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bInstituto de F́ısica Teórica UAM/CSIC, Universidad Autónoma de Madrid,

Campus de Cantoblanco, 28049 Madrid, Spain
cInstituto de F́ısica Corpuscular UV/CSIC, Universitat de València,
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Abstract: We explore the potential of several Neutrino Factory (NF) setups to constrain,

discover and measure new physics effects due to Non-Standard Interactions (NSI) in propa-

gation through Earth matter. We first study the impact of NSI in the measurement of θ13:

we find that these could be large due to strong correlations of θ13 with NSI parameters in

the golden channel, and the inclusion of a detector at the magic baseline is crucial in order

to reduce them as much as possible. We present, then, the sensitivity of the considered

NF setups to the NSI parameters, paying special attention to correlations arising between

them and the standard oscillation parameters, when all NSI parameters are introduced at

once. Off-diagonal NSI parameters could be tested down to the level of 10−3, whereas the

diagonal combinations (ǫee − ǫττ ) and (ǫµµ − ǫττ ) can be tested down to 10−1 and 10−2,

respectively. The possibilities of observing CP violation in this context are also explored,

by presenting a first scan of the CP discovery potential of the NF setups to the phases

φeµ, φeτ and δ. We study separately the case where CP violation comes only from non-

standard sources, and the case where it is entangled with the standard source, δ. In case

δ turns out to be CP conserving, the interesting possibility of observing CP violation for

reasonably small values of the NSI parameters emerges.
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1 Introduction

From the results of neutrino oscillation experiments [1–3] we now know that neutrinos have

masses and there is flavor mixing in the lepton sector [4]. However, the leptonic mixing

is still not completely understood. In the three-family ν-mass enriched Standard Model

(νSM), there are still three unknown oscillation parameters: θ13, the CP-violating phase δ

and the mass hierarchy sgn(∆m2
31). Several reactor [5–7] and accelerator [8–10] neutrino

experiments are currently running, or will start running in the near future, to search for

positive signals of non-zero θ13. Strategy for exploration of the remaining two unknown

parameters in the leptonic mixing, δ and the mass hierarchy, heavily depends upon whether

they succeed or fail to detect non-zero θ13.
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If sin2 2θ13 <∼ 10−2, the ongoing and the near future experiments would face difficulties

to observe clear evidence for θ13. In this case, a new generation of experiments will be

needed, beyond doubt, to determine the remaining unknowns in the leptonic mixing. The

candidates for such facilities are the High-Energy Neutrino Factory (HENF) [11, 12], the

Beta-Beam [13, 14], and upgraded conventional beams (a.k.a. SuperBeams; see, for exam-

ple, refs. [8, 15, 16]). The main motivation for a facility as ambitious and technologically

demanding as the HENF is commonly considered to be the search for a very small θ13

(sin2 2θ13 <∼ 10−4) [17] and, consequently, the possibility to measure δ and the mass hierar-

chy in this regime, something beyond the reach of both Beta-Beams and Super-Beams [18].

On the contrary, if θ13 is relatively large so that the forthcoming experiments are

able to see its effects, alternative strategies and scenarios for further exploration of the

leptonic mixing could be possible. Such a possibility of θ13 being of the order of the Chooz

limit [19, 20] (for bounds from accelerator experiments, see [21, 22]) has been recently

suggested by some global analyses [23–29] but it is still controversial. If confirmed, possible

strategy and scenarios for further exploration of lepton mixing would have to be changed. A

possibility is that facilities such as upgraded SuperBeams or Beta-Beams could be exploited

to measure the standard oscillation parameters. Another possibility is that different designs

for the Neutrino Factory (NF) can be exploited in order to achieve the same goal. Such a

scheme is, for example, represented by the so-called Low-Energy Neutrino Factory [30, 31].

However, the physics case for a HENF scheme can be well motivated even in the case

of a relatively large θ13, given its enormous accuracy. In particular, the HENF could be

re-designed in order to look for both the νSM parameters and possible New Physics (NP)

beyond νSM. These include, for example, Non-Standard neutrino Interactions (NSI) [32–

36], effects of non-unitarity of the leptonic mixing matrix [37, 38], and new phenomena

due to light sterile neutrinos [39]. Notice that, for a relatively small θ13 (sin2 2θ13 <∼ 10−2),

the NP parameters discussed above can spoil the sensitivity of the HENF to standard

oscillation parameters, a possibility that must be studied. Recent works dedicated to the

study of the potential of HENF in this context include, for example, refs. [40–46]. For an

extensive list of remaining references see, e.g., ref. [47].

In the present work, we will attempt a complete study of the NSI effects in neutrino

propagation. Since this kind of NSI can be regarded as a new “effective matter poten-

tial”, a HENF with very long baselines seems to be the optimal facility to study their

effects. Due to an advanced minimum-searching algorithm in multi-parameter space, the

MonteCUBES software [48], we are able to include, for the first time, all NSI parameters

in propagation (including their associated CP-violating phases) at the same time into our

analysis. Therefore, we will pay special attention to correlations appearing when the whole

set of NSI parameters is introduced at once in the simulations, a problem that has never

been addressed in the literature. First, we will study the potential effect of these NSI in

the measurement of the standard parameters θ13 and δ. Then, we will examine the sensi-

tivity to the NSI parameters, studying their correlation with the whole set of parameters,

standard and NSI ones. Finally, we will explore the new avenues of CP violation coming

from NSI and the relation among the different CP-phases involved.

Intensive efforts have been devoted to find out which of the proposed future neutrino

oscillation facilities is the best option. The International Scoping Study (ISS) ended with
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the publication of three reports on the status of HENF and their competitors in 2007 [18,

49, 50]. Currently, the study is being continued by the International Design Study for a

Neutrino Factory (IDS) [51], which has proposed a “baseline” HENF setup which optimizes

the performance of the NF for measuring the νSM parameters: it consists of a neutrino

beam obtained from the decay of 25 GeV muons aimed at two magnetized iron neutrino

detectors (MIND) located at 4000 km and 7500 km. This setup makes use of two channels:

the “golden channel” [17], νe → νµ, and the muon disappearance channel νµ → νµ, together

with their CP conjugate ones. We will study the sensitivities than can be achieved at this

particular setup in the context of NSI.

As stressed before, however, new HENF designs can be explored to optimize searches

for NP beyond the νSM parameters. In particular, higher neutrino energies turn out to be

better in order to study effects of NSI in propagation [41], since these can be regarded as

a kind of generalized matter effect. We will also study, therefore, a simple modification of

the setup described above by increasing the parent muon energy to 50 GeV. In the context

of NSI sensitivity studies, a quite similar setup was previously examined in refs. [41–44].

In this paper, we also study a different setup with a composite detector consisting

of a MIND and a Magnetized Emulsion Cloud Chamber (MECC) located at 4000 km

from the source, with doubled statistics with respect to IDS-inspired proposals in which

each of the two baselines receives half of the available neutrino flux. The MECC is an

enlarged and more sophisticated version of the emulsion detector used in the ongoing

OPERA experiment [52], which aims at detecting τ particles with much higher efficiency.

Using this setup, it is possible to measure the NSI parameters using two additional channels:

νe → ντ , the “silver channel” [53], and νµ → ντ , the “discovery channel” [46]. In order

to overcome the strong suppression due to the small ντN cross-section, a parent muon

energy of 50 GeV is adopted also in this case. Notice that for νSM parameter searches, it

was shown that this setup is outperformed by the baseline IDS setup defined above (see

refs. [18, 54]). In ref. [42] this analysis was extended to the case of NSI in propagation

when one NSI parameter is turned on at a time, with similar results (see, also, ref. [55] for a

summary on the performance of this setup in these cases). We want to check in this paper if

these results hold in the case in which all NSI parameters are turned on simultaneously, i.e.

in a case in which correlations between νSM and NSI parameters are taken into account.

