading and the choice X = B denoted with a heavier shading.
Comparison of the cases X = B and X = B − L shows how much the bounds strengthen
once direct couplings to leptons are allowed.

For η = 0, the dominant bounds are from neutrino scattering, upsilon decay, anoma-
lous magnetic moments, beam-dump experiments, neutron-nucleus scattering and nucle-
osynthesis. Once kinetic mixing is introduced, many of these bounds improve, with the
exception of the beam-dump bounds. Once sh η & 0.06, kinetic mixing becomes sufficiently
strong that the W -mass bound prevails over any other bounds in the MX

<∼ MZ region.

1Superconductors are similar in this regard: the photon acquires a mass without implying gross violations

of charge conservation.
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Figure 1. Summary of the constraints presented herein. Each plot shows the bound on the new
gauge coupling, αX , as a function of MX for various values of the kinetic-mixing parameter, sh η,
assuming a vector coupling XfL = XfR := X, with X = B − L (X = B) drawn as sparse (dense)
cross-hatching.

For sh η = 1, we discard the region where the oblique T parameter is large (for details,
see section 4), and focus on the region where MX > 385 GeV. In this region, it is the
neutrino-electron scattering bound and the W -mass bound that dominate.
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Figure 2. Summary of the constraints on kinetic mixing relevant in the MeV-GeV mass range.
Each plot shows the bound on the kinetic mixing parameter sh η as a function of MX , for αX = 0,
1 × 10−10 and 1 × 10−8. The plot assumes a coupling X`L = X`R = −1, such as would be true if
X = B − L. Hatched regions are excluded.

Mass vs mixing angle. It is useful to show these same bounds as exclusion plots in the
mixing-angle/boson-mass plane, for fixed choices of the gauge-fermion coupling, αX . This
allows contact to be made with similar bounds obtained in the context of dark matter-
inspired U(1) models [14–16, 29–33], which correspond to the αX → 0 limit of the bounds
we find here. This version of the plots is shown in figure 2, restricted to the MeV-GeV
mass range (in order to facilitate the comparison with earlier work).

For small, but non-zero, gauge coupling (αX ∼ 10−10) the bounds from beam dump
experiments weaken significantly. However, another strong bound from neutrino-electron
scattering also begins to take effect. This bound dominates for larger αX , and once αX

>∼
10−7 the entire MeV−GeV mass range is excluded.

Since the bounds in figure 2 all rely on coupling to leptons, in the case where X = B

the constraints arise through the kinetic mixing and are independent of αX . The resulting
plot for X = B is therefore the same as is shown in the figure for αX = 0. However,
as the gauge coupling is increased the neutron-nucleus scattering bound — discussed in
section 6.4 — eventually becomes important, first being visible as an exclusion in the sh η
— MX plane in the panel for αX ' 10−8 in figure 2.
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2 Theoretical motivation

This section elaborates the motivations for weakly coupled, very light gauge bosons alluded
to above. This is done both by summarizing the consistency conditions they must satisfy
within the low-energy effective theory relevant to experiments, and by describing how such
bosons actually arise from several representative UV completions in string theory and
extra-dimensional models.

2.1 Low-energy gauge symmetries, consistency and anomaly cancellation

Very general arguments [57–63] indicate that the interplay between unitarity and Lorentz
invariance require massless gauge bosons only to couple to conserved charges that gener-
ate exact symmetries of the matter action. Consequently we normally expect the direct
couplings of very light gauge bosons to be similarly restricted. This section reviews these
arguments, emphasizing how they can break down [64–68] if the energy scale, Λ, of any UV
completion is sufficiently small compared with the gauge boson mass, M , and coupling, g:
Λ <∼ 4πM/g. For the present purposes it suffices to restrict our attention to abelian gauge
bosons (see however [67, 68] for some discussion of the nonabelian case).

The upshot of the arguments summarized here is that massive spin-one bosons can
couple in an essentially arbitrary way if their mass, M , lies within a factor g/4π of the
scale of UV completion. But once M becomes smaller than gΛ/4π, then the corresponding
boson must gauge an honest-to-God, linearly realized exact symmetry. In particular this
symmetry must be anomaly free. However any anomalies that Standard Model fermions
give a putative new gauge charge needn’t be cancelled by adding new, exotic low-energy
fermions; they can instead be cancelled by the Goldstone boson whose presence is in any
case required if the gauge boson has a mass. But this latter sort of cancellation also requires
the UV completion scale to satisfy Λ <∼ 4πM/g.

Notice that for any given M the condition Λ <∼ 4πM/g need not require Λ to lie below
the TeV scale if the coupling g is small enough. For instance, if M ' 1 MeV then Λ lies
above the TeV scale provided g <∼ 10−5 (an upper limit often required in any case by the
strong phenomenological bounds we find below). And, as subsequent sections argue, such
small couplings can actually arise in a natural way from reasonable UV completions.

2.1.1 Massless spin-one bosons

What goes wrong if a spin-one particle is not coupled to matter by gauging an exact
symmetry of the matter action? If the spin-one particle is massless, then the problem is
that one must give up either Lorentz invariance or unitarity (provided the particle has non-
derivative, Coulomb-like couplings that survive in the far infrared). Lorentz invariance and
unitarity fight one another because the basic field, Aµ(x), cannot transform as a Lorentz
4-vector if Aµ creates and destroys massless spin-one particles [57–63]. Instead it transforms
as a 4-vector up to a gauge transformation, Aµ → Aµ + ∂µω, and so interactions must be
kept gauge invariant in order to be Lorentz invariant [69].
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2.2 Massive spin-one bosons

For massive spin-one particles the argument proceeds differently, as is now described.
The difference arises because a 4-vector field, Aµ, can represent a massive spin-one
particle [57–59].

To examine the relevance of symmetries, it is worth first considering coupling massive
spin-one particles to other matter fields, ψ, in some arbitrary non-gauge-invariant way, with
lagrangian density L(Aµ, ψ). The first observation to make is that any such a lagrangian
can be made gauge invariant for free, by introducing a Stückelberg field, φ, according
to the replacements Aµ → Aµ := Aµ − ∂µφ and ψ → Ψ := exp[−iφQ]ψ, where Q is a
hermitian matrix acting on the fields ψ. With this replacement the lagrangian L(Aµ,Ψ)
is automatically invariant under the symmetry Aµ → Aµ + ∂µω, φ → φ + ω and ψ →
exp[iω Q]ψ, since both Aµ and Ψ are themselves invariant under these replacements. The
original non-symmetric formulation corresponds to the specific gauge φ = 0. For gauge
symmetry, absence of gauge invariance is evidently equivalent to nonlinearly realized gauge
invariance (similar arguments can also be made in the nonabelian case [67, 68]).

But this gauge invariance is obtained at the expense of introducing a new scale. Since
φ is dimensionless, its kinetic term involves a scale, v,

Lkin = − 1
4g2

FµνF
µν − v2

2
(∂µφ−Aµ) (∂µφ−Aµ) . (2.1)

In φ = 0 gauge the scale v is seen to be related to the gauge boson mass by the relation
M = gv. In a general gauge the scale v controls the size of couplings between the canonically
normalized field, ϕ = φ v, and other particles. For instance the coupling

Lcoupling = −i(ψγµQψ)
(
Aµ −

∂µϕ

v

)
, (2.2)

shows that the (ψγµQψ)∂µϕ coupling is dimension-five, being suppressed by the scale
v = M/g.

Lagrangians with nonrenormalizable couplings like this must be interpreted as effective
field theories, whose predictive power relies on performing a low-energy expansion in powers
of E/Λ, for some UV scale Λ. The interpretation of the scale v then generically depends
on the how high Λ is relative to 4πM/g = 4πv. We consider each case in turn.

Light spin-one bosons: M � gΛ/4π. If the gauge boson is very light compared with
the UV scale, then its low-energy interactions should be describable by some renormalizable
theory. But renormalizability is only consistent with a dimension-five interaction2 like the
(ψγµQψ)∂µϕ coupling of eq. (2.2) if this coupling is a redundant interaction, such as it
would be if it could be removed by a field redefinition. A sufficient condition for an
interaction of the form Jµ∂µϕ to be redundant in this way is if the field equations for ψ
were to imply the quantity Jµ(ψ) satisfies ∂µJµ = 0 [70, 71]. This shows that if the gauge
boson is to be arbitrarily light relative to Λ, its low-energy, renormalizable couplings must

2The careful reader will recognize that this argument assumes negligible anomalous dimensions, and so

needs re-examination for strongly coupled theories.
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be to a (dimension-three) conserved current. This is the usual prescription for obtaining
these couplings by gauging a linearly realized matter symmetry, for which Jµ is the usual
Noether current.

More generic massive spin-one bosons: M >∼ gΛ/4π. If, on the other hand, the
dimension-five coupling (ψγµQψ)∂µϕ is not redundant, then there must be an upper bound
on the UV scale: Λ <∼ 4πv = 4πM/g. Sometimes this may be seen from the energy-
dependence predicted for the cross section of reactions in the low energy theory: if σ(E) ∝
1/(4πv)2 then this would be larger than the unitarity bound σ <∼ 1/E2 for energies E >∼
Λ ' 4πv, indicating the failure at these energies of the low-energy approximation. If so, the
full UV completion must intervene at or below these energies to keep the theory unitary.

The upshot is that spin-one particles can couple fairly arbitrarily to matter provided
they are massive, and provided the energy scale, Λ, of any UV completion satisfies Λ <∼
4πM/g, where M is the gauge boson mass and g is its coupling strength. (Everyday
examples of spin-one particles of this type include the ρ meson or spin-one nuclei.) It is
only spin-one particles with M < gΛ/4π that must gauge linearly realized symmetries.

2.3 Anomaly cancellation

Any new gauge symmetry — henceforth denoted U(1)X — must be an exact symmetry
(though possibly spontaneously broken), and in particular must be anomaly free. This is
true regardless of whether the symmetry is the linearly realized symmetry of a light gauge
boson, or the nonlinearly realized symmetry of a massive gauge boson.

Of particular interest in this paper are models where the new symmetry acts on or-
dinary fermions, because a robust motivation for thinking about light gauge bosons is the
avoidance of proton decay in models with a low gravity scale (more about which below). In
this case these ordinary fermions usually contribute gauge anomalies for the new symme-
try, and an important issue is how these anomalies are ultimately cancelled. The two main
anomaly-cancellation scenarios then divide according to whether or not anomalies cancel
among the SM fields themselves, or require the addition of new particles.

2.3.1 Anomaly cancellation using only SM fields

The simplest situation is where the new gauge symmetry is simply a linear combination
of one or more of the SM’s four classical global symmetries — baryon number B, electron
number Le, muon number Lµ and tau number Lτ . In this situation there are only two
independent combinations of these symmetries that are anomaly free3 [72], corresponding
to arbitrary linear combinations of the anomaly-free symmetries Le − Lµ and Lµ − Lτ :

X = a(Le − Lµ) + b(Lµ − Lτ ) . (2.3)

Of course, evidence for neutrino oscillations [73–75] make it unlikely that these symmetries
are unbroken in whatever replaces the Standard Model in our ultimate understanding
of Nature.

3Notice that B − L carries a Standard Model anomaly in the absence of sterile right-handed neutrinos

(see below).
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2.3.2 Anomaly cancellation using the Green-Schwarz mechanism

If more general combinations of B, Le, Lµ and Lτ are to be gauged, it is necessary to
introduce new particles that can cancel their Standard Model anomalies. For a new U(1)X

symmetry the minimal way to do this is to add only the Goldstone boson, which must in any
case be present if the corresponding gauge boson has a mass (as it typically must to avoid
mediating a macroscopic, long-range new force, whose presence is strongly disfavoured
by observations [76–79]). For a U(1)X symmetry this can always be done using the 4D
version [80] of the Green-Schwarz mechanism [81]. Besides its intrinsic interest, this is a
way of cancelling anomalies that actually arises from plausible UV physics, such as low
energy string models.

In principle, there are four types of new anomalies that can arise in 4D once the SM
is supplemented by a new gauge symmetry, U(1)X . These are proportional to Tr[XXX],
Tr[XXY ], Tr[XY Y ] and Tr[XGaGa], where the trace is over all left-handed fermions andX
denotes the new symmetry generator, Y is Standard Model hypercharge, and Ga represents
the generators of the Standard Model nonabelian gauge groups, SU(2)L × SU(3)c, as well
as the generators of Lorentz transformations. In four dimensions CPT invariance implies
the absence of pure gravitational anomalies, and anomaly cancellation within the Standard
Model ensures the absence of anomalies of the form Tr[Y Y Y ] and Tr[GaGbGc].

