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1 Introduction

Over the past few years, there has been much interest [1–10] in a correspondence between
planar scattering amplitudes in N = 4 Super Yang-Mills (SYM) and the planar limit of the
correlation function of a Wilson loop in the fundamental representation, stretched around
a piecewise null polygonal contour in Minkowksi space.

In [11, 12], we showed that the planar integrand of a supersymmetric Wilson loop in
twistor space, taken in the fundamental representation, agrees with the integrand of the
planar scattering amplitude — including all NkMHV partial amplitudes to all orders in the
’t Hooft coupling, divided by an overall factor of the MHV tree amplitude. In [11], this
correspondence was conjectured, with the supporting evidence that the Feynman diagrams
of the Wilson loop correlator (computed using the twistor action [13] for N = 4 SYM
in axial gauge) explicitly reproduce the standard MHV diagram expansion for scattering
amplitudes [14–17]. In [12] the conjecture was proved by using a twistor version of the
Migdal-Makeenko equations to show that the Wilson loop planar integrand obeys the all-
loop extension of the BCFW recursion relation for the integrand of the planar scattering
amplitude [18]. Closely related work was performed by Caron-Huot [19] from the space-
time perspective.

In a very interesting series of papers [20–22] Alday, Eden, Korchemsky, Maldacena and
Sokatchev have suggested a remarkable extension of the correspondence between Wilson
loops and scattering amplitudes to include correlation functions. More specifically, these
authors conjecture that

lim
x2
i,i+1→0

G(x1, · · · , xn)
G(0)(x1, · · · , xn)

= 〈Wadj[γ]〉 (1.1)

where Wadj[γ] is a (non-supersymmetric) Wilson loop in the adjoint representation (nor-
malised so that its leading term is 1), taken along the null polygonal contour

γ = (x1x2) ∪ (x2x3) ∪ · · · ∪ (xnx1) (1.2)
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that appears in the limit when adjacently labelled insertion points in the correlator

G(x1, . . . , xn) ≡ 〈 n∏
i=1

O(xi)
〉

(1.3)

become null separated. (1.3) is the n-point correlator of a local, gauge invariant operator
such as the 1/2 BPS operator

Oabcd = Tr(ΦabΦcd)− 1
12
εabcdTr(ΦefΦef ) (1.4)

and in (1.1), G(0)(x1, . . . , xn) is the same correlator at tree level only. The ratio G/G(0)

and the Wilson loop expectation value are each divergent in the limit x2
i,i+1 → 0, so to

compare both sides one must either work with a regularised scheme such as dimensional
regularisation, or else carefully consider the limiting behaviour of the correlator and limiting
behaviour of a Wilson loop on a nearby, non-null curve. These approaches were each
considered in [20].

Importantly however, [22] further conjectured that, as for the scattering ampli-
tude/Wilson loop correspondence, this new correspondence should hold already at the
level of the integrand.1 The integrands may be viewed as the sum of all Feynman diagrams
that contribute to the correlator before the locations of any interaction vertices — i.e., the
loop integrals — are performed. The integrand is thus a rational function of the locations
of both the operator insertions and any interaction vertices.

The contour γ that appears in the limit x2
i,i+1 → 0 is the same piecewise null curve

that plays an important role in scattering amplitudes, so this story should be naturally
related to the scattering amplitude / fundamental Wilson loop correspondence. In the
planar limit, the correlation function of an adjoint Wilson loop reduces to the product of
correlators of a fundamental and anti- fundamental Wilson loop. In a CPT invariant theory
these two factors are equal, so if the above conjectured relation between correlators and
adjoint Wilson loops could be proved, it would follow immediately from the proof of [12]
that — in the planar limit — the ratio of correlation functions in (1.1) is also given by the
square (AMHV/A

(0)
MHV)2 of the ratio of the all-loop MHV amplitude to the MHV tree.

The aim of this paper is to prove the above conjectures to all orders in g2 at the level
of the integrand, using twistor theory. As for the amplitude / Wilson loop correspon-
dence, one of the main advantages of performing the calculation in twistor space is that
it the supersymmetric extension may be handled straightforwardly. In twistor space the
fundamental N = 4 SYM multiplet may be described off-shell by the superfield2

A(Z, Z̄, χ) = a(Z, Z̄) + χaγa(Z, Z̄) + · · · + χ1χ2χ3χ4g(Z, Z̄) (1.5)
1The notion of the integrand was introduced in [18] in the context of planar scattering amplitudes. It

does not make sense for arbitrary n-point correlation functions, as there is no way to compare different

contractions between gauge invariant operators. However, it is meaningful in (1.1) precisely because only

one way of contracting the fields survives in the limit of null separation.
2In this paper we use (Zα, χa) to denote homogeneous coordinates on CP3|4. We shall sometimes write

