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1 Introduction

The index of the four-dimensional superconformal field theory [1, 2] is a superconformal

analogue of the Witten index of the supersymmetric quantum mechanics. It is based on the

unitary BPZ inner-product of the superconformal field theory on S3 ×R1 rather than the

Dirac inner product of quantum mechanics on R4, and it is invariant under the deformation

of the superconformal theory. It captures the BPS spectrum of the superconformal field

theory in radial quantization. Because of the invariance, it has been used as a stringent

test for various dualities of the four-dimensional superconformal field theories [3–15].

It was argued that the superconformal index is the only protected quantity of the

superconformal field theories under exactly marginal deformations [2]. The argument was

based on the fact that the superconformal index is invariant under small changes of the

Hilbert space of the theory on S3 ×R1. We may, however, probe the superconformal field

theory by drastically changing the structure of the Hilbert space while preserving some of

the superconformal symmetry. This is precisely what we would like to do by introducing

superconformal defect operators [16, 17].

In this paper, we would like to study the effect of the superconformal surface operators1

on the superconformal index. Since the introduction of the surface operators changes the

Hilbert space in a discontinuous manner, the superconformal index does change. Yet, the

superconformal index captures the BPS spectrum of the superconformal field theory with

the superconformal surface defect inserted. The superconformal index with the supercon-

formal defect is invariant under the exactly marginal deformations of the theory as well as

1We use the terminology “surface operator” and “surface defect” interchangeably.
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the deformations of the surface operators. As a result, we may compute it either in the weak

or strong coupling limit. This opens up a novel arena of studying the superconformal field

theories and their dualities from the superconformal index with superconformal defects.

The half BPS superconformal surface operator preserves the same supersymmetry as

well as the symmetry of the chemical potential used in the definition of the superconformal

index, so the structure and the parameterization of the superconformal index remain un-

affected by the presence of the surface operator. On the surface defect, a two-dimensional

(4, 4) superconformal field theory resides, and the four-dimensional superconformal index

may be regarded as a superconformal index of the two-dimensional (4, 4) superconformal

field theory coupled with the four-dimensional bulk system.

In particular, we can conjecture that the electric defects and the magnetic defects give

the same contribution to the superconformal index as long as they are related by the S-

duality simply because the superconformal index is invariant with respect to the change of

the gauge coupling constant that is exchanged under teh S-duality. One of the aims of this

paper is to provide tools to formulate and understand this claim.

The organization of the paper is as follows. In section 2, we review various facts

about the properties of surface operators in N = 4 super-Yang-Milles theory on S3 × R1.

In section 3, we define the supreconformal index with surface operators. We give the

two-dimensional interpretation of the superconformal index from the defect field theory

viewpoint. In section 4, we construct the matrix model that computes the superconformal

index with the surface operator when it couples with the bulk N = 4 super-Yang-Milles

theory through the defect hypermultiplets on it. In section 5, we further investigate some

aspects of the superconformal index with surface operators and conclude.

2 Superconformal surface operators on S3
× S1

In this paper we investigate the half BPS superconformal surface operators, which are codi-

mension two defects, of the N = 4 super-Yang-Milles theory on S3 ×R1. The codimension

two superconformal defects of the N = 4 super-Yang-Milles theory on R4 = C2 have been

well-studied in the literatures [16–21], and the surface operators that we will study in this

paper are all obtained by the conformal transformation from C2 to S3×R1, so let us begin

with the surface operators on C2 = (z1, z2).

We are interested in the half BPS superconformal defects that preserve 8 of the super-

symmetry and 8 of the superconformal symmetry of the N = 4 super-Yang-Milles theory

on C2. We put the codimension two defects at z2 = 0 that preserve the following bosonic

symmetry:2

SO(2, 4) × SU(4) → SL(2,R) × SL(2,R) × U(1)23 × SU(2)L × SU(2)R × U(1)45 . (2.1)

Here, SL(2,R) × SL(2,R) ∈ SO(2, 4) naturally acts on the z2 = 0 plane as the two-

dimensional global conformal transformation (conventionally denoted by L0, L±1 and

L̄, L̄±1), and the extra U(1)23 ∈ SO(2, 4) comes from the rotation of the surface operator in

the z2-plane. The original SU(4) R-symmetry is broken down to SU(2)L×SU(2)R×U(1)45.

2We freely perform the Wick rotation when necessary without further notice.
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A typical example of the surface operators that preserve the above symmetry is the

one studied in [17] as a higher dimensional analogue of the Wilson- ’t Hooft loop operators.

For each Cartan subalgebra of the gauge group, we may introduce the magnetic parameter

α that allows the singularity of the gauge field

A = αdθ , (2.2)

where z2 = reiθ, and the electric parameter η that gives an additional phase

exp

(

iη

∫

z2=0
F

)

, (2.3)

in the path integral. We can also generalize the surface operator by incorporating the scale

invariant configuration of the adjoint Higgs field (Φ ∼ 1/z2).
3 The moduli space of the

surface operators is given by that of the solutions of the Hitchin’s equation with a specific

boundary condition and gives rise to a hyper-Käher manifold.

Another example of the surface operator is given by the intersecting D3-brane defect

studied in [16]. We begin with putting N D3-brane (which yields the bulk N = 4 super-

Yang-Milles) in the (0, 1, 2, 3) direction of the flat ten-dimensional Minkowski space in the

type IIB string theory. Then we put another set of the probe D3′-branes in the (0, 1, 4, 5)

direction. The D3-branes and D3′-branes are intersecting at the origin of (2, 3)- and (4, 5)-

plane that gives the surface defect in the first N = 4 super-Yang-Milles theory (from D3-D3

string) in the decoupling limit of the second N = 4 super-Yang-Milles theory (from D3′-

D3′ string). The D3-D3′ strings yield the localized degree of freedom introducing a defect

(bifundamental) hypermultiplet with (4, 4) supersymmetry.

