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1 Introduction

Quantum electrodynamics is among the most successful theories ever designed. At very low energy, up

to a few MeV, its predictions have been tested and confirmed to a fantastic level of precision. At higher

energies, with the advent of the Standard Model (SM) arises the possibility for the electromagnetic

current to induce flavor transitions. This peculiar phenomenon requires a delicate interplay at the

quantum level between the three families of matter particles. So delicate in fact that in the presence

of physics beyond the Standard Model, significant deviations are expected. As for the past 150

years, electromagnetism could thus once more guide our quest for unification, and enlighten our

understanding of Nature.

For this reason, the b → sγ and µ → eγ transitions have received considerable attention. The

former is known to NNLO precision in the SM [1], and has been measured accurately at the B

factories [2]. It is now one of the most constraining observables for New Physics (NP) models. The

latter, obviously free of hadronic uncertainties, is so small in the SM that its experimental observation

would immediately signal the presence of NP [3]. Further, most models do not suppress this transition

as effectively as the SM, with rates within reach of the current MEG experiment at PSI [4].

The s → dγ process is complementary to b → sγ and µ → eγ, as the relative strengths of these

transitions is a powerful tool to investigate the NP dynamics. However, two issues have severely

hampered its abilities up to now. First, the s → dγ decay takes place deep within the QCD non-

perturbative regime, and thus requires control over the low-energy hadronic physics. Second, these

hadronic effects strongly enhance the SM contribution, to the point that identifying a possible de-

viation from NP is very challenging both theoretically and experimentally. To circumvent those

difficulties is one of the goals of the present paper.

Indeed, the experimental situation calls for improved theoretical treatments. The recent experi-

mental results [5] for the K+ → π+π0γ decay, driven by the s → dγ process, should be exploited. More

importantly, several K decay experiments will start in the next few years, NA62 at CERN, K0TO

at J-Parc, and KLOE-II at the LNF. In view of their expected high luminosities, new strategies may

open up to constrain, or even signal, the NP in the s → dγ transition. This requires identifying the

most promising observables, both in terms of theoretical control over the SM contributions and in

terms of sensitivity to NP effects. These are the two other goals of the paper.

In the next section, the anatomy of the s → dγ process in the SM is detailed, together with the

tools required to deal with the long-distance QCD effects. From these general considerations, the best

windows to probe the s → dγ decays are identified. These observables are then analyzed in details in

the following section, where predictions for their SM contributions are obtained. Particular attention

is paid to their sensitivity to short-distance effects, and thereby to possible NP contributions. This

is put to use in the last (mostly self-contained) section, where the signatures of several NP scenarios

are characterized in terms of correlations among the rare and radiative K decays, as well as Re(ε′/ε).

2 The flavor-changing electromagnetic currents

In the SM, the flavor changing electromagnetic current arises at the loop level, as depicted in figure 1.

When QCD is turned off, and ms,d ≪ mu,c,t, the single photon penguin can be embedded into local
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Figure 1. The flavor-changing electromagnetic currents in the Standard Model.

effective interactions of dimension greater than four:

Hγ
eff = C±

γ Q±
γ + C±

γ∗Q±
γ∗ + h.c. , (2.1)

with the magnetic and electric operators defined as

Q±
γ =

Qde

16π2
(s̄LσµνdR ± s̄RσµνdL)Fµν , Q±

γ∗ =
Qde

16π2
(s̄LγνdL ± s̄RγνdR) ∂µFµν , (2.2)

and 2σµν = i[γµ, γν ], Qd = −1/3 the down-quark electric charge. For a real photon emission,

∂µFµν = 0 so only the magnetic operators contribute. The corresponding Wilson coefficients are [6]

Qd(C
+
γ − C−

γ ) =
√

2GF λiD
′
0 (xi)ms , Qd(C

+
γ + C−

γ ) =
√

2GF λiD
′
0 (xi) md , (2.3)

and

Qd(C
+
γ∗ + C−

γ∗) = −2
√

2GF λiD0 (xi) , Qd(C
+
γ∗ − C−

γ∗) ≈ 0 , (2.4)

where i = u, c, t, λi = V ∗
isVid the CKM matrix elements, and D

(′)
0 (xi ≡ m2

i /M
2
W ) the loop functions (see

e.g. ref. [6] for their expressions). Summing over the three up-quark flavors, it is their dependences on

the quark masses which ensure the necessary GIM breaking, since otherwise CKM unitarity λu +λc +

λt = 0 would force them to vanish. In this respect, D′
0(x) is suppressed for light quarks, while D0(x)

breaks GIM logarithmically both for x → ∞ and x → 0. However, QCD corrections significantly

soften the quadratic GIM breaking of D′
0(x) in the x → 0 limit [7–9], and exacerbate the logarithmic

one of D0(x) [10], making light-quark contributions significant for both operators.

In the presence of NP, new mechanisms could produce the s → dγ transition. Since the NP

energy scale is presumably above the electroweak scale, these effects would simply enter into the

Wilson coefficients of the same effective local operators (2.1). This is the shift we want to extract

phenomenologically. In this respect, the magnetic operators are a priori most sensitive to NP for two

reasons. First, the electric transition is essentially left-handed and the magnetic operators are very

suppressed in the SM because right-handed external quarks (s, d)R are accompanied by the chiral

suppression factor ms,d. These strong suppressions may be lifted in the presence of NP, where larger

chirality flip mechanisms can be available. Second, the magnetic operators are formally of dimension

five, and thus a priori less suppressed by the NP energy scale than the dimension six electric operators.

Sizeable NP effects could thus show up, as will be quantitatively analyzed in section 4.

With the help of the standard QED interactions, the Hγ
eff operators also contribute to processes

with more than one photon, where they compete with the effective operators directly involving several

photon fields. For example, for two real photons, the dominant operators are

Q±
γγ,|| = (s̄LdR ± s̄RdL)FµνFµν , Q±

γγ,⊥ = (s̄LdR ± s̄RdL)Fµν F̃µν , (2.5)

– 3 –
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with F̃µν = εµνρσFρσ/2. In the SM, the additional quark propagator in the two-photon penguin

induces an x−1 GIM breaking by the loop function (see figure 1b). Hence, the c and t-quark contribu-

tions are completely negligible compared to the u-quark loop. Further, NP effects in these operators

should be very suppressed since they are at least of dimension seven. So, whenever it contributes,

the two photon penguin represents an irreducible long-distance SM background for the SD processes.

The same is true for transitions with more than two photons, with the NP (up-quark loop) even more

suppressed (enhanced), so those will not be considered here.

2.1 Long-distance effects

Once QCD is turned back on and with mu < ms,d < mc,t, the c and t contributions remain local, but

not the up quark loop. At the K mass scale, the former are, together with possible NP, the short-

distance (SD) contributions, and the latter are the SM-dominated long-distance (LD) contributions.

Note that the SD contributions are also affected by long-distance effects, since phenomenologically,

the matrix elements of the SD operators between low-energy meson states is needed.

To deal with these LD effects, the first step is to sum up the QCD-corrected interactions among

the light quarks into an effective Hamiltonian [6]

Heff(µ ≈ 1 GeV) =
10
∑

i=1

Ci (µ)Qi (µ) + Hγ
eff (µ) + . . . , (2.6)

with the four-quark current-current (Q1,2), QCD penguin (Q3,...,6), and electroweak penguin (Q7,...,10)

operators, and Hγ
eff (µ) as in eq. (2.1). Short-distance physics, including both the SM and NP effects,

is encoded into the Wilson coefficients Ci (µ), see figure 2. The low-virtuality up, down, and strange

quarks, i.e. the dynamics going on below the QCD perturbativity frontier µ ≈ 1GeV, are dealt

through the hadronic matrix elements of the effective operators.

At the hadronic scale, the strong dynamics is represented with chiral perturbation theory (ChPT),

the effective theory for QCD with the octet of pseudoscalar mesons as degrees of freedom [11]. At

O(p2), the strong interaction Lagrangian is

Lstrong =
F 2

4
〈DµUDµU † + χU † + Uχ†〉 , (2.7)

where F = Fπ ≈ 92.4 MeV, U is a 3×3 matrix function of the meson fields, χ = 2B0 diag(mu,md,ms)

reproduces the explicit chiral symmetry breaking induced by the quark masses, and 〈. . .〉 means the

flavor trace (we follow the notation of ref. [12]). The covariant derivative includes external real or

virtual photons, DµU = ∂µU − ieAµ[U,Q], Q = diag(2/3,−1/3,−1/3), as well as static Z or W

currents coupled to leptonic states which do not concern us here.

To the strong Lagrangian (2.7), the electroweak operators of Heff are added as effective interac-

tions among the pseudoscalar mesons. So, the non-local, low-energy tails of the photon penguins of

figure 1 are reconstructed using the effective hadronic representations of Q1,...,10 to induce the weak

transition, and the photon(s) emitted from light charged mesons occurring either as external particles

(bremsstrahlung radiation) or inside loops (direct emission radiation), see figure 2. Note that the

mesonic processes not only represent the u quark loop in figure 1, but also d and s quark loops since
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Figure 2. Description of the radiative K decays, starting with the electroweak scale interactions down to

chiral perturbation theory, with illustrative examples of mesonic processes (the photons can be real or virtual).

The green vertices arise from the currents in eqs. (2.8), (2.9), the blue disks and square from the O(p2) weak

Lagrangians eq. (2.14) and O(p4) weak counterterms eq. (2.16), respectively, and finally, the strong (black) and

QED (red) vertices from eq. (2.7).

the Fermi interaction is effectively replaced by the whole set of Q1,...,10 operators at long-distance.

So, let us construct the hadronic representations of Heff , starting with the electromagnetic operators.

2.1.1 Electromagnetic operators

The chiral realization of the Q±
γ∗ operators requires that of the vector and axial-vector quark bilinears.

At O(p2), these currents are related by the SU(3) symmetry to the conserved electromagnetic current,

and are thus entirely fixed from the Lagrangian (2.7):

q̄I
LγµqJ

L = i
F 2

2
(DµU †U)JI , q̄I

RγµqJ
R = i

F 2

2
(DµUU †)JI . (2.8)

The SU(3) breaking corrections start at O(p4) and are mild thanks to the Ademollo-Gatto theo-

rem [13]. They can be precisely estimated from the charged current matrix elements, i.e. from Kℓ3

decays. See ref. [14] for a detailed analysis.

The chiral realization of the tensor currents in Q±
γ is more involved and starts at O(p4) since two

derivatives or a field strength tensor are needed to get the correct Lorentz structure. Further, it cannot

be entirely fixed but involves specific low-energy constants. By imposing charge conjugation and parity

invariance (valid for QCD), the antisymmetry under µ ↔ ν, and the identity iεαβµνσµν = 2σαβγ5,

– 5 –
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only two free real parameters aT and a′T remain (parts of these currents were given in refs. [15, 16])

q̄IσµνPLqJ = −i
F 2

2
aT

(

DµU †DνUU † − DνU
†DµUU † − iεµνρσDρU †DσUU †

)JI

+
F 2

2
a′T ((FL

µν − iF̃L
µν)U † + U †(FR

µν − iF̃R
µν))JI , (2.9a)

q̄IσµνPRqJ = −i
F 2

2
aT

(

DµUDνU †U − DνUDµU †U + iεµνρσDρUDσU †U
)JI

+
F 2

2
a′T (U(FL

µν + iF̃L
µν) + (FR

µν + iF̃R
µν)U)JI . (2.9b)

Numerically, we will use the lattice estimate [17]

BT (2 GeV) = 2mKaT = 1.21(12) . (2.10)

To O(p4), all the matrix elements 〈P |q̄σµνq|P 〉, P = π,K, η, are simply related since the SU(3)

breaking corrections proportional to ms −md(u) arise only at O(p6). In this respect, the value (2.10)

derives from a study of the 〈π|s̄σµνd|K〉 matrix element, not from an extrapolation from ∆S = 0

matrix elements, and is thus well suited to our purpose.

A similar estimate of B′
T = 2mKa′T is not available yet. Instead, we can start from 〈γ|ūσµνγ5d|π−〉

and invoke the SU(3) symmetry. Ref. [18], through a study of the V T correlator, get a′T = B0/M
2
V and

thus B′
T = 2.7(5), assuming the standard ChPT sign conventions for the matrix elements. Another

route is to use the magnetic susceptibility of the vacuum, 〈0|q̄σµνq|0〉γ . From the lattice estimate

in ref. [19], we extract using a′T = −χTB0/2 the value B′
T (2 GeV) = 2.67(17). Both techniques give

similar results though their respective scales do not match. In addition, sizeable SU(3) breaking

effects cannot be ruled out since there is no Ademollo-Gatto protection for the tensor currents. So,

to be conservative, we shall use

B′
T (2 GeV) = 2mKa′T = 3(1) . (2.11)

At O(p4), the magnetic operators contribute to decay modes with at most two photons. With

the chiral suppression expected for higher order terms, decays with three or more (real or virtual)

photons should have a negligible sensitivity to Q±
γ , hence are not included in our study.

In the SM, since the local operators sum up the short-distance part of the real photon penguins,

the factor ms,d ∼ O(p2) in eq. (2.3) are not included in the bosonization. Instead, they are kept as

perturbative parameters in the Wilson coefficients C±
γ , to be evaluated at the same scale as the form

factors BT and B′
T . Numerically, to account for the large QCD corrections, the Wilson coefficient of

the magnetic operator in b → sγ can be used for ImC±
γ , since the CKM elements for the u, c, and t

contributions scale similarly. With C7γ(2 GeV) ≈ −0.36 from ref. [6], we shall use1

Im C±
γ (2 GeV)SM

GF mK
= ∓

√
2
C7γ(2GeV)

Qd

ms(2 GeV)

mK
Im λt = ∓0.31(8) × Im λt , (2.12)

1For convenience, the same normalization by GF mK will be adopted throughout the paper. Also, if not explicitly

written, the C±
γ are always understood at the µ = 2GeV scale.
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to be compared to ∓0.17 Im λt with only the top quark. The 25% error stems either from the PDG

evaluation ms(2 GeV) = 101+29
−21 MeV [20], for which the LO approximation is adequate, or from

a conservative estimate of the NLO effects if the lattice average ms(2 GeV) = 94 ± 3MeV [21] is

used. For ReC±
γ , contrary to the situation in b → sγ, the top quark is strongly suppressed as

Re λc ≈ −Re λu ≫ Reλt. With the light quarks further enhanced by QCD corrections, an estimate

is delicate. Naively rescaling the above result gives

Re C±
γ (2 GeV)SM

GF mK
≈ Re λc

Im λc
×

Im C±
γ (2 GeV)SM

GF mK
≈ ∓0.06 . (2.13)

Evidently, one should not take this as more than a rough estimate of the order of magnitude of

the c quark and high-virtuality u quark contributions. In any case, we will be mostly concern by

CP-violating observables in the following, so we will not use eq. (2.13).

2.1.2 Four-quark weak operators

By matching their chiral structures, the four-quark weak current-current and penguin operators are

represented at O(p2) as [22, 23]

L8 = F 4G8〈λ6LµLµ〉 , (2.14a)

L27 =
F 4

18
G

1/2
27 (〈λ1Lµ〉〈λ4L

µ〉 + 〈λ2Lµ〉〈λ5L
µ〉 − 10〈λ6Lµ〉〈λ3L

µ〉 + 18〈λ6Lµ〉〈QLµ〉)

+
5F 4

18
G

3/2
27 (〈λ1Lµ〉〈λ4L

µ〉 + 〈λ2Lµ〉〈λ5L
µ〉 + 2〈λ6Lµ〉〈λ3L

µ〉) , (2.14b)

Lew = F 6e2Gew〈λ6U
†QU〉 , (2.14c)

where Lµ ≡ U †DµU , λi are the Gell-Mann matrices, and G27 ≡ G
3/2
27 = G

1/2
27 in the SU(3) limit. If

QCD was perturbative down to the hadronic scale, the low-energy constants could be computed from

the Wilson coefficients at that scale as

{C1 − C2, C3−6, C9, C10} → G8 , {C1 + C2, C9, C10} → G27 , {C7, C8} → Gew . (2.15)

The ChPT scale is too low for this to be possible however. Instead, the low-energy constants are

fixed from experiment, especially from K → ππ. The consequence is that neither the ∆I = 1/2 rule,

embodied in their real parts as ReG27/Re G8 ≡ ω = 1/22.4, nor the direct CP-violation parameters

like ε′ generated from their imaginary parts, can be precisely computed from first principles.

At tree level, if L8, L27, or Lew contribute to a radiative decay, it is only through bremsstrahlung

amplitudes [24–26]. The dynamics is therefore trivial at O(p2) because Low’s theorem [27] shows that

such emissions are entirely fixed in terms of the non-radiative K → 2π, 3π amplitudes. Thus, the non-

trivial dynamics corresponding to the low-energy tails of the photon penguins arise at O(p4), where

they are represented in terms of non-local meson loops, as well as additional O(p4) local effective

interactions, in particular the ∆I = 1/2 enhanced N14, . . . , N18 octet counterterms [28, 29]:

LCT
8 =−i〈λ6(N14{fµν

+ , LµLν}+N15Lµfµν
+ Lν +N16{fµν

− , LµLν}+N17Lµfµν
− Lν + iN18(f

2
+µν −f2

−µν))〉 ,

(2.16)
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with fµν
± ≡ Fµν

L ± U †Fµν
R U , and Fµν

L = Fµν
R = −eQFµν for external photons. There are also

counterterms relevant for the renormalization of the non-radiative K → nπ amplitudes occurring in

the bremsstrahlung contributions, for the strong structure of the π+π−γ∗ or K+K−γ∗ vertices, and

for the odd-parity sector (proportional to ε tensors) which will not concern us here. Note that the

need to compute the Q1,...,10 contributions at O(p4) also follows from the chiral representation (2.9)

of the magnetic operators starting at that order.

The structure of the effective interactions (2.16) is dictated by the chiral counting rules and the

chiral symmetry properties of the underlying weak operators, but the (renormalized) Ni constants

cannot be computed from first principles and have to be fixed experimentally, exactly like the O(p2)

constants G8,27,ew of eq. (2.14).

2.1.3 The hadronic tails of the photon penguins

The set of interactions included within ChPT is complete, in the sense that all the possible effective

interactions with the required symmetries are present at a given order. So, it may appear that at

O(p4), once the weak interactions (2.14) are added to the strong dynamics (2.7), and including the

counterterms (2.16), there is no more need to separately include the SD electromagnetic operators

through eq. (2.8) and (2.9). All their effects would be accounted for in the values of the low-energy

constants. Indeed, these constants should sum up the physics taking place above the mesonic scale,

i.e. the hadronic degrees of freedom just above the octet of pseudoscalar mesons [29, 30] as well as

the quark and gluon degrees of freedom above the GeV scale [31, 32].