The paper is organized as follows. In section 2, the formalism for NSI is presented, and

the main dependences of the probabilities on the parameters are introduced; in section 3

we introduce the statistical approach we have used, and the details for the three NF-based

setups we have studied; section 4 is dedicated to study the sensitivities to θ13 (in presence

of NSI) and to ǫeµ and ǫeτ , which are achieved mainly through the Peµ and Peτ channels;

section 5 is devoted to the study of ǫµτ and ǫαα, whose sensitivities are achieved mainly

through the Pµµ channel; in section 6 we study the CP discovery potential of the three

setups in presence of NSI; and finally, we conclude in section 7. In the appendix we show

approximate expressions for the oscillation probabilities Peµ, Peτ , Pµµ and Pµτ in matter

with constant density.
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2 Neutrino oscillations with non-standard interactions

NSI can be studied from a top-down or a bottom-up approach. In the top-down approach,

a given NP model is studied, and the corresponding set of low-energy effective operators

are derived systematically. Being these operators derived from a fundamental theory, their

coefficients are related and (usually) stringent bounds exist between them. In the bottom-

up approach, on the other hand, all the effective four-fermion operators which can affect

neutrino oscillations are included in the analysis, and the experimental bounds are used

to constrain their coefficients independently of the model. This latter approach is clearly

model independent, in the sense that no assumption is made regarding the model of NP

behind and, consequently, the possible relations between operators. Bounds obtained in

this way are looser than in the top-down approach, but apply to a wide variety of high-

energy extensions of the Standard Model.

In the bottom-up approach, NSI that modify neutrino production, propagation and

detection processes must be included [35, 56–58]. Such a large number of new parameters

in the analysis, however, makes it extremely difficult to extract any useful information

from the results. It is a standard strategy, thus, to separate the study of NSI in neutrino

propagation in matter from the NSI effects in production and detection. The latter can be

studied using near detectors [59, 60].1 This is the strategy that we follow in this paper.

We introduce all the operators that modify neutrino propagation in matter at once, adding

nine new parameters (six moduli and three phases) to the existing νSM parameter space.

A complete analysis with such a huge number of parameters is extremely demanding, from

both the numerical and analytical point of view. For this reason the effects of NSI in

matter propagation have been widely explored in the literature turning on only one new

parameter in the analysis, or two at most (one modulus and one phase) [42–44]. In this

work, we try to achieve two main goals: (1) We attempt a first complete phenomenological

analysis of the potential of HENF to constrain all the NSI parameters which can contribute

to propagation in matter; (2) We illuminate complicated correlations between the effects

of NSI and νSM CP violating phases. We believe that the complete treatment of effects of

NSI in matter propagation is an important step toward a better understanding of possible

physics beyond the νSM.

In the model independent approach, constraints on NSI parameters in propagation

are very mild, generically at O(10−1) or even order unity [62, 63]. However, from the

theoretical point of view, such large values of the NSI parameters are not really expected.

This is easily understood if one tries to find a model of NP responsible for NSI effects

without enlarging the low-energy SM particle content. Effects of NP at high energies

manifest at low energies through an infinite tower of non-renormalizable effective operators

of dimension d > 4 which are invariant under the SM gauge group. These are weighted by

1Notice, however, that near detectors will necessarily put bounds on the combination of NSI in production

and detection processes. Several near detectors with different sources and/or target materials could be used

to disentangle them (see ref. [61]).

– 4 –



J
H
E
P
0
8
(
2
0
1
1
)
0
3
6

inverse powers of the NP scale Λ:

Leff = LSM +
1

Λ
δLd=5 +

1

Λ2
δLd=6 + . . . , (2.1)

where LSM is the SM Lagrangian which contains all SU(3)c × SU(2)L × UY (1) invariant

operators of dimension d ≤ 4. The factors 1/Λd−4 appear to suppress the effective oper-

ators which generate neutrino masses and produce NSI effects at low energy. Moreover,

the necessary requirement of gauge invariance of the new operators under the SM gauge

group [36, 62, 64–66] leads to another remarkable point: the effective operators which gen-

erate neutrino NSI may be tightly related to their analogues in the charged lepton sector,

which are much more constrained experimentally. Therefore, it is very hard to construct a

feasible model giving large NSI effects in neutrino oscillations.

Following the model independent approach, NSI in neutrino propagation (from here

on, we will refer to them simply as NSI) are described through the inclusion of the following

four fermion effective operators:

δLNSI = −2
√

2 GF

∑

f,P

εfP
αβ (ναγµPLνβ)

(

fγµPf
)

, (2.2)

where GF is the Fermi constant, f stands for the index running over fermion species in

the Earth matter, f = e, u, d, P stands for the projection operators PL ≡ 1
2
(1 − γ5) or

PR ≡ 1
2
(1 + γ5), and α, β = e, µ, τ . Notice that from neutrino oscillations we have no

information on the separate contribution of a given operator with coefficient εfP
αβ , but only

on their sum over flavours and chirality. The effects of these operators appear in the

neutrino evolution equation, in the flavour basis,2 as:

i
d

dt







νe

νµ

ντ






=






U







0 0 0

0 ∆21 0

0 0 ∆31






U † + A







1 + ǫee ǫeµ ǫeτ

ǫ∗eµ ǫµµ ǫµτ

ǫ∗eτ ǫ∗µτ ǫττ



















νe

νµ

ντ






, (2.3)

where ∆ij = ∆m2
ij/2E, U is the lepton flavor mixing matrix, A ≡ 2

√
2GF ne and ǫαβ ≡

(1/ne)
∑

f,P nfεfP
αβ , with nf the f -type fermion number density. The three diagonal entries

of the modified matter potential are real parameters. Only two of them affect neutrino

oscillations: we will consider the combinations ǫee−ǫττ and ǫµµ−ǫττ , subtracting ǫττ×I from

the Hamiltonian. The three complex NSI parameters ǫeµ, ǫeτ and ǫµτ will be parametrized

as3 ǫαβ = |ǫαβ |e−iφαβ .

In order to understand the impact of different NSI parameters in various oscillation

channels it is useful to obtain approximate analytical expressions for the oscillation prob-

abilities. In ref. [68] approximate formulæ were derived for all the oscillation probabil-

ities up to order ε2 (ε3 for the golden channel) by making a perturbative expansion in

2If production or detection NSI were present, though, the effective production and detection flavour

eigenstates would not coincide with the standard flavour ones [67].
3This is the prescription used in the MonteCUBES software. In the section devoted to CP violation,

though, the prescription is precisely the opposite, ǫαβ ≡ |ǫαβ |e
iφαβ .
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∆m2
21/∆m2

31 ≡ ε and ǫαβ ∼ θ13 ∼ ε. In the appendix we present the approximate expres-

sions for Peµ, Peτ , Pµµ and Pµτ up to second order in ε expanding in ∆m2
21/∆m2

31, ǫαβ, θ13

and δθ23 ≡ θ23 − π/4, too.

Let us review very briefly the main conclusions which can be extracted from this

analytical study:

• Up to second order in ε, Peµ and Peτ depend only on ǫeµ and ǫeτ but not on the

rest of the NSI parameters (see eqs. A.1 and A.2 in the appendix). The precise

determination of these two NSI elements is only possible in the golden and the silver

channels. However, it is well-known that already in the νSM case a combination

of data, either from different oscillation channels or different baselines, is needed in

order to avoid the well known degeneracy problem [69–71]. This problem is even

more difficult to solve in presence of NSI, because four extra parameters (2 moduli

and 2 phases) appear simultaneously in the golden and silver channels and severe

correlations are expected to exist, not only between NSI parameters but also between

them and the νSM ones.

• The Pµµ and Pµτ oscillation probabilities show a leading O(ε) dependence on the real

part of ǫµτ (which provides a very high sensitivity to this parameter), in addition to

the usual quadratic dependence on ǫeµ and ǫeτ as in the golden and silver channels.

On the other hand, the sensitivity to the imaginary part of ǫµτ is expected to be much

worse, since it comes only through O(ε2) terms in the probability. The dependence

on the diagonal combination (ǫµµ − ǫττ ) appears in Pµµ and Pµτ at O(ε2), too.

Terms proportional to δθ23(ǫµµ − ǫττ ) lead to important correlations between these

two parameters.

• The dependece on (ǫµµ − ǫττ ) and ǫµτ in Pµµ and Pµτ is the same. Therefore, the

νµ → ντ channel may be useful only because it adds further statistics at the detector.

However, the sensitivities to ǫαα and ǫµτ are not limited by statistics, since the

disappearance channel alone already provides enough events at the detector. As a

consequence, the sensitivities to these parameters are mainly achieved through the

Pµµ channel.

