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Abstract: We study the three-dimensional gravity with torsion given by the Mielke-

Baekler (MB) model coupled to gravitational Chern-Simons term, and that possess elec-

tric charge described by Maxwell-Chern-Simons electrodynamics. We find and discuss this

theory’s charged black holes solutions and uncharged solutions. We find that for van-

ishing torsion our solutions by means of a coordinate transformation can be written as

three-dimensional Chern-Simons black holes. We also discuss a special case of this theory,

Topologically Massive Gravity (TMG) at chiral point, and we show that the logarithmic so-

lution of TMG is also a solution of the MB model at a fixed point in the space of parameters.

Furthermore, we show that our solutions generalize Gödel type solutions in a particular

case. Also, we recover BTZ black hole in Riemann-Cartan spacetime for vanishing charge.
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1 Introduction

In recent years, there has been a remarkable activity in the study of three-dimensional

models of gravity. In particular, we have the BTZ black hole [1], which is a solution to

the Einstein equations with a negative cosmological constant. This black hole solution has

interesting both classical and quantum properties, and it shares several features of the Kerr

black hole of four-dimensional General Relativity (GR) [2]. In fact, the existence of BTZ

black holes is what makes the three-dimensional gravity a striking toy model.

Recently, remarkable attention was addressed to Topologically Massive Gravity

(TMG), a generalization of three-dimensional GR that amounts to augment the Einstein-

Hilbert action adding a Chern-Simons gravitational term, [3, 4]. Here, the propagating

degree of freedom is a massive graviton. TMG also admits the BTZ (and other) black

holes as exact solutions. The renewed interest on TMG relies on the possibility of con-

structing a chiral theory of gravity at a special point of the space of parameters, what it was

suggested in ref. [5]. This idea has been extensively analyzed in the last three years [6]–[17]

and it gave raise a fruitful discussion that ultimately led to a much better understanding

of the model [18]. Also, recently has been showed that in three-dimensional massive grav-

ity, where the action is given by the Einstein-Hilbert action having square-curvature terms

which gives raise to field equations with a second order trace admits exacts Lifshitz metrics

and black hole solutions, which are asymptotically Lifshitz, [19]. However, the formulation

of a quantum theory of gravity is an open problem in theoretical physics. Some approach
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at this problem has been done in superstring theory and loop quantum gravity. Thus,

it is worth to explore new possibilities such as gravity with torsion which in (2+1)D are

relationships with the continuum theory of lattice defects in solid physics, [20, 21].

So, a possible extension of TMG is to add torsion in the game. In fact, the three-

dimensional theory of gravity that includes torsion (along with the Einstein-Hilbert and the

gravitational Chern-Simons term) is known with the name of Mielke-Baekler theory [22],

and this model is itself a Chern-Simons theory which includes a translational term as well,

and therefore this is a striking mathematical model in its own right. Moreover, in regarding

the applications to physics, it is well-known that the introduction of torsion in the game

often induces new physical effects and changes the local degrees of freedom of the theory. In

ref. [23] Klemm and Tagliabue investigated the introduction of torsion in three dimensions

and discussed it, according to AdS/CFT correspondence. This is very interesting if, in

addition, one takes into account that a generalization of the BTZ black hole solution with

torsion also exists in the literature [24]. In a more recent context, and also related to

AdS/CFT applications, the so-called degenerate point of the Mielke-Baekler theory (for

which the equations of motion associated to the vielbein coincides with those associated to

the spin connection) can be shown to exhibit features that are similar to the so-called chiral

point of TMG [25] (e.g. leading to the same value of the boundary central charges [23]).

Three-dimensional gravity with torsion was also recently considered in ref. [26], where

the supersymmetric extension in the Chern-Simons formulation was investigated. Exact

solutions with torsion in three dimensions were analyzed recently in refs. [27]–[29].

In this paper, we study a general 3D model of gravity based on Riemann-Cartan Geom-

etry, whose fundamental fields are both metric and torsion. We consider topological model

of gravity proposed by Mielke and Baekler [22], and we include the matter content given

by the Maxwell action augmented by a topological Chern-Simons term, that is, Einstein-

Cartan gravity with arbitrary cosmological constant coupled to a gravitational topological

term and topologically massive electrodynamics. Chern-Simons modifications to gravity

were first considered in 2+1 dimensions [3, 4]. These modifications could in principle arise

as a truncation of a consistent theory of quantum gravity, such as string theory or M-theory.

A discussion on how the gravitational Chern-Simons term may appear from compactifying

R4-terms of 11D supergravity has recently been given in [30]. On the other hand, in what

concerns the translational Chern-Simons term, for example, many models of loop quantum

gravity or string theory predict a coupling/term in the action with the Nieh-Yan topolog-

ical invariant which is associated to it; the inverse of the coupling constant of such term

is often called the ”Immirzi parameter”. In turn, it is perfectly conceivable that both the

gravitational as the translational Chern-Simons gravitational terms appear as reductions

of fundamental theories. Also, it is known that Einstein-Maxwell-Chern-Simons theory in

(2+1) dimensions can be viewed as a lower dimensional model for the bosonic sector of

5-dimensional supergravity [31]. In references [32] and [33] the authors investigated the

structure of the gravitational Chern-Simons term modifications to General Relativity, and

also showed how such terms could arise as a low-energy consequence of string theory; in [34]

it is discussed that these terms could also arise by anomaly cancelation in particle physics,

string theory and loop quantum gravity.
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Independent gravitational fields in this framework are the vielbein e and the Cartan

spin connection ω. On the other hand, the curvature and torsion describe the gravitational

dynamics. We write an action for this theory using first order formalism of Poincaré gauge

theory of gravity (PGTG). Then, the theory in second order formulation, presented in

terms of the metric field g and affine connection Γ, is easily obtained using the metricity

condition Dg = 0, with D being a covariant derivative with respect to the affine connection.