This actually holds for Q±
γ∗ , but not for Q±

γ . Indeed, only the former have the same chiral

structures as the Ni counterterms. Whenever Q±
γ∗ contribute, so do the Ni, but Q±

γ can contribute

to many modes where the Ni are absent (see table 1 in the next section) and must therefore appear

explicitly in the effective theory. Including the ∆I = 3/2 suppressed LCT
27 [28, 33] or the e2-suppressed

LCT
ew [34] counterterms would not change this picture, so for simplicity we consider only LCT

8 .

This mismatch between LCT
8 and Q±

γ has an important dynamical implication since the weak

counterterms reflect the chiral structures of the meson loops built on the Q1,...,10 operators (2.14) at

O(p4). While these meson loops can genuinely represent the low-energy tail of the virtual photon

penguin, i.e. the log(xu) singularity of the D0(x) function, they never match the chiral representation

of Q±
γ . The meson dynamics lacks the required ms,d chirality flip at O(p4), relying instead on the long-

distance dynamics, i.e. momenta. One can understand this phenomenon as the low-energy equivalent

of the known importance of the Qc
2 = (s̄c)V −A ⊗ (c̄b)V −A contribution to b → sγ [7–9]. Clearly,

s → dγ has to be even more affected than b → sγ by QCD corrections since the photon is never

hard (q2
γ < m2

K), and an inclusive analysis is not possible. So for s → dγ, the Qu
2 = (s̄u)V −A ⊗

(ūd)V −A contribution, represented through Q1,...,10, corresponds to a whole class of purely long-

distance processes, often including IR divergent bremsstrahlung radiations. They are not suppressed

at all, contrary to the naive expectation from D′
0(x) → x as x → 0, but instead dominate most of the

radiative processes.2

2By comparison, though the Inami-Lim function C0(x) for the Z penguin scale like D′
0(x) in the x → 0 limit, this

behavior survives to QCD corrections, and the light-quark contributions are very suppressed, see ref. [35].
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With this in mind, we can understand at least qualitatively another striking feature of all the

radiative modes where Q±
γ∗ is absent. The meson loops are always finite at O(p4), except for K1 →

π+π−π0γ(γ) [26]. This means that not only the SD part of the magnetic operators decouples, but

also to some extent the intermediate QCD degrees of freedom (i.e., the resonances3). By contrast,

the Ni combinations occurring for the modes induced by Q±
γ∗ are always scale dependent, somewhat

reminiscent of the factorization of the low-energy part of the virtual photon penguin. So, the behavior

of the flavor-changing electromagnetic current is not very different from that of the flavor-conserving

one. In that case, being protected by the QED gauge symmetry, the form-factor for 〈γ(q)|π+π−〉
or 〈γ(q)|K+K−〉 is not renormalized at all at q2 = 0, while vector resonances saturate the off-shell

behavior [29, 30].

From these observations, we can reasonably expect that whenever a finite combination of Ni

occurs for a process with only real photons, it should be significantly suppressed. Indeed, not only

the divergences cancel among the Ni, but also the large Q±
γ∗ contribution embedded into them (this

was already noted using large Nc arguments in ref. [39]), as well as the resonance effects describing

the purely strong structure of the photon. As our analysis of K+ → π+π0γ in section 3 will show,

this suppression is supported by the recent experimental data, see eq. (3.10).

2.2 Phenomenological windows

The K decay channels where the electromagnetic operators contribute are listed in table 1, together

with their CP signatures. For the electric operators, at least one of the photons needs to be virtual,

i.e. coupled to a Dalitz pair ℓ+ℓ−. In this respect, remark that all the electromagnetic operators

produce the ℓ+ℓ− pair in the same 1−− state, so the electric and magnetic operators can only be

disentangled using real photon decays.

For most of the decays in table 1, the LD contributions are dominant, obscuring the SD parts

where NP could be evidenced. The situation is thus very different than in b → sγ, where the u

quark contribution is suppressed by Vub ≪ 1. However, in K physics, the long-distance contributions

are essentially CP-conserving. Indeed, CP-violation from the four-quark operators is known to be

small from Re(ε′/ε)exp. In the SM, this follows from the CKM scalings Reλu ≫ Re λt ∼ Im λt and

Im λu = 0. So, for CP-violating observables, one recovers a situation reminiscent of b → sγ, with the

dominant SM contributions arising from the charm and top quarks, both of similar size a priori. Only

for such observables can we hope that the interesting short-distance physics in Q±
γ and Q±

γ∗ emerges

from the long-distance SM background.

All the decays in table 1 have a CP-conserving contribution, and thus in most cases the best

available CP-violating observables are CP-asymmetries. Since they arise from CP-odd interferences

between the various decay mechanisms, the dominant CP-conserving processes must be under suffi-

ciently good theoretical control. In addition, these CP-asymmetries being usually small, the decay

rates should be sufficiently large, and not completely dominated by bremsstrahlung radiations. Indeed,

even though these radiations are under excellent theoretical control thanks to Low’s theorem [27],

they would render the short-distance physics too difficult to access experimentally.

3Though the counterterms are also scale-independent in the odd-parity sector, driven by the QED anomaly, the

resonances are known to be important there [36–38]. We will be mostly concerned by the even-parity sector here.
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⊥ || M E L

K2 → γγ a′T Re C+
γ Im C−

γ –

K2 → π0γγ a′T Im C−
γ ReC+

γ K2 → π0γ aT – – Im C+
γ(∗)

K+ → π+γγ 3aT + a′T C−
γ C+

γ K+ → π+γ aT – – C+
γ(∗)

K2 → π0π0γγ a′T Re C+
γ Im C−

γ K2 → π0π0γ aT – – ReC−
γ(∗)

K2 → π+π−γγ aT , a′T Re C+
γ Im C−

γ K2 → π+π−γ aT Re C+
γ Im C−

γ ReC−
γ(∗)

K+ → π+π0γγ aT , a′T C+
γ C−

γ K+ → π+π0γ aT C+
γ C−

γ C−
γ(∗)

K2 → 3π0γγ a′T Im C−
γ ReC+

γ K2 → 3π0γ aT – – Im C+
γ(∗)

Table 1. Dominant processes where the electromagnetic operators contribute, omitting the K → (nπ)γ∗γ(∗),

n ≥ 0 decays. The K1 ≈ KS processes are obtained from K2 ≈ KL by inverting real and imaginary parts.

The symbol ⊥ (||) means the photon pair in an odd (even) parity state, i.e. a Fµν F̃µν (FµνFµν) coupling, and

similarly, M (E) means odd (even) parity magnetic (electric) emissions. For ππ modes, the lowest multipole

is understood (i.e., ππ in a S wave for γγ modes, and a P wave for γ modes). The last column denotes

longitudinal off-shell photon emissions, proportional to q2gαβ − qαqβ with q the photon momentum, for which

the Q±
γ∗ operators also enters. The K → 3πγ(γ) decays with charged pions are not included since dominated

by bremsstrahlung radiations off K → 3π [26]. Finally, aT and a′
T are the low-energy constants entering the

tensor current (2.9).

Imposing these conditions on the modes in table 1, the best windows for the electromagnetic

operators are:

• Real photons: Since the branching ratios decrease as the number of pions increases, the best

candidates to constrain Q±
γ are the KL,S → γγ decays for two real photons and the K → ππγ

decays for a single real photon. All the other modes with real photons are either significantly

more suppressed (see e.g. ref. [16, 24] for a study of K → πγγ), or dominated by bremsstrahlung

contributions. By contrast, these radiations are suppressed for KL → π+π−γ since KL → π+π−

is CP-violating, and for K+ → π+π0γ thanks to the ∆I = 1/2 rule. The relevant CP-violating

asymmetries are those either between KL−KS decay amplitudes, between K+−K− differential

decay rates, or in some phase-space variables. This latter possibility usually requires some

additional information on the photon polarization, accessible e.g. through Dalitz pairs. But

besides the significant suppression of the total rates, this brings in the electric operators, making

the analysis much more involved, so these observables will not be considered here (see e.g.

ref. [40–43]).

• Virtual photons: The best candidates to probe the electric operators are the KL → π0ℓ+ℓ−

(ℓ = e, µ) decays, for which KL → π0γ∗[→ ℓ+ℓ−] is CP-violating hence free of the up-quark

contribution (see e.g. ref. [44]). As detailed in section 3.3 (see figure 6), there are nevertheless

an indirect CP-violating piece from the small εK2 component of the KL as well as a CP-

conserving contribution from the four-quark operators with two intermediate photons, but these

are suppressed and under control [45, 46]. The direct CP-asymmetry in K± → π±ℓ+ℓ− is not

competitive because of its small ∼ 10−9 branching ratio, and of the hadronic uncertainties in

the long-distance contributions [10, 47].
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With KL → π0ℓ+ℓ− sensitive to Q+
γ∗ , information on Q−

γ∗ would also be needed to disentangle the

left and right-handed currents. But since 〈γ|Q−
γ∗ |K0(q)〉 ∼ qνqµFµν = 0, and with K → πγ∗γ

sensitive again to Q+
γ∗ , the simplest observables are the K → ππγ∗ and K → ππγ∗γ(∗) modes,

which are suppressed and dominated by LD contributions. For the time being, we will thus

concentrate only on Q+
γ∗ .

In summary, the best windows to probe for the electromagnetic operators are the CP-asymmetries

in the KL,S → γγ, KL,S → π+π−γ, and K+ → π+π0γ decays, and the KL → π0ℓ+ℓ− decay rates.

For completeness, it should be mentioned that the magnetic operators also contributes to radiative

hyperon decays [48, 49] or to the Bs → B∗
dγ transition [50], which will not be analyzed here.

3 Standard Model predictions

In order to get clear signals of NP, the SM contributions have to be under good theoretical control. We

rely on the available OPE analyses for the Wilson coefficients in the SM [6], and concentrate on the re-

maining long-distance parts of these contributions. For CP-violating observables, they originate either

indirectly from the hadronic penguins Q3 → Q10 or directly from the magnetic operators Q±
γ . Since

the former indirect contributions are suppressed, while the C±
γ are very small in the SM, both often

end up being comparable. These LD contributions have to be estimated in ChPT. This is rather imme-

diate for Q±
γ given the hadronic representations (2.9), but significantly more involved for the hadronic

penguins, requiring a detailed analysis of the meson dynamics relevant for each process. In addition,

some free low-energy constants necessarily enter, which have to be fixed from other observables.

Thus, the goal of this section is threefold. First, the observables relevant for the study of Q±
γ are

presented. This includes the K → ππγ rate and CP-asymmetries, the KL,S → γγ direct CP-violation

parameters, the rare semileptonic decays K → πℓ+ℓ−, and finally, the hadronic parameter ε′. Second,

the hadronic penguin contributions to the radiative decay observables are brought under control by

relating them to well-measured parameters like ε′. In doing this, special care is paid on the possible

impacts of NP in Q3 → Q10, which have to be separately parametrized. This is crucial to confidently

extract the contributions from Q±
γ , where NP could also be present. This constitutes the third goal

of the section: To establish the master formulas for all the observables relevant in the study of Q±
γ ,

which will form the basis of the NP analysis of the next section.

3.1 K → ππγ

From Lorentz and gauge invariance, the general decomposition of the K (P ) → π1 (K1) π2 (K2) γ (q)

amplitude is [51–53]

M (K → π1π2γ) =

[

E (zi)
Kµ

2 K1 · q − Kµ
1 K2 · q

m3
K

+ M (zi)
iεµνρσK1,νK2,ρqσ

m3
K

]

ε∗µ(q) . (3.1)

The reduced kinematical variables z1,2 = K1,2 · q/m2
K are related to the energies of the two pions

which we identify as π1π2 = π+π−, π0π0, or π+π0, and z3 = z1 + z2 = Eγ/mK is the photon energy

in the K rest-frame.
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The two terms E (zi) and M (zi) are respectively the (dimensionless) electric and magnetic am-

plitudes [54], and do not interfere in the rate once summed over the photon polarizations. The electric

part can be further split into a bremsstrahlung and a direct emission term:

E(z1, z2) = EIB(z1, z2) + EDE(z1, z2) , (3.2)

while the magnetic part is a pure direct emission, M ≡ MDE . When the photon energy goes to zero,

only EIB is divergent and, according to Low’s theorem [27], entirely fixed from the non-radiative

process K → π1π2.

The direct emission terms EDE and MDE are constant in that limit. In addition, they can be

expanded in multipoles, according to the angular momentum of the two pions [55]:

EDE(z1, z2)e
iδDE = E1(z3)e

iδ1 + E2(z3)e
iδ2(z1 − z2) + E3(z3)e

iδ3(z1 − z2)
2 + . . . , (3.3)

and similarly for MDE . There are several interesting features in this expansion [12]: (1) for K0 decays,

the odd and even multipoles produce the ππ pair in opposite CP states (2) when CP-conserving, the

dipole emission E1 dominates over higher multipoles which have to overcome the angular momentum

barrier (|z1 − z2| < 0.2), (3) the strong phases can be assigned consistently to each multipole since

it produces the ππ state in a given angular momentum state, (4) the magnetic operators Q
−(+)
γ

contributes to the electric (magnetic) dipole emission amplitudes when π1π2 = π+π0 or π+π−, and

(5) the EIB and EDE amplitudes interfere and have different weak and strong phases, hence generate

a CP-asymmetry for both the neutral K0 → π+π−γ and charged K+ → π+π0γ modes. That is how

we plan to extract the Q−
γ contribution, so let us analyze each decay in turn.

3.1.1 K+ → π+π0γ

For the K+ → π+π0γ decay, instead of z1,2, the standard phase-space variables are chosen as the π+

kinetic energy T ∗
c and W 2 ≡ (q · P )(q · K1)/m

2
π+m2

K [55]. Indeed, pulling out the bremsstrahlung

contribution, the differential rate can be written

∂2Γ

∂T ∗
c ∂W 2

=
∂2ΓIB

∂T ∗
c ∂W 2

(

1 − 2
m2

π+

mK
Re

(

EDE

eAIB

)

W 2 +
m4

π+

m2
K

(

∣

∣

∣

∣

EDE

eAIB

∣

∣

∣

∣

2

+

∣

∣

∣

∣

MDE

eAIB

∣

∣

∣

∣

2
)

W 4

)

, (3.4)

where AIB = A
(

K+ → π+π0
)

is constant but both EDE and MDE are functions of W 2 and T ∗
c . The

main interest of K+ → π+π0γ is clearly apparent: AIB is pure ∆I = 3/2 hence suppressed, making

the direct emission amplitudes easier to access. Note that the strong phase of AIB is that of the ππ

rescattering in the I = 2, L = 0 state, as confirmed by a full O(p4) computation. This is not trivial a

priori since both Watson’s and Low’s theorem deal with asymptotic states. Actually, Low’s theorem

takes place at larger distance scales than Watson’s theorem, in agreement with the naive expectation

from the relative strength of QED and strong interactions.

Total and differential rates. Given its smallness, we can assume the absence of CP-violation

when discussing these observables. Experimentally, the electric and magnetic amplitudes (taken as
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constant) have been fitted in the range T ∗
c ≤ 80 MeV and 0.2 < W < 0.9 by NA48/2 [5]. Using their

parametrization,

XE =
−Re (EDE/eAIB)

m3
K cos(δ1

1 − δ2
0)

= (−24 ± 4 ± 4) GeV−4 , (3.5a)

XM =
|MDE/eAIB |

m3
K

= (254 ± 6 ± 6) GeV−4 , (3.5b)

with δI
J the strong ππ rescattering phase in the isospin I and angular momentum J state. The

magnetic amplitude is dominated by the QED anomaly and will not concern us here (see e.g.

refs. [36–38, 56]). For the electric amplitude, we obtain at O(p4):

XE =
3G8/G27

40π2F 2
πm2

K

cos(δDE − δ2
0)

cos(δ1
1 − δ2

0)

[

Eloop(W 2, T ∗
c ) − m2

K Re N̄

m2
K − m2

π

]

, (3.6)

with the expression of Eloop given in appendix A. The N̄ term contains both the LCT
8 counterterms [51]

and the Q−
γ contributions

Re N̄ ≡ (4π)2 Re(N14 − N15 − N16 − N17) −
2GF

3G8
BT

ReC−
γ

GF mK
, (3.7)

when 27-plet counterterms are neglected (or rather parametrically included into the Ni, together

with higher order momentum-independent chiral corrections). To a good approximation, the loop

contribution Eloop(W 2, T ∗
c ) is dominated by the leading multipole Eloop

1 (z3), in which case δDE = δ1
1 .

Note that Eloop
1 (z3) is still a function of the photon energy, hence indirectly of W 2 and T ∗

c .

In our computation of Eloop
1 , we include both the L8 and L27 contributions. Indeed, as shown

in figure 3, the large ππ loop occurs only for the ∆I = 3/2 channel, making it competitive with

the ∆I = 1/2 contributions arising entirely from the small πK and ηK loops. As a result, we find

Eloop
1 (0) = −0.25, to be compared to −0.16 in ref. [53]. In addition, the ππ loop generates a significant

slope. Though this momentum dependence over the experimental phase-space is mild, these cuts are

far from the z3 = 0 point, resulting in a further enhancement. Indeed, over the experimental range

(but not outside of it), Eloop
1 is well described by

[

Eloop
1 (W,T ∗

c )
]

T ∗
c ≤80MeV,0.2<W<0.9

≈ −0.260 − 0.051W + 0.089
T ∗

c

mK
. (3.8)

Since experimentally, no slope were included, we average Eloop
1 over the experimental range (using

the dT ∗
c dW measure to match the binning procedure of ref. [5]), and find

〈

Eloop
1 (W,T ∗

c )
〉

T ∗
c ≤80MeV,0.2<W<0.9

= −0.280 → X loop
E = −17.6 GeV −4 . (3.9)

Note that we checked that in the presence of the slopes as predicted at O(p4) that the fitted values

of XE and XM are not altered significantly.

Once Eloop
1 is known, we can constrain the local term N̄ using the experimental measurement of

XE :

Re N̄ = 0.095 ± 0.083 . (3.10)
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Figure 3. Basic topologies for the K → ππγ loops, with the vertices colored according to the conventions of

figure 2. The photon is to be attached in all possible ways. However, in accordance with Low’s theorem, most

of these diagrams renormalize the O(p2) bremsstrahlung process, leaving only genuine substracted three-point

loops (thus involving at least one charged meson) for the direct emission amplitudes. The transition is ∆I = 1/2

(3/2) when the weak vertex is K+π−η or K0π+π− (K+π−π0). The counterterms and Q−
γ contribute only to

K+ → π+π0γ and K0 → π+π−γ.

This is much smaller than the O(1) expected for the Ni on dimensional grounds or from factoriza-

tion [51], but confirms the picture described in section 2.1.3. Evidently, so long as the Ni are not

better known, we cannot get an unambiguous bound on ReC−
γ . Still, barring a large fortuitous

cancellation,
|Re C−

γ |
GF mK

. 0.1 . (3.11)

Note that this bound is rather close to our naive estimate (2.13) of the charm-quark contribution to

the real photon penguin in the SM.