It is always possible to redefine the new symmetry generator, V := X+ ζ Y , to remove
one of the two mixed anomalies. For instance, Tr[V V Y ] = Tr[XXY ]+2 ζ Tr[XY Y ] can be
made to vanish by choosing ζ appropriately (provided Tr[XY Y ] does not vanish). It suffices
then to consider only the case of nonzero anomalies of the form Tr[V V V ] and Tr[V GaGa],
where Ga now includes also the generator Y . The anomaly then can be written in the Ga-
and Lorentz-invariant form4

δΓ = −
∫

d4x ω
{
cXFV ∧ FV + caTr[Fa ∧ Fa]− cLTr[R ∧R]

}
(2.4)

= −
∫

d4x ω
{
cX

(
FX + ζ FY ) ∧ (FX + ζ FY ) + caTr[Ga ∧Ga]− cLTr[R ∧R]

}
,

where Γ is the ‘quantum action’ (generator of 1PI correlations), the symmetry parameter
is normalized by δXµ = ∂µω and the coefficients, cX , ca and cL, are calculable. Here
FV = dV = FX +ζ FY is the gauge-boson field strength for the generator X+ζ Y , while Fa is
the same for the Standard Model gauge bosons and R is the gravitational curvature 2-form.

Given the coefficients cX , ca and cL, here is how 4D Green-Schwarz anomaly cancella-
tion works [80]. Consider the gauge kinetic lagrangian, including the Stückelberg field φ,

L = Linv −
1

4g2
FX
µνF

µν
X − 1

4g2
a

Tr[GaµνG
µν
a ]− v2

2
(∂µφ−Xµ)(∂µφ−Xµ)

+φ
{
cX

(
FX + ζ FY ) ∧ (FX + ζ FY ) + caTr[Ga ∧Ga]− cLTr[R ∧R]

}
. (2.5)

4A similar formulation can be made using the anomaly in its ‘consistent’ form, rather than the ‘covariant’

form used in the text.
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Here Linv denotes those parts of the lagrangian that are invariant under all of the gauge
symmetries that are not written explicitly. The second line is not invariant under gauge
transformations because φ is not; its variation precisely cancels the fermion anomaly,
eq. (2.4).

An important observation is that the anomaly cancelling term is dimension-five, and
so is not renormalizable. For instance, in terms of the canonically normalized field, ϕ = φv,
the first anomaly cancelling term is Lanom = (ϕ/f)FX ∧ FX + · · · , where f = v/cX . As
before, this implies the existence of a UV-completion scale, Λ, above which the low-energy
effective description breaks down [66]. For weakly coupled theories typically Λ <∼ 4πv '
4πM/g ' 4πcXf marks the scale where the fields arise that are required to extend the
Goldstone boson to a linear representation of the symmetry.

Perhaps the most interesting feature of cancelling anomalies with the Green-Schwarz
mechanism in this way is that the lagrangian remains invariant under the U(1) symmetry,
apart from the anomaly-cancelling term. This is interesting because it means that the
corresponding charge still appears to be conserved in the low-energy theory, despite the
gauge field being massive. This opens up interesting phenomenological possibilities for the
gauging of symmetries like U(1)B and U(1)B−L, which appear to be conserved in Nature
but which are also ruled out as sources of the new long-range force that a massless gauge
boson would imply.

One might worry that arbitrary symmetry-breaking interactions might be generated
by embedding the anomaly cancelling interactions (or the fermion triangle anomaly graph)
into a quantum fluctuation. For instance if X = B, so the new gauge boson couples to
baryon number, then why can’t some complicated loop generate a ∆B = ±1 interaction,
O±1, that can mediate proton decay? After all, this can be U(1)B invariant if it arises
multiplied by a factor e∓iφ, which carries baryon number ∆B = ∓1.

The difficulty with generating this kind of interaction is that it must involve φ undiffer-
entiated. But if we restrict Lanom to constant φ configurations, it becomes a total deriva-
tive. For constant φ, the dependence of observables on φ is similar to the dependence of
observables on the vacuum angle, θ. Consequently it arises at best only non-perturbatively,
proportional at weak coupling to a power of ∼ exp[−8π2/g2], where g is the anomalous
gauge coupling. As a result the only potentially dangerous contribution of this type comes
from the mixed X-QCD-QCD anomaly, which can generate nontrivial φ-dependence once
we integrate down to scales <∼ ΛQCD. This is not dangerous in particular for the classical
symmetries, B, Le, Lµ and Lτ , since these do not have mixed QCD anomalies [72].

2.3.3 Anomaly cancellation using new fermions

More complicated possibilities for new gauge bosons emerge if new, light exotic fermions
are allowed that also carry the new X charge (and so can also take part in the anomaly can-
cellation). We briefly describe some features involving such new exotic particles, although
they do not play any role in our later phenomenological studies.

The simplest example along these lines is X = B − L, which is anomaly-free pro-
vided only that the SM spectrum is supplemented by three right-handed neutrinos (one
for each generation). Furthermore, conservation of L is consistent with all evidence for
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neutrino oscillations, although it would be ruled out should neutrinoless double-beta decay
ever be witnessed.

A practical way in which such new fermions can arise at TeV scales is if the UV theory
at these scales is supersymmetric. In this case the plethora of new superpartners can change
anomaly cancellation in one of two ways (or both). They can either directly contribute
to the anomalies themselves, and possibly help anomalies cancel without recourse to the
Green-Schwarz mechanism. Alternatively, they can modify the details of how the Green-
Schwarz mechanism operates if the UV scale, v, associated with it is larger than the
supersymmetry breaking scale, Msusy.

In particular, supersymmetry typically relates the kinetic term for the Stückelberg
field, (2.5), with a Fayet-Iliopoulos term in the scalar potential [83],

SFI = − 1
g2

∫
d4x

(
τ −

∑
i

qiφ
†
iφi

)2

, (2.6)

where τ is a dynamical field whose vev acts as the low-energy Fayet-Iliopoulos parameter;
the qi are the charges of the fields φi under the U(1) in question. In string examples the
field τ corresponds to a modulus of the compactification, which controls the size of a cycle
in the internal geometry on which some branes wrap. We note that the vanishing of the
D-term is consistent with vanishing vevs of the charged fields if τ = 0, i.e. the symmetry
survives as an exact global symmetry when the cycle size vanishes (the singular locus).
Small values of the vev are obtained if the cycle size is small.

2.4 Motivations from UV physics

The above summary outlines some of the theoretical constraints on coupling ordinary
fermions to very light gauge bosons. This section shows how very small couplings can
naturally appear in well-motivated ultraviolet physics, such as extra-dimensional models
or string vacua. In particular, they often arise due to considerations of proton stability in
constructions for which the gravity scale is small compared with the Planck scale, as we
now explain.

2.4.1 Proton decay in low-scale gravity models

One of the surprises of the late 20th century was the discovery that the scale, Mg, of
quantum gravity could be much smaller than the Planck scale, Mp = (8πG)−1/2 ' 1018 GeV
[35–42]. From the point of view of particle physics this possibility is remarkable for several
reasons. Most obvious is the potential it allows for experimental detection if it should
happen that Mg is in the vicinity of the TeV scale [43–46].

But there is a potentially more wide-reaching consequence that Mg � Mp has for
the low-energy sector: the suppression by powers of Mg/Mp it allows for otherwise UV-
sensitive radiative corrections [84]. This suppression arises because the contribution of
short-wavelength degrees of freedom can saturate at Mg, allowing their effects to be sup-
pressed by powers of the gravitational coupling.
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The most precise examples of this are provided by string theory, in the regime where the
string scale is low, Mg := Ms � Mp [35–42]. String theory makes the suppression of UV-
sensitive contributions precise by providing an explicit stringy ultraviolet completion within
which the effects of the full UV sector can be explored. Large-volume (LV) models [53, 54]
are particularly useful laboratories for these purposes, since these systematically exploit
the expansion of inverse powers of the extra-dimensional volume (in string units), V :=
(Vol)/`6s � 1, and it is ultimately these kinds of powers that enforce the suppressions of
interest since Ms/Mp ∝ V−1/2.

Proton decay — that is, its experimental absence — turns out to impose a very general
constraint on any fundamental theory of this type, with Mg � Mp. It does so because
having Mg very small removes two of the standard ways of keeping the proton stable in
specific models. On one hand quantum gravity, and string theory in particular [51, 52],
seems to preclude the existence of global symmetries, and this forbids ensuring proton
stability by simply using a conserved global charge (such as baryon number).

If Mg is too small then it is also unlikely that such a symmetry simply emerges by acci-
dent for the lowest-dimension interactions in the low-energy effective theory. The problem
in this case is that we know that generic higher-dimensional interactions,

Leff =
∑
i

ciOi
Mdi−4
g

, (2.7)

eventually do arise in the low-energy effective theory, such as the standard baryon-number
violating 4-quark operators arising at dimension di = 6 [85, 86] in the low-energy limit of
grand-unified theories (GUTs) [87–91]. But a dimension-six interaction of the form O/M2

generically contributes a proton-decay rate of order Γ ' m5
p/M

4, where mp is the proton
mass, which is too large to agree with observations once M falls below MGUT ' 1016 GeV.

The way theories with Mg �Mp usually evade proton decay is through the appearance
of a gauged U(1), whose conservation forbids the decay. Of course, to be useful the gauged
U(1) that appears must couple to the proton or its decay products in order to forbid
its decay. But because this means ordinary particles couple to the new gauge boson, it
potentially introduces other phenomenological issues. If the gauge symmetry is conserved,
why isn’t the gauge boson massless? If the gauge boson is light, why isn’t the new boson
seen in low-energy observations? If the gauge boson is heavy, the corresponding symmetry
must be badly broken and so how can it help with proton decay? Interestingly, extant
models can naturally address both of these issues, and often the low-energy mechanism
that is used is Green-Schwarz anomaly cancellation with gauge boson mass generated
through the Stückelberg mechanism described above. Sometimes this mechanism is also
combined with supersymmetry to suppress the dangerous decays.

The existence of these gauge bosons, their properties, and the way they evade the
above issues, may be among the few generic low-energy consequences of viable theories
with a low gravity scale: Mg �MGUT.

Sample symmetries. The simplest proposals for new low-energy gauge groups that
forbid proton decay are either baryon or lepton number, X = B or X = L. If the anomalies

– 12 –



J
H
E
P
0
8
(
2
0
1
1
)
1
0
6

for these symmetries due to Standard Model fermions are cancelled through the Green-
Schwarz mechanism, then no new light particles are required besides the massive gauge
boson itself.

More complicated examples are possible if the low-energy theory at TeV scales is
supersymmetric. In this case symmetries like B − L, that in themselves cannot forbid
proton decay, can help suppress proton decay if taken together with supersymmetry [49].
(For instance, the parity R = (−)F+3(B−L) that is usually used to suppress proton decay
in the MSSM is a combination of fermion number and B − L.)

More general combinations of B and L can also suppress proton decay in supersym-
metric theories. Ref. [49] provides a list of the kinds of symmetries of this type that can
be relevant to proton decay, as well as the conditions they must satisfy in order to have
their anomalies be cancelled through the Green-Schwarz mechanism. The general form for
the low-energy charge may be written

X = mTR + nA+ pL , (2.8)

where TR is right-handed isospin; A is an axionic PQ symmetry; and L is lepton number,
with the charge assignments given in the table. The coefficients m, n and p are subject to
(but not over-constrained by) several anomaly cancellation conditions [49]. In particular
B and L violating interactions can be forbidden up to and including dimension six for
some choices of these symmetries in the supersymmetric limit, as can the µ-terms of the
superpotential — W ' µLLH and W ' µHH — if n 6= 0.

Q U D L E H H

TR 0 1 −1 0 −1 1 −1
A 0 0 1 1 0 −1 0
L 0 0 0 1 −1 0 0
X 0 m n−m n+ p −m− p m− n −m

2.4.2 Very light and weakly coupled gauge bosons from extra-dimensional
models

For the phenomenological discussions of later sections we consider gauge bosons in the
MeV to TeV mass range, whose direct couplings to Standard Model fermions are much
smaller than those arising within the Standard Model itself. This section and the next one
describe several way that very light and weakly coupled bosons can arise from reasonable
UV physics.