• The dependence on the diagonal combination (ǫee − ǫττ ) appears at third order in

ε in the oscillation probabilities. Therefore, it is hard to expect a good sensitivity

to this parameter. Moreover, as we can see in eq. (2.3), when all NSI parameters

vanish except for the combination (ǫee − ǫττ ), A (ǫee − ǫττ ) can be interpreted as a

small perturbation on the standard νSM matter effect. Therefore, our sensitivity to

(ǫee − ǫττ ) will be ultimately limited by uncertainties of the earth matter density.

In view of the features listed above, in the following we are going to distinguish two

different groups of oscillation parameters: (i) θ13, ǫeµ and ǫeτ , that will be studied in

section 4, and (ii) (ǫee − ǫττ ), (ǫµµ − ǫττ ) and ǫµτ , that will be studied in section 5. This

classification is the natural consequence of the fact that, in practice, Peµ and Peτ are

sensitive to (i), while the sensitivity to (ii) comes mainly from Pµµ. The only possible

– 6 –
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exception to this classification is (ǫee − ǫττ ), for which the golden channel also plays an

important role. Because of this structure, strong correlations between (i) and (ii) are not

expected, as it has indeed been found in our numerical simulations. For this reason, we will

study in section 6 the CP discovery potential of the HENF for all the parameters belonging

to (i) simultaneously (as strong correlations are expected between them), whilst neglecting

parameters belonging to (ii).

3 The statistical approach and the setup

In this section, we first introduce the statistical approaches used to perform the numerical

analyses of sections 4 and 5 (see section 3.1), and of section 6 (see section 3.2). After that,

we recall the input values for the νSM parameters and the current bounds on the NSI

parameters (that are included as priors in the algorithm) and describe the marginalization

procedure (section 3.3). Eventually, we define the three HENF experimental setups which

we are going to study (section 3.4).

3.1 The statistical procedure used in sections 4 and 5

It is well-known that, in order to sample a N -dimensional parameter space through χ2 grids

with n samplings per parameter, a total of O(nN ) evaluations of the expected number of

events are required. When only three-family oscillations are considered, the computation

can become heavy (if all νSM parameters are taken into account) but is still affordable

within the standard frequentist approach. When the NSI parameters are also taken into

account, however, the number of parameters to be fitted simultaneously increases consider-

ably and the computation time required to perform the standard minimization procedure

becomes too large. A different approach must therefore be used if we want to sample a

huge number of parameters with limited computational resources. The way out is sug-

gested by noticing that most of the points belonging to the χ2 grids that are computed in

the standard approach are useless, as they are very far from the χ2 minimum. For this rea-

son the standard technique used to sample large multi-dimensional manifolds is to rely on

efficient (either deterministic or stochastic) algorithms that search for the global minimum

and then start to sample the region near the minimum to determine its size and shape.

Most of the algorithms used fall into the category of Markov Chain Monte Carlo (MCMC):

using these class of algorithms, the number of evaluations required for the algorithm to

converge and sample properly the desired distribution grows polynomially with N , O(Nk),

with k some integer. We have followed this approach to scan the NSI parameter space in

sections 4 and 5, using the MonteCUBES (“Monte Carlo Utility Based Experiment Simu-

lator”) software [48] that contains a C library plug-in to implement MCMC sampling into

the GLoBES [72, 73] package. It, thus, benefits from the flexibility of GLoBES in defining

different experiments while implementing an efficient scanning of large parameter spaces.

Parameter determination through MCMC methods are based on Bayesian inference.

The aim is to determine the probability distribution function of the different model param-

eters θ given some data set d, i.e., the posterior probability P (θ | d). From Baye’s theorem

– 7 –
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we have:

P = P (θ | d) =
P (d | θ)P (θ)

P (d)
≡ Ld(θ)π(θ)

M
. (3.1)

The likelihood Ld(θ) = P (d | θ) is the probability of observing the data set d given certain

values of the parameters θ. The prior π(θ) = P (θ) is the probability that the parameters

assume the value θ regardless of the data d, that is, our previously assumed knowledge of

the parameters. Finally, the marginal probability M is the probability P (d) of measuring

the values d. It does not depend on the parameters θ, and therefore it can be regarded

as a normalization constant.4 Notice that the χ2 functions defined in GLoBES provide

the logarithm of the likelihood of the data d following a Poisson distribution normalized

to the distribution with mean d. Therefore, the actual probability density sampled by

MonteCUBES is the posterior probability P (θ | d):

P = exp

[

−χ2(θ)

2

]

exp

[

−χ2
P (θ)

2

]

,

where χ2
P (θ) = −2lnπ(θ). This probability distribution is equivalent to a Boltzmann weight

with temperature T = 1 and energy E = χ2(θ) + χ2
P (θ).

We have used ten MCMC chains in all our simulations. The convergence of the whole

sample improves as R → 1, with R being the ratio between the variance in the complete

sample and the variance for each chain. We have checked that the chains have reached

proper convergence in all cases better than R − 1 = 2.5 × 10−2.

A typical problem when a minimization algorithm different from the complete compu-

tation of the multi-dimensional grid is applied is the possible presence of local minima or

of multiple global minima (“degeneracies”). In both cases, if the minima are deep enough

the algorithm will get stuck there and sample a region that does not correspond to the

global minimum or will not be able to identify the presence of degenerate minima. The

MonteCUBES package includes a method to identify local minima by increasing the tem-

perature T of the chain so that the likelihood is modified to P ∝ P1/T . This procedure

flattens the likelihood distribution, making it possible for the chains to jump from a local

minimum to another. The temperature and step sizes are then decreased in successive steps

and thus the different chains get stuck around different minima, unable to move through

the disfavored regions when T is too low. After this, the points where the different chains

have stopped are compared to decide how many different minima the chains have fallen

into. Finally, new steps are added with the correct length in the direction between the

degeneracies. As a result, the algorithm is able to jump between minima and sample all of

them properly.

For the implementation of the NSI probabilities in matter, we use the non-

Standard Interaction Event Generator Engine (nSIEGE) distributed along with the

MonteCUBES package.

The definition of confidence level (CL) in a multi-dimensional MCMC algorithm need

to be clarified, as it approaches the standard definition only in the limit of infinite statistics.

4In the limit of infinite statistics, it can be shown that the Bayesian probability distribution is maximized

by the same set of parameters θ that minimize the χ2 function in the frequentist approach.
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What is done in practice with a MCMC is to generate a given number of points distributed

stochastically in the multi-dimensional parameter space around the global minimum (min-

ima). After that, projections of that multi-dimensional “cloud” of points are performed

onto any desired plane chosen accordingly to the variables under study in the analysis.

The projection over a given plane corresponds to marginalization over the parameters that

are no longer retained. After projection, the two-dimensional plane is divided into cells

and the number of points falling into each cell is computed. For small enough cells, the

resulting two-dimensional histogram can be approximated by a smooth surface, for which

slices can be drawn for the desired CL (68%, 90%, or 95%, in this paper).

3.2 The statistical procedure used in section 6

To explore the CP discovery potential we need a different statistical procedure from the one

defined in section 3.1. The reason is the following: a MCMC, as described above, explores

the region which is close to the global minimum (or to degenerate minima) sampling with

good accuracy the χ2 distribution around that point(s). This is the right procedure to follow

if we are exploring the sensitivity that a facility has to some particular observable. Consider

the particular case of the sensitivity to θ13 in the (θ13, δ) plane with marginalization over the

rest of νSM and NSI parameters (see section 4). In this case, the MCMC algorithm scans

the multi-dimensional surface corresponding to a given choice of the input parameters (with

the particular choice θ̄13 = 0 for θ13) and a contour at a given CL of the region compatible

with vanishing θ13 is drawn, after projecting over the (θ13, δ) plane. When we compute a

discovery potential, on the other hand, we first fix the parameters to be tested and draw the

corresponding CL contours. Then, we check if the condition we want to fulfill is satisfied

or not at a given CL (in the case of the CP discovery potential, the condition is that the

contours drawn for a given set of CP violating input parameters do not touch any CP

conserving point of the parameter space). Eventually, we repeat the procedure again and

again varying the input parameters. If the grid density is large enough, the distribution of

the input parameters that satisfy the required condition is smooth and a“CL contour” can

be drawn.