Direct CP-violating asymmetries. CP-violation in K+ → π+π0γ is quantified by the parameter

ε′+0γ , defined from

Re

(

EDE

eAIB

)

(

K± → π±π0γ
)

≈ Re EDE

eRe AIB

[

cos(δDE − δ2
0) ∓ sin(δDE − δ2

0)ε
′
+0γ

]

, (3.12)

as [12]

ε′+0γ ≡ Im EDE

ReEDE
− ImAIB

ReAIB
. (3.13)

To reach this form, we use the fact that both Im EDE and ImAIB change sign under CP , but not the

strong phase δDE and δ2
0 , and work to first order in ImAIB/Re AIB. Since E2 has the same strong

phase as AIB , and higher multipoles are completely negligible, we can replace EDE by the dipole

emission E1 to an excellent approximation, so that δDE = δ1
1 .

Plugging eq. (3.12) in eq. (3.4), we get the differential asymmetry, which can be integrated

over phase-space according to various definitions. Still, no matter the choice, these phase-space

integrations tend to strongly suppress the overall sensitivity to ε′+0γ since the rate is dominantly

CP-conserving [12]. For example, NA48/2 [5] use the partially integrated asymmetry

aCP (W 2) =
∂Γ+/∂W 2 − ∂Γ−/∂W 2

∂Γ+/∂W 2 + ∂Γ−/∂W 2
=

−2m2
π+m2

KXEW 2 sin(δDE − δ2
0) ε′+0γ

1 + 2m2
π+m2

KXEW 2 + m4
π+m4

K(|XE|2 + |XM |2)W 4
, (3.14)
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where the dependences of XE and XM on T ∗
c are dropped, which is a reasonable approximation

within the considered phase-space. Given the experimental values for XE and XM , and combined

with sin(δ1
1 − δ2

0) ≈ sin(7◦) ≈ 0.12 [5, 57], aCP (W 2) . 0.01ε′+0γ over the whole W 2 range. Clearly,

integrating over W 2 to get the total rate charge asymmetry (or the induced direct CP-asymmetry in

K± → π±π0 [58]) would suppress the sensitivity even more. Because of this, the current bound is

rather weak [5]

sin(δDE − δ2)ε
′
+0γ = (−2.5 ± 4.2) × 10−2 . (3.15)

Actually, thanks to the fact that XE < 0, there is an alternative observable which is not phase-

space suppressed. Defining ∂2Γ±
DE = ∂2Γ± − ∂2Γ±

IB, and integrating over T ∗
c , the direct emission

differential rates ∂Γ+
DE/∂W 2 and ∂Γ−

DE/∂W 2 vanish at slightly different values of W 2, so we can

construct the asymmetry,

a0
CP =

W 2
∂Γ+

DE
/∂W 2=0

− W 2
∂Γ−

DE
/∂W 2=0

W 2
∂Γ+

DE
/∂W 2=0

+ W 2
∂Γ−

DE
/∂W 2=0

= − tan(δDE − δ2)ε
′
+0γ . (3.16)

The zeros are around W 2 ≈ 0.16, i.e. within the experimental range 0.2 < W < 0.9. Of course, it

remains to be seen whether the experimental precision needed to perform significant fits to the zeros

of ∂Γ±
DE/∂W 2 is not prohibitive.

Let us analyze the prediction for ε′+0γ in the SM. At O(p4), discarding for now the counterterms

and the electromagnetic operators, we obtain (see appendix A)

ε′+0γ(z3) =

√
2|ε′|
ω

f(z3,Ω) , f(z3,Ω) =
−1

1 + ωh20(z3)
− Ω

1 − Ω

ωδh20(z3)

1 + ωh20(z3)
, (3.17)

where ω = 1/22.4, h20(z3) is the ratio of the G27 and G8 loop functions, enhanced by the ππ contri-

butions to the former, while δh20(z3) is the ratio of the Gew and G8 loop functions and is O(1). The

parameter Ω is defined as
Im A2

Im A0
≡ ωΩ . (3.18)

It represents the fraction of electroweak versus QCD penguins in ε′,

ε′ = i
ei(δ2

0−δ0
0)

√
2

ω

(

Im A2

ReA2
− Im A0

ReA0

)

= i
ei(δ2

0−δ0
0)

√
2

Im A0

ReA0
ω(Ω − 1) . (3.19)

As shown in figure 4, a conservative range is Ω ∈ [−1,+0.8]. Values between [+0.2,+0.5] are favored

by current analyses in the SM, but large NP cannot be ruled out.

A crucial observation is that ε′+0γ is rather insensitive to Ω, because ωδh20(z3) is suppressed by

ω, so that f(z3,Ω) ≈ −2/3. Varying Ω in the large range [−1,+0.8], as well as including the potential

impact of the LCT
8 counterterms (subject to the constraint eq. (3.10)) does not affect ε′+0γ much (see

appendix A), and we conservatively obtain

ε′+0γ(Q3,...,10) = −0.55(25) ×
√

2|ε′|
ω

= −0.64(31) × 10−4 , (3.20)
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Figure 4. Fractions of QCD and electroweak penguins in ε′. The absence of electroweak penguins corresponds

to Ω = 0. Destructive interference occurs for values between 0 and 1 (with a singularity at 1 since it corresponds

to a complete cancellation between both types of penguins). Current analyses in the SM favor a limited

destructive interference, i.e. Ω ∈ [+0.2, +0.5] (see e.g. ref. [59–61]).

using Re(ε′/ε)exp = (1.65 ± 26)× 10−3 [20]. The slight growth of ε′+0γ with z3 is negligible compared

to its error. Since it is based on the experimental value of |ε′|, and given the large range allowed for

Ω, this estimate is valid even in the presence of NP in the four-quark operators.

The stability of this prediction actually means that even a precise measurement of ε′+0γ would

not help to understand the physical content of ε′, which would require measuring Ω. On the other

hand, it may help to unambiguously distinguish a contribution from Q−
γ ,

ε′+0γ(Q−
γ ) =

Im EDE(Q−
γ )

Re EDE
=

BT

20π2

GF /G27

F 2
π (m2

K − m2
π)XE

ImC−
γ

GF mK
= +2.8(7)

Im C−
γ

GF mK
, (3.21)

where we used the experimental determination (3.5) of Re EDE. So, the magnetic operator is com-

petitive with the four-quark operators already in the SM, where we find from eq. (2.12),

ε′+0γ(Q−
γ )|SM = +1.2(4) × 10−4 . (3.22)

Hence, summing eq. (3.20) and (3.22), there is a significant cancellation at play and ε′+0γ |SM =

0.5(5) × 10−4. This is still far below the current bound on ε′+0γ derived from eq. (3.15), which

translates as
ImC−

γ

GF mK
= −0.08 ± 0.13 , (3.23)

thus leaving ample room for NP effects.

3.1.2 KL → π+π−γ

For this mode, the large ππ loop is present in both the ∆I = 1/2 and ∆I = 3/2 channel, see figure 3,

so including the latter does not change the picture for the total rate. On the other hand, the situation

for the CP-violating parameter ε̄′+−γ , defined from [12]

ε̄′+−γ ≡ η+−γ − η+− , η+−γ ≡ A(KL → π+π−γ)EIB+E1

A(KS → π+π−γ)EIB+E1

, η+− ≡ A(KL → π+π−)

A(KS → π+π−)
, (3.24)
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is altered significantly. The restriction to the dipole terms originates in their dominance in the KS

decay. The parameter η+−γ is then purely CP-violating since the KL → π+π−γ dipole emissions

violate CP. The direct dipole emission amplitudes EL,S
1 for KL,S → π+π−γ are functions of the

photon energy z3 only, and can be written as

ES
1 = ReE+− , EL

1 = i Im E+− + ε̄ ReE+− . (3.25)

Parametrizing the CP-violating IB amplitude as EL
IB = η+−ES

IB, including the strong phases but

working to leading order in ω and in the CP-violating quantities [12],

ε̄′+−γ = ei(δ1
1−δ0

0) mKz1z2

e
√

2

Re E+−

ReA0

(

ε′ + i

(

Im A0

ReA0
− Im E+−

ReE+−

))

. (3.26)

As stated in ref. [12], ε̄′+−γ is a measure of direct CP-violation. The z1z2 momentum dependence comes

from the bremsstrahlung amplitude ES
IB , which we write in terms of the K → ππ isospin amplitudes

using A(KS → π+π−) =
√

2A0 + A2. Over the K0 → π+π−γ phase-space, z1z2 is the largest when

E∗
γ is at its maximum (and the bremsstrahlung at its minimum), but always strongly suppresses the

asymmetry since z1z2 . 0.030. Following ref. [62], to avoid dragging along this phase-space factor,

we define the direct CP-violating parameter ε′+−γ

ε′+−γ ≡
ε̄′+−γ

z1z2
=

η+−γ − η+−

z1z2
. (3.27)

Experimentally, this parameter has been studied indirectly through the time-dependence observed

in the π+π−γ decay channel [63] (using material in the beam to regenerate KS states), which is sensi-

tive to the interference between the KL → π+π−γ and KS → π+π−γ decay amplitudes. Importantly,

the experimental parameter η+−γ used in ref. [63] (also quoted by the PDG [20]) is not the same as

the one in eq. (3.24) but requires additional phase-space integrations. Following ref. [62] to pull these

out, the experimental measurement η̃+−γ = (2.35 ± 0.07) × 10−3 translates as

|ε′+−γ | < 0.06 . (3.28)

The E+− amplitude can be predicted at O(p4) in ChPT, with the result (neglecting the coun-

terterms and electromagnetic operators for now)

Im E+−

ReE+−
=

Im A0

ReA0

1 + ωΩ(h′
20(z3) + δh′

20(z3))

1 + ωh′
20(z3)

, (3.29)

where Ω is defined in eq. (3.18), and h′
20(z3), δh′

20(z3) are ratios of loop functions (see appendix A).

Because the ππ loop is allowed in the ∆I = 1/2 channel, h′
20(z3) ≈ 1/

√
2 ≪ ω−1 while δh′

20(z3) is

tiny and can be safely neglected. Plugging this in ε′+−γ , the sensitivity to Ω disappears completely

ε′+−γ(Q3,...,10) = iei(δ1
1−δ0

0) mK

e
√

2

ReE+−

ReA0
|ε′|
(

ei(δ2
0−δ0

0) − 1
)

. (3.30)

As for ε′+0γ , there is no way to learn something about ε′ by measuring ε′+−γ . Also, remark that ε′+−γ

is suppressed by the ∆I = 1/2 rule through its proportionality to |ε′|, contrary to ε′+0γ in eq. (3.20).
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The same combination of counterterms occur for K0 → π+π−γ and K+ → π+π0γ. The bound

in eq. (3.10) shows that this combination is of the order of the πK and ηK loops, which are much

smaller than the ππ loop. So, they can be safely neglected and we finally predict

ε′+−γ(Q3,...,10) ≈
m2

K

(4πFπ)2
h0(z3/2) × |ε′| × e−iπ/3 = −1.5(5) × 10−6 × e−iπ/3 , (3.31)

with h0(z3/2) ≈ −4
√

2 Rehππ (−z3) ≈ −2.2, δ2
0 −δ0

0 ≈ −45◦, and δ1
1 −δ2

0 ≈ 7◦. We conservatively add

by hand a 30% error to account for the chiral corrections to the loop functions. This result is an order

of magnitude below the bound derived in ref. [12] because having kept track of the G8, G27, and Gew

contributions, we could prove that ε′+−γ(Q3,...,10) is suppressed by the ∆I = 1/2 rule. As for ε′+0γ ,

this estimate is valid even in the presence of NP in the four-quark operators since it is independent

of Ω and takes Re(ε′/ε)exp as input.

With ε′+−γ(Q3,...,10) extremely suppressed, ε′+−γ becomes sensitive to the presence of the Q−
γ

operator, even in the SM. Its impact on ES
DE is negligible given the bound (3.11) but EL

DE receives

an extra contribution (see appendix A), so that

ε′+−γ(Q−
γ ) =

−GF /G8

6(2π)2
BT

m4
K

F 2
π (m2

K − m2
π)

ImC−
γ

GF mK
eiφγ ≈ 0.2

ImC−
γ

GF mK
eiφγ , (3.32)

with φγ ≡ δ1
1 − δ0

0 + π/2 ≈ 52◦ and G8 < 0 in our conventions. With the SM value (2.12) for ImC−
γ ,

this gives

ε′+−γ(Q−
γ )SM = +8(3) × 10−6 × eiφγ , (3.33)

which is about five times larger than ε′+−γ(Q3,...,10), but still very small compared to ε′+0γ . The

current measurement (3.28) requires
| Im C−

γ |
GF mK

< 0.3 , (3.34)

which is slightly looser than the bound (3.23) obtained from the direct CP-asymmetry in K+→π+π0γ.

3.2 KL,S → γγ

CP-violating asymmetries for K → γγ can be defined through the parameters (adopting the notation

of ref. [12])

η⊥γγ =
A(KS → (γγ)⊥)

A(KL → (γγ)⊥)
= ε + ε′⊥ , η||γγ =

A(KL → (γγ)||)

A(KS → (γγ)||)
= ε + ε′|| . (3.35)

Experimentally, these CP-violating parameters could be accessed through time-dependent interference

experiments, i.e. with K0 or K̄0 beams [64–66], so the photon polarization need not be measured using

the suppressed decays with Dalitz pairs.

Let us parametrize the K0 → γ(k1, µ)γ(k2, ν) amplitudes as

A(K0 → (γγ)||) =
1√
2
A||

γγ × (αGF mK) × (kν
1kµ

2 − k1 · k2g
µν) , (3.36a)

A(K0 → (γγ)⊥) =
1√
2
A⊥

γγ × (αGF mK) × iεµνρσk1,ρk2σ , (3.36b)
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Figure 5. The transition K → γγ in the SM, with the vertices colored according to the conventions of

figure 2. The meson loop produces the γγ|| state, while the meson poles produce the γγ⊥ state thanks to the

QED anomaly. The direct Q±
γ contributions produces both the γγ|| and γγ⊥ states.

so that the direct CP-violating parameters are expressed as

ε′||,⊥ = i

(

Im A
||,⊥
γγ

ReA
||,⊥
γγ

− Im A0

ReA0

)

. (3.37)

We can fix |A||
γγ | = 0.133(4) and |A⊥

γγ | = 0.0800(3) from the KL,S → γγ decay rates [20], which are

dominantly CP-conserving. In ChPT, A
||
γγ originates from a π+π− loop and A⊥

γγ is induced by the

π0, η, η′ meson poles together with the QED anomaly, see figure 5.

3.2.1 Two-photon penguin contributions

In the absence of the electromagnetic operators, K0 → γγ is induced by the two-photon penguin.

The parameters ε′||,⊥ are then generated indirectly by the Q3,...,10 contributions to the weak vertices

in figure 5, and directly by the two photon penguins with c and t quarks (see eq. (2.5)). However,

as said in section 2, these short-distance contributions are suppressed by the quadratic decoupling of

the heavy modes in the two-photon penguin loop [12]:

|Re A
||,⊥
γγ |c,t

|Re A
||,⊥
γγ |u

< 10−4 → |ε′||,⊥|c,t ≈
| Im A

||,⊥
γγ |c

|Re A
||,⊥
γγ |u

<
Im λc

Reλc
× 10−4 ≈ 10−7 . (3.38)

This contribution will turn out to be negligible both for ε′⊥ and ε′||.

Concerning the long-distance contribution, let us start with ε′||. Since A
||
γγ is induced by a ππ

loop, CP-violation comes entirely from the K0 → π+π− vertex, as is obvious adopting a dispersive

approach. By using A (KS → π+π−) =
√

2A0 + A2 (without strong phases), we recover the result of

ref. [67]

ε′||(Q3,...,10) = i
Im A0

Re A0

(√
2 + ωΩ√
2 + ω

− 1

)

=
ε′e−i(δ2

0−δ0
0)

1 + ω/
√

2
. (3.39)

As for ε′+0γ and ε′+−γ , ε′|| is insensitive to Ω, so this expression remains valid in the presence of NP.

Also, being suppressed by the ∆I = 1/2 rule, the tiny value |ε′||(Q3,...,10)| ≈ 4 × 10−6 is obtained.

The situation is different for ε′⊥. It was demonstrated in ref. [68] that only the Q1 operator has the

right structure to generate A⊥
γγ through the QED anomaly. Then, ImA⊥

γγ = 0 since current-current

operators are CP-conserving (proportional to λu = V ∗
usVud), leaving ε′⊥ as a pure and ∆I = 1/2

enhanced measure of the QCD penguins

ε′⊥(Q3,...,10) = −i
Im A0

ReA0
= i

√
2|ε′|

ω(1 − Ω)
. (3.40)
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One may be a bit puzzled by the appearance of ImA0 in this K → γγ observable. Actually,

this originates from the very definition of ε in the K → ππ system. It is the choice made there to

define a convention-independent physical parameter which renders it implicitly dependent on K → ππ

amplitudes. Besides, eq. (3.40) is clearly only valid in the usual CKM phase-convention, contrary to

eq. (3.37) which is convention-independent. For example, if the Wu-Yang phase convention Im A0 = 0

is adopted [69], then 〈γγ|Q1|KL〉 gets a non-zero weak phase since Imλu 6= 0, and ε′⊥ stays the same.

Evidently, given the current information on the Q6 contribution to ε′, it is not possible to give a

precise prediction for ε′⊥. With Ω ∈ [−1,+0.8], ε′⊥ spans an order of magnitude:

5 × 10−5 < −iε′⊥(Q3,...,10) < 7 × 10−4 . (3.41)

A value of a few 10−4 is likely as Ω ∈ [+0.2,+0.5] is favored in the SM, see figure 4.

This result is different from earlier estimates [67], obtained before the structure of the KL → γγ

amplitude was elucidated ref. [68]. Further, from that analysis, we do not expect that the residual

Q6 contributions in K2 → γγ could alter eq. (3.40), especially given its large ∆I = 1/2 enhanced

value (3.41). Indeed, the origin of the vanishing of the K2 → γγ amplitude at O(p4) is now understood

as the inability of SU(3) ChPT to catch the Q1 contribution at leading order. But once accounted for

either through higher order counterterms or by first working within U(3) ChPT, this Q1 contribution

is seen to dominate the K2 → γγ amplitude.

Though not much smaller than ε, measuring ε′⊥ would be very challenging. Still, any information

would be very rewarding: with its unique sensitivity to the QCD penguins, it could be used to finally

resolve the physics content of ε′. Further, it would also help in estimating ε precisely, since the term

i Im A0/Re A0 enters directly there [60, 70].