Extra-dimensional supergravity provides a simple way to obtain very light gauge bosons
that are very weakly coupled. A concrete example is six-dimensional chiral gauged super-
gravity [92–94], for which the bosonic part of the gravity multiplet contains the metric,
gMN , a Kalb-Ramond 2-form potential, BMN , and a scalar, φ. Because it is chiral this su-
pergravity potentially has anomalies, whose cancellation imposes demands on the matter
content. In six dimensions Green-Schwarz anomaly cancellation is not automatic, because
cancellation of the pure gravitational anomalies requires the existence of a specific number
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of gauge multiplets [95, 96]. Given these multiplets, mixed gauge-gravity anomalies can be
cancelled through the Green-Schwarz mechanism using the couplings of the field BMN .

The resulting supergravity admits simple solutions for which the extra dimensions are
a sphere [97], whose moduli can be stabilized by a combination of background fluxes in
the extra dimensions [47, 48], and branes coupling to the 6D dilaton [55, 56, 98, 99]. An
important feature of this stabilization is that the value of the dilaton field becomes related
by the field equations to the size of the extra dimensions:

eφ =
1

(M6r)2
, (2.9)

where M6 denotes the 6D Planck scale. This ensures these models are a rich source of U(1)
gauge bosons, some of whom can have massless modes that survive to low energies below
the Kaluza-Klein scale. Some of these gauge modes also naturally acquire masses through
the Stückelberg mechanism [47, 48] (with the Stückelberg field arising as a component of
the Kalb-Ramond field, BMN).

Besides having light gauge bosons, these models also naturally furnish them with
very small coupling constants. This is because the loop-counting parameter for all bulk
interactions turns out to be the value of the 6D dilaton, φ, with g2 ' eφ. But modulus
stabilization, eq. (2.9), ensures that this coupling can be extremely small because it scales
inversely with the size of the extra dimensions (measured in 6D Planck units).

2.4.3 Very light and weakly coupled gauge bosons from low-energy string
vacua

A related mechanism also often arises in low-scale string models. In early heterotic models
the role of the Goldstone boson is played by a member of the dilaton super-multiplet:
a ' ImS [83], while in later Type I and Type II models it is twisted closed string multiplets
that instead play this role [49, 100]. Although the universal couplings of the dilaton restrict
the kinds of symmetries that can arise in heterotic constructions of this type, the same is
not true for Type I and II models.

There is a simple reason why additional U(1) gauge groups often arise. The basic
building blocks for constructing models of particle physics in type IIB and IIA string theory
are D-branes. Generically, the gauge group associated with a stack of N D-branes is U(N),
but the Standard Model gauge group involves special unitary groups, SU(3)×SU(2)×U(1).
Typical GUT models also involve special unitary groups, like SU(5), SU(3)×SU(2)×SU(2)×
U(1) (Left-Right symmetric models) or SU(4)× SU(2)× SU(2) (Pati-Salam models). It is
the additional U(1)s that distinguish the Standard Model SU(N) factors from the U(N)
factors arising from the D-branes, that give new low-energy gauge symmetries.

Furthermore, anomaly cancellation in string theory typically demands the presence of
additional D-brane stacks, in addition to those providing the Standard Model gauge group
factors. These stacks also lead to extra U(1)s under which Standard Model particles are
charged. Extra U(1)s also appear naturally in F-theory models (for a recent discussion
see [101]). In many concrete examples these additional gauge fields correspond to U(1)B or
U(1)B−L, hence can be relevant for the stability of the proton [49, 102, 103] (see also [104]
for a recent discussion).
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Masses and couplings. For string vacua the masses and couplings of any gauged U(1)s
can be computed, as we now briefly describe.

Consider first the U(1)s associated with the same stack of D-branes as gives rise to
the Standard Model gauge group. As discussed earlier, such gauge bosons often acquire
masses from the Stückelberg mechanism. The size of the mass generated in this way is the
string scale when the U(1) is anomalous [104, 105], but it is the smaller Kaluza-Klein scale
for non-anomalous U(1)s.

For models with the compactification volume not too much larger than the string scale,
these U(1) gauge bosons are very heavy. On the other hand, for large-volume models the
string scale can be quite low, leading to additional U(1)s potentially as light as the TeV
scale. The latter can have interesting low energy phenomenology (see for instance [102,
103, 106–110]). In these models the strength of the gauge coupling for the additional U(1)s
is roughly the same as for the Standard Model gauge couplings (evaluated at the string
scale), because both have the same origin: the world-volume theory of the stack. Hence
they cannot be extremely small.

The masses and couplings of the extra U(1) gauge bosons vary more widely when they
arise from D-brane stacks whose SU(N) factors are not part of the Standard Model gauge
group. For instance, the case of additional U(1)s associated with D7 branes wrapping bulk
four cycles of the compactification is discussed in detail in [52]. The value of the gauge
coupling in this case is inversely proportional to the volume (in string units) of the cycle,
Σ, that the D7 brane wraps,

g2 ≈ 4π
VΣ

. (2.10)

In the context of the large volume scenario (LVS) of modulus stabilization [53, 54], the
size of the bulk cycle associated with the overall volume of compactification can easily be
approximately VΣ >∼ 109 in string units, set by the requirement that one generate TeV-
scale soft terms. Thus one can obtain gauge couplings as low as g <∼ 2 × 10−4 [52, 111]
(couplings larger than this can be obtained if the D7 brane wraps a cycle different from
the one associated with the overall volume). With couplings this small, the gauge boson
mass can be MX ' gv <∼ 100 MeV even if v is a TeV.

3 Gauge boson properties

With the above motivation, our goal in the remainder of the paper is to work out various
constraints on the parameters of a massive (yet comparatively light) gauge boson, the X
boson, that couples to a new U(1)X symmetry. Since the lowest dimension interactions
dominate in principle at low energies, we include in our analysis all of the dimensionless
couplings that such a boson could have with Standard Model particles: i.e. both direct
fermion-gauge couplings and gauge kinetic mixing. We see how these are constrained by
present data as a function of the gauge boson mass.

More specifically, we consider an effective lagrangian density below the supersymmetry
breaking scale of the form

L = LSM + LX + Lmix (3.1)
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where LSM is the usual Standard Model lagrangian; LX describes the X boson, including
its couplings to the SM fermions; and Lmix is the kinetic-mixing interaction between the
X boson and that of the SM gauge factor U(1)Y [17]. Explicitly

LX = −1
4
XµνX

µν − m2
X

2
XµX

µ + iJµXXµ , (3.2)

where Xµν := ∂µXν − ∂νXµ is the curl of the appropriate gauge potential, Xµ, and JµX is
the current for the U(1)X gauge symmetry involving the SM fermions. Similarly, Lmix has
the form,

Lmix = χBµνX
µν (3.3)

where Bµ is the SM gauge boson for the gauge factor U(1)Y .
The analysis we provide complements and extends earlier studies of extra gauge boson

phenomenology. In the lower part of the mass range we may compare with [18], who some
time ago considered the special cases X = B − L and χ = 0. Contact is also possible
in this mass range with more recent Dark Matter models [14–16, 29, 30] in the absence
of direct matter couplings, gXJ

µ = 0. At masses much lower than those considered here
other constraints on kinetic mixing have also been studied, from the cosmic microwave
background [34], and from the absence of new long-range forces [76–79] or milli-charged
particles [17, 21–27].

There is also a broad literature on the phenomenology of gauge bosons at the upper
end of the mass range, largely done in the context of a Z ′ field and often motivated by
GUTs [87–89, 112–127]. Until recently, most did not include the kinetic mixing term.
Constraints including kinetic mixing arising from precision electroweak experiments are
considered in [128–130]; more recent bounds are found in [28, 131–133]. Many of these
analyses overlap parts of our parameter space. For instance Z ′ searches, such as [134], give
bounds on the mass of the Z ′ that apply in the regime that the couplings to fermions are
identical to that of the Z. Others [19, 20, 135] derive bounds for a Z ′ coupled only to
baryon number.

One difference between the models examined here and those usually considered for
Z ′ phenomenology at the weak scale, such as those of ref. [136–138], is the absence in L
of mixing between the X and the Z bosons in the mass matrix (i.e. a term of the form
Lmix = δm2ZµX

µ). We do not consider this type of mixing because we imagine the models
of interest here to break the X symmetry with a SM singlet. Notice that because the
SM Higgs is uncharged under the X symmetry, the strong bounds as found, for example,
in [139] don’t apply.

3.1 The mixed lagrangian

In this section we diagonalize the gauge boson kinetic mixing terms (and SM mass terms)
and identify the physical combination of parameters relevant for phenomenology within
the accuracy to which we work. Our goal in so doing is to follow ref. [140–142] and identify
once and for all how the gauge boson mixing contributes to fermion couplings and to
oblique parameters [143–146] modified by the gauge-boson mixing. This allows an efficient
identification of how observables depend on the mixing parameters.
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We begin by writing the lagrangian of interest more explicitly, after spontaneous sym-
metry breaking. Because it is the Z and photon that potentially mix with the X boson, we
also focus on these sectors of the SM lagrangian. In order to distinguish the fields before
and after mixing, where appropriate we denote the still-mixed fields with carets, e.g. X̂µ,
reserving variables like Xµ for the final, diagonalized fields.

With this notation, the lagrangian of interest is

L = Lgauge + Lf + Lint , (3.4)

where
Lgauge = Lkin + Lmass (3.5)

with

Lkin = −1
4
Ŵ 3
µνŴ

µν
3 −

1
4
B̂µνB̂

µν − 1
4
X̂µνX̂

µν +
χ

2
B̂µνX̂

µν (3.6)

Lmass = −1
2

(
m3Ŵ

3
µ −m0B̂µ

)(
m3Ŵ

µ
3 −m0B̂

µ
)
− m2

X

2
X̂µX̂

µ , (3.7)

and

Lf = −
∑
f

f (/∂ +mf ) f (3.8)

Lint = i
∑
f

{
g2

(
fγµT3fγLf

)
Ŵ 3
µ + g1

[
fγµ (YfLγL + YfRγR) f

]
B̂µ

+gX

[
fγµ (XfLγL +XfRγR) f

]
X̂µ

}
. (3.9)

Here T3f , YfL and YfR denote the usual SM charge assignments, while XfL and XfR are
the fermion charges under the new U(1)X symmetry. The SM masses, m3 and m0, are
defined as usual [72] in terms of the standard model gauge couplings, g1 and g2, and the
Higgs VEV, v: m3 = 1

2 g2v and m0 = 1
2 g1v. γL and γR are the usual left- and right-handed

Dirac projectors.
Defining the gauge-field-valued vector V̂ to be

V̂ =

Ŵ 3

B̂

X̂

 , (3.10)

the above lagrangian can be written in matrix form

Lgauge + Lint = −1
4
V̂T
µνK̂V̂µν − 1

2
V̂T
µM̂V̂µ + iĴT

µV̂µ (3.11)

where

K̂ :=

1 0 0
0 1 −χ
0 −χ 1

 and M̂ :=

 m2
3 −m3m0 0

−m3m0 m2
0 0

0 0 m2
X

 , (3.12)
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and

Ĵµ :=

J3
µ

JY
µ

ĴX
µ

 =
∑
f

 g2

[
fγµT3fγLf

]
g1

[
fγµ (YfLγL + YfRγR) f

]
gX

[
fγµ (XfLγL +XfRγR) f

]
 . (3.13)

The off-diagonal elements of M̂ ensure it has a zero eigenvalue, and the condition that the
matrix K̂ be positive definite requires χ2 < 1.

3.2 Physical couplings

In order to put this lagrangian into a more useful form we must diagonalize the kinetic
and mass terms, and then eliminate the SM electroweak parameters in terms of physically
measured input quantities like the Z mass, MZ , the fine-structure constant, α = e2/4π,
and Fermi’s constant, GF , as measured in muon decay.