If we were to use the MCMC approach to compute a discovery potential, then, we

should run the algorithm as many times as the points in the grid that we want to test. In

this case, the total time required to compute the discovery potential goes as nNg ×Nk, with

n the number of points to be tested for one parameter and Ng the dimensionality of the

grid. If n is large the MCMC cannot be used and the standard frequentist approach must

be adopted instead. The drawback of the frequentist approach is that, in order to keep the

computational time from being rapidly divergent, we cannot marginalize over the whole

νSM and NSI parameter space. For this reason, in section 6 we will not marginalize over

atmospheric and solar parameters and will consider fixed inputs for the NSI parameters.

The procedure that has been used in this work to determine the CP-discovery potential

is outlined below:

1. We first compute the number of expected events at the detector(s): N(θ13, {φ}),
where {φ} ≡ {δ, φeµ, φeτ}.
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2. After having computed grids of number of events as a function of (θ13; {φ}), we

compute the χ2 as follows:

χ2(θ13, θ̄13; {φ}, {φ̄}) =
∑

polarities,bins

(N(θ13; {φ}) − N(θ̄13; {φ̄})2
(

N(θ̄13; {φ̄})1/2 + fN(θ̄13; {φ̄})
)2

(3.2)

with f an overall systematic error. In all the plots given in this section, we assume

the overall systematic error for the MIND detector as fµ = 0.02, and the one for the

τ -signal as fτ = 0.05. No background has been considered to compute eq. (3.2).

3. We compute, then, for any input (θ̄13; {φ̄}), the χ2 function defined in eq. (3.2) at

the eight CP-conserving (CPC) points:

{φ}CPC = (0, 0, 0); (0, 0, π); (0, π, 0); (π, 0, 0); (0, π, π); (π, 0, π); (π, π, 0); (π, π, π) ,

taking the smallest χ2 value found. Using this procedure, we obtain the five-

dimensional surface:

χ2
CPC(θ13, θ̄13; {φ̄}) = min

{φ}CPC

(

χ2(θ13, θ̄13; {φ}CPC , {φ̄})
)

(3.3)

This procedure generalizes to the case of three simultaneously active phases the pro-

cedure outlined in ref. [44], where only δ and φeτ were considered.

4. We distinguish, then, between two cases depending on the value of θ̄13:

• The first possibility is that θ13 is already measured by the time the HENF is

built. In this case, we can use the χ2 function (3.3) computed at θ13 = θ̄13 to see

the region of the phase parameter space where CP violation can be distinguished

from the CP conservation hypothesis.

• The second possibility stands for a very small (or even vanishing) θ13. In this

case, it is also necessary to marginalize over θ13 since possible CP-conserving

solutions can be found for a given CP-violating input (θ̄13; {φ̄}) at a different

θ13 (what in the standard three-family oscillation scenario is called an “intrinsic

degeneracy” [69]). In order to take these degeneracies into account, we minimize

the χ2 over θ13:

χ2
θ,CPC(θ̄13; {φ̄}) = min

θ13

(

χ2
CPC(θ13, θ̄13; {φ̄})

)

.

However, notice that in this case the only information we have on θ̄13 is an

upper bound, θ13 ≤ 3◦, approximately. Therefore, marginalization over θ̄13 in

the allowed range is also required here:

χ2
θ,θ̄,CPC({φ̄}) = min

θ̄13

(

χ2
θ,CPC(θ̄13; {φ̄})

)

. (3.4)

5. Eventually, we draw the three-dimensional surfaces corresponding to χ2 = 11.34.

These contours represent the area of the phases parameter space in which CP violation

can be distinguished from CP conservation at the 99% CL for 3 d.o.f.’s. Results

will be shown for both cases in which θ13 is known, using eq. (3.3), or unknown,

using eq. (3.4).
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3.3 Input parameters and marginalization procedure

Unless otherwise stated, the input values taken in this work for the atmospheric and the

solar parameters are: ∆m̄2
21 = 7.59 × 10−5eV2, θ̄12 = 34◦, ∆m̄2

31 = 2.45 × 10−3eV2,

θ̄23 = 45.5◦ [27]. In all the simulations, the matter density has been taken according to

the PREM density profile [74, 75] assuming a 5% error. The sign of the atmospheric

mass difference, sgn(∆m2
31), has been chosen to be positive throughout the paper and

marginalization over it will not be considered.

In all the simulations presented in sections 4 and 5 we have marginalized over the

whole set of νSM parameters. A gaussian prior distribution centered on the input values

given above with variance σ = 0.08(0.03) has been assumed for the atmospheric (solar)

parameters. On the other hand, marginalization over θ13 and δ has also been performed

assuming a flat prior distribution.

In sections 4 and 5 we have also marginalized over the NSI parameters ǫαβ, that is, over

both their moduli |ǫαβ| and phases φαβ . Gaussian priors, in agreement with the bounds

computed in ref. [63], are taken into account for all the moduli of the NSI parameters around

their input values, which have been set to zero throughout the next two sections. Notice

that for the NSI phases no prior knowledge has been taken into account (i.e., π(θ) = 1),

since we do not have any information about these phases yet. We will refer the above

procedure involving νSM and NSI parameters as the “standard marginalization procedure”

hereafter in this paper.

3.4 Neutrino factory setups

At a NF, intense νe and νµ beams are available as decay products of muons (with both

polarities) circulating in storage ring(s). As a consequence, a total of twelve different

oscillation channels could in principle be studied. The International Design Study for

a Neutrino Factory [51], as already mentioned, has undertaken the task of defining the

optimal setup to have good sensitivity to θ13, δ, and to the neutrino mass hierarchy,

sign(∆m2
23). This resulted in what we will refer to as the IDS25 setup hereafter: a HENF

with a muon beam energy of 25 GeV, and 1021 useful muon decays per year aimed at

two identical 50 kton MIND detectors located at two different baselines to look for νµ

appearance events.5 The detector located at L = 4000 km (which will be referred to as

“intermediate baseline” from now on, to distinguish it from the short baseline where a near

detector will be located6 ) is optimized to have sensitivity to the CP-violating phase δ. It,

however, suffers from a severe degeneracy problem [69–71], that can be solved locating an

additional “far” detector at the so-called “magic” baseline (7500 km) [69, 76]. This second

detector increases significantly the potential of the NF to measure the mass hierarchy,

taking advantage of matter effects.

If a HENF is to be optimized to detect effects of NSI, several issues must be understood:

which energy and baseline would be the best; how and to what extent the synergy between

two detectors help; and, if there are any ways of optimization in order to achieve good

sensitivities to both νSM and NSI parameters. Some of these problems were addressed

5Notice that, in the latest IDS design, the MIND located at the intermediate baseline is 100 kton.
6We will not consider such a near detector in our analysis, though.
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in [41], concluding that a setting similar to IDS25 but with higher muon energies (such

as 50 GeV) would be preferred to look for NSI. This is easily explained by the fact that,

since NSI in propagation are introduced as an effective matter potential, an increase in the

average neutrino energy will improve the relative significance of the NSI with respect to

the leading standard oscillations in vacuum. This was indeed confirmed in ref. [42] where,

however, it was found that the improvement with respect to the 25 GeV setup was not very

large (see, also, ref. [43]). All of these works were performed within the ad-hoc assumption

of having only one ǫαβ at a time. One of the goals of this paper is indeed to check if

the results obtained in these analyses survive when correlations between the various NSI

parameters are taken into account. Armed with MonteCUBES, we examine this problem

by comparing the sensitivity to NSI of the IDS25 and of a variant of the IDS setup with

the same detectors but with parent muon energy Eµ = 50 GeV when all NSI parameters

are turned on simultaneously. The new setup, for obvious reasons, will be called as IDS50.

We will also check the potential of the two detectors to reduce the strong correla-

tions between νSM and NSI parameters and within different NSI parameters, to test if

this detector combination can be optimized or not for NP searches. For this reason, the

performance of the two setups above, in which two identical detectors looking for νe → νµ

and νµ → νµ oscillations are located at different baselines, will be compared with the per-

formance of a HENF setup in which two different detectors, one of which is equipped with

τ -identification capability (that could, thus, profit of the νe → ντ and νµ → ντ channels),

are located at one single baseline at 4000 km. Initially, L = 2000 and L = 3000 km were

also considered as alternative baselines. They give similar results, although the 4000 km

performs slightly better, and therefore will not be considered here. This setup will be called

1B50. Notice that the parent muon energy for the 1B50 setup has to be large enough to

overcome the smallness of the ντN cross-section due to the τ production threshold below

4 GeV [77] and get larger statistics at the detector. For this reason, also for this setup

we fix Eµ = 50 GeV. Notice that the advantage of aiming at one site is two-fold: on one

side, we avoid the technical difficulties of aiming one of the beams at a detector located al

L = 7500 km (with a tilt angle of the storage ring of ∼ 36◦ [50]); on the other side, as only

one storage ring is needed all muon decays are aimed to the same site, therefore doubling

the statistics at the detector.