On the superconformal surface defect, a two-dimensional (4, 4) superconformal field

theory resides. In the limit when the two-dimensional superconformal field theory decouples

from the four-dimensional N = 4 super-Yang-Milles theory, it must show the full Virasoro

symmetry as well as an affine Kac-Moody symmetry, realizing the infinite dimensional (4, 4)

superconformal algebra (in the NS-NS sector). However, the coupling to the bulk degrees

of freedom breaks the full Virasoro symmetry as well as the affine Kac-Moody symmetry.

With the bulk degrees of freedome, the theory preserves only the global part of the (4, 4)

superconformal algebra SL(2,R) × SL(2,R) × SU(2)L × SU(2)R as well as an additional

non-chiral U(1) current U(1)J = U(1)23 + U(1)45, which gives a central extension of the

superconformal algebra.

Out of 16 superchargesQI
α andQI

α̇, where α, α̇ = 1, 2 are spinor indices and I = 1, . . . , 4

are SU(4) R-symmetry index, the half BPS surface operator preserves QA
1 with A = 1, 2 and

QA′

2 with A′ = 3, 4 (similarly with the hermitian conjugate Q1̇A and Q2̇A′ on R4). It also

preserves half of the superconformal charges S2B with B = 1, 2 and S1B′ with B′ = 3, 4

(as well as their hermitian conjugate SB
1̇

and SB′

2̇
on R4) out of the 16 superconformal

charges Sα,J and Sα̇,J of the N = 4 super-Yang-Milles theory. The most relevant piece of

3The introduction of the Higgs field Φ ∼ 1/z2 does break the U(1)23 − U(1)45. In the most part of the

paper, the breaking is irrelevant because they do not appear in the superconformal algebra relevant for our

study. Only the unbroken combination U(1)23 + U(1)45 is important.
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the anti-commutation relation for our discussion is4

{SαI
, QβJ} = δJ

I δ
β
α

H

2
+ δJ

I (J1)
β
α + δβ

αR
J
I . (2.4)

If we take one particular pair of Q = Q21 and S = S21, we have

2{S,Q} = E − 2j1 −
3

2
R1 −R2 −

1

2
R3 , (2.5)

where E is the conformal dimension (radial energy), j1 is the angular momentum, and Rk

denotes three Cartan subgroups of SO(6) in the SU(4) notation.

Since the surface operator considered here is invariant under the special conformal

transformation acting on the z2 = 0 plane, it is immediate to obtain the superconformal

surface operator on S3 ×R1 by a conformal transformation from C2 to S3 ×R1. After the

conformal transformation, the z2 = 0 plane is located at the great circle of S3 and along

the radial time direction R1. Furthermore, we will compactify the radial time direction

to S1 in order to define the superconformal index as we will do in the next section. On

S3 × R1, the anti-commutation relation (2.5) can be understood as the anti-commutation

relation between the supercharge Q and its BPZ conjugate Q†:

2{Q†,Q} = E − 2j1 −
3

2
R1 −R2 −

1

2
R3 ≥ 0 . (2.6)

The last inequality is due to the unitarity of the BPZ inner-product (or mathematically

known as the Shapovalov form [22]). Note that the anti-commutation relation (2.6) was

the starting point to define the superconformal index for the N = 4 super-Yang-Milles

theory on S3 × S1, and so it is with the surface operator as we will see.

Under the same conformal transformation, the two-dimensional (4, 4) superconformal

field theory living on the surface defect at z2 = 0 is mapped to the superconformal field

theory on the cylinder S1 ×R. The anti-commutation relation (2.6) will be understood as

a two-dimensional BPS bound of conformal dimensions [16]:5

2{G++
1/2 , G

−−
−1/2} = 2h− 2j3L + J ≥ 0 . (2.7)

On the left hand side, we have used the conventional notation for the N = 4 supercon-

formal algebra where G++
1/2 is the left-moving supercharge with the left-moving conformal

dimension 1/2 and the R-charge +1, and G−−
−1/2 is the left-moving supercharge with the left-

moving conformal dimension −1/2 and the R-charge −1. On the right hand side, h is the

left-moving conformal dimension, j3L is the left-moving SU(2) R-charge, and J = J23 + J45

is the central extension. Actually, the same J appears in the “right-moving” BPS algebra

2{Ḡ++
1/2 , Ḡ

−−
−1/2} = 2h̄− 2j3R + J ≥ 0 , (2.8)

4We follow the convention used in [2]. See appendix A there.
5We note that even with the breaking of U23(1) − U45(1) due to the Higgs field profile, the structure of

the two-dimensional superconformal algebra is intact.
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where h̄ is the right-moving conformal dimension, and j3R is the right-moving SU(2) R-

charge. The the appearance of the J shows the non-decoupling of the left-mover and right-

mover. If we restrict ourselves to the J = 0 sector, the anti-commutation relation (2.7) is

precisely the chiral primary condition of the (4, 4) superconformal algebra. As we will see,

localized states on the defect show J = 0.