3.2.2 Electromagnetic operator contributions

The magnetic operators Q±
γ contribute to K → γγ as

A||,⊥
γγ → A||,⊥

γγ +
2Fπ

9πmK
B′

T

C−,+
γ

GF mK
. (3.42)

Given the good agreement between theory and experiment for the KS,L → γγ rate, we require that

their contributions is less than 10% of the full amplitude, giving

|Re C±
γ |

GF mK
. 0.3 . (3.43)

The stronger bound (3.11) from K+ → π+π0γ thus shows that the impact of Q±
γ on the total rates

is negligible (assuming |Re C+
γ | ≈ |Re C−

γ |).
Plugging eq. (3.42) in eq. (3.37), the Q±

γ contribution to the direct CP-violation parameters are

|ε′||(Q−
γ )| ≈ 1

3

| Im C−
γ |

GF mK
, |ε′⊥(Q+

γ )| ≈ 1

2

| Im C+
γ |

GF mK
. (3.44)

In the SM, |ε′||(Q−
γ )| ≈ 1.4× 10−5 is nearly an order of magnitude larger than ε′||(Q3,...,10), eq. (3.39).

On the contrary, the SM contribution |ε′⊥(Q+
γ )| ≈ 2× 10−5 is too small to compete with ε′⊥(Q3,...,10),

eq. (3.40). In the absence of a significant NP enhancement, ε′⊥ thus remains a pure measure of the

QCD penguins.
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Figure 6. The anatomy of the rare semileptonic decays, following the color coding defined in figure 2. For K →
πνν̄, only the Z penguin contributes. For KL → π0ℓ+ℓ−, in addition to the direct CP-violating contributions

(DCPV) from the Z and γ∗ penguins, the long-distance dominated indirect CP-violating contribution (ICPV)

and the CP-conserving two-photon penguin contribution (CPC) also enter. The JPC state of the lepton pair

is indicated, showing that only the DCPV and ICPV processes can interfere in the 1−− channel.

3.3 Rare semileptonic decays

The KL → π0ℓ+ℓ− decays are sensitive to several FCNC currents. In the SM, both the virtual and

real photon penguins, as well as the Z penguins can contribute (together with their associated W

boxes), see figure 6. Since NP could a priori affect all these FCNC in a coherent way, they have to

be accounted for. Further, to separately constrain the Z penguins, we include the rare K → πνν̄

decays in the analysis. So, in the present section, we collect the master formula for the KL → π0e+e−,

KL → π0µ+µ−, K+ → π+νν̄ and KL → π0νν̄ decay rates, starting from the effective Hamiltonian

Heff = −GF α√
2

∑

ℓ=e,µ,τ

(Cν,ℓ Qν,ℓ + CV,ℓ QV,ℓ + CA,ℓ QA,ℓ) + h.c. , (3.45)

QV,ℓ = s̄γµd ⊗ ℓ̄γµℓ , QA,ℓ = s̄γµd ⊗ ℓ̄γµγ5ℓ , Qν,ℓ = s̄γµd ⊗ ν̄ℓγµ(1 − γ5)νℓ ,

to which only the magnetic operators Q±
γ should be added, since Q±

γ∗ are implicitly included in QV,ℓ.

3.3.1 Electric operators and SM predictions

Thanks to the excellent control on the vector currents (2.8), the branching ratios for K → πνν̄ are

predicted very precisely:

B
(

K+ → π+νℓν̄ℓ

)

= 0.1092(5) · 10−11 × r2
us × |ων,ℓ|2 , (3.46a)

B
(

KL → π0νℓν̄ℓ

)

= 0.471(3) · 10−11 × r2
us × (Im ων,ℓ)

2 , (3.46b)

with rus = 0.225/|Vus| and ων,ℓ = Cν,ℓ/10
−4. Since experimentally, the neutrino flavors are not

detected, the K → πνν̄ rate is the sum of the rates into νe,µ,τ .

As shown in figure 6, the situation for KL → π0ℓ+ℓ− is more complex as the indirect CP-violation

KL = εK1 → π0γ∗[→ ℓ+ℓ−] [10] and the CP-conserving contribution KL → π0γγ[→ ℓ+ℓ−] [45, 46]
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have to be included (see appendix B for an updated error analysis):

B(KL → π0ℓ+ℓ−) =
(

Cℓ
dirr

2
us + Cℓ

intāSrus + Cℓ
mixā

2
S + Cℓ

γγ

)

· 10−12 ,

Ce
dir = 2.355(13) (ω2

V,e + ω2
A,e) , Cµ

dir = 0.553(3)ω2
V,µ + 1.266(12)ω2

A,µ ,

Ce
int = 7.3(2) [−7.0(2)] ωV,e , Cµ

int = 1.73(4) [−1.74(4)] ωV,µ , (3.47)

Ce
mix = 12.2(4) [11.5(5)] , Cµ

mix = 2.81(6) ,

Ce
γγ ≈ 0 , Cµ

γγ = 4.7(1.3) ,

with āS = 1.25(22), ωX,ℓ = ImCX,ℓ/10
−4. Importantly, if there is some NP, it would enter through

ωi only because all the rest is fixed from experimental data [44]. The theoretically disfavored case

of destructive interference between the direct and indirect CP-violating contributions is indicated in

square brackets [39, 45].

In the SM, the QCD corrected Wilson coefficients ωSM
ν,ℓ are known very precisely. Though ωSM

ν,τ is

slightly different than ωSM
ν,e(µ) owing to the large τ mass, the standard phenomenological parametriza-

tion employs a unique coefficient,

ωSM
ν = −λtXt + λ̄4 Reλc(Pc + δPu,c)

2π sin2 θW × 10−4
= 4.84(22) − i1.359(96) , (3.48)

valid for ℓ = e, µ, τ , with Xt = 1.465(16) [71], Pc = 0.372(15) [72–74], δPu,c = 0.04(2) [35] (with

λ̄ = 0.2255). The difference ωSM
ν,e(µ) − ωSM

ν,τ is implicitly embedded into the definition of Pc, up to a

negligible 0.2% effect [6]. With the CKM coefficients from ref. [75], the rates in the SM are thus

B(K+ → π+νν̄)SM = 8.25(64) · 10−11 , B(KL → π0νν̄)SM = 2.60(37) · 10−11 . (3.49)

For KL → π0ℓ+ℓ−, the Wilson coefficients are ImCi = Imλtyi with ySM
A,ℓ(MW ) = −0.68(3) and

ySM
V,ℓ (µ ≈ 1 GeV) = 0.73(4) [6]. Using again the CKM elements from ref. [75] gives the rate

B(KL → π0e+e−)SM = 3.23+0.91
−0.79 · 10−11 [1.37+0.55

−0.43 · 10−11] , (3.50a)

B(KL → π0µ+µ−)SM = 1.29+0.24
−0.23 · 10−11 [0.86+0.18

−0.17 · 10−11] . (3.50b)

The errors are currently dominated by that on āS .

These predictions can be compared to the current experimental results

B(K+ → π+νν̄)exp = 1.73+1.15
−1.05 × 10−10 [76, 77] , B(KL → π0e+e−)exp < 2.8 × 10−10 [79] ,

B(KL → π0νν̄)exp < 2.6 × 10−8 [78] , B(KL → π0µ+µ−)exp < 3.8 × 10−10 [80] .
(3.51)

At 90% CL, this measurement of B(K+ → π+νν̄) becomes an upper limit at 3.35 × 10−10 [76, 77].

Improvements are expected in the future, with J-Parc aiming at a hundred SM events for KL → π0νν̄,

and NA62 at a similar amount of K+ → π+νν̄ events. The KL → π0ℓ+ℓ− modes are not yet included

in the program of these experiments, but should be tackled in a second phase.
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3.3.2 Magnetic operators in K0 → π0ℓ+ℓ−

Only the Q+
γ operator occurs in the K0 → π0ℓ+ℓ− decays:

A(K0(P ) → π0γ∗(q))Q+
γ

= − eGF

24
√

2π2
BT

C+
γ

GF mK

(

q2Pµ − qµP · q
)

. (3.52)

For KS → π0ℓ+ℓ−, this contribution is CP-conserving and parametrically included in aS since it is

fixed from experiment. If we require that there is no large cancellations, i.e. that the Q+
γ operator at

most accounts for half of |aS | ≈ 1.2, we get from eq. (B.1) in appendix B,

|Re C+
γ |

GF mK
.

3|āS |
2BT

≈ 1.5 . (3.53)

This bound is nearly an order of magnitude looser than the one derived from KL → γγ in eq. (3.43).

For KL → π0ℓ+ℓ−, the whole effect of Q+
γ is to shift the value of the vector current [44, 81]:

ωV,ℓ × 10−4 = Im CV,ℓ +
Qd

2
√

2π

BT (0)

f+ (0)

ImC+
γ

GF mK
≈ Im CV,ℓ −

1

21.3

Im C+
γ

GF mK
, (3.54)

where we assume the slopes of BT (z) and f+ (z) are both saturated by the same resonance (which is

a valid first order approximation). The relative sign between the Q+
γ and QV,ℓ contributions agrees

with ref. [81].

In the SM, Im CV,ℓ ≈ 0.99 × 10−4 and | Im C+
γ |/GF mK ≈ 4 × 10−5, so the shift is negligible.

However, in case there is some NP, it quickly becomes visible. In the absence of any other NP

effects (which is a strong assumption, as we will see in the next section), the current experimental

bounds (3.51) imply

KL → π0e+e− ⇒ −0.018 <
ImC+

γ

GF mK
< +0.030 , (3.55a)

KL → π0µ+µ− ⇒ −0.050 <
ImC+

γ

GF mK
< +0.063 , (3.55b)

at 90% confidence and treating all theory errors as Gaussian. This is about an order of magnitude

tighter than the bound (3.23) on ImC−
γ derived from K+ → π+π0γ.

3.4 Virtual effects in ε′/ε

Up to now, the photon produced by the electromagnetic operators was either real or coupled to a

Dalitz pair, but it could also couple to quarks. At the level of the OPE, such effects are dealt with as

O(α) mixing among the four-quark operators, and sum up at µ ≈ 1GeV in the Wilson coefficients of

eq. (2.6). The non-perturbative tail of these mixings are computed as QED corrections to the matrix

elements of the effective operators between hadron states. Currently, only the left-handed electric

operator (i.e., the virtual photon penguin) is included in the OPE [6] and in the K → ππ matrix

elements and observables [82]. The magnetic operators are left aside given their strong suppression

in the SM.
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Figure 7. The virtual effects from Q±
γ on ∆S = 2 observables (reversed diagrams are understood) and on ε′

from K0 → π+π−. Red vertices stand for the SM transitions (which are not necessarily local, see for example

figure 5), while green vertices are induced by Q±
γ .

3.4.1 Magnetic operators in hadronic observables

In the presence of NP, the magnetic operators could be much more enhanced than the electric op-

erators, so their impact on hadronic observables must be quantified. Though in principle we should

amend the whole OPE (i.e., initial conditions and running), we will instead compute only the low-

energy part of these corrections. Indeed, the photon produced by Q±
γ can be on-shell, so the dominant

part of the mixing of Q±
γ into purely partonic operators is likely to arise at the matrix-element level.

In any case, the missing SD contributions do not represent the main source of uncertainty. Indeed, the

meson-photon loops induced by Q±
γ are UV-divergent, requiring specific but unknown counterterms.

So, at best, the order of magnitude of the LD mixing effects can be estimated. To this end, the

loops are computed in dimensional regularization and only the leading log(µ/mπ) or log(µ/mK) is

kept, with µ ≈ mρ. Parametrizing the momentum dependences of the BT , B′
T form-factors and of

the electromagnetic form-factors of the π and K mesons using vector-meson dominance would lead

to similar results.

Let us start with the impact of Q±
γ on ε′. The diagram of figure 7 induces a correction to

η+− = A(KL → π+π−)/A(KS → π+π−) and thereby, discarding strong phases for simplicity

|Re(ε′/ε)|γ
Re(ε′/ε)exp

≈ 3α

256π3
BT

GF

|G8|
log(mρ/mπ)

|ε|Re(ε′/ε)exp

| Im C−
γ |

GF mK
≈ 2

| Im C−
γ |

GF mK
. (3.56)

The photon loop is IR safe since Q−
γ does not contribute to the bremsstrahlung amplitude in K0 →

π+π−γ. Let us stress again that this is only an order of magnitude estimate. Besides the neglected SD

mixings, unknown effects of similar size as eq. (3.56) are necessarily present to absorb the divergence.

Plugging in the bound on ImC−
γ obtained from the measured K+ → π+π0γ direct CP-asymmetry,

eq. (3.23),

(ε′+0γ)exp ⇒ |Re(ε′/ε)|γ
Re(ε′/ε)exp

= (16 ± 26)% . (3.57)

So, even in the presence of a large NP contribution to Q−
γ , the impact on ε′ remains smaller than its

current theoretical error in the SM.

For completeness, let us also compute the contribution of the magnetic operators to the ∆S = 2

observables, for which perturbative QED corrections are significantly suppressed. At long distance,

the magnetic operators contribute to 〈K̄0|HW |K0〉 through the transitions K0 → πγ∗ → K̄0 and

K0 → γγ → K̄0, see figure 7. Neglecting the momentum dependences of the K → γγ and K → πγ∗
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Figure 8. The gluonic penguin in the SM.

vertices and keeping only the leading log(mρ/mπ), we obtain

µ12 ≡
〈K̄0|Q±

γ |K0〉
MK∆M exp

K

= (a⊥γγ + aπγ)
C+

γ

GF mK
+ a||γγ

C−
γ

GF mK
, (3.58)

with (see eq. (3.36) for the definition of Ai
γγ and eq. (B.1) for that of aS)

|ai
γγ | ≈

α2

72π3
B′

T

G2
F m4

KFπ

∆M exp
K

|Ai
γγ | log(mρ/mK) ≈ 7 × 10−6 |Ai

γγ | , (3.59a)

|aπγ | ≈
α

512π5
BT |aS |

G2
F m4

πmK

∆M exp
K

log(mρ/mπ) ≈ 8 × 10−7 . (3.59b)

Numerically, aπγ ∼ aπγ , even though they are not of the same order in α, because of the absence of a

K0 → π0γ∗ vertex at leading order (see eq. (B.1) in appendix B), and because the momentum scale

in the aπγ loop is entirely set by the pion mass instead of the transferred momentum of O(mK), as

in aγγ . With such small values for aγγ and aπγ , neither ∆MK(Q±
γ ) ∼ Re µ12 nor εK(Qγ) ∼ Im µ12

can compete with the non-radiative ∆S = 2 processes, even in the presence of NP in Q±
γ .

3.4.2 Gluonic penguin operators

In complete analogy with the electromagnetic operators, gluonic FCNC are described by effective

operators of dimensions greater than four. For instance, the chromomagnetic operators producing

either a real or a virtual gluon are

Hg
eff = C±

g Q±
g + h.c. , Q±

g =
g

16π2
(s̄LσαβtadR ± s̄RσαβtadL)Ga

αβ . (3.60)

The chromoelectric operators Q±
g∗ , whose form can easily be deduced from eq. (2.2), contribute only

for a virtual gluon.

In the SM, both Q±
g and Q±

g∗ arise from the diagram shown in figure 8. As for Q±
γ , the former

are suppressed by the light-quark chirality flips hence completely negligible, but the chromoelectric

operators are sizeable and enter into the initial conditions for the four-quark operators [6]. They are

thus hidden inside the weak low-energy constants in eq. (2.15), together with the hadronic virtual

photon and Z penguins (see figure 2).

The chromomagnetic operators are not included in the standard OPE, since they are negligible

in the SM. But being of dimension-five, they could get significantly enhanced by NP. This would

have two main effects. First, through the OPE mixing,4 Q±
g generate Q±

γ . When both arise at a

4The Q±
γ → Q±

g mixings are not included in eq. (3.61), even though they become relevant if C±
γ ≫ C±

g . However,

such effects are presumably LD-dominated, and thus were already included in eq. (3.56).
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high-scale µNP & MW , assuming only the SM colored particle content, neglecting the mixings with

the four-quark operators, and working to LO [81]:

C±
γ (µc) = η2

[

C±
γ (µNP ) + 8(1 − η−1)C±

g (µNP )
]

, C±
g (µc) = ηC±

g (µNP ) ,

η ≡ η(µNP ) =

(

αS(µNP )

αS(mt)

)2/21 (αS(mt)

αS(mb)

)2/23 (αS(mb)

αS(µc)

)2/25

. (3.61)

Numerically, η(µ) = 0.90, 0.89, 0.88 for µ = 0.1, 0.5, 1 TeV, respectively. Indirectly, all the bounds on

C±
γ can thus be translated as bounds on C±

g .

However, there is another more direct impact of Q±
g on phenomenology since it contributes to

K → ππ, hence to ε′ [81]

Re(ε′/ε)g =
11

64π2

ω

|ε||Re A0|
m2

πm2
K

Fπ(ms + md)
ηBG Im C−

g ≈ 3BG

Im C−
g

GF mK
, (3.62)

with, neglecting ∆I = 3/2 contributions, |ReA0| =
√

2Fπ(m2
K−m2

π)|Re G8| and Fπ = 92.4 MeV. The

hadronic parameter BG parametrizes the departure of 〈(ππ)0|Q−
g |K0〉 from the chiral quark model,

and lies presumably in the range 1 → 4 [81]. Given that the SM prediction for Re(ε′/ε) is rather

close to Re(ε′/ε)exp [61], but its uncertainty is itself of the order of Re(ε′/ε)exp, we simply impose

that |Re(ε′/ε)g| ≤ Re(ε′/ε)exp, which gives,

| Im C−
g |

GF mK
. 5 × 10−4 . (3.63)

For comparison, imposing that |ReA0|g is at most of the order of |Re A0|exp gives the much looser

constraint |Re C−
g |/GF mK . 10. Note, however, that the bound (3.63) is not to be taken too strictly.

First, the BG parameter is set to 1, but could be slightly smaller or bigger. Second, Q±
g is not the

only FCNC affecting Re(ε′/ε) (see figure 2). This bound could get relaxed in the presence of NP in

the other penguins. This will be analyzed in more details in the next section.

4 New Physics effects

In most models of New Physics, new degrees of freedom and additional sources of flavor breaking

offer alternative mechanisms to induce the FCNC transitions. The goal of the present section is to

quantify the possible phenomenological impacts of NP in the dimension-five magnetic operators Q±
γ of

eq. (2.1). As discussed in details in the previous sections, CP-conserving processes are fully dominated

by the SM long-distance contributions. So, throughout this section, we concentrate exclusively on

CP-violating observables, from which the short-distance physics can be more readily accessed along

with possible signals of NP.

The cleanest observables to identify a large enhancement of Q±
γ are the direct CP-asymmetries

in K → ππγ and K → (γγ)||, which would then satisfy

1

3
|ε′+0γ(Q−

γ )| ≈ 5|ε′+−γ(Q−
γ )| ≈ 3|ε′||(Q−

γ )| ≈
| Im C−

γ |
GF mK

. (4.1)
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Indeed, the contributions from the four-quark operators (QCD and electroweak penguins) is small

and under control,

3ω

2
√

2
|ε′+0γ(Q3,...,10)| ≈

5

2
|ε′+−γ(Q3,...,10)| ≈ |ε′||(Q3,...,10)| ≈ |ε′| , (4.2)

with ω = 1/22.4. By using the experimental ε′ value, these estimates are independent of the presence

of NP in Q3,...,10. On the other hand, the KS,L → (γγ)⊥ asymmetry is very sensitive to Ω, representing

the ratio of the electroweak to the QCD penguin contributions in ε′:

ε′⊥(Q3,...,10) = −i
Im A0

ReA0
= i

√
2|ε′|

ω(1 − Ω)
, |ε′⊥(Q+

γ )| ≈ 1

2

| Im C+
γ |

GF mK
. (4.3)

So, knowing the impact of Q+
γ , the asymmetry ε′⊥ can be used to extract the otherwise inaccessible

QCD penguin contribution to ε′.