Zα = (λA, µ
A′

) in terms of two 2-component spinors µ and λ. In Penrose conventions, this would be a

dual twistor.
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introduced by Ferber in [23] and exploited to great effect by Witten in [24]. The coeffi-
cient of (χ)m in (1.5) is a smooth (0,1)-form on CP3|4, homogeneous of degree −m. The
linearised field equations in twistor space state that A is holomorphic in Z, whereupon
the component fields correspond to the linearised on-shell N = 4 supermultiplet in space-
time. However, we repeat that A(Z, Z̄, χ) is first and foremost an off-shell field in twistor
space. We shall see that writing twistor expressions in terms of this superfield provides a
natural supersymmetrization of both sides of the correspondence (1.1), such that the ratio
of n-point correlators of certain supermultiplets corresponds to a certain supersymmetric
Wilson loop. This supersymmetric twistor Wilson loop is exactly the same object that
appeared in [11, 12], except that in this case it acts in the adjoint representation. Thus,
as a consequence of the superamplitude / supertwistor Wilson loop correspondence proved
in [11, 12], the ratio of correlation functions involving our supermultiplet reproduces the
square of the complete n-particle planar S-matrix (for arbitrary helicity configurations),
divided by the MHV tree.

In [25] the authors proposed that the correspondence between appropriately supersym-
metrized correlation functions and amplitudes should be more robust than that between
supersymmetric Wilson loops and amplitudes. Our proof [11, 12] of the Wilson loop /
scattering amplitude integrand correspondence directly gives rise to the proof of the super-
symmetric correlation function / scattering amplitude correspondence in this paper. We
therefore see that the approaches are not so very different.

Note added: a space-time argument also relating the null-separation limit of correlators
of supermultiplets to adjoint Wilson Loops was given in [26], which appeared on the arXiv
simultaneously with the present work.

2 Gauge invariant local operators in twistor space

Our first task is to construct the operator in twistor space that corresponds to the local,
gauge invariant space-time operators (1.4) or (3.1). The details of the R-symmetry repre-
sentation are not important at this stage, so in this section we consider a generic operator
of the form O(x) = Tr(Φ2).

We build up the twistor operator in stages. Firstly, consider a single scalar field Φ(x) in
an Abelian theory (so that Φ is gauge invariant). A basic fact of twistor theory is that any
such field that obeys its e.o.m. 2Φ = 0 corresponds to a cohomology class [φ] in twistor
space that may be represented by a (0,1)-form φ(Z) of homogeneity −2 under under a
rescaling of Z. Concretely, the Penrose transform states that

Φ(x) =
∫

X
〈λ dλ〉 ∧ φ(Z, Z̄)

∣∣
X

(2.1)

where X is the CP1 in twistor space that corresponds to the point x in space-time,

µA
′

= −ixAA
′
λA χa = θAaλA (2.2)

– 3 –



J
H
E
P
0
8
(
2
0
1
1
)
0
7
6

(although we are ignoring the supersymmetric coordinates in this section) and λA is taken
as a homogeneous coordinate along X. As a simple example, if

φ(Z, Z̄) =
1

A · Z ∂̄

(
1

B · Z
)

(2.3)

then setting µA
′

= −ixAA
′
λA one finds that Φ(x) ∝ 1/(x − y)2 on space-time, where y

corresponds to the CP1 in twistor space given by the intersection of the planes A ·Z = 0
and B ·Z = 0. (See e.g. [27] for a discussion of (2.3) using contour integrals.) Thus, in an
Abelian theory3

Φ2(x) =
∫

X×X

〈λ dλ〉 ∧ 〈λ′dλ′〉 ∧ φ(Z) ∧ φ(Z ′) (2.4)

where Z and Z ′ are each restricted to the same Riemann sphere X, but their locations
along X are integrated over separately.

The key point here is that the local space-time operator corresponds to a non-local
operator on twistor space. Because of this, if Φ is in the adjoint representation of a non-
Abelian group, we cannot construct the twistor operator simply by taking the trace of (2.4).

In twistor space, non-Abelian gauge fields are described by a complex vector bundle
E → CP3 that has vanishing first Chern class. Such an E is topologically trivial on
restriction to any CP1 — a necessary condition if we wish to describe a space-time theory
where X corresponds to a point. Thus one can (generically4) find a holomorphic frame for
E|X; that is, a gauge transform h(x, λ, λ̄) on X such that

h−1 ◦ (∂̄ + a)
∣∣
X
◦ h = ∂̄

∣∣
X

(2.5)

where ∂̄ + a is the covariant d-bar operator on E.
To compare the adjoint-valued field φ at Z ∈ X with that at Z ′ ∈ X, we work in the

trivialisation of E|X defined by h, so that

Tr(Φ2)(x) =
∫

X×X

〈λ dλ〉 ∧ 〈λ′dλ′〉 ∧ Tr
(
h−1φh ∧ h−1φh

)
, (2.6)

where the first factor of h−1φh is evaluated at λ and the second at λ′. This use of holo-
morphic frames was an important ingredient in the construction of the twistor action for
N = 4 SYM in [13, 28], and for individual fields is the standard extension of the Penrose
transform to fields in a non-trivial representation of a gauge group [29, 30].