The characteristic features of the three setups (IDS25, IDS50 and 1B50) are resumed in

table 1, where we remind the parent muon energy, the detectors location and technologies

and the neutrino flux aiming at each detector per year. For all setups we consider 5 years

of data taking for each muon polarity.7

The characteristic features of the two types of detector are summarized in table 2.

For technical details on these parameters, we address the interested reader to refs. [49]

and [46, 78].

In the analyses of sections 4 and 5, data have been distributed in bins of the recon-

7We assume that the experiment is run on the two polarities separately. This means that we are

considering a total number of useful muon decays per baseline and polarity of 5 × 5 × 1020 = 2.5 × 1021.

Notice that this is completely equivalent to consider 10 years of data taking per polarity but with 2.5×1020

useful muon decays per baseline, year and polarity. This last option corresponds to the setup where muons

of both polarities are circulating at the same time in the decay ring(s).
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IDS25 IDS50 1B50

Eµ 25 GeV 50 GeV 50 GeV

D1 MIND@4000 km MIND@4000 km MIND@4000 km

D2 MIND@7500 km MIND@7500 km MECC@4000 km

Φ1 5 × 1020 5 × 1020 1 × 1021

Φ2 5 × 1020 5 × 1020 1 × 1021

Table 1. The characteristics of the three considered setups. From top to bottom: the parent muon

energy Eµ; the technology and location of the two detectors, D1 and D2; the number of useful

muon decays per year aiming at each of the two detectors, Φ1 and Φ2.

σ(E) fS fB Mass

MIND 0.55
√

E 2.5% 20% 50 kton

MECC 0.2E 15% 20% 4 kton

Table 2. Main characteristics of the two detectors technologies. From left to right: energy resolu-

tion, σ(E); systematic error over the signal, fS ; systematic error over the background, fB; detector

mass.

structed neutrino energy with the following size: ∆Eν = 1 GeV for Eν ∈ [1, 10] GeV;

∆Eν = 2.5 GeV for Eν ∈ [10, 15] GeV; ∆Eν = 5 GeV for Eν ≥ 15 GeV. This binning ap-

plies to all setups and detector technologies. In section 6, on the other hand, data have

been distributed in bins of equal size: ∆Eν = 5GeV for the IDS25; ∆Eν = 10 GeV for the

IDS50, 1B50 (both for the MIND and the MECC technologies).

The efficiencies for the MIND and the MECC detector technologies as a function of

the reconstructed neutrino energy are shown in figure 1. The νµ identification efficiency at

MIND has been taken from ref. [49]. The ντ identification efficiency at MECC corresponds

to the efficiency of the ECC for the silver channel νe → ντ as computed in ref. [79] multiplied

by a factor of five to take into account the capability of the MECC to look for taus not

only through their decay into muons (as for the ECC) but also into electrons and hadrons

(see a detailed discussion in ref. [46] regarding this point). The cross-sections have been

taken from refs. [80, 81].

Table 3 shows the number of events in the golden (silver) channel per kton×year at a

MIND (MECC) detector with perfect efficiency, located at 4000 km from the source, for

a 50 GeV NF. Normal hierarchy has been assumed, and results are shown for δ = ±90◦,

and for two different values of θ13 = 0, 3◦. In order to illustrate the effect when NSI are

included in the analysis, we show the total number of events at the detector also in presence

of NSI, ǫeµ = ǫeτ = 10−2. The two NSI CP violating phases have been set to zero. As

it can be seen from the table, the number of events in the silver channel is very small for

vanishing θ13.
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Figure 1. Efficiency of the MIND (blue triangles) and MECC (red circles) detectors as a function

of the neutrino energy. The MIND efficiency has been taken from ref. [49]. The MECC efficiency

corresponds to the ECC efficiency [79] multiplied by a factor of five (see text for details).

δ Channel
θ13 = 0 θ13 = 0 θ13 = 3◦ θ13 = 3◦

ǫαβ = 0 ǫeµ = ǫeτ = 10−2 ǫαβ = 0 ǫeµ = ǫeτ = 10−2

+90◦
νe → νµ 2.75 44.93 66.70 108.54

νe → ντ 1.08 7.97 15.63 22.60

−90◦
νe → νµ 2.75 44.93 41.69 83.96

νe → ντ 1.08 7.97 23.77 30.56

Table 3. Total number of events per year for the golden (silver) channel, measured at a 1 kton

MIND (MECC) detector with perfect efficiency located at L = 4000 km from the source, for a

50GeV NF. Normal hierarchy has been assumed. Results are presented for δ = ±90◦ and for two

different values of θ13 = 0, 3◦, with and without including NSI effects in the golden sector. The two

NSI CP violating phases have been set to zero: φeµ = φeτ = 0◦.

4 Sensitivities achieved mainly through the νe → νµ and νe → ντ chan-

nels

As we stressed in section 2, the sensitivity to NSI parameters comes from different os-

cillation channels depending on the considered parameter. In this section, we study the

sensitivities to ǫeµ and ǫeτ which would be achieved mostly through the golden (and, to

a lesser extent, also through the silver) channel for the three setups under study. Since

the sensitivity to the νSM parameter θ13 (which is the key to the measurement of δ and

of the mass hierarchy, too) is also achieved through the same oscillation channels, we will

examine first the question of how and to what extent the inclusion of NSI affects the sensi-

tivity to θ13 (section 4.1). We will, then, study the sensitivities to the moduli of ǫeµ and ǫeτ

as a function of their respective CP violating phases, through which some features of the

synergy between two detectors/baselines will be illuminated depending upon the settings
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(section 4.2). To show the effect of the correlations between the NSI parameters and with

θ13, the standard marginalization procedure defined in section 3.3 will not be always used.

We will specify in each case the procedure adopted. We remind the readers that sgn(∆m2
31)

is kept fixed throughout this paper. This point has to be kept in mind when interpreting

the results.

To conclude the preamble, we describe the layout of the figures: in figures with three

columns, the left, middle and right panels correspond to the results for the IDS25, IDS50

and 1B50 settings, respectively. Red, green and blue lines correspond to 68%, 90% and

95% 2 d.o.f.’s CL contours, respectively. Whenever we depart from the standard format

we will give a note in the caption of the corresponding figure to specify the layout.

4.1 Impact of the NSI on the measurement of θ13

In figure 2 we show the sensitivity to θ13 as a function of δ when the NSI parameters,

in addition to the νSM ones, are also taken into account during marginalization. In top

panels, marginalization over ǫαα (α = e, µ, τ), ǫeµand ǫeτ is performed; in bottom panels, the

marginalization procedure is done over ǫαα and ǫµτ . As a reference, we also present the 68%

CL sensitivity to θ13 obtained without considering NSI in the analysis, represented by the

dotted black lines.8 It can be clearly seen that the impact of the presence of NSI degrees of

freedom on sensitivity to θ13 is much more significant in top panels than in bottom panels.

When marginalization is performed over ǫeµ and ǫeτ , the degree of sensitivity loss ranges

from a factor 3 (IDS50) to almost an order of magnitude (1B50) with respect to the νSM

result. On the other hand, the effects of marginalization over ǫαα and ǫµτ are quite mild,

leading to a sensitivity loss of a factor of 3 (1B50), at most. We have checked that the

above sensitivity loss comes from the marginalization over ǫαα, and not over ǫµτ which is

effectively decoupled from θ13. Approximate decoupling between the two parameter sets

(θ13, ǫeµ , ǫeτ ) and (ǫαα, ǫµτ ) is consistent with the expectation from the perturbative

analysis [68] (see appendix A), as explained in section 2: in a nutshell, the golden (and

silver) channel oscillation probabilities (that dominate the sensitivity to θ13) only depend

on ǫeµ and ǫeτ up to second order in ε.