The diagonalization is performed explicitly in the appendix, leading to the diagonalized
form

L = −1
4

VT
µνV

µν − M2
Z

2
ZµZ

µ − M2
X

2
XµX

µ + iJT
µVµ , (3.14)

where the physical masses are

M2
X =

m2
Z

2

(
1 + ŝ2

W sh2η + r2
Xch2η + ϑX

√(
1 + ŝ2

W sh2η + r2
Xch2η

)2 − 4r2
Xch2η

)
(3.15)

and

M2
Z =

m2
Z

2

(
1 + ŝ2

W sh2η + r2
Xch2η − ϑX

√(
1 + ŝ2

W sh2η + r2
Xch2η

)2 − 4r2
Xch2η

)
. (3.16)

In these expressions m2
Z := 1

4

(
g2

1 + g2
2

)
v2,

ĉW := cos θ̂W :=
g2√
g2

1 + g2
2

and ŝW := sin θ̂W :=
g1√
g2

1 + g2
2

, (3.17)

while
sh η := sinh η :=

χ√
1− χ2

and ch η := cosh η :=
1√

1− χ2
. (3.18)

Finally, the quantities rX and ϑX are defined by

rX :=
mX

mZ

and ϑX :=

{
+1 if rX > 1
−1 if rX < 1

, (3.19)

which ensures MZ → mZ and MX → mX as η → 0.
The currents in the physical basis are similarly read off as

Jµ :=

JZ
µ

JA
µ

JX
µ

 =

 J̌Z
µ cξ +

(
−J̌Z

µ ŝW sh η + J̌A
µ ĉW sh η + J̌X

µ ch η
)
sξ

J̌A
µ

−J̌Z
µ sξ +

(
−J̌Z

µ ŝW sh η + J̌A
µ ĉW sh η + J̌X

µ ch η
)
cξ

 , (3.20)
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where J̌Z
µ

J̌A
µ

J̌X
µ

 :=

Ĵ3
µ ĉW − ĴY

µ ŝW

Ĵ3
µ ŝW + ĴY

µ ĉW

ĴX
µ

 =
∑
f

 iêZfγµ
[
T3fγL −Qf ŝ2

W

]
f

ie fγµQff

igXfγµ [XfLγL +XfRγR] f

 ,
and e := g2ŝW = g1ĉW , êZ := e/(ŝW ĉW ) and Qf = T3f + YfL = YfR. Finally, cξ := cos ξ
and sξ := sin ξ with the angle ξ given by

tan 2ξ =
−2ŝW shη

1− ŝ2
W sh2η − r2

Xch2η
. (3.21)

Writing the resulting lagrangian as

L = LSM + δLSM + LX , (3.22)

shows that the X boson has two kinds of physical implications: (i) direct new couplings
between the X boson and SM particles; (ii) modifications (due to mixing) of the couplings
among the SM particles themselves.

3.2.1 Modification of SM couplings

The modification to the SM self-couplings caused by Z −X mixing are given by

δLSM = −z
2
m2

ZZµZ
µ + iêZ

∑
f

[
fγµ (δgfLγL + δgfRγR) f

]
Zµ , (3.23)

with [142] z := (M2
Z −m2

Z)/m2
Z and

δgfL(R) = (cξ − 1) ĝfL(R) + sξ

(
sh η ŝW (Qf ĉ2

W − ĝfL(R)) + ch η
gX

êZ

XfL(R)

)
. (3.24)

The last step before comparing these expressions with observations is to eliminate the
parameters ŝW and mZ (the second of which enters the interactions through rX) from the
lagrangian in favour of a physically defined weak mixing angle, sW , and the physical mass,
MZ . This process reveals the physical combination of new-physics parameters that is rele-
vant to observables, and thereby provides a derivation [142] of the X-boson contributions
to the oblique electroweak parameters [143–146].

To this end define the physical weak mixing angle, sW , so that the Fermi constant, GF ,
measured in muon decay is given by the SM formula,

GF√
2

:=
e2

8s2
W c

2
WM

2
Z

. (3.25)

But this can be compared with the tree-level calculation of the Fermi constant obtained
from W -exchange using the above lagrangian, giving (see appendix)

ŝ2
W = s2

W

[
1 +

z c2
W

c2
W − s2

W

]
, (3.26)

to linear order in z (which we assume is small — as is justified shortly by the phenomeno-
logical bounds).
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Eliminating ŝW in favour of sW in the fermionic weak interactions introduces a further
shift in these couplings, leading to our final form for the neutral-current lagrangian:

LNC = ieZ

∑
f

fγµ
[(
gSM
fL + ∆gfL

)
γL +

(
gSM
fR + ∆gfR

)
γR

]
f Zµ , (3.27)

where eZ := e/sW cW and

∆gfL(R) = −z
2
gSM
fL(R) − z

(
s2

W c
2
W

c2
W − s2

W

)
Qf + δgfL(R)

=
αT

2
gSM
fL(R) + αT

(
s2

W c
2
W

c2
W − s2

W

)
Qf + δgfL(R) . (3.28)

The SM couplings are (as usual) gSM
fL

:= T3f −Qfs2
W and gSM

fR
:= −Qfs2

W , while the oblique
parameters [143–146] S, T and U are given by

αS = αU = 0 , (3.29)

and

αT = −z . (3.30)

3.2.2 Direct X-boson couplings

The terms explicitly involving the X boson similarly are

LX = −1
4
XµνX

µν − M2
X

2
XµX

µ + i
∑
f

fγµ (kfLγL + kfRγR) fXµ ,

with

kfL(R) = cξ ch η gXXfL(R) + cξ sh η
e

cW

(Qfc2
W − gSM

fL(R))− sξ eZg
SM
fL(R) . (3.31)

We are now in a position to compute how observables depend on the underlying pa-
rameters, and so bound their size. When doing so we follow [142] and work to linear order
in the deviations, ∆gfL(R), of the SM couplings, since we know these are observationally
constrained to be small.

4 High-energy constraints

This section considers the constraints on the X boson coming from its influence on various
precision electroweak observables measured at high-energy colliders. There are two main
types of observables to consider: those that test the changes that X-boson mixing induces
in SM couplings; and those sensitive to the direct couplings of the X boson to SM fermions.
We consider each type in turn.

We begin with two well-measured observables that are sensitive only to changes to the
SM self-couplings: the W boson mass, MW , and the Z-boson branching fraction into lep-
tons, Γ(Z → `+`−). Later subsections then consider reactions to which direct X exchange
can contribute, such as the cross section, σres(e+e− → h), for electron-positron annihilation
into hadrons evaluated at the Z resonance.
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Consistency limits on accessible parameter space Since the SM is in such good
agreement with experiment [147], it is useful to linearize corrections to the SM parameters
as we have done in the previous section. To be consistent, we limit ourselves to considering
the subset of parameter space which is consistent with this linearization procedure. In
practice, we require that the following two conditions of z be satisfied:

1. z must be real (see the discussion in the appendix), which amounts to demanding
that it is obtained by a physically allowed choice for the initial parameters mX and
χ. This implies that

∆2
X −R2

Xs
2
W sh2η ≥ 0 , (4.1)

where ∆X is defined in eq. (A.28). This simplifies to

|∆X − κ| ≥
√
κ(κ+ 1) (4.2)

where
κ := s2

W sh2η . (4.3)

2. z must be small: z � 1. To quantify this statement, we assume that z (or, equiva-
lently, αT ) will be at most within 2σ from its global fit value [142]:

|z| ≤ 0.014 . (4.4)

This bound has been considered in [148] in the context of hidden sector dark matter
models.

In figure 3, we show the regions in the MX − sh η parameter space that are excluded
by each of these bounds. From this, we see that the first condition is dominant when
sh η < 3 × 10−2, whereas for greater values of sh η, it is the second condition that is
dominant.

4.1 Effects due to modified W,Z couplings

We start with several examples of constraints that probe the induced changes to the SM
self-couplings.

4.1.1 The W mass

Mixing with the X boson modifies the SM prediction for the W mass due to its contribution
to the electroweak oblique parameter T , as follows [142–146]:

M2
W = m2

W = m2
Z

(
1− ŝ2

W

)
(4.5)

=
[
M2

Z (1 + αT )
] [

1− s2
W

(
1− c2

WαT

c2
W − s2

W

)]
(4.6)

' (M2
W )SM

[
1 + αT

(
1 +

s2
W

c2
W − s2

W

)]
, (4.7)

where (M2
W )SM is the full SM prediction, including radiative corrections: (M2

W )SM =
M2

Z(1−s2
W )+ loops. Because both the SM radiative corrections and the oblique corrections

are known to be small, we can neglect their product in the above expression.
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Figure 3. Plot of the bounds on z as a function of MX and sh η. The blue crosses limit the region
in which z is real, and the red squares limit the region in which z � 1. The hatched regions are
excluded.

At this point one might ask why bother examine the W mass correction separately,
since the W mass is one of the observables included in the global fits to oblique parameters,
and we have already assumed that z must be small enough to ensure that the oblique
parameter T lies within its 2-σ range obtained from global electroweak fits (as in figure
E.2 of [147]). The reason we re-examine the W mass is that it leads to a slightly stronger
constraint, because the mixing between the Z and X bosons does not contribute to the S
parameter, and this prior information leads to a slightly stronger limit on T (as is shown
in figure 4).

Using the result, eq. (3.30), αT = −z together with eq. (A.27) for z as a function of
η and MX gives the desired expression for ∆MW as a function of η and MX . In the limit
when the Z and X masses are very close to one another — i.e. when ∆X is such that the
equality in eq. (4.2) holds — the expression for z becomes

z =
κ−∆X

1 + ∆X

= −ϑXsW |η|+ s2
Wη

2 +O(η3) (near-degenerate Z and X masses) , (4.8)

and so

|∆MW | 'MZcW

[
c2

W

c2
W − s2

W

(
sW |η|

2

)]
' 2.75 GeV

( η

0.1

)
. (4.9)
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Figure 4. Plot of the EWWG bound on the S and T oblique parameters, showing how T is more
tightly constrained given prior knowledge that S = 0.

Moving away from degeneracy, we find the expression for z can be simplified as follows:

z =
κ−∆X

(
1−

√
1− κR2

X

∆2
X

)
1 + ∆X

(
1−

√
1− κR2

X

∆2
X

) = κ− κR2
X

2∆X

+O(κ2) =
s2

Wη
2

1−R2
X

+O(η4) , (4.10)

where RX := MX/MZ (cf. eq. (A.22)). So when MX and MZ are very different,

∆MW '
s2

W c
3
W

2(c2
W − s2

W )

(
η2M3

Z

M2
X −M2

Z

)
' 1.10× 105

(
η2

M2
X −M2

Z

)
GeV3 . (4.11)

The large-MX limit of eq. (4.11) agrees with the result given in [133], which finds

∆MW ' (17 MeV)
( η

0.1

)2
(

250 GeV
MX

)2

. (4.12)

The experimental agreement of the measured W mass with the SM prediction implies
∆MW ≤ 0.05 GeV [149] (2σ uncertainty), and the constraint this imposes on sh η as a
function of MX is shown in figure 5. Several points about the comparison given in the
figure are of note:

• The W -mass bound on η is model-independent inasmuch as it relies only on the
kinetic mixing and does not depend at all on the fermion quantum numbers to which
X couples;
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Figure 5. Constraint obtained from limiting the influence of kinetic mixing on the SM value of
the W mass. The hatched regions are excluded.

• The strongest constraints on η occur for MX nearest to the Z pole, where |ηpole| ≤
1.8× 10−3;

• When MX � MZ , the bound on η becomes approximately MX-independent: |η| ≤
6.2× 10−2. This behaviour is also visible in the analytic expression, eq. (4.11);

• When MX �MZ , the W mass bounds the ratio η/MX : giving MX/η >∼ 1.5 TeV.

4.1.2 Z decay

The Z decay rate has been measured with great accuracy at LEP and SLC (for details
regarding their analysis, see [147]). The experimental value [149] for the decay Z → `+`−,
where ` can be any of the charged leptons, is Γ`+`− = 83.984±0.086 MeV (1 σ), and agrees
well with the SM result [149] 83.988±0.016 MeV. The modified Z-fermion couplings change
the tree-level decay rate,

Γ`+`− =
MZe

2
Z

24π
(
g2
`L + g2

`R

)
, (4.13)

where the couplings g`I = gSM
`I +∆g`I (with I = L,R) are defined by the interaction (3.27).