This method allows us to find new analytic solutions to this theory representing charged

rotating black hole solutions that, in turn, generalize previous solutions reported in the

literature. For vanishing torsion, these solutions by means of a coordinate transformation

can be written as a three-dimensional Chern-Simons black hole. Also, we show that the

logarithmic solution of TMG, found in ref. [14], is solution of the Mielke-Baekler model at a

special point of space parameters. We will also briefly comment a solution that generalizes

the Gödel spacetime obtained in ref. [35] in terms of spacetime that includes torsion and

gravitational topological term. The Gödel like solution is supported by an abelian gauge

field, and it is necessary to include an additional Chern-Simons term which produces the

energy-momentum tensor of a pressureless perfect fluid. In ref. [35] it is show that in 2 + 1

dimensions the Maxwell field minimally coupled to gravity can be the source of such a

fluid, when it is increased with a topological mass µE .

In the case of pure gravity, knowing the black hole content in the spectrum turns out

to be a crucial point to fully understand the theory’s properties. In particular, in the

asymptotically AdS3 sector this is important to try to reconstruct the dual CFT2. The

appropriate classification of bulk geometries that contributes to the partition function is a

crucial step that could shed light on the quantum gravity theory. Of course, the problem

of quantizing the theory in presence of matter (e.g. of U(1) matter) is far from being a

tractable task to our knowledge. Nevertheless, the question about the theory’s black hole

content still represents a well motivated classical problem.

The structure of the paper is as follows. In section 2 we introduce the model and we

derive the field equations. Then, in section 3 we solve the field equations with an ansatz

for the vielbein and the gauge field, and in section 4 we analyze the solution for some

particular cases and limits. To conclude, our remarks are in section 5.

2 Three-dimensional gravity in Riemann-Cartan space

In the Einstein-Cartan geometry the basic gravitational fields are the vielbein 1-form ea =

eaµdx
µ and the spin connection 1-form ωab = ωab

µ dx
µ,1 we take our local coordinates to

be xµ = t, r, φ. By simplicity in the notation, it is standard to work with a dual spin

connection

ωa = −1

2
ǫabcωbc . (2.1)

1Latin indices label the components with respect to a local Lorentz frame and Greek indices refers to

the coordinate frame.
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So, the torsion T a and the curvature Ra are given by

T a = dea + ǫabcω
bec , (2.2)

Ra = dωa +
1

2
ǫabcω

bωc . (2.3)

We will consider the model proposed by Mielke-Baekler charged under Chern-Simons

electrodynamics, which is given by the following action

S =

∫
(

1

κ
eaR

a − Λ

3
ǫabce

aebec + α3

(

ωadωa +
1

3
ǫabcω

aωbωc

)

+ α4eaT
a + LF

)

, (2.4)

where

LF = −1

2
F ∗F − µE

2
AF , (2.5)

κ = 8πG, α3 and µE are the gravitational and electromagnetic Chern-Simons coupling

constants, respectively, α4 is the torsion coupling, Λ is a cosmological constant, A is the

potential 1-form, F = dA and ǫabc is the completely antisymmetric symbol with ǫ012 = +1.

Using the metricity condition we arrive to the following useful relation

ωa = ω̄a +Ka , (2.6)

where ω̄a is the Riemannian connection and Ka is the contortion 1-form. The contortion

is defined through

T a = ǫabcK
bec . (2.7)

Relation (2.6) allows us to express the Cartan curvature in terms of the Riemannian cur-

vature and the contortion as

Ra = R̄a + D̄Ka +
1

2
ǫabcK

bKc . (2.8)

Where, D̄ is the covariant derivative with respect to ω̄a. The spacetime metric is gµν =

ηabe
a
µe

b
ν and we have adopted the convention ηab = diag(+1,−1,−1).

In order to obtain the field equations we vary the action with respect to the independent

fields ea and ωa getting

1

κ
Ra − Λǫabce

bec + 2α4T
a = −δLF

δea
, (2.9)

2α3R
a + α4ǫ

a
bce

bec +
1

κ
T a = 0 , (2.10)

from these expressions we obtain the torsion and the curvature, which can be expressed as

T a − a

2
ǫabce

bec =
m

2
χa , (2.11)

Ra − b

2
ǫabce

bec = −n
2
χa , (2.12)

where

χa = −δLF

δea
, (2.13)
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is the (Maxwell) energy-momentum current and we have introduced the following constants

a =
α3Λ + α4

2κ

α3α4 −
(

1

2κ

)2
, b = −

α2
4 + 1

2κ
Λ

α3α4 −
(

1

2κ

)2
, (2.14)

m =
α3

α3α4 −
(

1
2κ

)2
, n =

1
2κ

α3α4 −
(

1
2κ

)2
, (2.15)

with the condition α3α4 −
(

1
2κ

)2 6= 0 . The energy-momentum tensor is calculated by

Sa
b =∗ (eaχb) = −F acFbc +

1

4
δa
b (F cdFcd) , (2.16)

and the energy-momentum current can be written as

χa = ǫabcs
bec , (2.17)

with

sa = −
(

Sa
b − 1

2
δa
bS

)

eb , (2.18)

where S = Sa
a , is the trace of the energy-momentum tensor. Replacing, the expression for

the current, in the gravitational equations, we obtain

T a =
1

2
ǫabc(ae

b +msb)ec , (2.19)

Ra =
1

2
ǫabc(be

b − nsb)ec , (2.20)

and by using eq. (2.19) we find that the contortion can be written as

Kb =
1

2

(

aeb +msb
)

. (2.21)