It follows from (2.5) that h(x, λ, λ̄) itself obeys ∂̄h = −ah on X, and we introduce
the notation

UX(λ, λ′) ≡ h(x, λ)h−1(x, λ′) (2.7)
3If the individual fields in O(x) obey their equations of motion, their corresponding twistor fields should

represent elements of the appropriate cohomology class, i.e., [φ] ∈ H1(PT′,O(−2)) for scalars. To consider

off-shell fields in twistor space, we merely relax the condition ∂̄φ = 0 that is the (linearized) equation of

motion for φ following from the twistor action (4.4). Off-shell, φ is simply a smooth (0, 1)-form.
4This holomorphic triviality of the bundle is generic and will always hold in perturbation theory around

the trivial bundle when a has been assumed small.
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Figure 1. In a non-Abelian theory, the twistor space form of the local space-time operator Tr Φ2

involves holomorphic Wilson lines (or covariant propagators) on the Riemann sphere X. (The lines
are intended to indicate only the colour flow; the propagation between the points is non-local on
the sphere and not given by propagation along real curves.)

for the unique solution of this equation that obeys the boundary condition

UX(λ, λ′)|λ=λ′ = I . (2.8)

This normalised holomorphic frame is exactly the same object that appears in the (as yet,
non-supersymmetric) twistor Wilson loop in [11, 12]. As explained in those papers, UX can
be written in terms of the twistor field a as the Born series

UX(λ, λ′) =
1

1 + ∂̄−1a
= P exp

(
−
∫

X
ωλ,λ′ ∧ a

)
. (2.9)

(In the first of these expressions, the inverse ∂̄ operators are understood to act on every-
thing to their right. In the second, these Green’s functions are written as a meromorphic
differential ω on X. See [11, 12] for further details.) Using this, equation (2.6) becomes

Tr(Φ2)(x) =
∫

X×X

〈λ dλ〉 ∧ 〈λ′dλ′〉 ∧ Tr
(
φ(Z)UX(λ, λ′)φ(Z ′)UX(λ′, λ)

)
(2.10)

which may be interpreted as two insertions of the field φ connected together by a pair of
holomorphic Wilson lines on X, each in the fundamental representation (see figure 1). In
section 4, we will use the above twistor expression to prove the conjecture (1.1) to all loops
at the level of the integrand.

3 An operator supermultiplet on twistor space

Before proceeding to the proof, in this section we first introduce a straightforward super-
symmetric generalisation. For definiteness we consider the case of the Konishi operator

OK = Tr(ΦabΦab) . (3.1)

The twistor operator equivalent to OK was constructed using the (0,1)-form a(Z, Z̄) (as
well as two powers of φab). From the perspective of N = 4 SYM on twistor space, a is
just the lowest component of the superfield A(Z, Z̄, χ) of (1.5), suggesting that we should
instead consider the operator

O(x, θ) ≡ εabcd
∫

X×X

〈λ dλ〉 〈λ′dλ′〉 Tr
(

∂2A
∂χa∂χb

(Z) UX(λ, λ′)
∂2A

∂χc∂χd
(Z ′) UX(λ′, λ)

)
(3.2)

– 5 –
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where
∂2A

∂χa∂χb
= φab(Z, Z̄) + εabcdχ

cγ̃d(Z, Z̄) +
1
2!
εabcdχ

cχd g(Z, Z̄) (3.3)

is the bottom half of the supermultiplet. The operator

UX(λ, λ′) = P exp
(
−
∫

X
ωλ,λ′ ∧ A

)
(3.4)

is built as in (2.9), but using the full twistor superfield A. X is now interpreted as a CP1

inside N = 4 supertwistor space CP3|4 and is associated to a point (x, θ) in chiral super
space-time. UX is thus a supersymmetric version of the holomorphic Wilson line along
X. Exactly this UX was used in [11, 12] to obtain the supersymmetric Wilson loop in the
fundamental representation in twistor space that is dual to the full planar amplitude, not
just the MHV sector. We shall see that it plays a similar role here.

The rest of this section is devoted to proving that the operator (3.2) resulting from
the näıve replacement a 7→ A is indeed a well-defined, gauge invariant operator on twistor
space. In fact, we shall see that it is the twistor form of the chiral half (i.e., θ̄ = 0)
of the Konishi supermultiplet. It may seem surprising that we will be able to prove the
correspondence (1.1) using the Konishi operator rather than the protected BPS operator.
In particular, OK has anomalous dimensions which may be expected to provide further
divergences, not balanced by the free-field correlator G(0)(x1, . . . , xn) in the null separation
limit. Indeed, if one attempts to construct the correspondence (1.1) at the level of the
integrated objects then, as discussed in [20], one must account for these additional, sub-
leading divergences (whose detailed form depends on the exact field content of the non-
protected operators). However, we shall show in the following section that, if one compares
only the integrands and takes the null separation limit at this level, then no such correction
factors are necessary. Of course, we could equally consider the twistor space form of the
chiral part of the supercurrent multiplet containing (1.4), but we think it is interesting to
see that the correspondence (1.1) holds for a much wider class of operators, if taken at the
level of the integrand.