For future reference, we summarize the dictionary between the quantum numbers of

the four-dimension and their counterparts in two-dimension:

E = h+ h̄ , j1 = −
1

2
(h− h̄+ J23) , j2 = −

1

2
(h− h̄− J23) ,

R1 = 2j3L , R2 = −(j3L + j3R + J45), R3 = 2j3R , J = J23 + J45 . (2.9)

3 Superconformal index with surface operator

The superconformal index of the N = 4 super-Yang-Milles theory [2] is defined by

I(t, y, v, w) = Tr(−1)F e−β∆t2(E+j1)y2j2vR2wR3 , (3.1)

where ∆ = 2{Q†,Q} = E − 2j1 − 3
2R1 − R2 − 1

2R3. The trace is taken over the Hilbert

space on S3 × R1. Due to the bose-fermi cancellation, the superconformal index does not

depend on the radial temperature β, and only the states with ∆ = 0 will contribute. The

chemical potentials t, y, v, w are chosen so that the corresponding charges E+ j1, j2, R2, R3

all commute with the supercharge Q. The superconformal index is invariant under the

marginal deformation of the theory, and in particular it is known that the superconformal

index does not show a wall-crossing (at least in the largeN limit) so that the superconformal

index is independent of the Yang-Milles coupling constant as well as the θ-parameter [2].

One can evaluate the superconformal index by using the localization technique to di-

rectly compute the path integral [2, 23] or by simply counting the gauge invariant local

operators [2] (see also [24] for the group theoretical derivation). In either way, the compu-

tation of the superconformal index for U(N) gauge group reduces to the effective matrix

integral [2]:

I(t, y, v, w) ≡ Tr(−1)F t2(E+j1)y2j2vR2wR3

=

∫

[dU ]e−Seff [U ] , (3.2)

where the effective matrix action is given by

− Seff [U ] = (3.3)

∑

n>0

1

n

t2n
(

vn + w−n + wn

vn

)

− t3n(yn + y−n) − t4n
(

wn + v−n + vn

wn

)

+ 2t6n

(1 − ynt3n)(1 − y−nt3n)
χa(U

n)

with the adjoint character: χa(U
n) = TrUnTrU−n. The integration is over the unitary

matrix U with the invariant Haar measure [dU ]. The physical interpretation of the matrix

U is that it is the Polyakov loop U = P exp(
∮

A0dt) along the radial time.
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The exact integration is possible in the N → ∞ limit by using the saddle point ap-

proximation valid in the large N matrix integral, which yields an elegant expression for

U(N) gauge group [2]:

IU(∞) =
∏

n>0

(1 − t3nyn)(1 − t3ny−n)

(1 − t2n/wn)(1 − t2nwn/vn)(1 − t2nvn)
. (3.4)

The superconformal index shows an interesting limiting structure as noted in [25]. For

later purpose, we briefly discuss the three-dimensional limit studied in [26–29], where we

reduce the N = 4 super-Yang-Milles theory on S3 × S1 to the N = 8 super-Yang-Milles

theory on S3 by shrinking the radial time circle. By following the same reasoning in [27, 28],

the limit is taken by setting y = 1, t = v = e−r/3 and w = e−r/6 with r → 0, where r plays

the role of the effective radius of the Kaluza-Klein circle. The limit must accompany the

zeta-function regularization before the integration over the holonomy matrix U , and we

cannot take the limit directly in (3.4), but we should take the limit in (3.2). The resultant

reduced matrix model formally agrees with the zeta-function regularized supersymmetric

partition function of the N = 8 super-Yang-Milles theory on S3 obtained by a naive

application of the localization technique in [32, 33], where “naive” meaning that the infrared

R-symmetry assignment used in the localization is incorrect.6

With this regard, we should note that the naive application of the localization to the

N = 8 super-Yang-Milles theory leads to the physically unacceptable result, and as a

result, we should take the naive three-dimensional limit from the superconformal index

with a grain of salt. Indeed one can easily see that the resulting holonomy integral never

converges and does not give a meaningful result. Nevertheless, we will pursue the three-

dimensional limit further in section 5.3 with the insertion of the surface operator, hoping

that the same technique must apply in less supersymmetric situations with the correct

R-charge assignment.

Now we would like to define the superconformal index of the N = 4 super-Yang-Milles

theory with the half BPS superconformal surface operator inserted along the great circle of

S3 and the radial time circle. As we have discussed in the last section, the superconformal

surface operator preserves the same supersymmetry Q and its BPZ conjugate Q† that was

used in the definition of the superconformal index. In addition, all the charges associated

with the chemical potential E + j1, j2, R2, and R3 are preserved by the existence of the

half BPS superconformal surface operator. Therefore, we can recycle the same definition

of the superconformal index

IS(t, y, v, w) = TrS(−1)F e−β∆t2(E+j1)y2j2vR2wR3 , (3.5)

where the trace is now taken over the Hilbert space of the N = 4 super-Yang-Milles theory

coupled with the superconformal defect placed at the great circle of S3 and wrapped around

the radial time direction.

Again due to the bose-fermi cancellation, the superconformal index does not depend

on the radial temperature β and only the states with ∆ = 0 will contribute. Since the

6The difficulty is that the “correct” R-charge assignment is not manifest in the ultraviolet Lagrangian

but it is an emerging one in the infrared limit [33].
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necessary conformal transformation is not broken by the surface operator, one can use

the familiar state-operator correspondence, and regard the superconformal index with the

surface operator as counting of the BPS local gauge invariant operators, which satisfy the

condition ∆ = 0, of the N = 4 super-Yang-Milles theory on C2 coupled with the half BPS

superconformal surface operator placed at z2 = 0.