A careful comparison between the three upper panels reveals an interesting feature: the

severe impact on the sensitivity to θ13 observed at the 1B50 setup is largely (moderately)

overcome in the IDS50 (IDS25) setups. Sensitivity to θ13 at the two baseline settings

is robust against inclusion of NSI because they probe generalized matter effects at two

different distances, a particular type of the synergy between the intermediate and far

detectors [41].

In summary, in spite of the fact that the 1B50 setup apparently yields the best sensi-

tivity to θ13 in absence of NSI (which is likely to be due to the doubled flux with respect to

the IDS25 and IDS50 setups), its worsening after marginalization over ǫeµ and ǫeτ , strongly

correlated with θ13, is much more severe due to the lack of the magic baseline detector.

8We have checked that our results for the νSM θ13-sensitivity are in reasonable agreement with those

reported in the literature (see, for example, ref. [18]).
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Figure 2. 68%, 90% and 95% CL contours for the sensitivity to θ13 as a function of δ for the

case with NSI, compared to the 68% CL contour for the sensitivity to θ13 in the absence of NSI

(represented by the black dotted line). Marginalization was performed over the νSM parameters,

the diagonal NSI parameters ǫαα and either ǫeµand ǫeτ (top panels) or ǫµτ (bottom panels). The left,

middle, and right panels show the results obtained for IDS25, IDS50, and 1B50 setups, respectively.
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Figure 3. 68%, 90% and 95% CL contours for the sensitivity to ǫeµ as a function of φeµ for θ̄13 = 0

(upper panels) and θ̄13 = 3◦; δ̄ = −π/2 (lower panels). Marginalization has been performed over

the νSM parameters, the diagonal NSI parameters ǫαα and ǫeτ . The left, middle, and right panels

show the results obtained for IDS25, IDS50, and 1B50 setups, respectively.

4.2 Sensitivity to ǫeµ and ǫeτ

In figure 3 (4) we present the sensitivity to |ǫeµ| (|ǫeτ |) for θ̄13 = 0 (upper panels) and

θ̄13 = 3◦; δ̄ = −π/2 (lower panels) as a function of φeµ (φeτ ), respectively. For all pan-

els, the standard marginalization procedure defined in section 3.3 is carried out, albeit

neglecting marginalization over ǫµτ (which is totally uncorrelated from |ǫeµ| and |ǫeτ |, as

we have checked).

We first discuss the results in figure 3. The most important remark is that both high-

energy setups (IDS50 and 1B50) present similar performances, with sensitivities that are
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Figure 4. 68%, 90% and 95% CL contours for the sensitivity to ǫeτ as a function of φeτ for θ̄13 = 0

(upper panels) and θ̄13 = 3◦; δ̄ = −π/2 (lower panels). Marginalization has been performed over

the νSM parameters, the diagonal NSI parameters ǫαα and ǫeµ. The left, middle, and right panels

show the results obtained for IDS25, IDS50, and 1B50 setups, respectively. Notice the different

scale for the lower right panel, for which the sensitivity is much worse than for the rest of setups.

much better than that of IDS25 both for θ̄13 = 0 and θ̄13 = 3◦. The fact that both IDS50

and 1B50 give sensitivities to |ǫeµ| that are extremely similar implies that the improvement

with respect to the IDS25 is due to the increase in energy, in agreement with our expectation

for preferring higher energies for NSI searches. It can also be seen that the dependence

of the sensitivity to |ǫeµ| on φeµ is stronger for θ̄13 6= 0◦ (bottom panels) than in the

case of θ̄13 = 0.

In figure 4 we can see that the results obtained for the sensitivity to |ǫeτ | are quite

different from those found for |ǫeµ|. For vanishing θ̄13, it can be seen that the IDS50 setup

is better than the IDS25 and the 1B50 by a factor of ≃1.7 and a few, respectively. When

θ̄13 is increased to θ̄13 = 3◦, the sensitivity to ǫeτ becomes worse by a factor of ≃2 or so,

independently on the setups: the relative performance of the three setups remains almost

the same as in the case of θ̄13 = 0. Notice that for the sensitivity to |ǫeτ |, unlike for |ǫeµ|,
the synergy between the two detectors plays a key role [41–43], improving the sensitivity

up to an order of magnitude when a second detector at the magic baseline is considered.

An additional improvement is achieved due to the increase in energy, as expected.

The oscillation probabilities presented in appendix A can help us to understand further

the results presented in figures 3 and 4. In the first line of Peµ in eq. (A.1) we can

observe that the two terms proportional to ǫeµ appear with the same sign, while the ones

proportional to ǫeτ have opposite sign and tend to cancel. We have checked that, in the

energy range relevant for the three setups under consideration, the coefficient of the ǫeµ

term can be one order of magnitude larger than the corresponding coefficient of the ǫeτ

term. For this reason, the golden channel is more sensitive to ǫeµ than ǫeτ , as it can be

seen by comparing figures 3 and 4. For the same reason, the ǫeµ sensitivity is only mildly

affected by marginalization over ǫeτ , whereas the sensitivity to ǫeτ is strongly affected by

the marginalization over ǫeµ. This explains why the detector at the magic baseline plays an
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important role for the sensitivity to |ǫeτ |, whereas for ǫeµ the energy is the key parameter

independently of the number of baselines. Notice that the features of Peτ are quite the

opposite: terms proportional to ǫeτ add up, while those proportional to ǫeµ tend to cancel

(see the first line of eq. (A.2) in the appendix). One could naively think, then, that a better

sensitivity is expected for ǫeτ instead of ǫeµ in the 1B50 setup due to its ability to detect

τ ’s. This is not the case, however, because the statistics in MECC is poor compared to

that in MIND. The good ǫeµ sensitivity observed at the 1B50 depends on the doubled flux

at the MIND section of the detector.9

A last interesting remark can be drawn in the phase dependence of the results of

figures 3 and 4. If we compare the sensitivity contours for θ̄13 = 0 (upper panels) and

θ̄13 = 3◦ (lower panels), we can see a shift of locations of the sensitivity minima. This

feature is a result of the complicated correlations between δ, φeµ and φeτ in the golden

channel probability. The key factor for this effect to take place is the CP-violating value

we have chosen for δ̄, which maximizes the effect.

5 Sensitivities achieved mainly through the νµ → νµ channel

As we have mentioned in section 2, sensitivity to the rest of the NSI parameters, i.e. the

diagonal elements ǫαα and ǫµτ , mainly comes from the νµ → νµ channel.10 In this section,

we will study first the expected sensitivity to |ǫµτ | as a function of its CP-violating phase

φµτ (section 5.1). The sensitivity to the diagonal NSI parameters will be studied next

(section 5.2), taking particular care to unveil the correlations between ǫαα, θ13 and θ23.

5.1 Sensitivity to ǫµτ

In figure 5 the sensitivity to ǫµτ for θ̄13 = 0 is shown only for the IDS50 setup, since we

have found remarkably similar results for the rest of setups under study. The standard

marginalization procedure is employed as usual. The most significant feature in this figure

is the extremely high sensitivity to the real part of ǫµτ (better than 10−3). The high sensi-

tivity is driven by the leading NSI correction to the disappearence oscillation probability

in eq. (A.3):

Pµµ = P SI
µµ − |ǫµτ | cos φµτ (AL) sin (∆31L) + O(ε2) + . . . (5.1)

When ǫµτ is mostly imaginary, φµτ ∼ ±90◦, we observe a significant sensitivity loss of

more than an order of magnitude, as expected from the fact that the leading dependence

on Im(ǫµτ ) appears at O(ε2) in the probability, as seen in eq. (A.3). We have explicitly

verified that fixing ǫeµ and ǫeτ during marginalization does not produce any appreciable

change in the sensitivity to ǫµτ . This confirms the numerical results presented in section 4.2

where no correlation between ǫeµ (or ǫeτ ) and ǫµτ was found. Eventually, we have checked

9We will see in section 6 that the silver channel can, however, play an important role in the discovery of

CP violation due to NSI.
10The νµ → ντ channel only increases the statistics at the detector. However, the sensitivity to ǫαα and

ǫµτ is not limited by statistics thanks to the disappearance channel. As a consequence, the νµ → ντ channel

is not very useful in this context since it does not add any additional information.
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Figure 5. 68%, 90% and 95% CL contours for the sensitivity to ǫµτ as a function of φµτ for θ̄13 = 0.