To check that (3.2) is just the chiral part of the Konishi multiplet, begin by recalling
from [11, 12] that UX(λ, λ′) is defined to be the unique solution of

(∂̄ +A)
∣∣
X

UX = 0 (3.5)

on the line X in supertwistor space that is the identity when λ = λ′. As in (2.7), the
supersymmetric U can be written as

UX(λ, λ′) = H(x, θ, λ, λ̄)H−1(x, θ, λ′, λ̄′) (3.6)

in terms of an arbitrary holomorphic frame H that now depends on θAa. Because A
depends on θ only through its dependence on χ, λA∂AaA = 0, where ∂Aa ≡ ∂/∂θAa.
Differentiating (3.5) thus gives (

∂̄ +A)∣∣
X

(
λA∂AaU

)
= 0 (3.7)

– 6 –
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ensuring that U−1(λA∂AaU) is globally holomorphic on X (here and in the following we are
holding λ′ constant). This expression clearly has homogeneity +1 through its dependence
on λ, and the only globally holomorphic objects of homogeneity 1 are linear in λ, so we
must have

U−1(λA∂AaU) = λA ΓAa(x, θ) (3.8)

for some ΓAa(x, θ) and one finds that DAa = ∂Aa+ΓAa transforms as a connection in the θ
direction. It follows from the construction that λADAa U−1 = 0, so this connection satisfies
the integrability condition

{Da(A , DB)b} = 0 . (3.9)

Hence the only nontrivial part of its curvature in the fermionic directions is
Wab dθaAdθAb, where

Wab = ∂A[aΓ
A
b] +

{
ΓAa ,ΓAb

}
(3.10)

is a Lorentz singlet, antisymmetric in the R-symmetry indices. This connection in the θ
directions and corresponding curvature (together with the integrability conditions (3.9))
are perhaps best understood as the odd part of the θ̄ = 0 part of the space-time super-
connection [31, 32]. However, a key point is that, unlike the bosonic part of the super-
connection in [11], to obtain Wab we did not need to impose any part of the twistor space
field equations.

The formula forWab simplifies considerably once we realise that, since U is the identity
when λ = λ′, equation (3.8) implies λ′AΓAa = 0 so that ΓAa = λ′AΓa for some fermionic
scalar Γa(x, θ). Therefore, with our choice of initial condition for the holomorphic frame
U, the second term in (3.10) vanishes and Wab = ∂A[aΓAb] = λ′A∂A[aΓb].

We now obtain a formula for Γa(x, θ) and Wab(x, θ) directly in terms of the twistor
field A. Since U always obeys (3.5), we have∫

X

〈λ′′λ′〉 〈λdλ〉
〈λ′′λ〉 〈λλ′〉 U(λ′′, λ)

(
∂̄ +A)U(λ, λ′) = 0 , (3.11)

where, A is evaluated at λ ∈ X. Differentiating with respect to θ and integrating the
∂̄(∂U/∂θ) term by parts and using the fact that A depends on θ only through χ, one finds

∂U(λ′′, λ′)
∂θAa

=
∫ 〈λ′′λ′〉 〈λ dλ〉
〈λ′′λ〉 〈λλ′〉 U(λ′′, λ)

(
λA

∂A
∂χa

)
U(λ, λ′) , (3.12)

and so from (3.8) we have

Γa(x, θ) =
1

〈λ′′λ′〉U
−1(λ′′, λ′)λ′′A

∂U(λ′′, λ′)
∂θAa

=
∫ 〈λ dλ〉
〈λλ′〉 U(λ′, λ)

∂A
∂χa

U(λ, λ′) .
(3.13)

Using the facts that Wab = λ′A∂A[aΓb] and that λ′A∂AaU(λ, λ′) = 0, one readily finds that
the odd-odd supercurvature is

Wab = ∂Aa ΓAb = −
∫
X

〈λ dλ〉 ∧U(λ′, λ)
∂2A

∂χa∂χb
U(λ, λ′) (3.14)

– 7 –
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when expressed on twistor space. Expanding to second order in the fermionic components
using equation (3.3) we find

Wab = Φab + εabcdθ
cA

(
Ψ̃d
A +

1
2!
θdBGAB

)
− [Φa(c,Φd)b]θ

cAθdA +O(θ3). (3.15)

The integrability conditions (3.9) ensure that only space-time fields {Φab, Ψ̃a
A, GAB} ap-

pear in the expansion. Therefore this operator contains the chiral half of the N = 4
vector multiplet.