We have sufficient knowledge about the local gauge invariant operators coming from

the N = 4 super-Yang-Milles theory, so the novel contributions to the superconformal index

mainly come from the state localized on the surface defect. From the defect field theory

viewpoint, it is more natural to treat the superconformal index with the surface operator

from the two-dimensional field theory perspective. As discussed in the last section, the half

BPS superconformal surface operator hosts a two-dimensional (4,4) superconformal field

theory. Furthermore, we can also reduce the four-dimensional bulk field on the surface

defect with the additional “Kaluza-Klein” parameter “z2” integrated over (details of the

reduction can be found in [16]).

To appreciate the two-dimensional structure, we perform a change of variables for the

chemical potential, and we may well regard the four-dimensional superconformal index

(with the surface operator) as a two-dimensional superconformal “index”

IS(q̄, z̄, ȳ, w̄) = Tr2D;NSNS(−1)F q∆q̄L̄0 z̄J3
R ȳ2j2w̄R2 , (3.6)

where t = q̄1/4, y = q̄1/4ȳ, v = z̄ and w = w̄. The relation between the four-dimensional

charge and the two-dimensional charge is 2L̄0 = E + j1 + j2, which is the “right-moving”

Virasoro energy, and J3
R = R3, which is the “right-moving” SU(2) R-symmetry of the (4, 4)

superconformal algebra.7 Of course, in the above expression, only the ∆ = 0 state will

contribute to the superconformal index, so it is independent of q (that couples with the

(twisted) “left-moving” Virasoro energy).

We can turn off the “extra” chemical potential ȳ and w̄, which would not appear in

vanilla (4, 4) superconformal algebra, by setting ȳ = w̄ = 1 to make it intrinsic to two-

dimension8 as Tr2D;NSNS(−1)F q∆q̄L̄0 z̄J3
R . In the decoupling limit of the interaction between

the bulk N = 4 super-Yang-Milles theory and the defect (4, 4) superconformal field theory,

only the “left chiral operators” that satisfy L0 = jL3 contribute to the superconformal index

from the defect (4, 4) superconformal field theory side. This is because the simple relation

∆ = 2L0 − 2jL3 holds for the operators with J = 0 that are localized on the defect. This

superconformal “index” is an NS-NS analogue of the elliptic genera of the (4, 4) SCFT

conventionally defined in the R-R sector. If one decouples the bulk super-Yang-Milles

theory degree of freedom, the (4, 4) SCFT living on the surface operator is typically given

by the sigma model whose target space is hyper-Kähler (from the supersymmetry), so

one may compute the superconformal index directly within the two-dimensional conformal

7Strictly speaking, the complete separation of the “left-mover” and the “right-mover” requires the de-

coupling of the bulk N = 4 super-Yang-Milles theory, but the global charges are nevertheless separately

conserved without the decoupling.
8The interpretation of the other two chemical potential is as follows: the one is J which is zero for the

localized operators on the defect, and the other involves the charge which could be broken by the profile of

the Higgs field as we have discussed in footnote 3 and 5.
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field theory. In particular, we may expect a nice modular property with respect to the

parameters q̄ and z̄ (see section 4 for a concrete example).

The coupling with the bulk N = 4 super-Yang-Milles theory degree of freedom, how-

ever, will introduce the non-zero J sector to the Hilbert state. Recall that J = J23 +J45 =

j2 − j1 −
R1

2 −R2 −
R3

2 , and the N = 4 super-Yang-Milles fields are charged under J (see

table 1). As we mentioned in the last section, after coupling with the bulk, the infinite Vi-

rasoro symmetry and Kac-Moody symmetry can no longer be present precisely due to the

existence of non-zero J . As a consequence, we do not expect any nice modular property

of the full superconformal index. Indeed, as an extreme example, one may consider the

insertion of the “trivial” surface operator, which gives the N = 4 superconformal index

itself, but we have not been aware of any nice modular property of such even after the

change of variables although the N → ∞ result (3.4) may look slightly promising.9

The superconformal index with the surface operator is naturally protected against the

continuous deformation of the theory as long as it preserves the superconformal symmetry.

In particular, we expect that it would not change over the moduli space of the supercon-

formal surface operators studied e.g. in [17]. It should be interesting to see if and how it

jumps when the gauge symmetry breaking pattern of the surface operators (so-called Levi

group) changes at the singular point of the moduli space.

4 Matrix model for superconformal index with defect hypermultiplet

So far, we have discussed the general features of the superconformal index with the super-

conformal surface operator. In this section, we would like to compute the superconformal

index with the surface operator in the simplest example when the surface operator is given

by the defect (4, 4) hypermultiplet superconformal field theory. This is physically realized

by the intersecting D3-brane model studied in [16].

As in the bulk superconformal index for the N = 4 super-Yang-Milles theory, we can

either use the localization technique to evaluate the path integral directly, or by counting

the gauge invariant local operators of the theory with the superconformal surface defect.

Since the same supercharge relevant for the localization of the bulk N = 4 super-Yang-

Milles theory is preserved under the insertion of the superconformal surface operator, we

can use the same localization procedure. The computation must reduce to the matrix

integral over the Polyakov loop U = P exp(
∮

A0dt).