Now, by varying the action with respect to 1-form A we obtain the modified Maxwell

equations

d∗F + µEF = 0 , (2.22)

which includes the contribution of the electromagnetic Chern-Simons term. Later by re-

placing the expression (2.21) for the contortion in eq. (2.8), we find the following expression

to the Cartan curvature

Ra = R̄a +
m

2
D̄sa +

1

8
ǫabc

(

a2ebec + 2amsbec +m2sbsc
)

. (2.23)

Taken this last equation together with the second gravitational eq. (2.20), we finally obtain

R̄a = −γ
2
ǫabcs

bec − m

2
D̄sa − m2

8
ǫabcs

bsc +
1

2
Λeffǫ

a
bce

bec , (2.24)

where we have defined

γ = n+
am

2
, (2.25)
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the effective cosmological constant as

Λeff = b− a2

4
= − 1

l2
, (2.26)

and

D̄sa = dsa + ǫabcω̄
bsc , (2.27)

as the covariant derivative (with respect to ω̄) of sa.

3 Solutions

Now, for the metric we consider the following stationary circularly symmetric ansatz2

ds2 =
ψ(r)

f(r)
dt2 − f(r)

(

dφ+
Cr

f(r)
dt

)2

− 1

ψ(r)
dr2 , (3.1)

in the local coordinates xµ = t, r, φ, with 0 ≤ φ ≤ 2π and the following ansatz for the

U(1) field

A = Atdt +Aφdφ (3.2)

which is a spherically symmetric gauge field in the gauge Ar = 0. Also, we consider At to

be a constant and Aφ = I +Hr , with I and H as constants, this yields

F = dA = Hdrdφ . (3.3)

In addition, we will choose f(r) and ψ(r) as quadratic functions of r

f(r) = Mr2 +Nr + L , (3.4)

ψ(r) = Pr2 +Qr +R , (3.5)

where M,N,L, P,Q,R are integration constants to be determined.

The orthonormal basis is determined up to a local Lorentz transformation and we

choose this basis to be

e0 =

√

ψ(r)

f(r)
dt , (3.6)

e1 =
1

√

ψ(r)
dr , (3.7)

e2 =
√

f(r)

(

dφ+
Cr

f(r)
dt

)

, (3.8)

and for the electric field

F = E(r)e0e1 −B(r)e1e2 , (3.9)

2Note that this form for the metric agrees with the one used in [36], see eq. (39) therein and consider

r = r̄
2.
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by contracting the electromagnetic tensor with itself we obtain the electromagnetic invari-

ant

FabF
ab = 2(B2 − E2) , (3.10)

from this result the energy-momentum tensor reads

Sa
b =







1
2
(E2 +B2) 0 EB

0 1
2
(E2 −B2) 0

−EB 0 −1
2
(E2 +B2)






, (3.11)

and the trace of the Maxwell energy-momentum tensor is

S =
1

2
(E2 −B2) , (3.12)

from the modified Maxwell equations we get the following pair of equations

√

ψE′ +
1

2

√

ψ
f ′

f
E + µEB = 0 , (3.13)

√

ψB′ +
1

2
√
ψ

(

ψ′ − ψ
f ′

f

)

B +

(

C − Cr
f ′

f
+ µE

)

E = 0 . (3.14)

Taking into account the ansatz for the electric field in local coordinates is F = Hdrdφ,

we obtain the following electromagnetic field that generate the gravitational field

E(r) =
CHr√
f
, (3.15)

B(r) = −H

√

ψ

f
, (3.16)

with C = µE . From the energy-momentum tensor we determine the 1-form sa and we get

s0 = −1

4

(

3B2 + E2
)

e0 − EBe2 , (3.17)

s1 = −1

4
(E2 −B2)e1 , (3.18)

s2 =
1

4
(B2 + 3E2)e2 + EBe0 . (3.19)

The null torsion condition yields the Riemannian connection

D̄ea = dea + ǫabcω̄
bec = 0 , (3.20)

considering the expressions for ea we have

ω̄0 = −1

2
C

(

1 − r
f ′

f

)

e0 − 1

2

√

ψ
f ′

f
e2 , (3.21)

ω̄1 = −1

2
C

(

1 − r
f ′

f

)

e1 , (3.22)

ω̄2 = − 1

2
√
ψ

(

ψ′ − ψ
f ′

f

)

e0 +
1

2
C

(

1 − r
f ′

f

)

e2 , (3.23)
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based on expressions obtained above, we get the Riemannian curvature

R̄0 = −1

2
Cr

f ′′

f

√

ψe0e1 −
(

1

4
ψ′ f

′

f
+

1

2
ψ
f ′′

f
− 1

4
ψ
f ′2

f2
+

1

4
C2

(

1 − r
f ′

f

)2
)

e1e2 , (3.24)

R̄1 = −
(

1

4

f ′

f

(

ψ′ − ψ
f ′

f

)

+
1

4
C2

(

1 − r
f ′

f

)2
)

e0e2 , (3.25)

R̄2 =

(

−1

2
ψ
f ′′

f
+

1

2
ψ′′ − 3

4
ψ′ f

′

f
+

3

4
ψ
f ′2

f2
− 3

4
C2

(

1 − r
f ′

f

)2
)

e0e1 − 1

2
Cr

f ′′

f

√

ψe1e2 .