We are now in position to interpret the twistor operator (3.2) more invariantly. Using
the concatenation property U(λ1, λ2)U(λ2, λ3) = U(λ1, λ3) that follows from (3.6), we have5

O(x, θ) ≡ εabcd TrWabWcd

= εabcd
∫

X×X

〈λdλ〉〈λ′dλ′〉 ∧ Tr
[
U(λ, λ′)

∂2A(λ′)
∂χa∂χb

U(λ′, λ)
∂2A(λ)
∂χc∂χd

]
,

(3.16)

so that (3.2) is the twistor form of the trace of the square of the odd-odd curvature on
chiral super space-time. This operator is by construction invariant under both gauge
transformations and the chiral half (Q and S̄) of the superconformal algebra. Since our
construction did not impose any field equations, these properties hold even off-shell. Using
the component expansion of the fermionic curvature (3.15), we find

O(x, θ) = Tr
(

ΦabΦab

)
+ 2εabcdθcATr

(
ΦabΨ̃d

A

)
+ εabcdθ

cAθdBTr
(

Φab
GAB

)
(3.17)

−1
2
θcAθdATr

(
Φab[Φa(c,Φd)b]

)
− 4εabcdθaAθcBTr

(
Ψ̃b
AΨ̃d

B

)
+O(θ3),

and one may identify O(x, θ) with the usual Konishi supermultiplet at θ̄ = 0. This chiral
part of the multiplet is not invariant under off-shell anti-chiral supersymmetry transfor-
mations (Q̄ and S) — indeed, repeatedly acting on TrWabWab with Q̄s would fill out the
full Konishi supermultiplet. However, in studying the correspondence at the level of the
integrand, only the chiral part plays a role.

4 Proving the correspondence

In this section, we prove (the supersymmetric version of) the conjectures of [20–22]. More
precisely, the statement we shall prove is the following:

In the limit that both x2
i,i+1 → 0 (so that (xi−xi+1)→ λ̃iλi for some null vector λ̃iλi)

and (θAai − θAai+1)λiA → 0, the ratio of n-point correlators

G(x1, θ1; . . . ;xn, θn)
G(0)(x1, . . . , xn)

≡ 〈0|O(x1, θ1) · · · O(xn, θn)|0〉
〈0|O(x1) · · · O(xn)|0〉tree (4.1)

5In Lorentzian signature, one imposes the reality condition εabcdWcd = gac̄gbd̄W c̄d̄, where gab̄ is an

Hermitian metric that preserves an SU(4) subgroup of the complexified R-symmetry group SL(4; C). Since

the integrand is a rational function, there is no need to impose any reality condition on the multiplet at

this level.
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X2

X1
Xn

(x1, θ1)

(x2, θ2)(xn, θn) ⇔

Figure 2. The n generic points (x, θ) correspond to n lines (CP1s) in CP3|4. In the limit that
(xi−xi+1)→ λ̃iλi and θi−θi+1 → ηiλi, these lines intersect in supertwistor space, forming a nodal
curve C.

is equal at the level of the integrand to the correlator

1
N2 − 1

〈
TrAdj P exp

(
−
∫
C
ω ∧ A

) 〉
(4.2)

of the supersymmetric twistor Wilson loop, in the adjoint representation, around the curve
C ∈ CP3|4 that corresponds to the null polygon γ in chiral super space-time (see figure 2).

By ‘at the level of the integrand ’ we mean that we allow all possible Feynman diagrams
(to all loops, planar and non-planar) coming from contracting the operators with arbitrarily
many vertices from the action, but we do not perform the integrals over the locations of
these vertices. As in [22], we assume that all such vertices are at generic locations and in
particular that they are not null separated from any of the insertion points xi.

Note that the denominator of (4.1) involves the tree-level correlation function of the
non-supersymmetric operator Tr ΦabΦab = TrWabWab

∣∣
θ=0

only. For arbitrary insertion
points, this term is given by

G(0)(x1, . . . , xn) =
m

x2
12x

2
23 · · ·x2

n1

+ other permutations , (4.3)

where m is a numerical constant that cancels in the ratio. The displayed term is the leading
term as x2

i,i+1 → 0 for all i. Its presence in the denominator of (4.1) means that only those
numerator terms that are (at least) as divergent survive in the integrand when the limiting
configuration is reached.

We now consider the numerator. While it is perfectly possible to proceed on space-
time using (3.16), it is more convenient to work with the twistor form (3.2). This equation
expresses O(x, θ) in terms of twistor fields, so to compute its correlation function we must
use the twistor action of N = 4 SYM [13]

S[A] =
∫

CP3|4

D3|4Z ∧ Tr
(

1
2
A ∂̄A+

1
3
A3

)
+ g2

∫
M

d4|8x log det
(
∂̄ +A)

X
(4.4)

that contains a holomorphic Chern-Simons theory plus an infinite sum of MHV vertices,
each supported on some X ⊂ CP3|4 corresponding to the location of the vertex in space-
time. This sum of MHV vertices is equivalent under a gauge transform on twistor space to
the non self-dual part of the space-timeN = 4 Lagrangian of Chalmers & Siegel [33] and are
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the chiral Lagrangian insertions discussed in [22]. Eventually,the location of these vertices
should be integrated over along some choice of real slice M of complexified space-time,6 but
in studying the integrand we wish to examine the behaviour of Feynman diagrams before
carrying out these integrals. The genericity assumption on the space-time interaction
vertices corresponds to the assumption that these MHV vertex lines do not intersect the
lines Xi on which the operators O(xi, θi) are supported.