In this section, we study the counting problem of the defect (4, 4) hypermultiplet

superconformal field theory coupled with the bulk N = 4 super-Yang-Milles theory on

C2 with the defect at z2 = 0. As a concrete model, we discuss the intersecting D3-brane

defect studied in [16]. In their setup, the total Lagrangian (on C2) is the sum of the

bulk N = 4 super-Yang-Milles theory and the defect (4, 4) hypermultiplet. The defect

(4, 4) hypermultiplet is charged under the bulk N = 4 super-Yang-Milles theory, and this

gauging provides the coupling between the bulk and the defect. Without the gauging, the

9The exchange of the great circle of S
3 and the radial time is not an isometry of the system unlike the

simple S
1 × S

1 where the defect degrees of freedom live, so we do not expect that a nice modular property

would exist.
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Letters (−1)F [E, j1, j2] [R1, R2, R3] rep index

X,Y,Z [1, 0, 0] [0, 1, 0], [1,−1, 1], [1, 0,−1] adj t2
(

v + w
v + 1

w

)

ψ̄X , ψ̄Y , ψ̄Z −
[

3
2 ,

1
2 , 0
]

[1,−1, 0], [0, 1,−1], [0, 0, 1] adj −t4
(

1
v + v

w + w
)

F++ [2, 1, 0] 0 adj t6

λ± −
[

3
2 , 0,±

1
2

]

[1, 0, 0] adj −t3
(

y + 1
y

)

∂µσ
µλ = 0

[

5
2 ,

1
2 , 0
]

[1, 0, 0] adj t6

∂+±

[

1, 1
2 ,±

1
2

]

0 1 t3y, t3y−1

Table 1. The letters that will contribute to the single particle index from the bulk N = 4 super-

Yang-Milles theory.

defect (4, 4) hypermultiplet forms the trivial hyper Kähler structure (simply by a tensor

product of R4). The free part of the defect action is given by

L =

∫

d2z
(

−|Db|2 − |Db̃|2 + iψ̄−
b Dψ

−
b + iψ̄+

b D̄ψ
+
b + iψ̄−

b̃
Dψ−

b̃
+ iψ̄+

b̃
D̄ψ+

b̃

)

. (4.1)

We can find the interacting action with the bulk N = 4 super-Yang-Milles theory in ap-

pendix D of [16], but except for the fact that the defect hypermultiplet transforms under the

gauge symmetry, the precise form of the interaction is irrelevant for our study of the index.

The counting of the single particle letter of the bulk N = 4 super-Yang-Mills theory

that satisfies the BPS condition ∆ = 0 was done in [2] and we simply quote their results

together with the single particle index (3.1) in table 1. The counting of the single particle

letter of the defect (4, 4) hypermultiplet is also straightforward. We present the results

together with the single particle index (3.5) in table 2.

There is a small subtlety in counting the BPS states and computing the superconformal

index with the superconformal surface operator. The problem is that the two-dimensional

field theory with a massless scalar suffers an infrared divergence. The appearance of the

infrared divergence is related to the fact that we have E = 0 scalar (seemingly BPS) oper-

ators b and b̃ in the defect hypermultiplet. The corresponding states are non-normalizable,

and the two-point functions among these operators do not scale with power laws: they

show logarithmic tales. The usual prescription is to declare that only the operators with

the derivative, say ∂z̄b, consist of the normalizable Hilbert state of the massless scalar the-

ory in two-dimension. From the path integral viewpoint, we divide the partition function

by the volume of the constant zero-mode of the sigma model target space (which is infinite

in our example).

In the following discussion, we exclude the logarithmically non-normalizable state

to compute the superconformal index. Indeed, if we did not throw away these non-

normalizable contributions, the superconformal index would not converge because positive

as well as negative powers of t appear (actually infinitely many times) in the formal ex-

pression of the superconformal index. Thus, in comparison with table 2, the lowest bosonic

operators that contribute to the infrared divergence free superconformal index begin with

∂z̄b, ∂z̄ b̃, ∂z̄b
∗ and ∂z̄ b̃

∗ rather than the naked b or b̃. These normalizable operators possess

the letter index t
7
2 y

1
2 v−

1
2 and t

5
2 y

3
2 v

1
2 rather than t

1
2 y−

1
2 v−

1
2 and t−

1
2 y

1
2 v

1
2 . Note that with
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Letters (−1)F [E, j1, j2] [R1, R2, R3] rep index

b
[

0, 1
4 ,−

1
4

] [

0,−1
2 , 0
]

R t
1
2 y−

1
2 v−

1
2

b̃
[

0, 1
4 ,−

1
4

] [

0,−1
2 , 0
]

R∗ t
1
2 y−

1
2 v−

1
2

b∗
[

0,−1
4 ,

1
4

] [

0, 1
2 , 0
]

R∗ t−
1
2 y

1
2 v

1
2

b̃∗
[

0,−1
4 ,

1
4

] [

0, 1
2 , 0
]

R t−
1
2 y

1
2 v

1
2

ψ+
b −

[

1
2 ,−

1
4 ,−

1
4

] [

1,−1
2 , 0
]

R −t
1
2 y−

1
2 v−

1
2

ψ̄+
b̃

−
[

1
2 ,−

1
4 ,−

1
4

] [

− 1, 1
2 , 0
]

R NA

ψ̄+
b −

[

1
2 ,−

1
4 ,−

1
4

] [

− 1, 1
2 , 0
]

R∗ NA

ψ+
b̃

−
[

1
2 ,−

1
4 ,−

1
4

] [

1,−1
2 , 0
]

R∗ −t
1
2 y−

1
2 v−

1
2

ψ−
b −

[

1
2 ,

1
4 ,

1
4

] [

0,−1
2 , 1
]

R −t
3
2 y

1
2 v−

1
2w

ψ̄−

b̃
−
[

1
2 ,

1
4 ,

1
4

] [

0, 1
2 ,−1

]

R −t
3
2 y

1
2 v

1
2w−1

ψ̄−
b −

[

1
2 ,

1
4 ,

1
4

] [

0, 1
2 ,−1

]