The deviation from the SM prediction therefore is

∆Γ`+`− := Γ`+`− − ΓSM
`+`− '

MZe
2
Z

24π

∑
I=L,R

[
2gSM
`I + ∆g`I

]
∆g`I . (4.14)
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Figure 6. The constraint arising from Z → `+`− decay on the coupling αX = g2
X/4π as a function

of MX , for various values of sh η. The parameters agreeing with the positive bound (∆Γ = +∆Γexp)
are marked with blue crosses, while those agreeing with the negative bound (∆Γ = −∆Γexp) are
marked with red squares. The plot assumes a coupling X`L = X`R = −1, such as would be true if
X = B − L. Hatched regions are excluded.

Notice that this vanishes if ∆g`I = 0 or when ∆g`I = −2gSM
`I . It can therefore happen that

∆Γ`+`− vanishes for two separate regions as one varies through parameter space.
To obtain bounds on η and MX we use eq. (3.28) to eliminate ∆gfL(R), giving

g`I =
(
cξ −

z

2

)(
−1

2
δIL + s2

W

)
+

zc2
Ws

2
W

c2
W − s2

W

− sξ
[(
−1

2
δIL + 1

)
sW sh η −X`I

gX

eZ

ch η
]

(4.15)
Here −1

2 δIL+s2
W is the SM contribution, gSM

`I , where δIL denotes a Kronecker delta function.
Requiring ∆Γ`+`− to be smaller than the experimental (2 σ) experimental error gives the
desired bound on the parameters gX , η and MX . Figure 6 shows the excluded values in the
αX = g2

X/4π vs MX plane, with the leptonic X-boson charge assumed to be X`L = X`R =
−1 (such as would apply if X = B−L). Each panel of the figure corresponds to a different
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Figure 7. Plot of the constraint arising from considering Z decay into leptons in the limit where
MX � MZ . The upper bound (∆Γ = +∆Γexp) is marked with blue crosses; the lower bound
(∆Γ = −∆Γexp) is marked with red squares. Hatched regions are excluded.

choice for sh η. For the panel in which sh η = 1 bounds at lower mass scales than roughly
385 GeV are not plotted, since these would conflict with a z = −αT satisfying the global
electroweak fit, as outlined in figure 3.

In order to understand the features present in the plots it is useful to consider the
small-η limit of z and ξ. As discussed above for the W mass bound, the small-η limit
when MX and MZ are very similar or very different must be considered separately. The
expressions when MX and MZ are very different are

z ' s2
Wη

2

1−R2
X

and ξ ' sWη

R2
X − 1

. (4.16)

As might be expected, all terms in ∆g`I are suppressed by a factor of 1/R2
X 'M2

Z/M
2
X and

so go to zero when MX � MZ . In the opposite limit, RX → 0, ∆g`I ' X`IηsW (gX/eZ) +
η2s2

W c
4
W/(c

2
W − s2

W ), which can pass through zero (if X`Iη < 0) when |X`I |(gX/eZ) ' O(η).
Several features of these plots should be highlighted:

• The best bounds come for MX ' MZ , even for small couplings gX , because in this
limit the Z−X mixing parameter ξ becomes maximal (tan 2ξ→∞), leading to strong
constraints.

• For a similar reason, once η is sufficiently large (sh η ' 0.1 — see also figure 7) the
regime of vanishingly small αX remains excluded because ∆g`L(R) is dominated by
the oblique corrections to the weak mixing angle.

– 26 –



J
H
E
P
0
8
(
2
0
1
1
)
1
0
6

Figure 8. Relevant tree-level Feynman diagrams corresponding to electron-positron annihilation
into fermion-antifermion pairs.

• For MX � MZ the excluded area approaches a straight line, corresponding to a
bound on the ratio gX/M

2
X , as expected from the form of ∆g`L(R).

• The graph is more intricate for MX � MZ , with slivers of allowed parameter space
emerging for a narrow, η-dependent but MX-independent, value of αX . This hap-
pens (for sufficiently large η) because ∆Γ = 0 is a multiple-valued condition on the
parameters, as discussed above.

Figure 7 provides a view of the bounds taken on a different slice through the three-
dimensional parameter space (η, αX , MX). This figure plots the constraints on αX vs sh η,
in the regime where MX �MZ , showing how a wider range of αX is allowed as sh η shrinks.
Note that bounds are only shown for the region where z � 1.

4.2 Processes involving X-boson exchange

In this section we consider precision electroweak observables, like the resonant cross section
for e+e− → hadrons, that receive direct contributions from X-boson exchange, in addition
to the modifications to SM Z-boson couplings.

4.2.1 The annihilation cross section

We again proceed by computing the leading change to the tree-level cross section for
e+e− → ff at leading order in the new interactions. Interference terms between SM
loops and X-boson contributions may be neglected under the assumption that their prod-
uct is negligible [142]. The relevant Feynman diagrams are shown in figure 8, where the
exchanged boson is either a photon, Z or X boson.

Neglecting fermion masses the relevant spin-averaged squared matrix element for this
process is (see, e.g. [72] for a treatment of SM scatterings using similar conventions)

1
4

∑
|M|2 = Nc

[(
|ALL (s)|2 + |ARR (s)|2

)
u2 +

(
|ALR (s)|2 + |ARL (s)|2

)
t2
]
, (4.17)

where s, t and u are the usual Mandelstam variables and

AIJ (s) :=
e2QeQf

s
+

e2
ZgeIgfJ

s−M2
Z + iΓZMZ

+
keIkfJ

s−M2
X + iΓXMX

. (4.18)
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The total unpolarized cross section that follows from this is

σ
(
e+e− → ff

)
=
Ncs

48π

(
|ALL|2 + |ARR|2 + |ALR|2 + |ARL|2

)
. (4.19)

The couplings gfI and kfI in these expressions are defined in terms of η, gX and MX by
eqs. (3.28) and (3.31). The quantities ΓZ and ΓX are only important near resonance, and
denote the full decay widths for the Z and X boson, respectively:

ΓZ =
e2

ZMZ

24π

∑
2mf≤MZ

[
g2
fL + g2

fR

]
Nc (4.20)

and ΓX =
MX

24π

∑
2mf≤MX

[
k2
fL + k2

fR

]
Nc , (4.21)

where Nc is the colour degeneracy for fermion f .

4.2.2 The hadronic cross section at the Z pole

Summing the above over all quarks lighter than MZ and evaluating at
√
s = MZ gives

the leading correction to the resonant cross section into hadrons, σhad
(
s = M2

Z

)
, which

is well-measured to be 41.541 ± 0.037 nb [149]. Requiring the deviation from the SM to
be smaller than the 2σ error gives the desired constraints. Figure 9 shows a number of
exclusion limits for the coupling αX vs the X-boson mass (for XfL = XfR = (B−L)f , and
MX in the range of 10−103 GeV), with each panel corresponding to a different choice for η.

These plots reflect several features seen in the analytic expressions for the couplings:

• For MX � MZ and when η is small enough, the mass dependence of the bound on
αX completely drops out, leaving αX

<∼ 10−2 in this limit. For larger η small values
of αX can still be ruled out because the contributions of mixing are already too large.
This mixing also ensures that the region near MX = MZ tends to give the strongest
bounds.

• The regime MX �MZ similarly constrains only the combination M2
X/αX

>∼ 800 GeV
(when η is small).

• For η not too small and MX smaller than MZ , figure 9 shows a window of uncon-
strained couplings, for the same kinds of reasons discussed above for Γ`+`− .

Figure 10 shows a sample slice of the constraint region in the αX vs sh η plane, in the
limit MX � MZ . Once again, bounds are not plotted within regions of parameter space
for which z is not � 1. This plot shows that the smallest η for which small αX can be
ruled out is sh η >∼ 0.06. Once η is larger than this, mixing rules out the X boson even
with arbitrarily small gauge couplings.
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Figure 9. The constraint obtained from σhad evaluated for
√
s = MZ , as a bound in the αX −MX

plane for various values of sh η. Blue crosses (red squares) indicate parameters where predictions
differ by 2σ from experiment on the upper (lower) side. The hatched regions are excluded, while
diagonal shading indicates a region excluded by global fits to oblique parameters.
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Figure 10. Plot of the constraint from σhad

(
s = M2

Z

)
in the region where MX � MZ . The

parameters agreeing with the positive bound are marked with blue crosses, while those agreeing
with the negative bound are marked with red squares. The hatched regions are excluded.

5 Constraints at intermediate energies

Better constraints on lower-mass X bosons can be obtained from low-energy scattering of
muon neutrinos with electrons and nuclei. The purpose of this section is to quantify these
bounds by identifying how the cross section depends on the parameters gX , η and MX . We
consider electron and nuclear scattering in turn.

5.1 Neutrino-electron scattering

The Feynman graphs relevant for νµe− scattering are those of figure 8, with three changes:
(i) the gauge bosons are exchanged in the t-channel rather than s-channel; (ii) there is no
photon-exchange graph and (iii) omission of right-handed neutrino polarizations.

Crossing to t-channel can be obtained by performing the following substitution

s→ t, t→ u, u→ s (5.1)

among the Mandelstam variables in the invariant amplitude 1
2

∑
|M|2. With these replace-

ments, the differential cross section for the process νµe− → νµe
− is

dσ
dt
(
νµe
− → νµe

−) = − 1
8πs2

[
|ALL(t)|2 s2 + |ARL(t)|2 (s+ t)2

]
, (5.2)

where
AIJ(t) = e2

Z

geIgνJ

t−M2
Z

+
keIkνJ

t−M2
X

. (5.3)
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In the rest frame of the initial electron s ' 2meEν and t ' −2ymeEν , where Eν is the
incoming neutrino energy and y is the fractional neutrino energy loss, y := Efe /Eν where Efe
is the energy of the outgoing electron. (In such experiments [150–152], Eν , E

f
e ∼ 1−10 GeV

so ratios of the form me/Eν and me/E
f
e can be neglected.) In terms of these new variables

the differential cross section is

dσ
dy
(
νµe
− → νµe

−) =
meEν

4π

[∣∣∣ALL[t(yEν)]
∣∣∣2 +

∣∣∣ARL[t(yEν)]
∣∣∣2(1− y)2

]
. (5.4)

The cross section for anti-neutrino scattering is easily found from the above by inter-
changing ALL ↔ ARL.

5.1.1 Special case: Low-energy limit with η = 0

One case of practical interest is when the boson masses, MZ and MX , are much greater
than the invariant energy exchange in the process of interest (i.e.

√
|t| �MX ,MZ). When

this holds the amplitudes, AIL, can be simplified to

AIL ' −
e2

ZgeIgνL

M2
Z

− keIkνL

M2
X

= −e
2
ZgνL

M2
Z

[
geI +

M2
Z

M2
X

(
kνLkeI

e2
ZgνL

)]
, (5.5)

allowing the effects of X-boson exchange be interpreted as an effective shift in the electron’s
electroweak couplings. For Eν ' 1 GeV and y order unity this approximation remains good
down to MX ' 30 MeV.

The resulting cross section is particularly simple in the case of no kinetic mixing, for
which we can substitute the SM values geI = −1

2δIL + s2
W and gνL = 1

2 and the X-boson
couplings keI = gXXeI and kνJ = gXXνJ , and obtain

AIL ' −2
√

2GF

(
−1

2
δIL + s2

W +
g2

XXeIXνL

2
√

2GFM2
X

)
, (5.6)

using the SM result 2
√

2GF ' e2
Z/2M

2
Z . We see that the X-boson contribution can be

regarded as an additional contribution to s2
W in this limit. This is convenient because it

allows the simple use of constraints on s2
W to directly constrain the ratio g2

X/M
2
X .

The bounds are usually taken from the following ratio [151, 152] of total cross sections,

R :=
σ(νµe− → νµe

−)
σ(νµe− → νµe−)

. (5.7)

Given the differential cross section

dσ
dy
(
νµe
− → νµe

−) =
2G2

FmeEν
π

[
g2
eL + g2

eR(1− y)2
]
, (5.8)

the total cross section becomes

σ
(
νµe
− → νµe

−) =
2G2

FmeEν
π

(
g2
eL +

g2
eR

3

)
, (5.9)
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Figure 11. Bound obtained on αX = g2
X/4π by limiting the influence of the X boson on the ν−e−

cross section ratio R, obtained as a function of MX for various values of sh η. The vertical line
indicates the region ruled out by electroweak oblique fits when η = 1.

and so

σ
(
νµe
− → νµe

−) =
2G2

FmeEν
π

(
g2
eL

3
+ g2

eR

)
. (5.10)

Specializing to SM couplings the result depends only on sW :

R =
3g2
eL + g2

eR

g2
eL + 3g2

eR

=
3− 12s2

W + 16s4
W

1− 4s2
W + 16s4

W

=
1 + κ+ κ2

1− κ+ κ2
, (5.11)

where κ ≡ 1− 4s2
W � 1.