The experimental information on these four asymmetries is however limited, with only the loose

bound (3.15) on ε′+0γ and (3.28) on ε′+−γ currently available. So, to get some information on Q±
γ , two

routes will be explored.

First, we can use the KL → π0ℓ+ℓ− decay rates, for which the experimental bounds are currently

in the 10−10 range. As shown in figure 9, these modes are rather sensitive to Q+
γ once | Im C+

γ |/GF mK

is above a few 10−3. In the absence of any other source of NP, the experimental bounds (3.51) give

KL → π0e+e− ⇒ −0.018 <
ImC+

γ

GF mK
< +0.030 , (4.4a)

KL → π0µ+µ− ⇒ −0.050 <
ImC+

γ

GF mK
< +0.063 . (4.4b)

To compare with the direct CP-asymmetries (4.1), sensitive to Q−
γ , we first need to study how NP

could affect the relationship between Q+
γ and Q−

γ . If the SM relation C+
γ ≈ −C−

γ survives, the direct

CP-asymmetries could be relatively large, with for example −8% < ε′+0γ < 5% from KL → π0e+e−.

Then, since NP can enter in KL → π0ℓ+ℓ− through other FCNC, for example by affecting the

electroweak penguins, we must also study their possible interferences with Q+
γ , and quantify how

broadly the bounds (4.4) could get relaxed.

A second route is to use ε′. Indeed, in many NP models, the magnetic operators Q±
γ are accom-

panied by chromomagnetic operators Q±
g , which contribute directly to ε′,

Re(ε′/ε)g ≈ 3BG

ImC−
g

GF mK
, (4.5)

with BG the hadronic bag parameter a priori of O(1). If the Wilson coefficients of Q±
γ and Q±

g are

similar, the current measurement Re(ε′/ε)exp = (1.65±26)×10−3 [20] imposes strong constraints, and

would naively imply that the direct CP-asymmetries in eq. (4.1) are at most of O(10−3). However,

not only the relationship between Q±
g and Q±

γ is model-dependent, but as for KL → π0ℓ+ℓ−, many

other FCNC enter in ε′ and their possible correlations with Q±
g must be analyzed.

The only way to relate the NP occurring in the various FCNC is to adopt a specific picture for

the NP dynamics. Evidently, this cannot be done model-independently. Instead, the strategy will
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Figure 9. The sensitivity of the KL → π0ℓ+ℓ− decays to the magnetic penguin operator Q+
γ , in the ab-

sence of any other source of NP. These curves are actually parabolas, but blown out to emphasize the small

Im C+
γ /GF mK region (whose SM value is in the 10−5 range). The horizontal lines signal the experimental

bounds on KL → π0ℓ+ℓ−. The contours stand for 90% confidence regions given the current theoretical errors

in eq. (3.47). Their apparent thinning as | Im C+
γ | increases is purely optical, except just below 10−2 where the

Q+
γ contribution precisely cancel out with the SM one in the vector current (positive DCPV-ICPV interference

is assumed).

be to classify the models into broad classes, and within each class, to stay as model-independent as

possible. In practice, these classes are in one-to-one correspondence with the choice of basis made for

the effective semileptonic FCNC operators. Once a basis is chosen, bounds on the Wilson coefficients

of these operators are derived by turning them on one at a time. In this way, fine-tunings between

the chosen operators are explicitly ruled out. This is where the model-dependence enters [83]. On the

other hand, the magnetic operators are kept on at all times, since it is precisely their interference with

the semileptonic FCNC which we want to resolve. Note that the alternative procedure of performing

a full scan over parameter space is (usually) basis independent, but we prefer to avoid that method

as the many possible fine-tuning among the semileptonic operators would obscure those with the

magnetic ones. Further, we will see that with our method, it is possible to get additional insight

because the bounds do depend on the basis, and thus allow discriminating among the NP scenarios.

4.1 Model-independent analysis

The most model-independent operator basis is the one minimizing the interferences between the NP

contributions in physical observables [83]. It is the one in eq. (3.45), which we reproduce here for

convenience:

HPheno = −GF α√
2

∑

ℓ=e,µ,τ

(Cν,ℓ Qν,ℓ + CV,ℓ QV,ℓ + CA,ℓ QA,ℓ) + C±
γ Q±

γ + h.c. , (4.6)

QV,ℓ = s̄γµd ⊗ ℓ̄γµℓ , QA,ℓ = s̄γµd ⊗ ℓ̄γµγ5ℓ , Qν,ℓ = s̄γµd ⊗ ν̄ℓγµ(1 − γ5)νℓ ,

Q±
γ =

Qde

16π2
(s̄LσµνdR ± s̄RσµνdL)Fµν .
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The four-fermion operators do not interfere in the rates since they produce different final states,

while Q+
γ and Q−

γ have opposite CP-properties (see table 1). On the other hand, Q±
γ and QV,ℓ ∋ Q±

γ∗

involve an intermediate photon hence necessarily interfere. Note that the coefficients in eq. (4.6) are

understood to be purely induced by the NP: the SM contributions have to be added separately.

Given the current data, the bounds on the CP-violating parts of the Wilson coefficients are (we

define ρ−1 ≡ 21.3GF mK from eq. (3.54))

K+ → π+π0γ ⇒−160 < ρ ImC−
γ < 80 ,

KL → π0e+e− ⇒ −14 < ImCV,e − ρ Im C+
γ < 8 ⊕ [−10 < ImCA,e < 11 ∧ −8 < ρ Im C+

γ < 14] ,

KL → π0µ+µ− ⇒ −29 < ImCV,µ − ρ ImC+
γ < 24 ⊕ [−16 < Im CA,µ < 18 ∧ −24 < ρ Im C+

γ < 29] ,

K+ → π+νν̄ ⇒ −14 < ImCν,ℓ < 17 (ℓ = e ⊕ µ ⊕ τ) .

(4.7)

All the numbers are in unit of 10−4. The symbol “⊕” stands for the exclusive alternative, since e.g.

CA,ℓ and CV,ℓ are not turned on simultaneously, while ”∧” means that the bounds are correleted, i.e.

the coefficients fall within an elliptical contour in the corresponding plane. For comparison, ImCSM
V,ℓ ,

Im CSM
A,ℓ and Im CSM

ν,ℓ are all around 10−4. For the magnetic operators, the SM value in eq. (2.12)

implies ρ Im C±,SM
γ ≈ ∓0.015 Im λt ∼ O(10−6).

For the neutrino modes, NP is separately turned on in each ImCν,ℓ, ℓ = e, µ, τ . Assuming

leptonic universality would decrease the bound by about
√

3 since then all three Cν,e = Cν,µ = Cν,τ

would simultaneously contribute. The direct bounds on ImCν,ℓ from KL → π0νν̄ are currently not

competitive, so the experimental bound on the K+ → π+νν̄ mode is used setting ReCν,ℓ = 0. The

maximal value for KL → π0νν̄ can then be predicted

B(KL → π0νν̄) < 1.2 × 10−9 , (4.8)

which corresponds to a saturation of the Grossman-Nir Bound [84] (including the isospin breaking

effects in the vector form-factor, but forbidding a destructive interference between the CP-conserving

SM and NP contributions since Re Cν,ℓ = 0). This is more than an order of magnitude below the

current experimental limit, but about 50 times larger than the SM prediction.

For KL → π0ℓ+ℓ−, the bound on the vector current is less strict than on the axial-vector current

because of the interference with the indirect CP-violating contribution. The theoretically favored case

of positive DCPV-ICPV interference is assumed (relaxing this would not change much the numbers).

Finally, the impact of Q−
γ on ε′ is estimated to be below 30% of its experimental value given the

bound from K+ → π+π0γ, see eq. (3.57), hence is neglected.

To resolve the bound in the vector current and thereby disentangle C+
γ and CV,ℓ, one is forced to

specify at which level a destructive interference becomes a fine-tuning, see figure 10. This introduces

some model-dependence since a specific NP model could generate Q±
γ and QV,ℓ (or Q±

γ∗) coherently.

In this respect, it should be noted that the basis of four-fermion operators in eq. (4.6) is not complete.

It lacks the scalar, pseudoscalar, tensor and pseudotensor four-fermion operators. Naively, all these

operators produce the lepton pair in different states and do not interfere in the rate [44]. Introducing

large NP in any of them would thus render the bounds (4.7) weaker. There is however one exception.

– 29 –



J
H
E
P
0
8
(
2
0
1
1
)
0
6
9

Figure 10. The band in the ImCV,ℓ − Im C+
γ plane allowed by the KL → π0ℓ+ℓ− experimental bounds.

The degree of fine-tuning is represented by the radiating areas, where | Im CV,ℓ − ρ ImC+
γ |/|ρ ImC+

γ | < 1/r,

r = 2, 5, 10, 30. Assuming Im C+
γ = − ImC−

γ , ε′+0γ could thus reach its K+ → π+π0γ experimental bound

for r & 5.

In KL → π0ℓ+ℓ−, the tensor operators,

QT,ℓ = s̄σµνd ⊗ ℓ̄σµνℓ , (4.9)

do produce the leptons in the same 1−− state as QV,ℓ and Q+
γ [44]. So, effectively, QT,ℓ can be

absorbed into QV,ℓ. But then, owing to their similar structures, it is not impossible that Q±
γ and QT,ℓ

are generated simultaneously, and thus that Q±
γ is tightly correlated to this effective QV,ℓ.

In the next two sections, several NP scenarios are considered, in order to investigate under

which circumstances the bounds on C+
γ and CV,ℓ can be resolved. Of course, ultimately, better

measurements of the direct CP-asymmetries are the cleanest option to get to C±
γ . But before pushing

for an experimental effort in that direction, it is essential to have a more precise idea of their maximal

sizes under a large spectrum of NP scenarios.

4.1.1 Hadronic current and Minimal Flavor Violation

The NP scenarios are organized into two broad classes according to the way the leptonic currents

of the effective operators are parametrized. So, before entering that discussion, let us consider here

their hadronic parts, whose generic features transcend the various scenarios.

Only the vector current s̄γµd enters in eq. (4.6) because the axial-vector current s̄γµγ5d drops out

of the K → πνν̄ and KL → π0ℓ+ℓ− matrix elements. It would thus be equivalent to replace s̄γµd by

the SU(2)L ⊗ U(1)Y invariant forms Q̄γµQ and D̄γµD, with QT = (u, d)L and D = dR. By contrast,

the magnetic operators require an extra Higgs doublet field to reach an SU(2)L invariant form:

Q±
γ ∼ (Q̄σµνDH ± D̄σµνQH∗)Fµν . (4.10)

After electroweak symmetry breaking, this operator collapses to that in eq. (2.2). Consequently, if the

NP respects the SU(2)L ⊗ U(1)Y symmetry, Q±
γ and semileptonic operators are equally suppressed
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by the NP scale since they are all of dimension six. However, the magnetic operators are a priori

much more sensitive to the electroweak symmetry breaking mechanism, so that the scaling between

the two types of operators cannot be assessed model-independently. Its phenomenological extraction

is thus important, and could help discriminate among models.

The effective operators in eq. (4.6) induce the s → d flavor transition, while the leptonic currents

(or the photon) are flavor diagonal. Model-independently, the underlying gauge symmetry properties

of an operator does not preclude anything about its flavor-breaking capabilities. However, the situa-

tion changes if we ask for the NP to have no more sources of flavor breaking than the SM. This is the

Minimal Flavor Violation hypothesis [85–89]. For the operators at hand, it implies that the hadronic

currents scale as

Q̄Iγµ(Y†
uYu)IJQJ , D̄Iγµ(YdY

†
uYuY

†
d)

IJDJ , Q̄Iσµν(Y†
uYuYd)

IJDJ , (4.11)

with vYd = md, vYu = muV , mu,d the diagonal quark mass matrices, and v the Higgs vacuum

expectation value. The CKM matrix V is put in Yu so that the down-quark fields in the operators

of eq. (4.6) are mass eigenstates. Also, we limit the MFV expansions to the leading sources of

flavor-breaking (i.e., minimal number of Yu,d) for simplicity.

Under MFV, the NP operators acquire many SM-like properties. First, D̄γµD is doubly sup-

pressed by the light quark Yukawa couplings, and is thus not competitive with Q̄γµQ. Second, the

chirality flip in Q̄IσµνDJ comes from the external light quark masses, and are thus significantly

suppressed. Finally, the s → d transitions become correlated to the b → d and b → s transitions since

v2(Y†
uYu)IJ ≈ m2

t V
†
3IV3J . (4.12)

Of course, this correlation is not always strict as additional terms in the MFV expansion can be

relevant. Still, it drives the overall scale of the observables in each sector.

We do not intend to perform a full MFV analysis here. Instead, our goal is to quantify, under the

MFV ansatz, the maximal NP effects Q±
γ could induce given the current situation in b → sγ. From

eqs. (4.10), (4.11), (4.12), discarding ms(d) against mb(s),

Q±
γ |dI

R
→dJ

L
∼ C7γ(µEW ) (Q̄Jσµν(Y†

uYuYd)
JIDI) H Fµν ⇒

Q±
γ |s→d

Q±
γ |b→s

∼ V †
tsVtd ms

V †
tsVtb mb

. (4.13)

The flavor-universality of the Wilson coefficient C7γ(µEW ) embodies the MFV hypothesis. The NP

shift still allowed by b → sγ is [90]

δC7γ(µEW ) = [−0.14, 0.06] ∪ [1.42, 1.62] , (4.14)

for constructive and destructive interference with the SM contributions. The latter has a lower

probability, and would require significant cancellations among the NP effects in B → Xsℓ
+ℓ−. From

eq. (2.12), and including the LO QCD reduction [6], such a shift can be written in our conventions as

Im C±
γ

∣

∣

MFV

GF mK
−

ImC±
γ

∣

∣

SM

GF mK
≈ ±2

3
Im λt δC7γ(µEW ) . (4.15)
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For comparison, the SM prediction is ∓0.31(8) × Im λt. So, there would be no visible effects for

δC7γ(µEW ) ∈ [−0.14, 0.06], and at most a factor four enhancement for δC7γ(µEW ) ∈ [1.42, 1.62].

This is hardly sufficient to push any of the asymmetries within the experimentally accessible

range, while the impact on KL → π0ℓ+ℓ− would be buried in the theoretical errors, see figure 9.

However, it is well-known that MFV is particularly effective for K physics since it suppresses the NP

contributions by the small V ∗
tsVtd ∼ 10−4. So, this is the best place to test MFV. A deviation with

respect to the strict ansatz (4.13) could lead to visible effects.

4.2 Tree-level FCNC

The basis of operators in eq. (4.6) maximally breaks the SU(2)L ⊗ U(1)Y symmetry. Neutrinos are

completely decoupled from the charged leptons, and the vector and axial-vector operators (as well

as Q+
γ and Q−

γ ) maximally mix currents of opposite chiralities. To be specific, the SU(2)L ⊗ U(1)Y
invariant basis [91] is, after projecting the hadronic currents of semileptonic operators on their vector

components,

HGauge = −GF α√
2

∑

ℓ=e,µ,τ

(CL,ℓ QL,ℓ + C ′
L,ℓ Q′

L,ℓ + CR,ℓ QR,ℓ) + CL,R
γ QL.R

γ + h.c. , (4.16)

QL ≡ s̄γµd ⊗ L̄γµL , Q′
L ≡ s̄γµd ⊗ L̄γµσ3L , QR ≡ s̄γµd ⊗ ĒγµE ,

QL
γ =

Qde

16π2v
s̄RσµνdL H∗ Fµν , QR

γ =
Qde

16π2v
s̄LσµνdR H Fµν ,

with LT = (νℓ, ℓ)L and E = ℓR. It is related to the phenomenological basis (4.6) through nearly

democratic transformations






Cν,ℓ

CV,ℓ

CA,ℓ






=

1

2







1 1 0

1 −1 1

−1 1 1













CL,ℓ

C ′
L,ℓ

CR,ℓ






,

(

C−
γ

C+
γ

)

=
1

2

(

1 −1

1 1

)(

CR
γ

CL
γ

)

, (4.17)

for each ℓ = e, µ, τ . As in eq. (4.6), the SM contributions are not encoded into HGauge, and have to

be added separately.

The HGauge basis represents a class of models where the four-fermion effective operators arise

entirely from some high-scale SU(2)L ⊗ U(1)Y invariant tree-level interactions. It is characterized

by the correlations it imposes among the phenomenologically non interfering operators in HPheno. A

well-known example of model within this class is the MSSM with R-parity violating couplings [92–95],

but more generic leptoquark models are also of this form [96]. Note that in these two cases, the QR,L
γ

operators nevertheless arise only at the loop level since both the photon and the Higgs (see eq. (4.10))

have flavor-diagonal couplings at tree-level.

The HGauge basis completely decouples the three leptonic flavors. This is adequate since generic

leptoquark couplings do not respect leptonic universality. Actually, one would expect that lepton-

flavor violating (LFV) operators should arise, inducing in particular K → (π)eµ which corresponds

to an s + µ → d + e transition. Those modes are very constrained experimentally, with bounds often

lower that for lepton-flavor conserving (LFC) modes. So, if LFV and LFC couplings have similar

sizes, there can be no large effects in the LFC modes. However, to relate the LFC and LFV couplings
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Figure 11. Tree-level FCNC scenario, with CL,R
γ together with either C′

L, CL, or CR turned on. The diagonal

bands show the model-independent limits of figure 10.

is far from immediate, and requires some additional inputs on the dynamics (see e.g. ref. [97–99] for

studies within MFV). So in the present work, we concentrate exclusively on LFC decay channels.

Still, let us emphasize again that leptonic universality is not expected to hold in the present scenario.

Adopting the SU(2)L⊗U(1)Y invariant basis, the Wilson coefficients of the semileptonic operators

in eq. (4.16) are turned on one at a time while either CL
γ or CR

γ is kept on. The bounds are then

completely resolved and rather strict (all numbers in units of 10−4)

KL → π0e+e− ⇒ −20 < (− Im CL,e ⊕ ImC ′
L,e ⊕ Im CR,e) < 24 ∧ −14 < ρ Im C+

γ < 19 ,

KL → π0µ+µ− ⇒ −33 < (− Im CL,µ ⊕ Im C ′
L,µ ⊕ Im CR,µ) < 37 ∧ −30 < ρ Im C+

γ < 36 ,

K+ → π+νν̄ ⇒ −28 < (Im CL,ℓ ⊕ Im C ′
L,ℓ) < 34 (ℓ = e ⊕ µ ⊕ τ) .