R∗ −t
3
2 y

1
2 v

1
2w−1

ψ−

b̃
−
[

1
2 ,

1
4 ,

1
4

] [

0,−1
2 , 1
]

R∗ −t
3
2 y

1
2 v−

1
2w

∂z

[

1,−1
2 ,−

1
2

]

0 1 NA

∂z̄

[

1, 1
2 ,

1
2

]

0 1 t3y

Table 2. The letters of the defect hypermultiplet on the superconformal surface operator. The

index with “NA” means that they do not contribute to the superconformal index because they do

not satisfy ∆ = 0. We have to impose the dirac equation ∂z̄ψ
+ = 0 on ψ+

b and ψ+

b̃
to correctly

count the left-moving fermionic degrees of freedom. For the normalizability of E = 0 states, see the

main text.

the derivative, the contribution to the superconformal index always has a positive power

of t, ensuring the convergence of the superconformal index.

With these remarks in mind, we now show how the computation of the superconformal

index reduce to the matrix model integral. To compute the superconformal index, we take

the plethystic exponential of the single particle letter and integrate it over the holonomy of

the gauge group in order to project it down to gauge singlet states. The integration over

the holonomy U has again a nice interpretation of the localized path integral over the flat

connection (i.e. Polyakov loop along the radial time) on S3 × S1.

From table 2, one can easily read the contribution of the defect hypermultiplet to the

superconformal index. The effective matrix action from one defect hypermultiplet is given

by

− Seff;s[U ]=
∑

n>0

[

1

n
(4.2)

×

(

t
5n

2 y
3n

2 v
n

2 + t
7n

2 y
n

2 v−
n

2 − t
3n

2 y
n

2 v−
n

2wn − t
3n

2 y
n

2 v
n

2w−n

1 − ynt3n
− t

n

2 y−
n

2 v−
n

2

)

χs(U
n)

+

(

t
5n

2 y
3n

2 v
n

2 + t
7n

2 y
n

2 v−
n

2 − t
3n

2 y
n

2 v−
n

2wn − t
3n

2 y
n

2 v
n

2w−n

1 − ynt3n
− t

n

2 y−
n

2 v−
n

2

)

χs(U
−n)

]

.
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The character χs(U
n) depends on the representation of the hypermultiplet. For instance,

the fundamental representation has χs(U
n) = TrUn and χs(U

−n) = TrU−n.

The entire superconformal index incorporating the contribution from the bulk N = 4

super-Yang-Milles theory is computed by the matrix integral

I(t, y, v, w) =

∫

[dU ]e−Seff;bulk[U ]−Seff;s[U ] . (4.3)

The bulk part of the effective action is given by (3.3) as before. When the hypermultiplet

is in the fundamental representation, the explicit integral over the holonomy is difficult.

In this case, we are not aware of a simple large N technique to solve the matrix integral

because it does not seem to reduce to the Gaussian integral with the fundamental defect

hypermultiplet. When the defect hypermultiplet is in the adjoint representation, we may

perform the integral in the large N limit as in [2].

For reference, we show the first few terms of the superconformal index that comes

from one defect hypermultiplet in the fundamental representation for U(N) gauge group

(N > 2):

IS(t, y, v, w) = 1+ty−1v−1+3t2v−1w+3t2w−1+t2v+t2v−2y−2−t3y+t3y−1+t3yv−1w2

+t3yvw−2 + 4t3y−1v−2w + 4t3y−1v−1w−1 + t3y−3v−3 + O(t4) . (4.4)

It agrees with the brute-force counting of gauge invariant operators. For example, ψ+
b ψ

+

b̃
gives ty−1v−1. ψ+

b ψ̄
−
b , ψ+

b̃
ψ̄−

b̃
and TrY give 3t2w−1. ψ+

b ψ
−

b̃
, ψ+

b̃
ψ−

b and TrZ give 3t2v−1w,

and TrX gives t2v. (ψ+
b ψ

+
b̃

)2 gives t2y−2v−2. ∂z̄b
∗ψ+

b , ∂z̄ b̃
∗ψ+

b̃
, ψ−

b ψ̄
−
b , ψ−

b̃
ψ̄−

b̃
, and Trλ+

gives −t3y and so on. The last term t3y−3v−3 is absent for U(2) case because the corre-

sponding operator (ψ+
b ψ

+

b̃
)3 vanishes.10

In the last section, we mentioned a possible modular property of the superconformal

index with the surface operator. As discussed there, there seems no theoretical evidence

why it should show any interesting modular property unless we decouple the bulk N = 4

super-Yang-Milles theory degree of freedom. If we decouple the bulk N = 4 super-Yang-

Milles theory and do not impose the gauge singlet condition on the operators localized on

the defect, we may expect an interesting modular property with the change of variables

suitable for the two-dimensional interpretation (see section 3).

In our example, the two-dimensional “index”

IS(q, z, y, w) = IS(q̄, z̄, ȳ, w̄)

= Tr2D;NSNS(−1)F q∆q̄L̄0 z̄J3
R ȳ2j2w̄R2 (4.5)

actually vanishes by setting ȳ = w̄ = 1 after the above-mentioned decoupling. This is due

to the fact that the left-mover has four chiral primary states (or R-vacua after the spectral

flow): 1, ψ+
b , ψ+

b̃
and ψ+

b ψ
+
b̃

, and they cancel with each other. Note that Hilbert space of the

free field theory considered here is the direct product of the decoupled left-mover and right-

mover. If we artificially neglected these left-moving “fermionic zero-mode” contribution,

10We would like to thank the referee for stressing this point.
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the rest of the index from the right-mover would be just given by the partition function

of two chiral bosons and two chiral NS-fermions (for each hypermultiplet) explicitly given

by q̄1/4θ2
01(q̄, w̄)/η6(q̄) and would show a conventional modular property that exchanges

the NS-fermions with the periodic boundary condition and the R-fermions with the anti-

periodic boundary condition.