Contractions between fields, either in the operator insertions or MHV vertices, are
performed using the axial gauge propagator

〈A(Z)IJ A(Z ′)KL〉 = δ̄2|4(Z∗, Z, Z ′)
(
δILδ

K
J −

1
N
δIJδ

K
L

)
, (4.5)

for the SU(N) holomorphic Chern-Simons theory on CP3|4, where Z∗ is a reference twistor
that defines the axial gauge. We take Z∗ to be generic (i.e., we choose Z∗ not to lie on any
of the operator insertion lines Xi). The projective delta-function

δ̄2|4(Z∗, Z, Z ′) ≡
∫

ds
s

dt
t
δ̄4|4(Z∗ + sZ + tZ ′) (4.6)

is superconformally invariant and has support where its three arguments are collinear in
the projective space. (See [34, 35] for an introduction to these projective delta-functions.)

To obtain a non-zero correlator (even away from the limit), each of the 2n explicit
powers of ∂2A/∂χ2 in the product of the n twistor operators (3.2) must be contracted.
All contractions can occur either directly between fields on different7 lines Xi or via MHV
vertices, which are the only vertices remaining in the twistor action in the axial gauge.
The fields in the operator insertions include both the explicit powers of the ∂2A/∂χ2 and
arbitrarily many further powers of A from the expansion of the UXs. There are three
classes of contraction to consider:

1. Contractions between the operator insertion on some line Xi and fields in a (MHV)
vertex from the Lagrangian,

2. Contractions between the operator insertions on non-consecutive lines Xi and Xj .

3. Contractions between the operator insertions on consecutive lines Xi and Xi+1.

We will see that the only terms which contribute to the integrand of the ratio (4.1) in the
null limit come from this final class, where the explicit ∂2A/∂χ2 insertions on consecu-
tive lines are contracted. Note that Feynman diagrams that contribute to the anomalous
dimensions of operators such as the Konishi are a subset of the first class.

In what follows, we parameterize the line Xi by ZAi + siZBi so that si is an inhomo-
geneous coordinate on Xi. The measure 〈λidλi〉 then becomes 〈AiBi〉dsi. It will also be

6The Grassmann integration is always performed algebraically.
7The implicit normal ordering of composite operators means that all contractions occur between fields

inserted on distinct lines in twistor space (i.e., there are no contractions between fields on the same line).
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useful to recall the definition of the ‘R-invariant’ — the standard chiral invariant of the
superconformal group — which depends on five arbitrary twistors:

[1, 2, 3, 4, 5] :=
∫

d4s

s1s2s3s4
δ̄4|4

(
Z1 +

4∑
i=1

siZi

)

=
δ0|4((1234)χ5 + cyclic)

(1234)(2345)(3451)(4512)(5123)

(4.7)

where (1234) = εαβγδZ
α
1 Z

β
2Z

γ
3Z

δ
4 etc., and the second line is obtained by integration against

the bosonic delta functions, see [36] for details.
Consider first a contraction between a field inside a holomorphic frame UXi in one of

the operator insertions and a field A in an MHV vertex supported on some line X=C+ tD.
Exactly the same calculation as in [11] shows that this contraction is∫

ds
s

dt
t
δ̄2|4(Z(s), Z∗, Z(t)) = [Ai, Bi, ∗, C,D] (4.8)

Similarly, a contraction between an explicit power of ∂2A/∂χa∂χb in the operator on the
line Xi and a field A from MHV vertex yields

∂2

∂χAi∂χBi
[Ai, Bi, ∗, C,D]

=
δ0|2

“
χAi (Bi∗ZBi+1)+χBi (∗BiBi+1Ai)+χ∗(ZBi+1AiBi)+χ(Bi+1AiBi∗)+χBi+1

(AiBi∗Z)
”

(AiBiCD)(DAiBi∗)(AiBi∗C) . (4.9)

Our genericity assumption guarantees that X ∩ Xi = ∅ even in the null limit, so none of
the factors in the denominator of these R-invariants vanish. Therefore, contractions of this
type do not provide a divergence in the integrand to balance the denominator of (4.1). Here
it is important that we are considering taking the null separation limit already at the level
of the integrand : Feynman diagrams involving MHV vertices may well lead to divergences
once the location of this MHV vertex is integrated over — leading among other things to
anomalous dimensions and operator mixing in the interacting theory — but they cannot
supply the required divergence at the level of the integrand.

In the same way, contractions between fields on non-adjacent insertion lines lead to
the R-invariant [Ai, Bi, ∗, Aj , Bj ] or derivatives thereof, depending on whether we contract
fields in the holomorphic frames or the explicit ∂2A/∂χ2s. Since every four- bracket in
this R-invariant remains non-vanishing as we take null separated limit between adjacent
insertions, this class of contractions also remains finite. Thus, considering only contractions
of the first two classes cannot lead to a divergence of the integrand that balances the
denominator of (4.1).

It is not surprising that, for the integrand to diverge, we must contract fields on
adjacent lines. However, here there is a delicate point: the free-field correlator in the
denominator (4.1) only knows about contractions between scalar fields at adjacent space-
time points, whereas in the numerator, adjacent contractions could occur either between
pairs of holomorphic frames, or pairs of ∂2A/∂χ2s, or between a holomorphic frame and a
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∂2A/∂χ2. Let us consider each case in turn, and carefully examine their behaviour as Xi

and Xi+1 are made to intersect.
Firstly, contractions between two holomorphic frames on gives [Ai, Bi, ∗, Ai+1, Bi+1].