(3.26)

Therefore, from the gravitational equations (See appendix A) we obtain the following

algebraic system of equations

m2

8

R

L
H4 +

(

γ +
3

2
mC

)

H2 − 2M = 0 , (3.27)

3M
R

L
+C2 + 4Λeff =

1

2

(

γ +
5

2
mC

)

H2R

L
, (3.28)

with the following constraints between the coefficients

P =
R

L
M + C2 , (3.29)

Q =
R

L
N , (3.30)

and the function ψ(r) takes the form

ψ(r) =
R

L
f(r) + C2r2 . (3.31)

Therefore, the solution for gravitational equations is

σ := H2R

L
=

4

m2

(

−2

3
(γ +mµE) ±

√

4

9
(γ +mµE)2 − 1

3
m2
(

µ2
E + 4Λeff

)

)

, (3.32)

ρ := M
R

L
= −1

3

(

µ2
E + 4Λeff

)

+
1

6

(

γ +
5

2
mµE

)

H2R

L
. (3.33)

To sum up, eqs. (3.32), (3.33) along with the ansatz eqs. (3.6)–(3.9) and the connection

given by eq. (2.6) represent an exact solution of the theory, (2.4). Next, we will fix N = 2.

It is worth noticing that for vanishing torsion this solution is related by a coordinate

transformation to analogous solutions in a torsionless theory of topologically massive grav-

ity coupled to topologically massive electrodynamics. In fact, the metric given in eq. (3.1)

is related to the metric of eq. (3.17) of [37] by the following coordinate transformation

between r and the radial coordinate ρ̄ used in that paper

ρ̄ = −Cr − RN

2LC

1

1 + MR
LC2

. (3.34)
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Also, the integration constants in both metrics are related by

β2 = 1 +
MR

LC2
, ρ2

0 = − R

1 + MR
LC2

+
R2N2

4L2C2

(

1 + MR
LC2

)2
, (3.35)

c̄ =
M

C2
, ω = − N

2C
+
RMN

2LC3

1

1 + MR
LC2

. (3.36)

Therefore, our solution generalizes the three-dimensional torsionless Chern-Simons

black holes of [37] to spacetime with torsion. Where we have also included a transla-

tional Chern-Simons term in the action. It is interesting to notice that this topological

term induces an effective cosmological constant even if the bare cosmological constant Λ

and the gravitational Chern-Simons coupling α3 are both zero (see eq. (2.26)).

4 Particular cases

In this section we discuss particular cases of our solution to view the physical content

involved by taking some limits.

4.1 Case: α3α4 −
(

1
2κ

)2 6= 0

First, let’s consider the case α3 = 0 (m = 0) and L = 0. In this case eqs. (3.27), (3.28) can

be simplified to

− κH2 = M , (4.1)

3M
Q

N
+ C2 + 4Λeff = −κH2Q

N
, (4.2)

and we obtain

H2Q

N
=

1

2κ

(

µ2
E + 4Λeff

)

, (4.3)

M
Q

N
= −1

2

(

µ2
E + 4Λeff

)

. (4.4)

The conserved charges (See appendix C) can be expressed as

Q = 0 , M =

(

µ2
E + 4Λeff

)

2κ

1

M
, J = 0 , (4.5)

where Q, M and J denote the electric charge, the mass and the angular momentum,

respectively, and the gauge field is given by

A =
µE

κ
√

− 1
κ
M
dt+





1
κ

√

− 1
κ
M

+Hr



 dφ . (4.6)

Arriving to the following solution for the metric and gauge field

f(r) =
1

2κl2M
(

µ2
E l

2 − 4
)

r2 + 2r , (4.7)

ψ(r) =
1

2l2
(

µ2
El

2 + 4
)

r2 − 2κMr , (4.8)

A =

√

− 1

2κ2l2M
(

µ2
E l

2 − 4
)

[

−
1
κ
µE

1

2κ2l2M
(

µ2
El

2 − 4
)dt+

(

r −
1
κ

1

2κ2l2M
(

µ2
E l

2 − 4
)

)

dφ

]

.

(4.9)
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The gauge field in eq. (4.9) is real if

− 1

2κ2l2M
(

µ2
El

2 − 4
)

> 0 . (4.10)

Therefore, we have the following cases

a. µ2
El

2 − 4 > 0 and M < 0 .

b. µ2
El

2 − 4 < 0 and M > 0 .

In the first case,

1. f (r) = 0 at r = 0 and r = − 4κl2M
µ2

E
l2−4

> 0. f (r) changes sign and there is closed

timelike curves (CTC).

2. ψ (r) = 0, at r = 0 and at r = 4κMl2

µ2

E
l2+4

< 0. It’s important to note that for 0 <

r < − 4κl2M
µ2

E
l2−4

, Killing vector, ∂ϕ, is spacelike. So, there isn’t horizon and the solution

represent Gödel Particles.

In the second case,

1. f (r) = 0 at r = 0 and r = − 4κl2M
µ2

E
l2−4

> 0, therefore, there is CTC.

2. ψ (r) = 0 at r = 0 and r = 4κMl2

µ2

E
l2+4

> 0. Also, 4κMl2

µ2

E
l2+4

< − 4κl2M
µ2

E
l2−4

. So, there is a

horizon at r = 4κMl2

µ2

E
l2+4

and it is in the normal region, where ∂ϕ is spacelike and the

solution represent a Gödel Black Hole, [35].

A Gödel black hole describes a black hole in a rotating Gödel background (with horizons

in the normal region), while a Gödel particle describes a particle-like solution in a rotating

Gödel background. The asymptotic behavior of these solutions is similar to the asymptotic

behavior of the Gödel Universe (i.e. they are asymptotically Gödel).3

As pointed out in ref. [37] the gravitational constant can be positive or negative in 2+1

dimensions [38], also it is well know that in topologically massive gravity the gravitational

constant should be taken as negative to avoid the appearance of ghosts, [3, 4]. We mention

that in this case we have M > 0 and choose κ < 0 in eq. (4.9), to arrive to a real solution.