Using the experimental limit [150] ∆s2
W = 0.0166 (2σ error) with GF = 1.1664 ×

10−5 GeV−2 [149] to constrain ∆s2
W = g2

X/2
√

2GFM
2
X (assuming the choice XeIXνL = 1,

as would be true for X = B − L for example), gives [153]

MX

gX

& 4 TeV . (5.12)

5.1.2 General case: η 6= 0

More generally, the couplings kfI also acquire contributions from Z−X mixing even when
gX = 0, as the above calculations show. In this case the more general bounds on gX , η
and MX can be extracted by demanding that these contribute within the experimental
limit ∆R. Since the experimental limit is often quoted in terms of s2

W [150], we translate
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using ∆R =
∣∣dRSM/ds2

W

∣∣∆s2
W . In obtaining R, we integrate over y using

√
|t| �M2

Z , but
without assuming that

√
|t| � M2

X . When evaluating R, we set Eν to a nominal value of
1 GeV. Figure 11 shows the resulting bound in the αX −MX plane, for several choices for
η assuming XeIXνL = 1.

The resulting curves inspire a few comments:

• For large MX the bound is independent of η due to the MX/MZ suppression of the
mixing in ∆g and ∆k. This allows the direct g2

X/M
2
X term to dominate. The bounds

in this regime are relatively strong, and compete with those found in direct searches
(e.g., by CDF [154] in the case of a SM-like Z ′).

• For smaller MX , it is the terms in the couplings that are linear in η that influence
the deviation from the η = 0 result. To see this, note that

∆gνL = −η sW

eZ

gXXνL +O(η2), (5.13)

and so there will be a term in |AIL|2 that is linear in η with the parametric dependence
gX/M

2
X . When gX � 0, it is this term that is dominant compared to the g2

X/M
2
X

term from X-boson exchange. However, when gX ∼ η, this new term is no longer
dominant and the bound regresses back to its original slope from the η = 0 case at
high masses.

• Once 1 ≤MX ≤ 10 MeV and MX
<∼
√
|t|, the bound loses its dependence on MX and

levels out to some fixed value. This is expected from the form of eq. (5.3).

• When sh η = 1, much of the parameter space is excluded due to the requirement
that z � 1. Therefore, only a small region with MX > 385 GeV is bounded by
electron-neutrino scattering in this case.

5.2 Neutrino-nucleon scattering

For the bounds from neutrino-nucleon scattering it is worth first recalling how the standard
analysis is performed. In terms of the neutral-current quark couplings, the quark-level cross
sections for neutral-current muon-neutrino scattering are

σ (νµu→ νµu) = σ0

(
g2
uL +

g2
uR

3

)
, σ (νµd→ νµd) = σ0

(
g2
dL +

g2
dR

3

)
(5.14)

σ (νµu→ νµu) = σ0

(
g2
uL

3
+ g2

uR

)
, σ (νµd→ νµd) = σ0

(
g2
dL

3
+ g2

dR

)
while those for charged currents are

σ
(
νµd→ µ−u

)
= σ0 and σ

(
νµu→ µ+d

)
=
σ0

3
, (5.15)

where σ0 := 2NcG
2
FmeEν/π and Nc = 3.

These show that the quark neutral-current and charged-current cross sections are all
proportional to one another. The resulting cross section for neutrino-nucleon scattering in

– 33 –



J
H
E
P
0
8
(
2
0
1
1
)
1
0
6Figure 12. Plot of the constraint from R− (neutrino-nucleon scattering) assuming X = B − L.

Here, we plot the bound on αX as a function of MX for various values of η. Blue squares (red
crosses) indicate parameters whose predictions lie 2σ above (below) the central experimental value.
The vertical line indicates the region excluded by precision oblique fits.

the deep-inelastic limit is obtained by summing incoherently over the quark contributions,
giving

σ (νµN → νµX) = ε2
L σ
(
νµN → µ−X

)
+ ε2

R σ
(
νµN → µ+X

)
σ (νµN → νµX) = ε2

Lσ
(
νµN → µ+X

)
+ ε2

Rσ
(
νµN → µ−X

)
, (5.16)

where
ε2

L(R) := g2
uL(R) + g2

dL(R) . (5.17)

The experimental bounds come from the following ratios:

Rν :=
σ (νµN → νµX)
σ (νµN → µ−X)

= ε2
L + r ε2

R

Rν̄ :=
σ (νµN → νµX)
σ (νµN → µ+X)

= ε2
L +

ε2
R

r
(5.18)
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where r := σ (ν̄µN → µ+X) /σ (νµN → µ−X). Most useful is the Paschos-Wolfenstein
ratio [155], from which the comparatively uncertain ratio r cancels:

R− :=
Rν − rRν̄

1− r
=

σ (νµN → νµX)− σ (ν̄µN → ν̄µX)
σ (νµN → µ−X)− σ (ν̄µN → µ+X)

= ε2
L − ε2

R . (5.19)

Experiments measure the following values [156]

ε2
L = 0.30005± 0.00137 (5.20)

ε2
R = 0.03076± 0.00110 .

To constrain the X-boson coupling parameters we work in the regime with
√
−t�MX ,

for which the effects of X-boson mixing and exchange can both be rolled into a set of
effective neutral-current couplings. The cross sections for quark-level scattering are then
given by integrating eqs. (5.4) using (5.5), leading to expressions identical with eqs. (5.14)
but with

gqI → geff
qI := 2

[
gqIgνL +

(
M2

Z

M2
X

)
kqIkνL

e2
Z

]
, (5.21)

where q = u, d and I = L,R. Using these in eq. (5.19) gives constraints on ε2
I =(

gSM
uI + ∆geff

uI

)2 +
(
gSM
dI

+ ∆geff
dI

)2.
Figure 12 plots the constraint found by requiring ∆ε2

L ≤ 0.00137, assuming that X =
B −L. The plots are cut off at low mass where the condition

∣∣t/M2
X

∣∣ ≤ 0.01 breaks down.
Notice that for η = 0 the bound is similar to that found for neutrino-electron scattering,
with stronger bounds on αX at smaller MX . For nontrivial η the strength of X −Z mixing
eventually provides the strongest constraint, leading to strong bounds even for small gX at
sufficiently low MX .

6 Low-energy constraints

We finally turn to constraints coming from lower-energy processes.

6.1 Anomalous magnetic moments

The accuracy of anomalous magnetic moment (AMM) measurements [149] produce a strong
constraint on the parameters of an extra gauge boson. We consider the bound arising from
both the electron and muon AMM on the X gauge coupling as a function of the mass MX ,
for various values of the kinetic mixing parameter sh η.

The correction to the AMM of a lepton, `, is given by [16]

δa` =
m2
`

4π2M2
X

∫ 1

0
dz
k2
`V z(1− z)2 − k2

`A

[
z(1− z)(3 + z) + 2(1− z)3m2

`/M
2
X

]
z + (1− z)2m2

`/M
2
X

, (6.1)

where the vector and axial couplings to the X boson are of the form

k`V :=
k`L + k`R

2
= cξ

[
ch η gXX`V − sh η

e

cW

(
−1

4
+ 1
)]
− sξeZ

(
−1

4
+ s2

W

)
(6.2)

k`A :=
k`L − k`R

2
= cξ

[
ch η gXX`A − sh η

e

cW

(
−1

4

)]
− sξeZ

(
−1

4

)
.
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Figure 13. Plots of the constraint on the gauge coupling αX arising from the electron and muon
AMM as a function of MX , for various values of sh η. The electron AMM bound is marked with
blue crosses; the muon AMM bound is marked with red squares. The plot assumes a coupling
X`L = X`R = −1, such as would be true if X = B − L. Hatched regions are excluded.
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AMM as a function of MX , for various values of the gauge coupling αX . The electron AMM bound
is marked with blue crosses; the muon AMM bound is marked with red squares. The plot assumes
a coupling X`L = X`R = −1, such as would be true if X = B − L. Hatched regions are excluded.

There is, however, some subtlety in comparing this shift with experiment [31–33]:
since the electron AMM, δae, is used to determine the fine-structure constant, α. The best
bound on X boson couplings therefore comes from the next most precise experiment that
measures α, and not the errors from the (g− 2) experiments themselves. Following [31–33]
this leads to the constraints δae < 1.59×10−10 and δaµ < 7.4×10−9, which when compared
with the above expression gives the bounds shown in figure 13. These plots reproduce the
results found in [16] when sh η = 0. In particular, the MX values below which any gauge
coupling is excluded are consistent with the bounds shown in [31–33].

Since these bounds are often considered (e.g. in [14, 15, 29–33]) in the context of a
constraint on kinetic mixing, we also plot the constraint on sh η as a function of the X
boson mass, for various values of the gauge coupling. This is shown in figure 14.
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Figure 15. Plots of the constraint on the gauge coupling αX arising from Υ(3s) decay as a function
of MX , for sh η = 0, 0.001. The plot assumes a coupling X`L = X`R = −1, such as would be true if
X = B − L. Hatched regions are excluded.

6.2 Upsilon decay

The bound we present here is an extension of the result found in [14, 15]. By looking at
the decay rate of the Υ(3s) bb bound state, researchers from the BABAR collaboration
were able to place a bound on the occurrence of a particular channel involving a light
pseudoscalar A0 [157]:

e+ + e− → Υ(3s)→ γ +A0 → γ + µ+ + µ− . (6.3)

Their upper limit on the number of events

N = σ(e+ + e− → Υ(3s))× L× Br(Υ(3s)→ γ +A0)× Br(A0 → µ+ + µ−) , (6.4)

places a bound on the quantity Q := Br(Υ(3s)→ γ +A0)× Br(A0 → µ+ + µ−).
However, the reaction of interest to us is

e+ + e− → γ +X → γ + µ+ + µ− , (6.5)

which would have an identical signature. So the measured bound can also be reinterpreted
as applying to the quantity

QX :=
σ(e+ + e− → γ +X)
σ(e+ + e− → Υ(3s))

× Br(X → µ+ + µ−) (6.6)

The experimental limit [157] QX < 3 × 10−6 gives the plots found in figure 15 over the
range 2mµ < MX < Ecm(= 10.355 GeV). This bound is quite strong, as it eliminates the
entire region for sh η & 0.002 (as is shown in [14, 15]). For smaller sh η, the bound is
roughly constant when MX � Ecm.

As in the case of the AMM bounds, we also plot the constraint on sh η as a function
of the X boson mass for various values of the gauge coupling — as shown in figure 16.
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Figure 16. Plots of the constraint on the kinetic mixing, sh η, arising from Υ(3s) decay as a
function of MX , for αX = 0, 1 × 10−8. The plot assumes a coupling XeL = XeR = −1, such as
would be true if X = B − L. Hatched regions are excluded.

Experiment Target Ne Beam Energy t D

E774 W 0.52× 1010 275 GeV 30 cm 7.25 m
E141 W 2× 1015 9 GeV 12 cm 35 m
E137 Al 1.87× 1020 20 GeV 200 m 400 m

Table 1. Parameter values for the E774, E141, and E137 beam dump experiments.

6.3 Beam-dump experiments

In the MeV−GeV mass range, small gX and η are constrained by several beam dump
experiments. These bounds are considered in detail in [14, 15]; we apply a simplified
version of their analysis here.

In these experiments, a large number Ne of electrons with initial energy E are collided
with a fixed target made of either aluminum or tungsten. Many of the resulting collision
products are absorbed either by the target or by some secondary shielding. (Here, we use t
to denote the total thickness of both the target and the shielding.) The remaining products
continue along an evacuated tube to the detector, located at some distance D away from
the target. For a summary of values for these parameters, see table 1.