5 Further discussions and conclusion

5.1 AdS/CFT

The N = 4 super-Yang-Milles theory in large N limit enjoys the AdS/CFT correspondence.

The computation of the superconformal index of the N = 4 super-Yang-Milles theory on

S3×S1 from the supergravity has been performed in [2] and showed the complete agreement

with the weak coupling computation from the gauge theory side. This confirms that the

superconformal index is indeed invariant under the change of the gauge coupling constant

and does not show the wall-crossing.

The gravity dual description of the superconformal surface operators for N = 4 super-

Yang-Milles theory have been investigated in [18–20]. Again, the AdS/CFT has been suc-

cessful in understanding the behavior of the superconformal surface operators. The surface

operators are understood as a probe D3-brane in the AdS space or bubbling supergravity

solution depending on the class of surface operators considered.

For our applications, we note that the spectrum of the gravity dual of the intersecting

D3-brane system was studied in [16]. They showed that the bosonic fluctuation of the D3-

brane probe in the AdS space completely agrees with the BPS spectrum of the defect (4, 4)

superconformal field theory. Since we are counting the same BPS states in the computation

of the index with the intersecting surface defect, their agreements imply that the AdS/CFT

computation of the index must be possible.

A small subtlety is that in their comparison, they included the logarithmically non-

normalizable modes. As we have showed, once the logarithmically non-normalizable modes

are allowed, we encounter the severe infrared divergence and the index does not converge.

Since they included a certain restricted class of non-normalizable modes in their compar-

ison, it would be interesting to see how their restriction can be made precise in our index

computation. Leaving aside this subtlety, our computation is completely consistent with

their analysis in the bosonic sector.

5.2 Less supersymmetry

In this paper, we have studied the index of the N = 4 super-Yang-Milles theory with surface

operator inserted. Most of the discussions in this paper is applicable to less supersymmetric

cases. For instance, the N = 2 superconformal field theory admits surface operators

preserving the bosonic symmetry [34, 35]:

SL(2,R) × SL(2,R) × U(1)L × U(1)R × U(1)J ∈ SO(2, 4) × SU(2)R × U(1)r (5.1)
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where SL(2,R) × SL(2,R) × U(1)L × U(1)R will be identified with the bosonic subgroup

of the (2, 2) superconformal algebra (in NS-NS sector), and the additional U(1)J (denoted

by U(1)e in [34]) plays the role of the non-chiral coupling between the bulk and the defect.

As in the N = 4 case, the preserved (super)symmetry is compatible with the index of

N = 2 superconformal field theories:

I(t, y, v) = Tr(−1)F e−β∆t2(E+j1)y2j2v−
r

2
−R

2 , (5.2)

where ∆ = E − 2j2 − R − r
2 . We can define the N = 2 superconformal index with the

superconformal surface operator by using the same expression with additional contribution

from the defect sector. In complete parallel with the N = 4 case, the BPS condition

∆ ≥ 0 of the four-dimensional index is interpreted as the BPS condition of the (2, 2)

superconformal field theory on the defect:

2h− 2jL + J ≥ 0 , (5.3)

where jL is the left-moving U(1)R charge. In particular, for the J = 0 states localized on

the surface defect, the BPS condition is nothing but the chiral primary condition of the

(2, 2) two-dimensional superconformal field theory.

In the literatures (e.g. [34, 35]), examples of supersymmetric surface operators in

N = 2 gauge theory have been investigated. They are all classically conformally invariant,

but most of them are not conformally invariant quantum mechanically because the

effective field theory living on the defect becomes massive. Our discussion requires the

exact conformal invariance at the quantum level, so we should be careful about the

breaking of the conformal invariance.

In [15], it has been shown that the bulk superconformal index of the N = 2 gauge the-

ories are related to supersymmetric partition function of the q-deformed two-dimensional

Yang-Milles theory and more generically certain topological field theories on Riemann

surfaces. It would be interesting to see how we can interpret our index of the N = 2

gauge theories with surface operators in terms of the language of the two-dimensional

Yang-Milles theory.

We can further reduce the supersymmetry down to N = 1 in four-dimension. The

superconformal index can be defined in the similar manner. An example of the super-

conformal surface operator in the Klebanov-Witten theory was studied in [36]. Note that

in the N = 1 case, the corresponding two-dimensional (1, 1) superconformal algebra does

not possess the R-symmetry, so the BPS bound in the two-dimensional interpretation is

entirely supported by the U(1)J symmetry.

5.3 S3 reduction

As discussed in [26–28], the four-dimensional superconformal index on S3 × S1 has a very

interesting limit, where we reproduce the three-dimensional supersymmetric partition func-

tion on S3.11 With this picture, the four-dimensional index, in particular the integrand of

11The reduction in the N = 1 case is anomalous [28, 37], so the corresponding four-dimensional index

which we would like to take the limit is not well-defined while the problem is circumvented in N = 2, 4

case.
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the holonomy integration, can be seen as a q-deformation of the three-dimensional parti-

tion function on S3. A mathematics behind is a profound limiting structure of the elliptic

hypergeometric functions (see e.g. [30, 31]).