It is worth noticing that is possible to make the following coordinate transformation

φ → iφ, t → it and r → −r [35] to find a new solution, in this case the metric and the

gauge field become4

ds2 =
ψ(r)

−f(r)
dt2 + (−f(r))

(

dφ+
Cr

−f(r)
dt

)2

− 1

ψ(r)
dr2 , (4.11)

A =
µE

κ
√

− 1
κ
M
dt+





1
κ

√

− 1
κ
M

+Hr



 dφ , (4.12)

3Notice that by ’particle-like solution’ we mean a solution which exhibits a naked conical singularity;

it is horizonless in the normal region. This is totally analogous as when Deser-Jackiw-t’Hooft identified

conical singularities in 3D gravity as particle-like solutions in GR.
4Because N is arbitrary we also make the change N → −N = 2.
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and

Q = 0 , M = −
(

µ2
E + 4Λeff

)

2κ

1

M
, J = 0 . (4.13)

In this case, we have a real solution for M < 0 and κ > 0 and we see that our black

hole generalizes the Einstein-Maxwell-Chern-Simons solution (with negative cosmological

constant) obtained in ref. [35]5 to spacetime with torsion and the solution admits naked

closed timelike curves.6

We also find that when µ2
E l

2 = 4 the fluid disappears, the energy-momentum tensor

vanishes and the metric reduces to the BTZ metric in Einstein-Cartan spacetime (also valid

for the general solution, eqs. (3.32), (3.33)).

In the case of not charged solutions, from the gravitational eqs. (A.13)–(A.17) with

H = 0, we recover the BTZ black hole in Riemann-Cartan spacetime (M = 0, C = 2
l
).

4.2 Case: α3α4 −
(

1
2κ

)2
= 0

In this case the field equations degenerate to a single equation, which is

Ra +
1

2κα3

T a +
1

2 (2κα3)
2
ǫabce

bec = 0 , (4.14)

making 2κ = 1 and by identifying, α3 = 1
µ

and Λ = − 1

l2
and along with the condition

α3 = − 1√
−Λ

, yields to a point analogous to the chiral point, µl = −1, of TMG. Therefore,

we consider the metric7

ds2 = f (r)2 dt2 − 1

g (r)2
dr2 − h (r)2 (dφ+ C (r) dt)2 , (4.15)

with

f (r) =
r2

lh (r)
, g (r) =

r

l
, C (r) = −

kl ln
(

r2/r20
)

h (r)2
, h (r) =

√

r2 + kl2 ln
(

r2/r20
)

.

(4.16)

Where, through simplicity and without the loss of generality we have chosen M = 0,

in eq. (5) of ref. [14]. This metric, corresponds to a one-parameter deformation of GR

solutions and is continuously connected to the extremal BTZ black hole. The vielbein is

e0 = f (r) dt , (4.17)

e1 =
1

g (r)
dr , (4.18)

e2 = h (r) (dφ+ C (r) dt) , (4.19)

5here the gravitational constant is positive.
6In ref. [35], α = −

µE

2
.

7For k=0, this metric corresponds to the metric of BTZ extremal.
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and the spin connection is given by eq. (2.6), where the Riemannian connection is

ω̄0 =
k

h (r)
dt − r2 + kl2

lh (r)
dφ , (4.20)

ω̄1 =
kl

r

l − ln
(

r2/r20
)

h (r)2
dr , (4.21)

ω̄2 =
1

h (r)

((

k
(

1 − ln
(

r2/r20
))

− r2

l2

)

dt − kl
(

1 − ln
(

r2/r20
))

dφ

)

, (4.22)

and the Riemannian curvature is8

R̄0 =
2k

h (r)2
e0e1 +

(

2k

h (r)2
− 1

l2

)

e1e2 , (4.23)

R̄1 = − 1

l2
e0e2 , (4.24)

R̄2 =

(

2k

h (r)2
+

1

l2

)

e0e1 +
2k

h (r)2
e1e2 . (4.25)

Now, through following ansatz for the contortion

K0 = Te0 + χ (r)
(

e0 − e2
)

, (4.26)

K1 = Te1 , (4.27)

K2 = χ (r)
(

e0 − e2
)

+ Te2, (4.28)

With T constant. The gravitational equations can be written as

R̄a + D̄Ka +
1

2
ǫabcK

bKc +
1

2κα3

ǫabcK
bec +

1

2 (2κα3)
2
ǫabce

bec = 0 , (4.29)

and the solution to this equation is given by the following cases:

T = 0, (4.30)

χ (r) = − kl

r2 + kl2ln
(

r2

r2

0

) +
Cte ∗ r2

r2 + kl2ln
(

r2

r2

0

) , (4.31)

or

T =
2

l
, (4.32)

χ (r) =
klln(r2)

r2 + kl2ln
(

r2

r2

0

) +
Cte

r2 + kl2ln
(

r2

r2

0

) , (4.33)

where, Cte is an arbitrary integration constant that is consequence of the degeneracy of

the field equations. For M 6= 0 the solutions take the form

χ (r) = − kl

r2 + kl2ln
(

r2−4GMl2

r2

0

) +
Cte ∗ (r2 − 4GMl2)

r2 + kl2ln
(

r2−4GMl2

r2

0

) , (4.34)

8These expressions are given in ref. [39].
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and

χ (r) =
klln(r2 − 4GMl2)

r2 + kl2ln
(

r2−4GMl2

r2

0

) +
Cte

r2 + kl2ln
(

r2−4GMl2

r2

0

) , (4.35)

Therefore, in the last case the torsion is given by

T 0 =
4

l
e1e2 − χ(r)e0e1 − χ(r)e1e2 , T 1 =

4

l
e0e2, T 2 = −4

l
e0e1 − χ(r)e0e1 − χ(r)e1e2 .