(4.18)

Indeed, CL
γ and CR

γ cannot grow unchecked since the bounds from KL → π0(ℓ+ℓ−)1−− would then

require a large interference with CL, C ′
L, or CR . But these Wilson coefficients also contribute either to

the neutrino modes (via Qν,ℓ) or to the axial-vector current (via QA,ℓ), which are separately bounded

since non-interfering. So, CL, C ′
L, or CR have maximal allowed values, and so have CL

γ and CR
γ .

The slight asymmetries between minimal and maximal values are due to the SM contributions. As

in eq. (4.7), “⊕” denotes exclusive alternatives and “∧” means that the bounds are correlated. For

example, both ImCL,ℓ and ImC+
γ cannot reach their maximal values simultaneously, but rather should

fall within the elliptical contour in the ImCL,ℓ–Im Cγ plane, see figure 11. Looking at these contours,

the bound from KL → π0e+e− is clearly tighter than that from K+ → π+νν̄, but KL → π0µ+µ− is

less constraining (except of course for CR,µ). Thus, as long as leptonic universality is not imposed,

CL,µ and C ′
L,µ are only bounded by K+ → π+νν̄, and KL → π0νν̄ can reach is maximal model-

independent bound (4.8). Still, even if K+ → π+νν̄ limits C
(′)
L,µ, the KL → π0µ+µ− rate can always

reach its current experimental limit either through CR,µ or with the help of Q+
γ .

The comparison of these bounds with eq. (4.7) illustrates the consequence of introducing some

model-dependence. A scenario with tree-level FCNC is completely bounded by the data. Further,

– 33 –



J
H
E
P
0
8
(
2
0
1
1
)
0
6
9

both QL,R
γ contribute to all the decays in table 1, since C−

γ = +(−)C+
γ when C

R(L)
γ is turned on.

Thus, we give in eq. (4.18) the bounds on ImC+
γ , which directly translates as maximal values for all

the direct CP-asymmetries (4.1), (4.3). Since leptonic universality holds for Q±
γ , the tightest bound

from KL → π0e+e− must be satisfied, i.e.

− 0.03 <
Im C+

γ

GF mK
< 0.04 . (4.19)

This represents only a slight extension of the range (4.4), obtained in the absence of NP but in Q±
γ .

Scalar or tensor four-fermion operators are not included in eq. (4.16), even though they could

arise from leptoquark exchanges. The reason is that they cannot alter the bounds (4.18) if we write

them in SU(2)L ⊗ U(1)Y invariant forms. The only four-fermion operators able to interfere with the

vector ones is QT,ℓ of eq. (4.9), but it must here be replaced by

QL
T,ℓ = s̄σµνd ⊗ L̄σµνE, QR

T,ℓ = s̄σµνd ⊗ ĒσµνL . (4.20)

Each of these operators has a pseudotensor piece s̄σµνd ⊗ ℓ̄σµνγ5ℓ which is the only current able to

produce the lepton pair in a 1+− state [44]. There is thus no entanglement, and QL
T,ℓ and QR

T,ℓ are

both directly bounded by the total KL → π0ℓ+ℓ− rate. Hence numerically, the bounds are similar to

those in eq. (4.18), and eq. (4.19) is not affected.

4.3 Loop-level FCNC

For a given lepton flavor, the HGauge basis maximally couples the semileptonic operators, while the

HPheno basis maximally decouples them. An intermediate picture emerges if the NP generates FCNC

only at the loop level. This can be due to some discrete symmetries (like R-parity) or to some gen-

eralized GIM mechanism. By construction, most NP models are of this type, for example the MSSM

(see section 4.3.3), little Higgs [100–102], left-right symmetry [62, 103], fourth generation [104, 105],

some extra dimension models [106],. . . , because the loop suppression of the FCNC naturally allows

for the NP particles to be lighter, hopefully within the range of the LHC.

An appropriate basis to study this scenario is derived from the situation in the SM. Indeed,

the NP should induce the quark flavor transition s → d, but the lepton pair is flavor-diagonal and

could still be produced by SM currents, i.e., γ and/or Z bosons. So, in the absence of new vector

interactions, the SM basis is adequate:

HPB = −GF α√
2

(CZ QZ + CA QA + CB QB) + CL,R
γ QL,R

γ + h.c. , (4.21)

with (s2
W ≡ sin2 θW = 0.231)

Z penguin : QZ ≡ s2
W QL + (1 − s2

W )Q′
L + 2s2

W QR , (4.22a)

γ∗ penguin : QA ≡ s2
W

4
(QL − Q′

L + 2QR) , (4.22b)

W boxes : QB ≡ −3

2
QL − 5

2
Q′

L . (4.22c)
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In the presence of NP at the loop-level, it is natural to use the SM-like QL,R
γ operators of eq. (4.16)

since the chirality flip is a priori different for the L → R and R → L transitions. Indeed, even

though the drastic SM scaling CL
γ ∼ ms ≫ CR

γ ∼ md needs not survive in the presence of NP, it is

nevertheless expected that (CL
γ + CR

γ )/(CL
γ − CR

γ ) is of O(1).

The QL, Q′
L and QR operators are never independent in this scenario, even before the electroweak

symmetry breaking takes place. Indeed, though there is a one-to-one correspondence between the

W µ
3 penguin and Q′

L, the Bµ penguin generates both QL and QR with a fixed (“fine-tuned”) relative

coefficient. Combined with eq. (4.17), the transformation back to the phenomenological basis is







Cν,ℓ

CV,ℓ

CA,ℓ






=

1

2







1 0 −4

4s2
W − 1 s2

W 1

1 0 −1













CZ

CA

CB






, (4.23)

while the QL,R
γ operators are related to the Q±

γ as in eq. (4.16). In the SM without QCD, the

semileptonic coefficients are directly given in terms of the Inami-Lim functions as (beware that the

SM contributions are not included in HPB, which parametrizes only the NP contributions) [6]

CSM
A = −λtD0(xt)/πs2

W , CSM
Z = −λtC0(xt)/πs2

W , CSM
B = −λtB0(xt)/πs2

W , (4.24)

so the HPB basis coincides with Penguin-Box expansion of ref. [107]. Remark that lepton universality

is strictly enforced to match the physical picture of NP entering only for the s → d penguins, but this

can easily be lifted. Also, (pseudo)scalar or (pseudo)tensor operators are not introduced, as none of

the SM penguins can produce them.

In the SM, only specific combinations of the electroweak penguins and boxes are gauge invari-

ant [107]. Those combinations are precisely those entering into Cν,ℓ, CV,ℓ, and CA,ℓ, since their

operators are directly producing different physical states. Of course, by construction, the HGauge

basis (4.16) is also gauge invariant. To check this starting with the SM expressions (4.24) requires

first extending the basis (4.21) to differentiate the boxes according to the weak isospin state of the

lepton pairs [107]

QB,±1/2 ≡ 1

2
(QL ± Q′

L) ⇔
(

QB

Q′
B

)

=

(

−4 1

−1 1

)(

QB,+1/2

QB,−1/2

)

. (4.25)

The combination QB occurs in eq. (4.22) because its Wilson coefficient is separately gauge invariant,

see ref. [107], while Q′
B is redundant once the gauge is fixed (we work in the t’Hooft-Feynman gauge).

So, if one insists on gauge invariance, the HPB basis collapses either onto the HPheno basis or

the HGauge basis. Still, using directly the HPB basis for parametrizing NP makes sense because its

operators encode different physics [107, 108]. Indeed, the dominant NP contribution in the Z penguin

effectively comes from a dimension-four operator after electroweak symmetry breaking [109], while

the γ∗ penguin is of dimension six. The box operator QB is there to complete the basis, but is

rather suppressed in general. Finally, the magnetic operators QL,R
γ are separately gauge-invariant, of

dimension five after the electroweak symmetry breaking, and require a chirality flip mechanism. So,

it is only if there is a new gauge boson, and a corresponding new penguin not necessarily aligned with
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the SM structures, that significant fine-tunings between the HPB operators could arise. This will be

dealt with in the next section.

Coincidentally, the HPB basis is rather close to the model-independent basis HPheno because

4s2
W ≈ 1. Indeed, QZ essentially drops out from the vector current, leaving QA and Q+

γ completely

entangled in KL → π0(ℓ+ℓ−)1−− , while the QB and QZ pair is fully resolved through the non-

interfering Cν,ℓ and CA,ℓ contributions to K → πνν̄ and KL → π0(ℓ+ℓ−)1++,0−+ . The main difference

between the HPB and HPheno bases is in the magnetic penguins, since the former relates Q+
γ and Q−

γ

through (CL
γ + CR

γ )/(CL
γ − CR

γ ) ∼ O(1).

Turning on CZ , CA, and CB one at a time while keeping CR,L
γ on, the bounds are (in units of

10−4)

KL → π0e+e− ⇒ −14 < (s2
W /2) Im CA − ρ ImC+

γ < 8 ⊕
[ −20 < (Im CZ ⊕− Im CB) < 24 ∧ −8 < ρ Im C+

γ < 14 ] ,

KL → π0µ+µ− ⇒ −29 < (s2
W /2) Im CA − ρ ImC+

γ < 24 ⊕
[ −33 < (Im CZ ⊕− Im CB) < 37 ∧ −24 < ρ Im C+

γ < 29 ] ,

K+ → π+νν̄ ⇒ −15 < (Im CZ ⊕−4 Im CB) < 21 .

(4.26)

As before, “∧” denotes a contour in the corresponding plane within the quoted extremes, while “⊕”

is the exclusive alternative. Comparing with eq. (4.7), the presence of QZ or QB in the vector current

has no impact on the range for ImC+
γ . The bound from K+ → π+νν̄ are stricter because leptonic

universality is now imposed. This actually permits to combine all the modes, so that Im CZ is best

constrained by KL → π0e+e− together with K+ → π+νν̄, and Im CB entirely by K+ → π+νν̄ thanks

to the factor −4 in eq. (4.23). The photon operators QA and Q±
γ are unconstrained at this level, so

let us investigate how to resolve this ambiguity within the present scenario.

4.3.1 Hadronic electroweak penguins

The photon and the Z boson are also coupled to quarks, and thus affect ε′. So, if NP generates the

QZ and QA operators entirely through these SM gauge interactions, we must impose

Re(ε′/ε)NP ≈ πs2
W Im [11.3 × CZ + 3.1 × CA + 2.9 × CB] . (4.27)

This simplified formula is obtained from ref. [61] by parametrizing the NP contributions to the OPE

initial conditions at MW in terms of CZ,A,B, setting the bag factors to their large Nc values, and taking

ms(mc) = 121 MeV. We do not include the Q−
γ contribution to ε′ since the experimental bound (3.23)

implies that it is below 30% of Re(ε′/ε)exp, see eq. (3.57). It should be clear that this formula is only

a rough estimate. Deviations with respect to the strict large Nc limits are likely, even though the

coefficients of CZ and CA are most dependent on B
3/2
8 which is better known than B

1/2
6 (see ref. [61]).

To account simultaneously for this uncertainty and that on the SM contribution, we conservatively

require |Re(ε′/ε)NP| < 2Re(ε′/ε)exp.

Even if rather imprecise, the constraints from Re(ε′/ε) are currently tighter than those coming

from rare decays for CZ and CA. Numerically, turning on one semileptonic operator at a time,
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a. b.

c. d.

Figure 12. Loop-level FCNC scenario, with each electroweak operator separately turned on together with

Q±
γ . (a − c) Contours in the ImCV,ℓ − Im C+

γ plane as allowed by the K+ → π+νν̄, KL → π0ℓ+ℓ−, and

ε′ experimental bounds. (d) The correlation between KL → π0e+e− and KL → π0µ+µ−, when generated

exclusively by QZ , QA, or QB (red), or with one of these together with Q+
γ (blue). The grey background is the

area accessible with uncorrelated vector and axial-vector currents (assuming leptonic universality). See ref. [44]

for more information.

eq. (4.27) imposes (all numbers are in units of 10−4)

Re(ε′/ε) ⇒ | Im CZ | < 4 ⊕ | Im CA| < 15 ⊕ | Im CB | < 16 . (4.28)

As shown in figure 12, for such values, the contributions to CV,ℓ are tiny. Thus, the maximal values

for Im C+
γ are the same as without any other NP sources, eq. (4.4), which requires that KL → π0e+e−

saturates its current experimental limit. Since lepton universality holds, the KL → π0µ+µ− rate is

smaller but tightly correlated to KL → π0e+e−, see figure 12. Concerning K → πνν̄, if one assumes

that CB ≪ CZ , as in the SM, then K → πνν̄ is strongly limited by ε′:

CA = CB = 0 ⇒
{

0 < B(KL → π0νν̄) < 16 × 10−11 ,

7 × 10−11 < B(K+ → π+νν̄) < 12 × 10−11 .
(4.29)

However, the current K+ → π+νν̄ experimental limit can be saturated when CB ≈ CZ , in which case

KL → π0νν̄ could reach the model-independent upper limit of eq. (4.8)

B(KL → π0νν̄) ≈ 4.3(B(K+ → π+νν̄) − B(K+ → π+νν̄)SM) < 1.2 × 10−9 . (4.30)
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With ε′ so constraining, even a slight cancellation among the electroweak penguins could have a

significant outcome for Im C+
γ . This could occur in most models since the HPB operators are usually

not independent but arise simultaneously. Indeed, the intermediate loop particles are in general

coupled to both the γ and Z bosons. Let us stress, as said before, that we do not expect a fine-

tuning among these electroweak penguins, at most some cancellations, because their SU(2)L-breaking

properties are significantly different. Still, it is worth to investigate this possibility, so let us relax the

one-operator-at-a-time procedure.

Once eq. (4.27) is added to K → πνν̄ and KL → π0ℓ+ℓ−, the system is sufficiently constrained

and the bounds can be resolved even when all the semileptonic operators are turned on simultaneously

(all the bounds are in units of 10−4)

Re(ε′/ε) ⇒ | Im CA + 3.9 Im CZ | < 19

K+ → π+νν̄ ⇒ ∧ − 15 < Im CZ − 4 Im CB < 21

KL → π0e+e− ⇒ ∧ [ −32 < Im CZ < 35 ∧ −14 < ρ Im C+
γ < 18 ]

KL → π0µ+µ− ⇒ ∧ [ −49 < Im CZ < 53 ∧ −30 < ρ Im C+
γ < 35 ] .

(4.31)

We indicate the main source driving each bound, but it should be clear that all the experimental

constraints are entangled, and all are necessary to get a finite-size area in parameter space.

Interestingly, these bounds are not very different from those derived on the SU(2)L ⊗ U(1)Y
operators of eq. (4.16). The reason is that Re(ε′/ε) in eq. (4.27) imposes the tight correlation CA ≈
−4CZ , upon which CZ , CA, and CB are all ultimately bounded by the rare decays through Cν,ℓ and

CA,ℓ, exactly like CL, C ′
L, and CR were (see eq. (4.17)). Still, the origin of the observed correlations

among Cν,ℓ, CA,ℓ and CV,ℓ in these two scenarios is obviously very different. It directly comes from

the assumed NP dynamics when using the HGauge basis, but is entirely driven by the sensitivity of

Re(ε′/ε) to electroweak penguins when using the HPB basis.

If the electroweak operators are induced by SM-like Z and γ∗ penguins, such a tight CA ≈ −4CZ

correlation is rather unlikely given the intrinsic differences between those FCNC (dim-4 versus dim-6).

So, when

rAZ ≡ CA + 4CZ

CA − 4CZ
≪ 1 , (4.32)

one would rather conclude that a non-standard FCNC, not aligned with the SM penguins, is present.

Since CA + 4CZ is the gauge-invariant combination driving the vector coupling (which is known to

dominate in ε′ [107], as is obvious in eq. (4.27)), one would need a new enhanced penguin not coupled

to the vector current, or not coupled to quarks.

The experimental signature for this scenario requires disentangling CA and CZ . Since the ex-

perimental K+ → π+νν̄ bound can be saturated with the help of CB only, it has no discriminating

power in rAZ . The maximal attainable value for ImC+
γ , and thus for the CP-asymmetries, is not very

sensitive to rAZ either, see figure 13. On the other hand, the correlation between KL → π0e+e− and

KL → π0µ+µ− shown in figure 13 could signal such a scenario. Indeed, without fine-tuning, one is back

to the situation shown in figure 12, i.e. both rates saturated by a large Q+
γ contribution in their vector

current when they deviate from their SM predictions. On the other hand, as rAZ decreases, more and

more of the model-independent region in the KL → π0e+e−–KL → π0µ+µ− plane gets covered.
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a. b.

c. d.

Figure 13. Loop-level FCNC scenario, with all the electroweak operators as well as Q±
γ simultaneously

turned on. (a − b) Correlations between Im CA, Im CB, and ImCZ , as implied by the experimental bounds

on K+ → π+νν̄, KL → π0ℓ+ℓ−, and ε′. (c) Contours in the ImCV,ℓ − Im C+
γ plane, with the color lightness

indicating the level of fine-tuning between CA and CZ , see eq. (4.32). (d) The correlation between KL → π0e+e−

and KL → π0µ+µ−, again as a function of the fine-tuning between CA and CZ . Compared to figure 11, a

larger range is attainable. Note that here, the theoretical errors in KL → π0ℓ+ℓ− are discarded for clarity.

4.3.2 QCD penguins

If SU(3)C ⊗ U(1)em stays unbroken at the low scale, the FCNC loops must involve intermediate

charged and colored particle(s). The photonic penguin is thus necessarily accompanied by the gluonic

one. Further, if NP enhances significantly the chromomagnetic operators Q±
g (defined in eq. (3.60)),

the magnetic operators Q±
γ are then directly affected through the RGE (3.61),

C±
γ (µc) = η2

[

C±
γ (µNP ) + 8(1 − η−1)C±

g (µNP )
]

, C±
g (µc) = ηC±

g (µNP ) . (4.33)

So, C±
g (µNP ) act as lower bounds for C±

γ (µc). The opposite cannot be asserted from eq. (4.33)

since the O(α) mixings Q±
γ → Q±

g are missing. However, those mixings are presumably long-distance

dominated, hence have to be dealt with at the matrix-element level. For instance, in the case of ε′, the

Q−
γ contribution is subleading even when ImC−

γ saturates the experimental limit on the K+ → π+π0γ

CP-asymmetry, see eq. (3.57). So, the mixing effects do not forbid a large splitting C±
γ (µc) ≫ C±

g (µc).

Still, owing to their similar dynamics, C±
γ (µNP ) and C±

g (µNP ) may have similar sizes. Then,

since Q+
g contributes to ε′, both magnetic operators are tightly bounded

| Im C−
γ |

GF mK
≈

| Im C−
g |

GF mK
. 5 × 10−4 , (4.34)
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if we require |Re(ε′/ε)g | < Re(ε′/ε)exp and set BG = 1. This is extremely constraining, and would

rule out any effect of the magnetic operators in rare decays or in CP-asymmetries.