To study the behaviour of this object in the null separated limit, suppose Ai+1 = Bi + εZ

for some twistor Z. In the limit ε→ 0 one finds8

lim
ε→0

[Ai, Bi, ∗, (Bi + εZ), Bi+1]

= ε
δ0|4

“
χAi (Bi∗ZBi+1)+χBi (∗BiBi+1Ai)+χ∗(ZBi+1AiBi)+χ(Bi+1AiBi∗)+χBi+1

(AiBi∗Z)
”

(AiBi∗Z)(Bi∗ZBi+1)(∗BiBi+1Ai)(ZBi+1AiBi)(Bi+1AiBi∗) (4.10)

The overall factor of ε comes from the ratio of ε4 from the fermionic numerator to ε3 from
the bosonic denominator. Therefore such contractions actually vanish in the null limit due
to cancellation between the supermultiplet.

The only difference when considering contractions between the holomorphic frame and
a ∂2A/∂χ2 insertion, or between two ∂2A/∂χ2 insertions on adjacent lines is that we must
differentiate the R-invariant with respect to the fermions before taking the ε → 0 limit.
For the contraction involving a single holomorphic frame, from (4.9) we have

lim
ε→0

[
∂2

∂χAi∂χBi
[Ai, Bi, ∗, Ai+1, Bi+1]

∣∣∣∣
Ai+1=Bi+εZ

]

=
δ0|2

“
χAi (Bi∗ZBi+1)+χBi (∗BiBi+1Ai)+χ∗(ZBi+1AiBi)+χ(Bi+1AiBi∗)+χBi+1

(AiBi∗Z)
”

(AiBiZBi+1)(Bi+1AiBi∗)(AiBi∗Z) (4.11)

which, while non-vanishing, remain finite in the null separated limit, and depend on the
direction in which null separation was approached.

Equations (4.9) and (4.11) show that we cannot hope to balance the denominator
of (4.1) if we contract the explicit insertions of ∂2A/∂χ2 either with fields in an MHV
vertex from the Lagrangian, or with holomorphic frames, even on an adjacent line. Nor
can we balance the denominator using contractions between pairs of holomorphic frames.
Thus, the only hope to obtain a non-vanishing result if null separation is taken at the level
of the integrand is to have contracted the explicit ∂2A/∂χ2 insertions with eachother on
adjacent lines, without any intermediate MHV vertices or holomorphic frames. To see that
this does provide the correct divergence, note that

〈AiBi〉〈Ai+1Bi+1〉
∫

Xi×Xi+1

〈λidλi〉〈λi+1dλi+1〉
〈

∂2A
∂χa∂χb

(Z(λi))
∂2A

∂χc∂χd
(Z(λi+1))

〉

= 〈AiBi〉〈Ai+1Bi+1〉
∫

dsi dsi+1 δ̄
2(Ai + siBi, Z∗, Ai+1 + si+1Bi+1)

= εabcd
〈AiBi〉〈Ai+1Bi+1〉
(AiBiAi+1Bi+1)

=
εabcd

(xi − xi+1)2
,

(4.12)
exactly as for the free correlator.

8To obtain this result, it is of course important that one sets Ai+1 = Bi + εZ as a relation on the

supertwistors, ensuring that the lines intersect in CP3|4.
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Figure 3. The only non-vanishing contribution to the integrand ratio in the null limit comes
from direct contractions between φs on adjacent Riemann spheres. The twistor propagators freeze
the locations of the φs on each Xi. In the limit that the lines intersect, these locations are the
intersection points. The remaining operator is the supersymmetric twistor Wilson loop, acting in
the adjoint.

This establishes that the only terms that survive in (4.1) when the null separation limit
is taken at the level of the integrand involve contractions between each of the ∂2A/∂χai ∂χbi
insertions with its neighbours on adjacent twistor lines. Once these explicit insertions have
been contracted to balance the divergence in the denominator, the remaining fields in the
holomorphic frames may contract in any way they wish — either with other holomorphic
frames or using the MHV vertices in the interacting theory. We must now show that all
these remaining contractions are equivalent to the integrand of the supersymmetric Wilson
loop in the adjoint.

To do so, note that the integrals in (4.12) were completely frozen by the two bosonic
delta functions. Geometrically, this is the statement that, given a generic point Z∗ ∈ CP3,
there is a unique line L through Z∗ that intersects both Xi and Xi+1. Explicitly, L is the line
through Z∗ and the intersection of the plane (∗, Ai, Bi) and the line (Ai+1, Bi+1). When
we contract two field insertions on Xi and Xi+1, they are thus frozen to be at L ∩ Xi and
L∩Xi+1, respectively. Now, clearly, in the limit that Xi and Xi+1 are brought to intersect,
L is simply the line through Z∗ and their intersection point Xi∩Xi+1 so that the arguments
of the holomorphic frames U adjacnet to the contracted fields now coincide (see figure 3).
The resulting product of holomorphic frames around the nodal curve is exactly the same
supersymmetric twistor Wilson loop as found for the scattering amplitudes [11, 12]

1
N2 − 1

〈
TrAdj P exp

(
−
∫

C
ω ∧ A

)〉
(4.13)

except now in the adjoint representation. Thus, all remaining integrand contributions to
the limit of correlation functions (4.1) are inevitably equal to the integrands of this adjoint
super Wilson loop. This completes the proof.