(4.36)

Note that the torsion is a function of r. Now, if we take the limit k = 0 we recover

the extremal BTZ metric with non constant torsion (if, in addition Cte = 0, we recover

BTZ metric with torsion). As a result, we obtain for the conserved charges (applying

directly expressions (3.3a) and (3.3b) of [39] and taking the reference configuration k = 0

and M = 0) the following values for the mass and the angular momentum in this last

case eq. (4.35):

Ml = −J =
kl

2G
. (4.37)

This result gives the same conserved charges of the torsionless logarithmic solution of TMG.

Note that these charges do not depend on the integration constant Cte. Therefore, the

logarithmic solution of TMG, found in ref. [14], is also a solution of the Mielke-Baekler

model.

The fact that solutions with logarithmic asymptotic behavior arise in the degenerate

point of Mielke-Baekler theory is reminiscent of what happens in topologically massive

gravity (TMG) at the chiral point, where such a logarithmic behavior has been observed

and leads to the so-called Log-gravity. As pointed out in [30], there exists a remarkable

similarity (though not equivalence) between the chiral point of TMG and the degenerate

point of Mielke-Baekler Chern-Simons gravity; the fact we observe such a behavior to

emerge at this special point of the space of parameters supports this parallelism between

both models.

We note that for this solution to emerge at the singular point requires α4 = −1
l
6= 0.

This implies that the translational Chern-Simons term must be included in the action for

this solution appears in the case of adding torsion.

The logarithmic solution emerges in this theory because as we see from eq. (4.29)

torsional degrees of freedom are playing a role analogous to that of Cotton tensor of TMG

and has not constant curvature neither constant torsion. Both quantities depend on the

radial coordinate r and the sum Ra + 1
2kα3

T a is constant. Which, can be see directly from

eq. (4.14).

5 Final remarks

In this work, we have discussed black holes solutions to three-dimensional Einstein the-

ory with torsion coupled to topologically massive gravity and charged under topologically

massive electrodynamics. For vanishing torsion, the solution that we found by means a

coordinate transformation can be written as a three-dimensional Chern-Simons black holes.

Also, we showed that the logarithmic solution of TMG is a solution of the Mielke-Baekler
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model at a special point of the space of parameters. Our solution generalizes previous

solutions reported in the literature, so that it may contribute to a better understanding

of the solutions content of this interesting toy model of gravity. However, some of our

particular cases that we have analyzed are restricted at integrability conditions of the con-

served charges (See appendix C). So, it might be interesting to use another approach for

the calculation of the conserved charges for this type of spacetime and compare them with

the Hamiltonian method used here, e.g. see [35, 39, 40]. Currently, we are working on

the latter, also we are determining some properties of this spacetime, which we expect to

report in the near future.
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A Gravitational equations

In this appendix we write a number of auxiliary expressions used in the text. We start

with covariant derivatives of the vector sa related to the energy-momentum current

D̄sa = dsa + ǫabcω̄
bsc , (A.1)

Its components are

D̄s0 = −
(

H2

4f2
f ′
(

3ψ + C2r2
)
√

ψ +
H2

4f

(

3ψ′ + 2C2r
)
√

ψ

)

e0e1

− H2

8
√
ψ

(

3ψ + C2r2
)

(

ψ′f − ψf ′

f2

)

e0e1 + CH2

(

ψ

f
+

r

2f
ψ′ − rψ

2f2
f ′
)

e1e2

− C2H2r
√
ψ

f

(

1 − r
f ′

f

)

e0e1 − H2

8f
√
ψ

(

ψ′ − ψ
f ′

f

)

(

C2r2 − ψ
)

e0e1

− 1

2

C3H2r2

f

(

1 − r
f ′

f

)

e1e2 − 1

2

C2H2r
√
ψ

f

(

1 − r
f ′

f

)

e0e1 , (A.2)

D̄s1 = − H2

f

(

1

2
C

(

1 − r
f ′

f

)

(

ψ + C2r2
)

− Cr

(

ψ′

2
− ψ

f ′

f

))

e0e2 , (A.3)

D̄s2 =
H2

4

(

− f ′

2f2

(

ψ + 3C2r2
)

+
1

f

(

ψ′ + 6C2r
)

)

√

ψe1e2

− CH2

4f

(

ψ + 3C2r2
)

(

1 − r
f ′

f

)

e0e1 + CH2

(

ψ

f
+
rψ′

f
− 3

2

rψ

f2
f ′
)

e0e1

− 1

4

CH2

f

(

ψ + C2r2
)

(

1 − r
f ′

f

)

e0e1 − 1

2

C2H2r

f

√

ψ

(

1 − r
f ′

f

)

e1e2

+
1

8
H2
√

ψ
f ′

f2

(

C2r2 − ψ
)

e1e2 . (A.4)
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Next, we need the following vector constructed from sa

Xa = ǫabcs
bsc , (A.5)

Its components read

X0 = −1

8

(

E2 −B2
) (

3E2 +B2
)

e1e2 +
1

2
EB

(

E2 −B2
)

e0e1 , (A.6)

X1 = −
(

1

8

(

3E2 +B2
) (

E2 + 3B2
)

− 2E2B2

)

e0e2 , (A.7)

X2 = −1

8

(

E2 −B2
) (

E2 + 3B2
)

e0e1 +
1

2
EB

(

E2 −B2
)

e1e2 , (A.8)

and the vector

Y a = ǫabcs
bec , (A.9)

which components are

Y 0 =
1

2

(

E2 +B2
)

e1e2 − EBe0e1 , (A.10)

Y 1 = −1

2

(

B2 − E2
)

e0e2 , (A.11)

Y 2 =
1

2

(

E2 +B2
)

e0e1 − EBe1e2 . (A.12)

Using the useful expressions from above, the gravitational equations can be written as the

following algebraic system of equations

Cr
f ′′

f
= γ

CH2r

f
−m

H2

4f2
f ′
(

3ψ+C2r2
)