Marginalization has been performed over the νSM parameters, the matter density and the rest of

NSI parameters. The 50GeV IDS setup has been assumed.

that the ǫµτ sensitivity does not vary significantly for nonzero θ̄13, in agreement with the

discussion in section 4.1.

5.2 Sensitivity to the diagonal NSI parameters

In figure 6 we show the sensitivities to the NSI diagonal parameters obtained with the

IDS50 setup for different input values of θ̄13 and θ̄23. As for the ǫµτ case, the results are

extremely similar for the other two setups under study, and hence their results are not

shown. Top panels correspond to θ̄13 = 0, the bottom ones to θ̄13 = 3◦. Left panels are

obtained for θ̄23 = 45◦, in which the red, green and the blue lines stand for the 68%, 90%

and 95% CL contours, respectively. In the right panels only the 95% CL contours are

drawn, for θ̄23 = 43◦ by the purple dashed lines and θ̄23 = 47◦ by the black solid lines. The

standard marginalization is adopted here too.

First of all, we see that all panels show that the sensitivity to (ǫee − ǫττ ) is about an

order of magnitude worse than the sensitivity to (ǫµµ−ǫττ ). This behaviour is in agreement

with the fact that the leading dependence on the latter combination appears at O(ε2) in

the oscillation probabilities, while for the former one it appears at O(ε3) (see [68]). Notice,

nonetheless, that the sensitivity to (ǫee - ǫττ ) (approximately ≃ 10% and ≃ 20% at 95%CL,

2 d.o.f.’s, for θ̄13 = 3◦ and 0, respectively) is better than the sensitivity achieved at any

other facilities considered in the literature. It improves as θ̄13 increases, probably due to

the effect of the golden channel, as we can see by comparing top and bottom panels. On

the other hand we have observed, in agreement with the discussion in section 2, that the

(ǫee - ǫττ ) sensitivity is mainly limited by the matter uncertainty, which has been set to

5% in our simulations. In other words, unless the PREM error on the matter density is

improved, a ∼ 10% sensitivity to (ǫee - ǫττ ) would be the limiting accuracy that could

be reached.11

The impact of a non-maximal atmospheric mixing angle can be seen in the right panels

in figure 6: two narrow strips appear at both sides of the central region. By looking into

11An alternative method to constrain ǫee, which is free from this problem and is complementary to our

method, is to use solar neutrinos, whose sensitivity to ǫee appears to reach ∼ 20% at 1 σCL (1 d.o.f.) [82].
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Figure 6. Sensitivity to (ǫee -ǫττ ) and (ǫµµ -ǫττ ) at the IDS50 setup.Top panels: θ̄13 = 0; bottom

panels: θ̄13 = 3◦. Left panels: 68%, 90% and 95% CL contours for θ̄23 = 45◦; right panels: 95%

CL contour for θ̄23 = 43◦ (purple dotted line) and θ̄23 = 47◦ (black solid line). Marginalization has

been performed over θ23, ∆m2
31, the matter density, θ13 and δ.

the disappearance probability, Pµµ in eq. (A.3), it is easy to realise that the sensitivity in

the central region of the plots is driven through the term proportional to (ǫµµ− ǫττ )
2 in the

disappearence channel, being the only one which does not vanish to order ε2 for maximal

mixing in the atmospheric sector. The narrow bands at both sides appear as a consequence

of the non-maximal input for the atmospheric mixing angle, and they are driven by the

terms proportional to δθ23(ǫµµ − ǫττ ) in Pµµ. Indeed, the fact that these two strips appear

both for θ̄23 = 43◦ and θ̄23 = 47◦ indicates the existence of an “octant” degeneracy between

δθ23 and (ǫµµ - ǫττ ).

It is also remarkable that no significant correlations among ǫαα, ǫeµ and ǫeτ have been

found, as expected from the results presented in section 4.2.

6 Discovery potential for CP violation in the (φeµ, φeτ , δ) space

One of the most interesting aspects of any system involving NSI is the possible existence

of multiple sources of CP violation. It is important to understand characteristic features

of CP violation such as correlations between the phases or possible degeneracies arising

between them. In this paper we focus on the study of CP violation associated with the two

NSI CP-violating phases φeµand φeτ together with the standard νSM phase δ, which appear
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in the golden and silver channels. Depending on the values of θ13, |ǫeµ| and |ǫeτ |, strong

and complicated correlations are expected to take place between these three phases. The

third NSI phase, φµτ , only appears in Pµµ and Pµτ (see appendix A) and is uncorrelated

to the rest of the CP-phases. For this reason effects of CP violation in the µ− τ sector will

not be studied in this paper.

For any realistic NP model giving rise to NSI at low energies, the effects are generally

not expected to be larger than O(10−2). For this reason, we will focus on “reasonable”

values for |ǫeµ| and |ǫeτ |, in the range |ǫαβ| ∈ [10−3, 10−2], for which the correlations with

θ13 can still be large.12 For NSI moduli smaller than 10−3, the effect of δ always dominates

and it is very difficult to detect CP violation due to NSI. On the other hand, we will see

that a very interesting structure arises in the discovery potential in the three-dimensional

parameter space for the input values we have considered for the NSI moduli. In particular,

we have studied three cases: (a) both moduli are “small”, |ǭeµ| = |ǭeτ | = 10−3, (b) both of

them are “large”, 10−2, and finally (c) an “asymmetric” case where |ǭeµ| = 10−3; |ǭeτ | =

10−2. Within these three cases, the last one is particularly interesting. Let us remind

that, in the golden channel, ǫeµ plays a leading role while ǫeτ is subdominant (section 4).

Therefore, the difference by a factor of ten in their order of magnitudes triggers interesting

three-fold correlations between δ, φeµ and φeτ .

6.1 Non-standard CP violation in the absence of νSM CP violation

The first question we address is whether it is possible to detect a new CP-violating signal

due to NSI in the absence of standard CP violation. We study, therefore, the CP discovery

potential (defined in section 3.2) in the case where the input value for the standard CP-

violating phase, δ̄, is set to zero or π. The two cases defined in section 3.2 are considered.

The first possibility stands for a relatively large value of θ13, θ̄13 = 3◦, which would be

already measured by the time the HENF is built. In this case, we can safely use eq. (3.3)

to study the CP-discovery potential. The second possibility arises when no signal for a non-

vanishing θ13 is found by the ongoing and soon-coming neutrino oscillation experiments.

In this case, we can only conclude that θ13 <∼ 3◦, and we have to use eq. (3.4) instead.

These two cases yield the best and the worst results13 for the CP discovery potential in

the (φeµ, φeτ ) space for δ = 0 and 180◦.

We show in figures 7 and 8 the CP discovery potential in the (φeµ, φeτ ) plane for δ̄ = 0

and 180◦, respectively. From left to right we show results for the IDS25, IDS50 and 1B50

setups, respectively. From top to bottom we present the CP discovery potential for the

three choices of the two NSI moduli input values, (|ǭeµ|, |ǭeτ |) = (10−3, 10−3), (10−3, 10−2),

and (10−2, 10−2), respectively. The shaded regions represent the area of the parameter

space in which CP violation can be distinguished from CP conservation at the 99% CL (3

d.o.f.). The yellow (light gray) regions have been obtained for θ̄13 = 3◦ using eq. (3.3).

12The range of values considered for the NSI moduli in this paper differ significantly from that in ref. [44],

where values for |ǫeτ | as large as unity were considered. In addition, the number of NSI parameters in the

analysis is different as well. As a consequence, the comparison of the results obtained is not straightforward.

Some qualitative features of the results obtained in ref. [44] have been recovered, though.
13We have also checked that for θ̄13 > 3◦ our results do not change dramatically.
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Figure 7. The 99% CL (3 d.o.f.’s) CP discovery potential in the (φeµ, φeτ ) plane for δ̄ = 0. From

top to bottom: (|ǭeµ|, |ǭeτ |) = (10−3, 10−3), (10−3, 10−2) and (10−2, 10−2). The yellow (light gray)

regions have been obtained for θ13 = θ̄13 = 3◦, eq. (3.3). The cyan (dark gray) regions have been

obtained after searching for intrinsic degeneracies in θ13 and then marginalizing over θ̄13, eq. (3.4).