The bound arises from the non-observation of X decay products. The incoming elec-
tron emits an X boson as bremsstrahlung during photon exchange with the nucleon (N):
e−+N → e−+N +X. The X can then decay into either an e+e− or µ+µ− pair. However,
a decay that occurs too soon is absorbed by the shield while a decay that occurs too late
occurs past the detector. Therefore, the number of lepton anti-lepton pairs observed at the
detector can be computed by multiplying the number of X bosons produced, NX , by the
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Figure 17. The constraint arising from beam dump experiments on the coupling αX = g2
X/4π

as a function of MX , for sh η = 0, 0.001. The E774 bound is marked with red squares; the E141
bound is marked with blue crosses; the E137 bound is marked with black circles. The plot assumes
a coupling X`L = X`R = −1, such as would be true if X = B − L. Hatched regions are excluded.

probability for the X to decay between z = t to z = D:

Nobs = NX

∫ D

t
dz

(
1
`0
e−z/`0

)
. (6.7)

Here, we write the lab frame decay length as `0 := γcτ , where γ = (1− v2)−1/2 is the rela-
tivistic time-dilation factor and τ is the inverse of the X rest-frame decay rate: τ :=1/ΓX .

In estimating the number of X’s produced, we use the following result from [14, 15]:

NX ∼ Ne µ
2 ε2

M2
X

, (6.8)

where ε = χcW and µ2 ' 2.5 MeV2 is an overall factor that contains information regarding
the details of the nuclear interaction, and is shown in [14, 15] to be roughly constant for MX

between 1 and 100 MeV. There is, however, an obstacle in applying this result directly to
our analysis: it was derived without including any coupling to JµX . In order to introduce the
keL(R)-dependence in this expression, we note from [14, 15] that the ε-dependence above
arises from the cross section σ(e−γ → e−X) under the assumption that the electron is
massless. This means that the left- and right-handed helicity X− e interactions contribute
equally to the cross section, allowing the substitution

ε2 → 1
4πα

(
k2
eL + k2

eR

2

)
, (6.9)

with the normalization chosen so that the above expression reduces to χ2c2
W in the case

where XeL(R) = 0, sh η � 1 and MX �MZ .
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Figure 18. The constraint arising from beam dump experiments on the kinetic mixing sh η as a
function of MX , for αX = 0, 1×10−15, 1×10−12, and 1×10−9. The E774 bound is marked with red
squares; the E141 bound is marked with blue crosses; the E137 bound is marked with black circles.
The plot assumes a coupling X`L = X`R = −1, such as would be true if X = B − L. Hatched
regions are excluded.

All in all, we find that the number of X’s we expect to observe is given by

Nobs ∼
Ne µ

2

M2
X

(
k2
eL + k2

eR

8πα

)(
e−t/`0 − e−D/`0

)
. (6.10)

Applying the experimental exclusions [14, 15] Nobs < 17 events (E774), Nobs < 1000 events
(E141), and Nobs < 10 events (E137) gives the bounds shown in figure 17.

The plot for sh η = 0 gives good agreement with a similar plot in [16] (in the region
over which these results overlap). The lower bounds for each experiment are approximately
flat because, in the region where t� D � `0, the fraction of X’s that decay is just D/`0,
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which gives

Nobs ∼
Ne µ

2

M2
X

(
k2
eL + k2

eR

8πα

)
D

`0
. (6.11)

The leading MX-dependence then cancels since `0 ∼ 1/M2
X . The upper bound results from

the situation where the X bosons decay too quickly, and the decay products do not escape
the shielding.

We have only included plots for the cases where sh η = 0 and 0.001 because the bounds
become too weak to constrain any region of this parameter space whenever sh η > 0.007.

An interesting feature of these bounds is that, at any given value of sh η, the gauge
coupling can be increased such that the bounds are evaded. This occurs because a stronger
gauge coupling causes the X bosons to decay within the shielding. Therefore, any bound
on kinetic mixing which results from these experiments can weaken if the direct coupling
of electrons to the X is taken to be non-zero. To demonstrate this, consider the bounds
shown in figure 18, which plots the bound on kinetic mixing as a function of the X-boson
mass, for various values of αX . Note that, for αX

>∼ 1 × 10−6, these bounds are satisfied
for all values of sh η in the relevant mass range.

6.4 Neutron-nucleus scattering

Low-energy neutron-nucleus scattering is important because most of the other low-energy
bounds evaporate if the new boson doesn‘t couple to leptons (such as if X = B). For
neutron-nucleus scattering a bound is obtained by considering the effects of the new
Yukawa-type potential that would arise from a non-zero vector coupling of the X to neu-
trons. For light X bosons this can be seen over the strong nuclear force because it has
a longer range, and can affect the angular dependence of the differential cross section for
elastic scattering, dσ(nN → nN)/dΩ. This bound is discussed in the context of a scalar
boson in [158] and more generally in [159].

Following these authors we parameterize the differential cross section as

dσ

dΩ
=
σ0

4π
(1 + ωEcosθ) , (6.12)

where σ0 and ω are to be taken from experiments. Then an interaction of the form

∆VnN (r) =
(
g2
n

4π

)
e−MXr

r
(6.13)

leads to a correction to the expected value of ω, which is measured experimentally in the
energy range E ∼ 1-10 keV for neutrons scattering with 208Pb.

Agreement with observations leads to the bound [158, 159]

k2
nV

4πM4
X

< 3.4× 10−11 , (6.14)

where knV = kuV + 2kdV with kfV := 1
2(kfL + kfR), as above. Figure 19 shows a plot of

this bound for the nominal case sh η = 0.
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Figure 19. Plot of the constraint on the gauge coupling αX due to neutron-nucleus scattering as
a function of the X-boson mass MX . The hatched regions are excluded.

For this combination of couplings, an interesting cancellation occurs. For small kinetic
mixing, the correction ∆kfL(R) has the form

∆kfL(R) = η e
cW

(Qfc2
W − gSM

fL(R)) + ηsWeZg
SM
fL(R) +O(η2)

= ηecWQf +O(η2) , (6.15)

and so the leading correction in η vanishes for any electrically neutral particle, like a
neutron. This makes this bound relatively insensitive to changes in kinetic mixing, not
varying appreciably over the range 0 ≤ sh η ≤ 1. A similar cancellation occurs in the case
of nucleosynthesis, considered in section 6.6.

6.5 Atomic parity violation

The Standard Model predicts a low-energy effective coupling between the electron axial
current and the vector currents within a given nucleus. The so-called weak charge of
a nucleus with Z protons and N neutrons is defined (up to an overall constant) as the
coherent sum of the Z-boson vector couplings over the constituents of that nucleus [160]:

QW (Z,N) := 4 [Z (2guV + gdV ) +N (guV + 2gdV )] . (6.16)

where
gfV f :=

gfL + gfR

2
and gfA :=

gfL − gfR

2
. (6.17)

– 43 –



J
H
E
P
0
8
(
2
0
1
1
)
1
0
6

In terms of these the leading parity-violating effective electron-nuclear interaction gen-
erated by Z boson exchange is

Leff = −
√

2GFgeAQW (eγµγ5e)
(
ΨγµΨ

)
. (6.18)

where Ψ is the field describing the nucleus. X-boson exchange adds an additional term to
this effective lagrangian of the form

LX
eff = −keAQX

M2
X

(eγµγ5e)
(
ΨγµΨ

)
(6.19)

where
QX := Z (2kuV + kdV ) +N (kuV + 2kdV ) . (6.20)

Therefore, the total shift in the QW due to the X boson is

∆QW =
[

geA

(−1/4)
QW −QSM

W

]
− 2
√

2
GF

keAQX

M2
X

(6.21)

where

QSM
W (Z,N) = 4

[
Z
(
2gSM
uV + gSM

dV

)
+N

(
gSM
uV + 2gSM

dV

)]
= Z

(
1− 4s2

W

)
−N . (6.22)

Notice that the bracketed term in ∆QW goes to 0 as η → 0, whereas the second term does
not as long as kAe does not vanish in the same limit. The total effective lagrangian for this
system can then be written as

Leff + LX
eff =

GF

2
√

2

(
QSM

W + ∆QW

)
(eγµγ5e)

(
ΨγµΨ

)
. (6.23)

It is expected that the second term in eq. (6.21) will be dominant, so it is useful to
consider the form of kAe/M

2
X in the limit where MX �MZ and η � 1:

keA

GFM2
X

=
gXXeA

(
1 + 1

2 c
2
Wη

2
)

GFM2
X

−
√

2
sW

eZ

η . (6.24)

Therefore, if XLe = XRe, then the constraint becomes significantly less stringent at low
masses since, instead of bounding the ratio g2

X/M
2
X , it is now the combination gXη that

is bounded. In order to emphasize the strength of this bound when XAe 6= 0, we use the
charge assignments as shown in table 2.

If the X boson is light enough the above effective interaction eventually becomes
inaccurate in describing the electron-nucleus interactions. In this case, rather than pursuing
a detailed analysis of the microscopic lagrangian, we follow ref. [160] and introduce a
corrective factor K(MX) to account for the non-locality caused by the small mass of the
X boson. This modifies our expression for ∆QW as follows:

∆QW =
[

geA

(−1/4)
QW −QSM

W

]
− 2
√

2
GF

keAQX

M2
X

K(MX) . (6.25)
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SM Fermion Charge X
uL, dL 0
uR −1/3
dR +1/3

νL, eL 0
eR −1/3

Table 2. Charge assignments for the “right-handed” U (1).

Figure 20. Plot of the constraint on the gauge coupling αX due to the weak charge of cesium as
a function of the X-boson mass MX , for various values of sh η. The hatched regions are excluded.

In [160] a table is given for K for various values of MX in the range 0.1 MeV < MX <

100 MeV. In order to render the graphs shown here, we have interpolated values of K by
doing a least squares fit to the values in [160].

As with the neutrino-electron scattering bounds, the slope of the bound changes for
η 6= 0 due to the production of a new dominant term through cancellation with the modified
Z-fermion coupling. Once again, we exclude the region below 385 GeV for the sh η = 1
plot in order to avoid conflict with the electroweak oblique fits that require z � 1.

Since this bound relies crucially on there being an axial vector coupling to the electron,
we did not include it when compiling the summary of bounds given in figures in section 1.
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Figure 21. Constraint on the gauge coupling of the X due to its effect on nucleosynthesis, as a
function of the X-boson mass. The red squares indicate the bound due to Xν→Xν scattering; the
blue crosses indicate the bound due to X→νν decay.

6.6 Primordial nucleosynthesis

We close with the study of constraints coming from cosmology, which for the mass range
of interest in this paper consists dominantly of Big Bang Nucleosynthesis.

Any X bosons light enough to be present in the primordial soup at temperatures below
T ∼ 1 MeV can destroy the success of Big Bang Nucleosynthesis (BBN) if they make up
a sufficiently large fraction (<∼ 10%) of the universal energy density, leading to potentially
strong constraints. In particular, such a boson poses a problem if it is in thermal equilibrium
at these temperatures.

Quantitatively, measurements of primordial nuclear abundances forbid the existence
of the number of additional neutrino species (beyond the usual 3 of the SM) to be [161]
δNν ≤ 1.44 (at 95% C.L.). But since each boson in equilibrium counts 8

7 times more
strongly in the equilibrium abundance, and since a massive X boson carries 3 independent
spin states, the corresponding bound on the number, NX , of new species of spin-1 particles
in equilibrium at BBN is

NX ≤ 0.84 . (6.26)

Even just one additional massive spin-1 boson into relativistic equilibrium is excluded at
the 95% confidence level.

In a universe containing only the X boson and ordinary SM particles at energies of
order 1 MeV, this leads to two kinds of constraints: either the X boson’s couplings are weak
enough that it does not ever reach equilibrium; or if the X boson is in equilibrium it must be
heavy enough (>∼ 1 MeV) to have a Boltzmann-suppressed abundance. Figure 21 sketches
the regions in the coupling-mass plane that are excluded by these conditions. The vertical
line corresponds to the situation where abundance is suppressed by Boltzmann factors.
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The constraints on couplings arise only for sufficiently light particles, and express
the condition that the couplings be weak enough to avoid equilibrium, at least up until
the freeze-out temperature TF . There are two curves of this type drawn, which differ by
whether it is collision or decay processes that are the dominant equilibration mechanisms.
Qualitatively, the requirement that reactions like Xν ↔ Xν not equilibrate the X bosons
leads to a constraint on the couplings that is MX-independent in the limit where MX � TF ,
because then the size of both the reaction rate and Hubble scale is set by the temperature.
The same is not true for decay reactions, X ↔ ν ν, since the rate for this also depends on
the X-boson mass.