+m
H2

4f

(

3ψ′+2C2r
)

+m
1

2
H2

(

ψ′f − ψf ′

f2

)

−3

2
m
C2H2r

f

(

1 − r
f ′

f

)

− m2

8

CH4r

f2

(

C2r2 − ψ
)

, (A.13)

1

4
ψ′ f

′

f
+

1

2
ψ
f ′′

f
− 1

4
ψ
f ′2

f2
+

1

4
C2

(

1 − r
f ′

f

)2

=
1

4
γ
H2

f

(

ψ + C2r2
)

+
m

2
CH2

(

ψ

f
+
rψ′

2f
− rψ

2f2
f ′
)

− m

4

C3H2r2

f

(

1 − r
f ′

f

)

−m
2

64

H4

f2

(

ψ + 3C2r2
) (

C2r2 − ψ
)

− Λeff , (A.14)

−
(

1

4

f ′

f

(

ψ′ − ψ
f ′

f

)

+
1

4
C2

(

1 − r
f ′

f

)2
)

=
1

4
γ
H2

f

(

ψ − C2r2
)

+
m

4

CH2

f

(

1 − r
f ′

f

)

(

ψ + C2r2
)

− m

2

CH2r

f

(

ψ′

2
− ψ

f ′

f

)

+
m2

8

(

1

8

H4

f2

(

3ψ + C2r2
) (

ψ + 3C2r2
)

− 2C2H4r2ψ

f2

)

+ Λeff , (A.15)
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−1

2
ψ
f ′′

f
+

1

2
ψ′′ − 3

4
ψ′ f

′

f
+

3

4
ψ
f ′2

f2
− 3

4
C2

(

1 − r
f ′

f

)2

= −1

4
γ
H2

f

(

ψ + C2r2
)

+m
CH2

4f

(

1 − r
f ′

f

)

(

ψ + 2C2r2
)

− m

2

CH2

f

(

ψ + rψ′ − 3

2
rψ
f ′

f

)

+
m2

64

H4

f2

(

−ψ + C2r2
) (

3ψ +C2r2
)

− Λeff , (A.16)

−Crf
′′

f
= −γCH

2r

f
−m

H2

4

(

− f ′

2f2

(

ψ + 3C2r2
)

+
1

f

(

ψ′ + 6C2r
)

)

+
1

2
m
C2H2r

f

(

1 − r
f ′

f

)

−m
H2

8

f ′

f2

(

−ψ + C2r2
)

+
m2

8

CH4r

f2

(

−ψ + C2r2
)

. (A.17)

By adding eq. (A.13) and eq. (A.17), we obtain

− f ′ψ + C2r2f ′ − 2C2rf + fψ′ = 0 , (A.18)

from this equation we find the following constraints between the coefficients

P =
R

L
M + C2 , (A.19)

Q =
R

L
N . (A.20)

Therefore, the function ψ(r) forms as

ψ(r) =
R

L
f(r) + C2r2 . (A.21)

Now, as we go back to the system of equations and find that only two equations are

independent allowing us to get the constants M and H. Adding eq. (A.14) and eq. (A.15),

yields

m2

8

R

L
H4 +

(

γ +
3

2
mC

)

H2 − 2M = 0 . (A.22)

By multiplying equation eq. (A.14) by 3 and adding the result to eq. (A.16), we obtain

ψ
f ′′

f
+

1

2
ψ′′ =

γ

2

H2

f

(

ψ + C2r2
)

+
5

4
mCH2ψ

f
+

1

4
m
CH2r

f
ψ′ − 1

4
m
CH2rf ′ψ

f2

− 1

4
m
C3H2r2

f
+

1

4
m
C3H2r3f ′

f2
+
m2

8

H4

f2
C2r2

(

ψ − C2r2
)

− 4Λeff , (A.23)

and from this equation we arrive to another independent relation

3M
R

L
+ C2 + 4Λeff =

1

2

(

γ +
5

2
mC

)

H2R

L
. (A.24)

It is worth noting that when L = 0, R must vanishes, and our solution is given by replacing

R/L by Q/N .
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B Asymptotic behavior

The asymptotic behavior of the vielbein and the Cartan connection are determined by the

following expansion

e0t ∼

√

P

M

(

1 +
1

2

(

Q

P
− N

M

)

1

r
+ O(r2)

)

, (B.1)

e1r ∽ O(r) , (B.2)

e2φ ∼

√
M

(

r +
1

2

N

M
+

1

2

(

L

M
− 1

4

N2

M2

)

1

r
+ O(r2)

)

, (B.3)

e2t ∽

C√
M

(

1 − 1

2

N

M

1

r
+ O(r2)

)

. (B.4)

ω̄0
t ∽ −1

2
C

√

P

M

(

1 +
1

2

(

Q

P
− N

M

)

1

r
+ O(r2)

)

, (B.5)

ω̄0
φ ∽ −

√
PM

(

r +
1

2

Q

P
+

1

2

(

− L

M
+
R

P
+

1

8

N2

M2
− 1

4

Q2

P 2

)

1

r
+ O(r2)

)

, (B.6)

ω̄1
r ∽ O(r) , (B.7)

ω̄2
t ∼

1

2

C2

√
M

(

−1 +
1

2

N

M

1

r
+ O(r2)

)

, (B.8)

ω̄2
φ ∽

1

2
C
√
M

(

−r +
1

2

N

M
+

3

2

(

L

M
− 1

4

N2

M2

)

1

r
+ O(r2)

)

. (B.9)

K0
t ∼

1

2

(

a− 3

4
mH2R

L

)

√

P

M

(

1 +
1

2

(

Q

P
− N

M

)

1

r
+ O(r2)

)

, (B.10)