The presence of the other FCNC could significantly alter this bound. So, let us again turn on

all the penguin operators but freeze the relation among the magnetic ones, | Im C+
γ | = 1.5| Im C−

g |.
Also, we neglect the chromoelectric operators (the usual QCD penguins), as their impact is less

important [61]. Then, using eq. (4.27) together with (4.5), the bounds can be resolved except when

ε′ and KL → π0ℓ+ℓ− just happen to depend on the same combination of ImCA and Im C+
γ,g, which

occurs for Im C+
γ ≈ −3 Im C−

g (with BG = +1).

In this scenario, the driving force is the cancellation between the two largest contributions to ε′,

i.e. between Im C−
g and Im(4CZ + CA). The electroweak operators are not fine-tuned except for the

Im CZ−ImCB correlation imposed by the rare decays, which stays as in figure 13. So, in this scenario,

large effects are possible in K → πνν̄ thanks to QB and QZ , while KL → π0ℓ+ℓ− receive sizeable

contributions in both their vector and axial-vector currents. Contrary to the situation without Q±
g ,

these latter decays can no longer be used to probe the cancellations in ε′ since they do not directly

depend on the chromomagnetic operators.

Actual numbers for the bounds on the Wilson coefficients would not make much sense here, be-

cause the fine-tuning in Re(ε′/ε) reaches horrendous values before the rare decay constraints can kick

in. As shown in figure 14, individual contributions to Re(ε′/ε) can be as large as 10%. Instead, let us

freeze the situation and set the Q−
g contribution to Re(ε′/ε) at 2×10−2. As shown in figure 14, this re-

quires a large but not impossible 90% cancellation between the electroweak and the gluonic penguins.

To uniquely identify this cancellation, the best strategy relies on the direct CP-asymmetries (see

figure 14). The first step is to exploit the RGE constraint C±
γ (µc) & C±

g (µc), which implies that the

asymmetries in eq. (4.1) are all at the percent level

Im C−
γ

GF mK
&

Im C−
g

GF mK
≈ Re(ε′/ε)g

3BG
≈ 10−2 . (4.35)

Since ε′+0γ , ε′+−γ , and ε′|| are mostly insensitive to the hadronic penguin fraction in ε′, they would

cleanly signal the presence of NP in Q−
γ . The second step derives from the pure ∆I = 1/2 nature of

the chromomagnetic operator. Since it enters only in K → (ππ)0, its presence would be felt in ε′⊥
(see eq. (4.3)), in addition to that of Q+

γ . So, using eq. (4.5) and enforcing | Im C+
γ | = 1.5| Im C−

g |, we

can write

|ε′⊥/ε|g =

√
2

ω
Re(ε′/ε)g ≈ 0.65 , |ε′⊥/ε|γ =

1

4|ε| Re(ε′/ε)g ≈ 2.2 , (4.36)

with ω−1 = ReA0/Re A2 ≈ 22.4 the ∆I = 1/2 enhancement factor, and BG = +1. By contrast,

electroweak penguins contribute mostly to the K → (ππ)2 amplitude, and have thus a negligible

impact on ε′⊥ compared to Q−
g . So, in principle, by combining ε′⊥ with ε′+0γ , ε′+−γ , or ε′||, it is possible

to evidence NP in both Q±
γ and Q−

g . Of course, this whole program is very challenging experimentally,

but completing the first step may be feasible, since Q−
γ could push ε′+0γ and ε′+−γ up to less than an

order of magnitude away from their current limits.

– 40 –



J
H
E
P
0
8
(
2
0
1
1
)
0
6
9

a. b.

c.

Figure 14. Loop-level FCNC scenario, with all the electroweak operators as well as Q±
γ,g simultaneously turned

on, but imposing ImC+
γ = ±1.5 ImC−

g . (a) Correlation between the electroweak and gluonic contributions to

ε′, imposing |Re(ε′/ε)NP| < 2 Re(ε′/ε)exp. (b) The Im C+
γ range as a function of the fine-tuning between

Re(ε′/ε)EW and Re(ε′/ε)g. (c) The corresponding contours in the ImCV,ℓ − Im C+
γ plane. In (a) and (c), the

lighter (darker) colors denote destructive (constructive) interference between QA and Q+
γ in KL → π0ℓ+ℓ−.

4.3.3 Minimal Supersymmetric Standard Model

The MSSM with R-parity is a particular implementation of the loop-level FCNC scenario discussed in

the previous section. All the bounds derived there are thus not only valid, but could become tighter.

Indeed, the various FCNC could be more directly correlated once the NP dynamics is specified. In

addition, the MSSM introduces only a finite number of new sources of flavor-breaking through its

soft-breaking squark mass terms and trilinear couplings.

The most important correlation is that between the gluonic and photonic penguins, as analyzed

in details in ref. [15, 81]. Both can be generated by gluino-down squark loops, so that [110]

C±
γ (mg̃) =

παS(mg̃)

mg̃

[

(δD
LR)21 ± (δD

RL)21
]

F (xqg), F (xqg) ≈ F (1) =
2

9
, (4.37a)

C±
g (mg̃) =

παS(mg̃)

mg̃

[

(δD
LR)21 ± (δD

RL)21
]

G(xqg), G(xqg) ≈ G(1) = − 5

18
, (4.37b)

where xqg = m2
q̃/m

2
g̃, mq̃(g̃) the squark (gluino) mass, and F (xqg), G(xqg) the loop functions. The

chirality flips are induced by the SU(2)L breaking trilinear term AD, parametrized through the mass
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insertions (δD
RL)21 = (δD

LR)∗12. At the low-scale, the Wilson coefficients obey

C±
γ (µc) =

(

η
F (xqg)

G(xqg)
+ 8(η − 1)

)

C±
g (µc) ≈ −1.6C±

g (µc) . (4.38)

In the absence of any other supersymmetric contributions to ε′, this leads to the tight con-

straint [111–113]

Re(ε′/ε) ⇒
| Im C−

g (µc)|
GF mK

. 5 × 10−4 → | Im(δD
RL)21,12| . 2 × 10−5 . (4.39)

Before discussing how this bound could get relaxed by NP effects in the other FCNC, let us

consider the MFV prediction for δD
RL, to get a handle on the “minimal” size of C±

γ,g. The U(3)5 flavor

symmetry-breaking of AD imposes an expansion at least linear in the Yukawa couplings [85–89]

AD ∼ A0Yd(a01 + a1Y
†
uYu + . . .) , (4.40)

with vdYd = md, vuYu = muV , vu,d the vacuum expectation values of the H0
u,d Higgs boson, A0

setting the SUSY breaking scale, and ai some free O(1) parameters (which can be complex [114, 115]).

In that case, (δD
LR)IJ ∼ mdJ /md̃ ∼ 10−4, and no visible deviations could arise in ε′ or in the other

CP-violation parameters (4.1). Turned around, this means that these observables are particularly

sensitive to deviation with respect to MFV. Since this framework is only one particular realization of

the flavor sector of the MSSM, motivated in part by the tight constraints in the b → s, d or ℓ → ℓ′

sectors, and in part by its rather natural occurrence starting from universal soft-breaking terms at

the high scale, it has to be confirmed experimentally also in the s → d sector.

Before exploiting the analysis of section 4.3.2, there is another important correlation arising in

the MSSM. The ∆S = 2 observables can be induced by the same source of flavor-breaking as the

magnetic operators. One derives for mg̃ = 500 GeV [111–113]:

∆MK ⇒
√

Re(δD
RL)221 < 3 × 10−3 →

|Re C±
γ |

GF mK
. 0.1 , (4.41a)

εK ⇒
√

Im(δD
RL)221 < 4 × 10−4 →

| Im C±
γ |

GF mK
. 0.01 . (4.41b)

The absence of a large cancellation among the supersymmetric contributions is explicitly assumed, for

example with the processes where the flavor-breaking originates from the SU(2)L conserving squark

masses (most notably δD
LL). At this stage, we want to point out that the bounds on Re C±

γ obtained

from radiative decays are competitive with that from ∆MK :

K+ → π+π0γ ⇒
|Re C−

γ |
GF mK

. 0.1 → |Re(δD
RL)21| < 3 × 10−3 , (4.42a)

K0 → γγ ⇒
|Re C+

γ |
GF mK

. 0.3 → |Re(δD
RL)21| < 10−2 , (4.42b)

assuming C+
γ ≈ ±C−

γ . Compared to the bound from ∆MK , radiative decays directly constrain

Re(δD
RL)21, and there can be no weakening through interferences among SUSY contributions since

only Q±
γ enter.
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Let us consider the bound from εK as the maximal allowed value for Im C±
γ . We can now directly

connect the present MSSM scenario to that discussed in section 4.3.2 since the bound (4.41b) matches

that in eq. (4.35). Given the constraint (4.38), which also matches that of section 4.3.2, such values

for Im C±
γ,g are only possible provided there is a large electroweak-gluonic penguin cancellation in ε′,

of about 90% of their respective contributions, see figure 14.

This cannot be excluded a priori, even though the electroweak penguins are not directly correlated

with gluonic penguins in the MSSM. With the SU(2)L conserving mass insertions δD
LL limited by the

∆S = 2 observables, electroweak penguins arise essentially from the flavor-breaking in the up-squark

sector. Indeed, when AU = A0Yu + . . ., the quadratic combination of mass-insertion (δU
LR)13(δ

U
LR)∗23

gets significantly enhanced by the large top mass [116]. This scenario was analyzed in details e.g.

in refs. [81, 117], where significant deviations with respect to the SM where found to be possible

for K → πνν̄. In particular, the box diagram was found to be sizeable in ref. [118]. Though these

scenarios concentrated on the low to moderate tan β ≡ vu/vd regime, the situation is similar at large

tan β. Indeed, on one hand, C±
γ,g and thus Re(ε′/ε)g could reach larger values even under MFV since

Yd = md/vd gets enhanced, but on the other, the charged Higgs contribution to the electroweak

penguins can kick in, making them sensitive to the flavor-breakings in the δD
RR sector.5

Altogether, there can be two different situations in the MSSM:

• If there is a large cancellation between gluonic and electroweak penguins in ε′, large enhance-

ments are possible in the rare decays. This is the scenario of section 4.3.2. The K+ → π+νν̄

mode can saturate its current limit, and KL → π0νν̄ can reach the model-independent

bound (4.30). The KL → π0e+e− can also saturate its experimental bound, while leptonic

universality then limits KL → π0µ+µ− to about 40% of its current (looser) bound. As in sec-

tion 4.3.2, the direct CP-violating parameters in radiative K decays could reach the percent

level, see figure 14, and would be the cleanest signatures for this scenario.

• On the contrary, if there is no large cancellation in ε′, say not beyond about 10%, then C±
γ

are indirectly limited by the tight correlation (4.38), and all the direct CP-violating parameters

would be small, presumably beyond the experimental reach. Further, a fine-tuning between the

Z and virtual γ penguins able to push rAZ in eq. (4.32) to small values is not possible. Both

are driven by the same mass insertions, with the generic result CZ > CA (see e.g. ref. [117]).

So, this corresponds to the first scenario of section 4.3.1, characterized by the bounds (4.28).

The K+ → π+νν̄ and KL → π0νν̄ could still be very large if the boxes are sizeable (CZ ≈ CB),

but KL → π0e+e− and KL → π0µ+µ− cannot because C+
γ ≈ −1.6C±

g is too small to enhance

them (see the red areas in figure 12d).

In summary, to probe for a possible large electroweak and QCD penguin cancellations in ε′,

the K → πνν̄ are useful only if the scaling between box and penguins is known. However, telltale

signatures would be large enhancements of KL → π0e+e− and KL → π0µ+µ− as well as large CP-

violating parameters in radiative K decays.

5At large tan β, Higgs mediated penguins could also appear. Those are embedded in helicity-suppressed scalar and

pseudoscalar semileptonic operators. We refer to ref. [44] for an analysis of their possible impact.
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5 Conclusions

In this paper, the s → dγ process has been thoroughly studied. The best phenomenological windows

are the direct CP-violating parameters in radiative K decays for real photon emissions, and the rare

KL → π0e+e− and KL → π0µ+µ− decays for the s → dγ∗ transition. For all these observables, a

sufficiently good control over the purely long-distance SM contributions has to be achieved to access

to the short-distance physics, where NP effects could be competitive. So, in the first part of this

paper, the SM predictions were systematically reviewed, with the results:

1. K+ → π+π0γ: We included the ∆I = 3/2 contributions, which were missing in the literature,

and found that they enhance the loop amplitude by about 50%. As a result, the recent NA48

measurement [5] of the direct-emission electric amplitude can be well-reproduced without the

inclusion of significant counterterm contributions. Concerning direct CP-violation, we identified

an observable, eq. (3.16), which is not phase-space suppressed, and could thus help increase the

experimental sensitivity to ε′+0γ . Thanks to the improved experimental and theoretical analyses,

the prediction for ε′+0γ in the SM is under good control, though a large cancellation between

the Q3,...,10 (four-quark operators, see eq. (2.6)) and Q−
γ (magnetic operator, see eq. (2.1))

contributions limits its overall precision, ε′+0γ = 5(5) × 10−5.

2. K0 → π+π−γ: The inclusion of the ∆I = 3/2 contributions, together with the experimental

extraction of the counterterms from K+ → π+π0γ, permits to reach a good accuracy. Contrary

to previous analyses, we found that the Q3,...,10 contribution to the direct CP-violating parameter

ε′+−γ is suppressed by the ∆I = 1/2 rule and negligible against that of Q−
γ . Altogether, the

very small value ε′+−γ = 0.8(3) × 10−5 is obtained in the SM.

3. K0 → γγ: For the direct CP-violating parameter ε′||, we confirmed the computation of ref. [67]

for the Q3,...,10 contribution. However, that of Q−
γ was missing, and lead to a factor five enhance-

ment to ε′|| ≈ 1.4×10−5 in the SM. For the parameter ε′⊥, the situation changes completely com-

pared to ref. [67]. Indeed, the anatomy of KL → γγ has been clarified in ref. [68], where the ab-

sence of QCD penguin contributions at leading order was proven. As a result, we got the striking

prediction that ε′⊥ is a direct measure of these QCD penguins, ε′⊥(Q3,...,10) = −i Im A0/Re A0,

while the Q+
γ contribution is much smaller in the SM. So, this ∆I = 1/2-enhanced observable

could resolve the QCD versus electroweak penguin fraction in ε′ (to which ε′+0γ , ε′+−γ , and ε′||
have essentially no sensitivity), and could improve the theoretical prediction of εK .

4. KL → π0ℓ+ℓ−: We have updated the branching ratio formulas of refs. [44–46], which now

reflect the better experimental situation for KL → π0γγ, the extraction of the matrix elements

from Kℓ3 performed in ref. [14], and the reanalysis of the error treatment (along the lines of

refs. [10, 45]) for the indirect CP-violating contribution detailed in appendix B.

5. Re(ε′/ε): We have computed the long-distance part of the magnetic operator contribution to

ε′, as well as to ∆MK and εK . While it is (as expected) negligible for the last two, it could

a priori be sizeable for ε′ if Q−
γ is enhanced by NP. Even though this contribution cannot be

predicted accurately, and the short-distance part is lacking, we proved that the recent NA48
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bound [5] on ε′+0γ ensures that it does not exceed about 30% of Re(ε′/ε)exp, and thus, for the

time being, can be neglected.

In the second part of the paper, the possible NP impacts on the s → dγ process were analyzed.

The direct CP-violating parameters in radiative decays offer the cleanest accesses to s → dγ since they

are free from any competing NP effect (except ε′⊥) once the Q3,...,10 contributions are fixed in terms

of Re(ε′/ε)exp. However, these parameters are not yet tightly bounded experimentally. By contrast,

the KL → π0ℓ+ℓ− decays are sensitive to both s → dγ and s → dγ∗ processes, as well as to many

other possible FCNC, but are already tightly bounded experimentally. So, to resolve the possible

interferences among NP contributions, and thereby assess how large the CP-violating parameters

could be, several scenarios were considered. The main discriminator was chosen as the assumed NP

dynamics, which translates as a choice of basis for the effective four-fermion semi-leptonic operators.

To summarize each scenario:

1. Model-independent : The basis (4.6) is constructed so as to minimize the interferences between

the NP contributions in physical observables [83]. Its main characteristics is the entanglement

of the magnetic operator Q+
γ with the semileptonic operator QV,ℓ = s̄γµd ⊗ ℓ̄γµℓ, since they

both produce the ℓ+ℓ− pair in the same 1−− state. So, if these two interfere destructively,

the CP-violating parameters in radiative decays could be large. For example, if there is a 80%

cancellation between Q+
γ and QV,e in KL → π0e+e−, ε′+0γ could saturate its current experimental

limit −22(36)% [5], see figure 10. By comparison, a strict enforcement of the MFV hypothesis

would suppress all these CP-violating parameters down to the 10−4 range. This shows the power

of these parameters in exhibiting deviations with respect to MFV.

2. Tree-level FCNC : The basis (4.16) assumes that the NP is invariant under SU(2)L ⊗ U(1)Y ,

and generates the semileptonic operators through tree-level processes. The main characteristics

is the strong correlation between K → πνν̄, KL → π0(ℓ+ℓ−)1−− , and KL → π0(ℓ+ℓ−)1++,0−+

for a given lepton flavor, but the absence of leptonic universality. This is sufficient to resolve

the entanglement between Q+
γ and QV,ℓ. The CP-violating parameters are then bounded by

KL → π0e+e−, see figure 11, with e.g. |ε′+0γ | . 11%. In this scenario, the rare decays can reach

their current experimental limits (except for KL → π0νν̄ for which the model-independent

bound (4.8) is tighter), but this cannot occur simultaneously for all the decay modes.

3. Loop-level FCNC/electroweak penguins only : The basis (4.21) provided by the SM electroweak

penguin and box operators is adequate when the FCNC originates entirely from loop processes.

The main characteristics of this scenario is the entanglement of the s → dγ and s → dγ∗ photon

penguins in KL → π0(ℓ+ℓ−)1−− . However, once in this basis, it is natural to allow the photon

and Z to couple also to quarks, bringing ε′ in the picture. Then, the only way to have sizeable

effects in rare decays is to allow for a large box operator, to fine-tune the electroweak penguins

so as to avoid the large vector current contribution in ε′, or to allow for Q±
γ to be large. The

main issue is thus to resolve the fine-tuning in ε′. Indeed, if it is extreme, one would conclude

that the chosen basis is inadequate, and NP is not aligned with the Z or γ penguins. While the

direct CP-violating parameters are rather insensitive, and could reach at most a few percents,

– 45 –



J
H
E
P
0
8
(
2
0
1
1
)
0
6
9

the correlation between the KL → π0e+e− and KL → π0µ+µ− modes can be used to signal

such a fine-tuning in ε′, see figure 13.