A few other comments are appropriate for figure 21. First, because they are outside
the main scope of this study, the bounds shown are derived assuming that MX � T (rather
than being evaluated numerically as a function of MX) and so are drawn only up to the
mass range within 0.5 MeV of the freeze-out temperature. Second, the resulting expressions
depend only weakly on η, showing little difference over the range 0 < sh η < 1. As discussed
in earlier sections, this is a consequence of the neutrino’s electrical neutrality, which ensures
that the leading small-η limit of the kinetic mixing first arises at O(η2) rather than O(η).
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Note added. Since posting, we have learned of a beam dump analysis [162] that has
enlarged5 the exclusion regions discussed in section 6.3.

A Diagonalizing the gauge action

This appendix provides the details of the diagonalization of the gauge boson kinetic and
mass mixings. The starting point is eq. (3.11),

L = −1
4
V̂T
µνK̂V̂µν − 1

2
V̂T
µM̂V̂µ + ĴT

µV̂µ , (A.1)

with K̂ and M̂ given in eqs. (3.12).

5We thank Johannes Blümlein for bringing this to our attention
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Diagonalization. We begin by performing the usual weak-mixing rotation to diagonalize
the mass term:

V̂ = R1V̌ :=

 ĉW ŝW 0
−ŝW ĉW 0

0 0 1


ŽǍ
X̌

 (A.2)

where
ĉW := cos θ̂W :=

g2√
g2

1 + g2
2

and ŝW := sin θ̂W :=
g1√
g2

1 + g2
2

. (A.3)

The lagrangian then becomes

L = −1
4
V̌T
µνǨV̌µν − 1

2
V̌T
µM̌V̌µ + J̌T

µV̌µ , (A.4)

with new matrices

Ǩ = RT
1 K̂R1 =

 1 0 χŝW

0 1 −χĉW

χŝW −χĉW 1

 and M̌ = RT
1 M̂R1 =

m2
Z 0 0

0 0 0
0 0 m2

X

 (A.5)

where m2
Z := 1

4

(
g2

1 + g2
2

)
v2. Under the same transformation the currents become

J̌µ = RT
1 Ĵµ =

Ĵ3
µ ĉW − ĴY

µ ŝW

Ĵ3
µ ŝW + ĴY

µ ĉW

ĴX
µ

 (A.6)

=
∑
f

 îeZfγµ
[
T3fγL −Qf ŝ2

W

]
f

ie fγµQff

igXfγµ [XfLγL +XfRγR] f

 :=

J̌Z
µ

J̌A
µ

J̌X
µ

 ,
which defines êZ := e/(ŝW ĉW ) and uses the standard SM relations g2ŝW = g1ĉW := e and
Qf = T3f + YfL = YfR.

The kinetic term is diagonalized by letting

V̌ := LṼ :=

1 0 −ŝW sh η
0 1 ĉW sh η
0 0 ch η


Z̃Ã
X̃

 (A.7)

with
sh η := sinh η :=

χ√
1− χ2

and ch η := cosh η :=
1√

1− χ2
. (A.8)

This gives, by construction

K̃ = LT ǨL =

1 0 0
0 1 0
0 0 1

 (A.9)

and

M̃ = LTM̌L =

 m2
Z 0 −m2

Z ŝW sh η
0 0 0

−m2
Z ŝW sh η 0 m2

Xch2 η +m2
Z ŝ

2
W sh2 η

 , (A.10)
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while the currents become

J̃µ := LT J̌µ =

 J̌Z
µ

J̌A
µ

−J̌Z
µ ŝW sh η + J̌A

µ ĉW sh η + J̌X
µ ch η

 . (A.11)

(Notice that L and R1 satisfy LR1 = R1L, so it is immaterial whether we first diagonalize
the SM mass or the kinetic terms.)

Finally, the mass matrix is diagonalized by letting

Ṽ = R2V :=

cξ 0 −sξ
0 1 0
sξ 0 cξ


ZA
X

 (A.12)

where cξ := cos ξ and sξ := sin ξ with the angle ξ given by

tan 2ξ =
−2ŝW shη

1− ŝ2
W sh2η − r2

Xch2η
, (A.13)

where we define for convenience
rX :=

mX

mZ

. (A.14)

The diagonalized lagrangian then is

L = −1
4

VT
µνV

µν − M2
Z

2
ZµZ

µ − M2
X

2
XµX

µ + JT
µVµ , (A.15)

where the physical masses are

M2
X =

m2
Z

2

(
1+ŝ2

W sh2η+r2
Xch2η+ϑX

√(
1 + ŝ2

W sh2η + r2
Xch2η

)2 − 4r2
Xch2η

)
(A.16)

M2
Z =

m2
Z

2

(
1+ŝ2

W sh2η+r2
Xch2η−ϑX

√(
1 + ŝ2

W sh2η + r2
Xch2η

)2 − 4r2
Xch2η

)
(A.17)

with ϑX defined such that MZ → mZ and MX → mX as η → 0:

ϑX :=

{
+1 if rX > 1
−1 if rX < 1

. (A.18)

The currents in the physical basis are similarly read off as

Jµ =

 J̌Z
µ cξ +

(
−J̌Z

µ ŝW sh η + J̌A
µ ĉW sh η + J̌X

µ ch η
)
sξ

J̌A
µ

−J̌Z
µ sξ +

(
−J̌Z

µ ŝW sh η + J̌A
µ ĉW sh η + J̌X

µ ch η
)
cξ

 :=

JZ
µ

JA
µ

JX
µ

 . (A.19)

Since we are eventually interested in obtaining bounds in terms of the physical masses
MZ and MX , it is useful to invert these mass equations to find the input parameters m2

Z

and m2
X as a function of the physical masses and η. This gives

m2
X =

M2
Z

2ch2η

(
1 +R2

X + ϑX

√
(1 +R2

X)2 − 4
(
1 + ŝ2

W sh2η
)
R2

X

)
(A.20)

m2
Z =

M2
Z

2
(
1 + ŝ2

W sh2η
) (1 +R2

X − ϑX

√
(1 +R2

X)2 − 4
(
1 + ŝ2

W sh2η
)
R2

X

)
(A.21)
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where RX is used to denote the ratio of the physical masses:

RX :=
MX

MZ

. (A.22)

Also, the sign ϑX is now +1 for RX > 1 and −1 for RX < 1.
Given this inversion, the angle ξ can now be written as a function of RX and η only:

tan 2ξ(RX , η) = −
(

2ŝW shη
1− ŝ2

W sh2η − r2
X(RX , η)ch2η

)
, (A.23)

where

r2
X(RX , η) =

(
1 + ŝ2

W sh2η
)(

1 +R2
X + ϑX

√
(1 +R2

X)2 − 4
(
1 + ŝ2

W sh2η
)
R2

X

)
ch2η

(
1 +R2

X − ϑX

√
(1 +R2

X)2 − 4
(
1 + ŝ2

W sh2η
)
R2

X

) . (A.24)

A.1 Physical couplings

We are now in a position to read off the physical implications of the X boson. That is, we
may write

L = LSM + δLSM + LX , (A.25)

where the modification to the SM self-couplings are given by

δLSM = −z
2
m2

ZZµZ
µ + iêZ

∑
f

[
fγµ (δgfLγL + δgfRγR) f

]
Zµ , (A.26)

with [142]

z(RX , η) :=
M2

Z −m2
Z

m2
Z

=
ŝ2

W sh2η −∆X + ϑX

√
∆2

X −R2
X ŝ

2
W sh2η

1 + ∆X − ϑX

√
∆2

X −R2
X ŝ

2
W sh2η

, (A.27)

where
∆X :=

1
2

(R2
X − 1) . (A.28)

(Note that the η → 0 limit of z is easily verified by implementing the identity
∆X = ϑX

√
∆2

X .)
Given the form of z, one might worry that, for some choice of the parameters MX and

sh η, z would yield a complex value. However, any such choice does not correspond to a
choice of real values for the original parameters of the lagrangian, mX , mZ , and χ. This
happens because sufficiently large kinetic mixing tends to preclude the existence of mass
eigenvalues, MX and MZ , that are too close to one another. This is why this region of
parameter space is excluded from the plots of section 4.

The fermion couplings are similarly

δgfL(R) = (cξ − 1) ĝfL(R) + sξ

(
sh η ŝW (Qf ĉ2

W − ĝfL(R)) + chη
gX

êZ

XfL(R)

)
. (A.29)

– 50 –



J
H
E
P
0
8
(
2
0
1
1
)
1
0
6

The terms explicitly involving the X boson are

LX = −1
4
XµνX

µν − M2
X

2
XµX

µ (A.30)

+i
∑
f

fγµ (kfLγL + kfRγR) fXµ ,

with

kfL(R) = cξ

(
ch η gXXfL(R) + sh η

e

ĉW

(Qf ĉ2
W − ĝfL(R))

)
− sξ êZ ĝfL(R) . (A.31)

Notice that in this basis Xµ does not couple directly to the electroweak gauge bosons at
tree-level, but has acquired modified fermion couplings due to the mixing.

Oblique parameters. The only remaining step is to eliminate parameters like ŝW and
mZ in the lagrangian in favour of a physically defined weak mixing angle, sW , and mass MZ .
This process reveals the physical combination of new-physics parameters that is relevant
to observables, and thereby provides a derivation [142] of the X-boson contributions to the
oblique electroweak parameters [143–146].

We have already seen how to do this for the Z mass, for which

mZ 'MZ

(
1− z

2

)
. (A.32)

For the weak mixing angle it is convenient to define sW so that the Fermi constant, GF ,
measured in muon decay is given by the SM formula,

GF√
2

:=
e2

8s2
W c

2
WM

2
Z

. (A.33)

But this can be compared with the tree-level calculation of the Fermi constant obtained in
our model from W -exchange,

GF√
2

=
g2

2

8m2
W

=
e2

8ŝ2
W ĉ

2
Wm

2
Z

, (A.34)

to infer
ŝ2

W ĉ
2
W = s2

W c
2
W (1 + z) , (A.35)

which, to linear order in z, implies that

ŝ2
W = s2

W

[
1 +

z c2
W

c2
W − s2

W

]
. (A.36)

Eliminating ŝW in favour of sW in the fermionic weak interactions introduces a further
shift in these couplings, leading to our final form for the neutral-current lagrangian:

LNC =
ie

ŝW ĉW

∑
f

[
fγµ

(
T3fγL −Qf ŝ2

W

)
f

+fγµ (δgfLγL + δgfRγR) f
]
Zµ

' ie

sW cW

(
1− z

2

)∑
f

{
fγµ

[
T3fγL −Qfs2

W

(
1 +

z c2
W

c2
W − sW

)]
f

+ fγµ (δgfLγL + δgfRγR) f
}
Zµ

:= ieZ

∑
f

fγµ
[(
gSM
fL + ∆gfL

)
γL +

(
gSM
fR + ∆gfR

)
γR

]
f Zµ , (A.37)
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where eZ := e/sW cW and

∆gfL(R) = −z
2
gSM
fL(R) − z

(
s2

W c
2
W

c2
W − s2

W

)
Qf + δgfL(R) , (A.38)

where (as usual) gSM
fL

:= T3f − Qfs2
W and gSM

fR
:= −Qfs2

W . It is assumed throughout that
the corrections z, δgfL(R), and

∆kfL(R) := kfL(R) − gXXfL(R) (A.39)

are small, so that any expression can be linearized in these variables. In particular, this
means that one can replace hatted electroweak parameters (i.e. ŝW , etc.) with unhatted
ones in our previous expressions to give:

z(RX , η) =
s2

W sh2η −∆X + ϑX

√
∆2

X −R2
Xs

2
W sh2η

1 + ∆X − ϑX

√
∆2

X −R2
Xs

2
W sh2η

(A.40)

δgfL(R) = (cξ − 1) gSM
fL(R) + sξ

(
sh η sW (Qfc2

W − gSM
fL(R)) + chη

gX

eZ

XfL(R)

)
(A.41)

∆kfL(R) = (cξch η − 1) gXXfL(R) + cξsh η
e

cW

(Qfc2
W − gSM

fL(R))− sξeZg
SM
fL(R) . (A.42)

Alternatively, one can use the relationship between z and η to determine the contri-
bution to the oblique parameters [143–146] S = U = 0 and αT = −z, where (as usual)
α := e2/4π. In this case, ∆gfL(R) can be written as in [142]

∆gfL(R) =
αT

2
gSM
fL(R) + αT

(
s2

W c
2
W

c2
W − s2

W

)
Qf + δgfL(R) . (A.43)
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