K0
φ ∼

1

2
mCH2

√

P

M

(

r +
1

2

(

Q

P
− N

M

)

+
1

2

(

R

P
− L

M
− 1

4

Q2

P 2
− 1

2

QN

PM
+

3

4

N2

M2

)

1

r

)

+O(r2) , (B.11)

K2
t ∼

1

2

(

a
C√
M

− 3

4
mH2R

L

C√
M

)(

1 − N

2M

1

r
+ O(r2)

)

, (B.12)

K2
φ ∼

1

2
a
√
M

(

r +
1

2

N

M
+

1

2

(

L

M
− 1

4

N2

M2

)

1

r

)

+
1

8
m
H2

√
M

(

P + 3C2
)

r

+
1

8
m
H2

√
M

(

Q− 1

2

N

M

(

P+3C2
)

+

(

R− 1

2

NQ

M
+

(

−1

2

L

M
+

3

8

N2

M2

)

(

P+3C2
)

)

1

r

)

+O(r2) . (B.13)

ωa
µ = ω̄a

µ +Ka
µ , (B.14)

where O(rn) ∼ 1
rn .

C Conserved charges

In this appendix we calculate the mass, angular momentum and electric charge of our

solution. The asymptotic behavior of the vielbein and the Cartan connection is given in

appendix B. The canonical generator has the following form in the asymptotic region

G = −G1 −G3 , (C.1)
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with

G1 =ξρ
[

eaρHa + ωa
ρKa + (∂ρe

a
t )π

t
a + (∂ρω

a
t ) Πa

t + (∂ρAt) π
t
]

, (C.2)

G3 = − λ
(

∂απ
α − 2µEǫ

tαβ∂αAβ

)

, (C.3)

πα = − kF tα − µEǫ
tαβAβ . (C.4)

The expressions for Ha and Ka can be found in appendix C of [27] (see also [41]). The

variation of the generator produces

δG1 = ξρ

(

−2ǫtαβ∂α

[

eaρδ

(

1

2κ
ωaβ + α4eaβ

)

+ ωa
ρδ

(

1

2κ
eaβ + α3ωaβ

)]

+ δτ t
ρ

)

+ regular terms , (C.5)

δG3 = −λ
(

∂αδπ
α − 2µEǫ

tαβ∂αδAβ

)

, (C.6)

where, δτ t
ρ = 1

2
ǫtαβeiρδχiαβ comes from the Maxwell energy-momentum current which is

given by9 χi = 1
2
χi

µνdx
µdxν . Using the asymptotic behavior of the vielbein and the con-

nection (appendix B) we obtain the conserved charges. For simplicity, we take α3 = 0.

The integrability conditions of our solution is satisfied only for the case that L depends of

M (L = f(M)), e.g. for L = 1
M

we obtain

Q = 0 (C.7)

M = − 1

M

(

1

2κ
ρ+

1

κ
aµE − 1

4κ
mµEσ + 2α4µE +

1

2
ρ

√

σ

ρ

At

√
M

µE

)

−α3

M

(

ρ

2
+
µ2

E

2
+

1

2
aµE +

mσµE

8

)(

−µE+a− 3

4
mσ

)

, (C.8)

J = −
[

1

2κ

(

a+µE+
1

4
mσ

)

+
α3

4

(

a+µE+
1

4
mσ

)2

+α4+α3ρ−
1

2

√

σ

ρ
At

√
M

]

1

M
, (C.9)

and

At

√
M = 2

√

ρ

σ

[

1

κ

(

a

2
+
m

8

σ

ρ

(

ρ+ 4µ2
E

)

− µE

2

)

+ α4 − µE
σ

ρ

]

2α3

√

ρ

σ

[

−
(

ρ+µ2
E

)

(

−1+
1

2
mµE

σ

ρ

)2

+

(

a

2
+
m

8

σ

ρ

(

ρ+4µ2
E

)

−µE

2

)2
]

, (C.10)

Aφ = I +Hr =
At

µE
+Hr , (C.11)

where Q, M and J denote the electric charge, the mass and the angular momentum,

respectively.

In the limit α3 → 0 (m→ 0) the equations (3.27) and (3.28) can be written as

− κH2 = M , (C.12)

3M
R

L
+ C2 + 4Λeff = −κH2R

L
, (C.13)

9See appendix C [27].
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and we obtain

H2R

L
=

1

2κ

(

µ2
E + 4Λeff

)

, (C.14)

M
R

L
= −1

2

(

µ2
E + 4Λeff

)

. (C.15)

Also, the conserved charges are given by

Q = 0 , (C.16)

M =

(

µ2
E + 4Λeff

)

2κ

1

M
, (C.17)

J = −µE

κ

1

M
, (C.18)

and

A =
µE

κ
√

− 1
κ
M
dt+





1
κ

√

− 1
κ
M

+Hr



 dφ . (C.19)

So, we get the following solution for the metric and gauge field

f(r) =
1

2κl2M
(

µ2
El

2 − 4
)

r2 + 2r − κJ
µE

, (C.20)

ψ(r) =
1

2l2
(

µ2
E l

2 + 4
)

r2 − 2κMr +
κ2MJ
µE

, (C.21)

A =

√

1

4κ2l2M
(

µ2
E l

2 − 4
)

[

1
κ
µE

1

4κ2l2M
(

µ2
El

2 − 4
)dt+

(

r +
1
κ

1

4κ2l2M
(

µ2
E l

2 − 4
)

)

dφ

]

.

(C.22)

For L = 0 and α3 = 0, we obtain

Q = 0 , M =

(

µ2
E + 4Λeff

)

2κ

1

M
, J = 0 , (C.23)

A =
µE

κ
√

− 1

κ
M
dt+





1

κ
√

− 1

κ
M

+Hr



 dφ . (C.24)
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