4. Loop-level FCNC/electroweak and chromomagnetic penguins. When generated at loop level,

the magnetic operators are always accompanied by the chromomagnetic operators since the

SU(3)C ⊗ U(1)em quantum numbers must flow through the loop. Their relative strength, how-

ever, cannot be assessed model-independently. If one forces the two to be of similar strengths,

the main characteristic of this scenario is then the tight fine-tuning required by ε′ between the

gluonic and the electroweak penguins, see figure 14. To resolve this, rare decays are rather

ineffective, but the direct CP-violating parameters are perfectly suited since they directly mea-

sure Q±
γ . The parameter ε′⊥ is particularly interesting, since it is also directly sensitive to the

∆I = 1/2 chromomagnetic operator Q−
g through its dependence on ImA0/Re A0.

5. Loop-level FCNC/MSSM. The main characteristics of the MSSM is the strict correlation between

the magnetic and chromomagnetic penguins, eq. (4.38). Depending on the level of fine-tuning

between gluonic and electroweak penguins in ε′, this scenario collapses either to scenario 3 or 4.

In the former case, both magnetic penguins have to be small since they are correlated, and the

MSSM further forbids the specific fine-tuning between the electroweak penguins required by ε′.

As a result, the rare decays are tightly constrained, see figure 12, with the possible exception of

K → πνν̄ if the box amplitudes are exceptionally large. It should be stressed though that the

cancellation between the gluonic and electroweak penguins required in ε′ need not be extreme

to leave room for sizeable supersymmetric contributions to both KL → π0ℓ+ℓ− and direct CP-

violating parameters, see figure 14. Finally, radiative decays were found to provide a competitive

bound on Re δD
12, see eq. (4.42).

In conclusion, the stage is now set theoretically to fully exploit the s → dγ transition. The SM

predictions are under good control, the sensitivity to NP is excellent, and signals in rare and radiative

K decays not far from the current experimental sensitivity are possible. Thus, with the advent of

the next generation of K physics experiments, the complete set of flavor changing electromagnetic

processes, s → dγ, b → (s, d)γ, and ℓ → ℓ′γ, could become one of our main windows into the flavor

sector of the NP which will hopefully show up at the LHC.
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A The K → ππγ decays in Chiral Perturbation Theory

At O(p2), the direct emission vanishes while EIB is fully predicted in terms of the O(p2) K → ππ

amplitudes. Including O(p4) corrections, the IB amplitudes become

E++0
IB = −em3

KA
(

K+ → π+π0
)phys

K1 · qP · q , E1+−
IB = −em3

KA (K1 → π+π−)
phys

K1 · qK2 · q
, (A.1)
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while E2+−
IB = E200

IB = E100
IB = 0 in the limit of CP-conservation (

√
2|K2,1〉 ≡ |K0〉 ± |K̄0〉 in the

usual ChPT conventions [12]). The subscript ”phys” means the full O(p4) on-shell decay amplitudes,

i.e. with physical (renormalized) weak couplings, masses, decay constants, and including the strong

phases arising from the ππ loops [120].

Once the IB amplitudes are correctly renormalized, the left-over O(p4) contributions are purely

of the direct-emission type, i.e. vanish in the limit q → 0 (which translates as EDE → cst, given the

factored out projector in eq. (3.1)). The loop contributions, still in the limit of CP-conservation, are

E++0
loop = −e(m2

K − m2
π)mK

8π2Fπ

[

h(z1) + g(z2) − 4A+hππ (−z3) + 2AewhKK (−z3)
]

, (A.2a)

E1+−
loop = −e(m2

K − m2
π)mK

8π2Fπ

[

h(z1) + h(z2) − 8A0hππ (−z3) − 4AewhKK (−z3)
]

, (A.2b)

E2+−
loop = −e(m2

K − m2
π)mK

8π2Fπ
[h(z1) − h(z2)] , (A.2c)

E200
loop = −e(m2

K − m2
π)mK

8π2Fπ
[g(z1) − g(z2)] , (A.2d)

E100
loop = 0 , (A.2e)

where h(z) = A8hKη(z) + A0hπK(z) − A+hKπ(z) and g(z) = 2A+(hπK(z) + hKπ(z)). The loop

functions hij(z) are given in ref. [53] in terms of the subtracted three-point Passarino-Veltman function

C20, and the Ai are expressed in terms of the O(p2) on-shell (but not necessarily physical) K → PP

amplitudes:

A+ =
A
(

K+ → π+π0
)

2Fπ(m2
K − m2

π)
=

5

6
G

3/2
27 − 1

2
Aew , (A.3a)

A0 =
A (K1 → π+π−)

2Fπ(m2
K − m2

π)
= G8 +

1

9
G

1/2
27 +

5

9
G

3/2
27 − Aew , (A.3b)

A8 =
−
√

3A (K+ → π+η8)

2Fπ(m2
K − m2

π)
= G8 −

4

9
G

1/2
27 +

5

18
G

3/2
27 − 3

2
Aew , (A.3c)

Aew =
A (K+ → K+KS)

2Fπ(m2
K − m2

π)
=

2e2F 3
πGew

2Fπ(m2
K − m2

π)
, (A.3d)

with |G8| = 9.1×10−12 MeV−2, |G27| = |G1/2
27 | = |G3/2

27 | = 5.3×10−13 MeV−2, and sign(G8/G27) = +1.

The vanishing of E100
loop is a consequence of the CP symmetry combined with Bose symmetry. All the

loop amplitudes are finite, but some separately finite counterterms contribute (Ni ≡ N14 − N15 −
N16 − N17)

(E++0
CT , E1+−

CT , E2+−
CT ) = −2eG8m

3
K

Fπ
(−Ni, 2Re Ni, 2i Im Ni) , E2+−

CT = E200
CT = E100

CT = 0 . (A.4)

Finally, the Q−
γ operator enters as

(E++0
γ , E1+−

γ , E2+−
γ ) =

eBT m2
K

3(2π)2Fπ
(−C−

γ , Re C−
γ , i Im C−

γ ) , E2+−
γ = E200

γ = E100
γ = 0 . (A.5)

Note that these Q−
γ contributions cannot be absorbed into the Ni.
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For K → π+π0γ, the function Eloop(W 2, T ∗
c ) occurring in eq. (3.6) is

G8E
loop(z1, z2) = Re

[

h(z1) + g(z2) − 4A+hππ (−z3)
]

, (A.6)

as obtained from eq. (A.2) by neglecting ReAew ≪ Re G8,27 (since Gew is entirely generated by

the electroweak penguins). The real part refers to the weak phases only. Performing the multipole

expansion and expressing the K → PP amplitudes parametrically in terms of the K → ππ isospin

amplitudes

A0 =
√

2Fπ(m2
K − m2

π)

[

G8 +
1

9
G

1/2
27 − 2

3
Aew

]

, A2 = 2Fπ(m2
K − m2

π)

[

5

9
G

3/2
27 − 1

3
Aew

]

, (A.7)

we find

G8E
loop
1 (z3 = 2z) =

−emK

(4πFπ)2
[A0h0(z) + A2h2(z) + Aδ2δh2(z)] , (A.8a)

h0(z) =
√

2(hKη(z) + hπK(z)) , (A.8b)

h2(z) = 4hπK(z) +
3

2
hKπ(z) − 6|hππ (−2z) | − 1

2
hKη(z) , (A.8c)

δh2(z) = 3hKη(z) − 6hKK (−2z) , (A.8d)

where Aδ2 = −(2/3)Fπ(m2
K −m2

π)Aew. For the small δh2(z) term, we can further set ImAδ2 ≈ Im A2

since CP-violation from Q8 dominates in the ∆I = 3/2 channel. Eq. (3.17) is then found by defining

(δ)h20(z3) = (δ)h2(z)/h0(z). Let us stress that A0, A2 are just convenient parameters to keep track

of the weak phases of G8, G27, and Gew. As such, they do not include any strong phase. Further,

the strong phase originating from hππ is discarded since already taken care of through the multipole

expansion (the absolute value is adequate since Rehππ (−z3) > 0 over the phase-space).

Similarly, the K0 → π+π−γ direct emission amplitude occurring in eq. (3.25) is the dipole part

of the amplitude in eq. (A.2),

E+−(z3 = 2z) = − 2emK

(4πFπ)2
[

A0h
′
0(z) + A2h

′
2(z) + Aδ2δh

′
2(z)

]

− 4eG8m
3
K

Fπ
Ni , (A.9a)

h′
0(z) =

√
2(hKη(z) + hπK(z) − 4|hππ (−2z) |) , (A.9b)

h′
2(z) = −1

2
hKη(z) + hπK(z) − 3

2
hKπ(z) − 4|hππ (−2z) | , (A.9c)

δh′
2(z) = 3hKη(z) + 6hKK (−2z) . (A.9d)

Again, defining (δ)h′
20(z3) = (δ)h′

2(z)/h′
0(z) immediately leads to eq. (3.29).

It is worth noting that contrary to what is generally stated, the amplitude for KL → π0π0γ does

not vanish at O(p4), but is suppressed by the ∆I = 1/2 rule. Being in addition a pure quadrupole

emission, the rate is tiny

B(KL → π0π0γ)G27 = 7.3 × 10−13 . (A.10)

For comparison, ref. [51] found using dimensional arguments that the G8 contribution at O(p6) is of

the order of 10−10, much larger but still far below the experimental bound 2.43 × 10−7.
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A.1 ε′+0γ beyond O(p4)

To get an estimate of the possible impact of higher order corrections, let us include the counterterms

N̄ in eq. (3.17), so that

ε′+0γ(z) =

√
2|ε′|
ω

f(z,Ω, δN ) , f(z,Ω, δN ) =
1 + ωΩ(h20(z) + δh20(z)) − Im δN

(Ω − 1)(1 + ωh20(z) − Re δN )
− 1

Ω − 1
−1 , (A.11)

with

Re δN =
1

h0(z)

√
2m2

K

m2
K − m2

π

Re N̄ , Im δN =

√
2

h0(z)

m2
K

m2
K − m2

π

Im N̄
ReA0

Im A0
. (A.12)

Parametrically, N̄ accounts for all the O(p4) counterterms, as well as for the momentum-independent

parts of higher order effects. To proceed, some assumptions have to be made on its weak phase.

From the experimental data, we know that Re N̄ is of the typical size expected for O(p6) corrections

instead of O(p4). Since both Q6 and Q8 contribute at O(p6) through two-loop graphs, N̄ a priori

receives contributions from all the penguin operators, besides the current-current operators. On the

other hand, the magnetic operators are too small to affect Re N̄ , allowing their impact to be pulled

out and treated separately (see main text).

So, inspired by the O(p4) loop result, we parametrically write:

N̄ = b ((1 − a)A0 + aA2 + iδa Im A2) , (A.13)

with b ∼ O(p6)/O(p4). Assuming the corrections parametrized in terms of A0 and A2 are of the

same sign as at O(p4), we take a ∈ [0, 1] to span from the pure QCD penguin to the pure electroweak

penguin scenario, and a ≈ (1+ω)−1 ≈ 0.95 if the O(p4) scaling between the G8 and G27 contributions

survives at O(p6). In a way similar to what happens at O(p4), the parameter δa allows for additional

Q8 contributions in the imaginary parts. Since at O(p4), it comes entirely from K → πη and K → KK

vertices and misses the K → ππ vertex and its associated loop, we expect δa ≪ 1. With this,

Im δN

Re δN
=

(1 − a) + (a + δa)ωΩ

(1 − a) + aω
. (A.14)

By varying Ω ∈ [−1, +0.8], a ∈ [0, 1], |δa| ≤ 0.1, and Re N̄ within 1σ of the range (3.10), we get the

final prediction (3.20).

B Updated error analysis for B(KL → π0ℓ+ℓ−)

Besides minor changes in the conventions, essentially to pull out an outdated value of Imλt from the

coefficients in ref. [44], we have updated most of the numbers in eq. (3.47) to reflect a better treatment

of the errors. For Cℓ
dir, the smaller errors are taken from ref. [19], relying on precise extraction from

Kℓ3 decays.

The new value of Cµ
γγ reflects the improved experimental situation on KL → π0γγ, whose rate

went down and is now in perfect agreement between KTeV [121] and NA48 [122]. We note that

this agreement, together with that on the contribution of the resonances (assuming vector meson

dominance (VMD)), renders the error on Cµ
γγ extremely conservative [46].
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For the coefficients Cℓ
mix and Cℓ

int, the changes are deeper. These coefficients are sensitive to the

KS → πℓ+ℓ− amplitude, which is entirely dominated by the virtual photon penguin:

A(K1(P ) → π0γ∗(q)) =
eGF

8π2
WS (z)

(

q2Pµ − qµP · q
)

, WS (z) = aS + bSz + W ππ
S (z) , (B.1)

where z = q2/M2
K0 and αem ≈ 1/137. As detailed in ref. [10], the only assumption behind the

parametrization of the WS(z) form-factor is that all the intermediate states other than ππ are well

described by a linear polynomial in z, and thus can be absorbed in the unknown substraction constants

aS and bS . The ππ loop function W ππ
S (z), the only one to develop an imaginary part, was estimated

including both the phenomenological KS → π+π−π0 vertex (i.e., including slopes), and the physical

π+π− → γ∗ vertex (i.e., with its VMD behavior). Because KS → π+π−π0 is dominantly CP-violating,

and bS is higher order in the chiral expansion, the leading term aS dominates.

Given the current error on the KS → π0ℓ+ℓ− rates, setting bS/aS = 0.4 and keeping only

quadratic terms in a2
S give reasonable predictions for the KL rates. However, in preparation for

better measurements, we prefer to systematically account for the momentum dependence of the form-

factor in extracting the coefficients of the master formula (3.47). To this end, and contrary to previous

parametrizations, we find that it is not convenient to use aS as the parameter entering eq. (3.47),

because this necessarily overlooks the other terms of WS(z).

To construct the alternative parameter āS occurring in eq. (3.47), we start by defining for the

muon and electron modes:

a2
ℓ(,Λ) =

∫

(Λ) dΦℓ|WS (z) |2
∫

(Λ) dΦℓ
, dΦℓ = βℓ (z) β3

π (z) (1 + 2r2
ℓ /z)dz , (B.2)

with βℓ (z) =
√

1 − 4r2
π/z, βπ (z) = λ1/2(1, r2

π, z), λ(a, b, c) = a2 + b2 + c2 − 2(ab + ac + bc), and

ri = mi/mK . The expansions of a2
ℓ(,Λ) in terms of aS and bS read:

a2
e = a2

S + 0.278aSbS − 0.015aS + 0.031b2
S − 0.005bS + 0.0003 , (B.3a)

a2
e,Λ = a2

S + 0.443aSbS − 0.029aS + 0.057b2
S − 0.009bS + 0.0005 , (B.3b)

a2
µ = a2

S + 0.585aSbS − 0.052aS + 0.091b2
S − 0.018bS + 0.0011 . (B.3c)

The subscript Λ, if present, indicates a cut for z > Λ2/M2
K0. Experimentally, it is set at Λ = 165 MeV

for the electron mode to deal with KS → π0π0 backgrounds. In terms of these, the KS rates are,

B(KS → π0e+e−)Λ = 2.41 · 10−9 a2
e,Λ

exp
= (3.0+1.5

−1.2 ± 0.2) · 10−9 [123], (B.4a)

B(KS → π0µ+µ−) = 0.990 · 10−9 a2
µ

exp
= (2.9+1.4

−1.2 ± 0.2) · 10−9 [124]. (B.4b)

The numerical coefficients have no significant errors since they are functions of the masses, GF , αem,

and τS only. To optimize the theoretical and experimental information, we want to average these two

measurements. This makes sense because, as 0.1 < bS/aS < 0.7 and 0.8 < |aS | < 1.6, the following

ratio is very stable, even though it depends on the sign of aS :

re/µ = a2
µ/a2

e,Λ = 1.035(24) [1.071(25)] , (B.5)
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with aS < 0 indicated inside brackets. The error is mostly driven by the range on bS , but given that

VMD would fix bS/aS ≈ m2
K/m2

ρ ≈ 0.4, we think 0.1 < bS/aS < 0.7 is very conservative. Note that

with the cut Λ > 2mµ, this ratio would be closer to one and even more stable as the a2
e,Λ and a2

µ

expansions in aS and bS tend to coincide. We therefore define the average of a2
µ and a2

e,Λ×re/µ with Λ =

165 MeV as āS = 1.25(22). The difference between aS < 0 and aS > 0 is negligible compared to the

experimental errors. The error on re/µ is not included in āS, but instead in the coefficients of eq. (3.47).

The pure indirect CP-violating contribution is found from Γ(KL → π0ℓ+ℓ−)ICPV = |ε|2Γ(KS →
π0ℓ+ℓ−) with |ε| = (2.228 ± 0.011) × 10−3. This immediately gives the coefficients Cµ

mix in eq. (3.47)

for the muon mode, to which we assign an error of 2.3% due to eq. (B.5). For the electron mode,

there is an additional source of error due to the extrapolation from Λ = 165 MeV down to Λ = 2me.

To control that, we use

a2
e,Λ/a2

e = 1.053(29) [1.076(30)] , (B.6)

as 0.1 < bS/aS < 0.7 and 0.8 < |aS | < 1.6. This means that the phase-space increase as Λ → 2me is

dampened by the form-factor. We add the error from eq. (B.5) and (B.6) in quadrature to assign a

3.6% error on Ce
mix in eq. (3.47). Note that this extrapolation error may be dropped if the Λ cut is

also needed for KL → π0e+e−, which may be the case to deal with the (CP-violating) backgrounds

from KL → π0π0 decays.

We proceed similarly for the interference term:

Cℓ
int × āS = 53.37w7V ×

∫

dΦℓ f+ (z)
Im (εWS (z))

Im ε

φε≈45◦
= 53.37w7V ×

∫

dΦℓ f+ (z)WS (z) , (B.7)

with f+ (z) the form-factor of the FCNC matrix element 〈π0|s̄γµd|K0〉. The error on the numerical

prefactor is negligible. Let us rewrite Cℓ
int in terms of aℓ:

{

Ce
int × āS = 7.793w7V × ae,Λ × re

im ,

Cµ
int × āS = 1.650w7V × aµ × rµ

im ,
rℓ
im ≡

∫

dΦℓ f+ (z) WS (z)
∫

dΦℓ ×
√

∫

Λ dΦℓ|WS (z) |2/
∫

Λ dΦℓ

. (B.8)

The ratios rℓ
im can be studied as 0.1 < bS/aS < 0.7 and 0.8 < |aS | < 1.6, and are found very stable:

re
im = 0.965(13) [−0.957(14)] , rµ

im = 1.0455(8) [−1.0530(6)] . (B.9)

The error on re
im is larger than that on rµ

im because of the extrapolation from Λ = 165 MeV down to

Λ = 2me. So, in terms of the average āS , and including the ∼ 2% error due to eq. (B.5) gives the

coefficients in eq. (3.47).

Finally, it should be stressed that the intrinsic errors on the coefficients Cℓ
mix and Cℓ

int are already

below 5% thanks to the ratios (B.5), (B.6), (B.9), but could in principle be improved in the future by

better constraining bS/aS using the experimental mℓℓ spectra for both KS → π0ℓ+ℓ− decay modes.

Open Access. This article is distributed under the terms of the Creative Commons Attribution

Noncommercial License which permits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.
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