The above correspondence between the integrands of a ratio of correlator functions of
local, gauge invariant operators and the integrand of an adjoint Wilson loop is valid for an
SU(N) gauge group even at finiteN . However, in the planar limit of a CPT invariant theory

〈Wadj[γ]〉 = 〈Wfund[γ]〉 × 〈Wanti−fund[γ]〉 = 〈Wfund[γ]〉2 . (4.14)

Using the proof [12] of the correspondence between the fundamental twistor Wilson loop
and the integrand of the scattering amplitude, we have as an immediately corollary that
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in the planar limit, the ratio of operators (4.1) is equal to the square of the integrand of
the planar scattering amplitude (divided as always by the MHV tree). As in [11, 12, 19],
this includes all loop corrections to the integrands of all NkMHV partial amplitudes.9

Two special cases of this general correspondence are worthy of separate mention.
First, if we return to the ratio of non-supersymmetric correlators, we obtain the ad-
joint twistor Wilson loop built purely from the non-supersymmetric field a(Z, Z̄). This
non-supersymmetric twistor Wilson loop was shown in [11] to correspond to a standard,
non-supersymmetric Wilson loop in space-time around the null polygon γ. When taken
in the fundamental representation, this Wilson loop computes the all-orders integrand for
MHV amplitudes only.

Second, if we consider the ratio

lim
G(sd)(x1, θi; . . . ;xn, θn)

G(0)(x1, . . . , xn)
(4.15)

involving the supersymmetric operator, but computed in self-dual N = 4 SYM, in the
super-null limit (xi−xi+1)λi → 0, (θi−θi+1)λi → 0, we obtain the square of the n-particle
scattering amplitude

M (0) = 1 +
A

(0)
NMHV

A
(0)
MHV

+
A

(0)
N2MHV

A
(0)
MHV

+ · · ·+
A

(0)

MHV

A
(0)
MHV

(4.16)

at tree level only. The corresponding statement in twistor space is that one computes the
correlator ratio or Wilson loop using only the holomorphic Chern-Simons action. This
truncation was already noted in [11, 12].

5 Conclusions

We conclude with a few remarks.

1.) The relationship between correlation functions of local, single trace operators and ad-
joint Wilson loops is much closer than the relationship between planar scattering am-
plitudes and fundamental Wilson loops. As we saw above, the former correspondence
is really valid at the operator level — even supersymmetrically — once understood in
twistor space. By contrast, to prove the scattering amplitude / fundamental Wilson
loop correspondence requires that one actually evaluate the planar integrand on both
sides independently, as was done in [12, 18]. Similarly, the correlation function / ad-
joint Wilson loop correspondence is true even for finite rank gauge groups, while the
relation to scattering amplitudes only arises in the planar limit. The reason for this
closer relationship is of course that the operator and adjoint Wilson loop each live on
the same space-time (or same twistor space), whereas this is not the space-time in
which one performs the scattering experiment. (It is the dual conformal space-time.)

9Of course, one must square the complete integrand of the planar super-amplitude — the sum of the tree

plus all-loop corrections — and the compare the coefficients of a particular power of the ’t Hooft coupling.

– 14 –



J
H
E
P
0
8
(
2
0
1
1
)
0
7
6

2.) There is obviously a great deal of freedom in the choice of ‘basic’ operator Tr Φ2.
This certainly includes the R- symmetry representation of the scalars, but we could
equally replace this operator by a bilinear in the gluinos (one of each helicity) or some
more general choices of bilinear for each O(xi) separately. The key criterion is simply
that operators at null-separated points can be contracted pairwise around the chain
using propagators. Different choices of operator would lead to different behaviour in
the sub-leading divergences of any regularised version of this correspondence at the
level of the integral. As explained, these sub- leading terms vanish at the level of the
unregularised integrand in the strict null limit.

3.) In attempting to compare scattering amplitudes and fundamental null Wilson loops
at the level of their regularised integrals, one encounters the difficulty that because
they naturally live on different spaces, it is not immediately clear how a regularisation
scheme applied on one side of the correspondence should translate to a regularisation
scheme on the other. For example, computing both sides in 4 − 2ε dimensions, one
needs to take ε < 0 for the amplitude, but ε > 0 for the Wilson loop [2], while the
Wilson loop equivalent of the Higgs regularisation [37] of the amplitude is currently
unknown. Perhaps the main interest of the present correspondence is that, because
the correlator and Wilson loop live on the same space-time, the same regularisation
scheme should be used for both objects. After taking the planar limit, this provides
a definition of the regularised amplitude.
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