The incorporation of the surface operator in the four-dimensional superconformal index

naturally leads to the introduction of the loop operators at the great circle of S3 in the

three-dimensional supersymmetric field theory. Indeed, the logic was precisely the same.

The reason why we can compute the three-dimensional supersymmetric partition function

with the BPS loop operator as in the same way we compute the partition function without

the loop operator is that the both system preserves the same supersymmetry relevant for

the localization [32]. We have seen the parallel situation in the four-dimensional index,

where the surface operator preserves the same supersymmetry relevant for the definition

as well as the computation of the superconformal index.

Unfortunately, it is slightly moot to study the direct three-dimensional limit of our

superconformal index with the surface operator inserted for the N = 4 super-Yang-Milles

theory as it is. This is because it will turn out to be assigning the wrong R-symmetry

in the naive localization, and the holonomy integral will not converge (even without the

surface operator: see [33]). The following argument is therefore quite formal, but we hope

that the same technique is applicable to the N = 2 case, where the problem of the wrong

R-charge assignment can be avoided. In particular, one may study the mirror dual of the

N = 8 super-Yang-Milles theory by starting with the four-dimensional N = 2 theory with

fundamental hypermultiplets [33].

At the formal level, we can demonstrate how to take the three-dimensional limit in

our example studied in section 4. By setting y = 1, t = v = e−r/3 and w = e−r/6 with

r → 0 within the holonomy integral, we can compute the three-dimensional supersymmetric

partition function on S3 with the conventional but incorrect R-charge assignment.12 In this

limit, the bulk N = 4 super-Yang-Milles part (4.2) formally reduces to the contribution

of the N = 8 super-Yang-Milles theory to the three-dimensional supersymmetric partition

function (but with a wrong R-charge assignment). On the other hand, the surface operator

contribution (3.3) reduces to the contribution from the line defect in the three-dimensional

super-Yang-Milles theory.

The limit gives the factor exp
(
∑

n
c
n(χs(U

n) + χs(U
−n))

)

, where c is a numerical

factor that depends on the squashing parameter (for s = 0, it is 5/3). By expanding the

exponential, we see that the intersecting defect gives rise to the insertion of the three-

dimensional Wilson-loop with various tensor product representations. Of course, this is

quite formal in the N = 8 super-Yang-Milles theory case because the remaining holonomy

integral is divergent in any way, but the structure must remain the same if we consider the

reduction of the N = 2 gauge theories with surface operators.

It must be of very importance to see if we could find a dictionary between the supercon-

formal surface operators in N = 2 gauge theory in four-dimension and the supersymmetric

loop operators of the N = 4 supersymmetric field theories in three-dimension through the

12One may compute the partition function on squashed S
3 by introducing the more general limit y = e−rs,

where s is related to the squashing parameter [26–28].
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computation of the index. Note that the superconformal index (with the surface operator)

is invariant under the change of the coupling constant of the theory. Thus, the objects that

are related by the S-duality must show the same contribution to the index when the gauge

theory is self-dual (like U(N) gauge theory) in four-dimension, and so must be case also

after the reduction to the three-dimension.13 We leave this conjecture for a future study.

5.4 Loop operators

Yet another interesting object one can introduce in the superconformal index (with or

without the surface defect) is a loop operator along the radial time direction located at a

point on S3. The simplest example is the insertion of the Polyakov loop. With the Polyakov

loop, the matrix model is simply modified by the insertion of the matrix character χr(U)

within the matrix integral:

Ir(t, y, v, w) =

∫

[dU ]χr(U)e−Seff . (5.4)

For instance, for the fundamental representation, χr(U) = TrU , and it vanishes (without

the surface defect). This is physically expected because the adjoint valued field in N =

4 super-Yang-Milles theory cannot form a gauge invariant state with the single heavy

spectator fundamental field inserted from the Polyakov loop.

Again, the index does not depend on the coupling constant, so we can exchange the

electric defect with the magnetic defect without changing the index as long as the theory

is self-dual by S-duality.14 With the same reasoning, we can argue that the index with the

supersymmetric defect insertion only depends on the S-duality orbit of the superconformal

objects. It would be very interesting to verify this conjecture by directly studying the

path integral of the N = 4 super-Yang-Milles theory on S3 × S1 with the superconformal

magnetic defects in comparison with the electric expression (5.4).

5.5 Conclusion

In this paper, we have studied the superconformal index of the N = 4 super-Yang-Milles

theory with half BPS superconformal defect. Although our main emphasis is the formalism,

we have constructed the matrix model that computes the superconformal index with the

surface operator when it couples with the bulk N = 4 super-Yang-Milles theory through

the defect hypermultiplets on it.

One of the significant features of the superconformal index is that it is invariant under

the marginal deformation of the theory. In particular, it must be invariant under the change

of the gauge coupling constant. We, therefore, conjecture that the superconformal index

with a superconformal defect is invariant under the S-duality transformation: the super-

conformal index with the defect operator only depends on the S-duality orbit of the defect.

13The S-duality non-trivially act on the supercharges as a phase [38], but the phase is irrelevant for our

study of the superconformal index.
14Even if the theory is not self-dual, we have predictions: for instance the index with electric objects in

SP (2N) theory must be identical to the index with magnetic objects in SO(2N + 1) theory and vice versa.
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In this paper, the computation of the superconformal index is mainly done by counting

gauge invariant operators. This picture is particularly suitable for electric defects. It would

be interesting to perform the direct path integral by using localization to compute the index

with magnetic defects to verify the conjecture stated in the last paragraph.
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