The cyan (dark gray) regions, on the other hand, have been obtained after searching for

intrinsic degeneracies in θ13 and then marginalizing over θ̄13, using eq. (3.4).

We first discuss the case of θ̄13 = 3◦ (yellow regions). The results obtained are quite

similar for δ̄ = 0 and 180◦. In both cases the CP discovery potential for small NSI param-

eters corresponding to (|ǭeµ|, |ǭeτ |) = (10−3, 10−3) (top row) vanishes for the IDS25 and

the 1B50 setups, and it is non-vanishing only for two very small regions at |φeµ| ≃ 90◦,

independently of the value of φeτ , for the IDS50. The IDS25 setup presents no CP discov-

ery potential at all for the case where (|ǭeµ|, |ǭeτ |) = (10−3, 10−2) either. For this choice of

NSI parameters, on the other hand, the IDS50 and the 1B50 setups show different perfor-

mances: the former is able to discover CP violation due to NSI when both NSI phases are
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Figure 8. The same as figure 7 but with δ̄ = 180◦.

nearly maximal, (|φeµ|, |φeτ |) ∼ (90◦, 90◦); the latter can establish NSI-induced CP viola-

tion for |φeτ | ∼ 90◦ (regardless of the value of φeµ). In the case of “large” NSI parameters,

(|ǭeµ|, |ǭeτ |) = (10−2, 10−2), the three setups yield a very good CP discovery potential for

θ̄13 = 3◦. In this case we observe a similar pattern of the sensitivity regions for all three

setups: most of the space is covered, apart from two strips around φeµ = 0 and 180◦ whose

widths mildly vary for differing setups.

As it was already mentioned in section 4.2, the dependence on ǫeµand ǫeτ in the νe → νµ

oscillation probability is quite different: the coefficient of the ǫeµ term is roughly one order

of magnitude larger than the corresponding coefficient of the ǫeτ term in the considered

range of energy and baselines. Therefore, the behaviour of the CP discovery potential

due to NSI at the IDS25 and IDS50 are primarily determined by ǫeµ if |ǫeµ| and |ǫeτ | are

comparable. This is clearly seen by the vertical bands shown in the top and bottom panels

in figures 7 and 8: the CP discovery potential presents practically no dependence at all on
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ǫeτ , its behaviour being dominated by ǫeµ , since for these panels both parameters are of the

same order of magnitude (and, therefore, the latter is suppressed by its coefficient). In the

asymmetric case, however, (|ǭeµ|, |ǭeτ |) = (10−3, 10−2) (middle row), these vertical bands

disappear since now both parameters are competitive. A particularly interesting feature is

seen in the right panels, which correspond to the performance of the 1B50 setup. In this

case, due to the presence of the silver channel, the roles of ǫeµ and ǫeτ are interchanged: two

horizontal bands appear at |φeτ | = 90◦, showing that the behaviour of the CP discovery

potential is dominated by ǫeτ in spite of the low statistics of the silver channel. This is

a consequence of the enhanced role of the silver channel due to the asymmetric choice of

ǫeµ and ǫeτ and by the size of their corresponding coefficients (inverted with respect to the

golden channel). For |ǭeµ| = 10−3 we see no significant difference for δ̄ = 0 or 180◦ in the

case θ̄13 = 3◦ (yellow regions).

Now we discuss the CP discovery potential for the case of θ13 <∼ 3◦, depicted as the

cyan regions in figures 7 and 8. The first thing we notice is that, when marginalization

over θ13 and θ̄13 is performed, the CP discovery potential is partially lost for all the setups

under study. This effect is due to the presence of interference terms in the form θ13|ǫeα| ×
exp i(δ + φeα) in the probabilities. Notice that this effect is much worse in the case of

δ̄ = 180◦ than for δ̄ = 0. In the former case, only small islands in the (φeµ, φeτ ) space

survive at around the maximally CP-violating values of the NSI phases only for the 1B50

setup, while the IDS25 and the IDS50 setups show no discovery potential at all for any

of the considered input values of the NSI moduli. The marked difference between the

shaded regions for δ̄ = 0 and δ̄ = 180◦ illuminates very well how complicated the interplay

among the three CP-phases is; once we marginalize over θ13, flipping the sign of eiδ leads

to a cancellation between the standard and non-standard CP-violating contribution, which

results in a heavy loss of the CP discovery potential of the facilities. This cancellation is

less effective when the 1B50 setup is considered, as the silver channel is enhanced when

the golden channel gets depleted and viceversa.

It is remarkable to see that high enough neutrino energies turn out to be of key im-

portance in order to observe NSI-induced CP violation; the IDS50 setup always performs

better than the IDS25, for all the input values we have considered for the NSI moduli.

To conclude this section, we point out the following two features: firstly, as this analysis

has been performed with fixed mass hierarchy, it is expected that the CP discovery potential

could become worse when the sign-∆m2 degeneracies are taken into account.14 Secondly, a

more refined analysis of the correlations between the three phases with a proper treatment

of backgrounds, systematic errors and marginalization over atmospheric parameters should

be performed to confirm robustness of the observed features.

6.2 δCP fraction: Non-standard CP violation in presence of νSM CP violation

In the previous section, we have presented the two dimensional slice of the three-dimensional

“CP sensitivity volume” at the very particular points δ̄ = 0 or 180◦. For different values

14Notice, however, that in the two-baselines setups for measuring the νSM parameters the magic baseline

detector is able to solve the sign degeneracy in most of the parameter space [18]. It is an intriguing question

to examine to what extent it continues to hold with NSI. This question has been investigated in [43] but

only partially and needs to be examined further.
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of δ̄, the CP discovery potential changes dramatically due to the correlations between the

three phases. We have indeed found very different features depending on the considered

setup, the choice of the input values for the NSI moduli (|ǭeµ|, |ǭeτ |), and the mixing angle

θ̄13; in particular, many “holes” appear indicating regions inside the three-dimensional

parameter space for which we are not able to distinguish a CP-violating input from the

CP-conserving points. The existence and position of these holes change for the three setups

and for the considered choices of (|ǭeµ|, |ǭeτ |) and θ̄13. Therefore, to repeat the procedure

adopted in figures 7 and 8 and draw infinitely many slices of the CP discovery potential for

different values of δ̄ would neither be practical nor shed any useful light over the intimate

structure of the correlations.

We therefore introduce a new quantity, the “δCP-fraction contour in the (φeµ, φeτ )

space”, to condense the information. This quantity, denoted as Fδ(φeµ, φeτ ), is defined as

the fraction of possible values of δ̄ which fall into the region where CP violation can be

established at the 99% CL (3 d.o.f.) for a certain point in the (φeµ, φeτ ) space. Notice

that this is nothing but the usual CP-fraction redefined on the two-dimensional plane15

(φeµ ,φeτ ). Such contours are shown for θ̄13 = 3◦ in figure 9, using eq. (3.3), and in figure 10,

using eq. (3.4).

In figure 9, the white, yellow, cyan, pink and red regions correspond to Fδ(φeµ, φeτ ) ≤
40%, 60%, 80%, 90% and 95%, respectively, for fixed θ13 = θ̄13 = 3◦. Globally, the IDS50

setup has the best CP discovery potential, while the IDS25 and 1B50 setups yield compa-

rable results (the 1B50 performance being slightly better). The top and bottom panels,

which correspond to (|ǭeµ|, |ǭeτ |) = (10−3, 10−3) and (10−2, 10−2), respectively, display sim-

ilar features as those we have seen for δ̄ = 0 or 180◦. Fδ(φeµ, φeτ ) larger than 40% (60%) is

achieved in almost the whole plane for all the setups in the case of “small” (“large”) NSI

parameters. A Fδ(φeµ, φeτ ) greater than 80% is achieved for all the setups under study

around |φeµ| ∼ 90◦ for “large” NSI input values.

On the other hand, the result for asymmetric NSI moduli, (|ǭeµ|, |ǭeτ |) = (10−3, 10−2),

is peculiar. We can see that the CP discovery potential for the IDS25 and the 1B50 setups

is worse than for “small” NSI moduli, since a larger white region with Fδ(φeµ, φeτ ) ≤ 40%

arises for φeτ ∼ −90◦. At the same time, the discovery potential for the IDS50 setup is

maximal at φeτ ∼ 90◦. The fact that the main features of Fδ(φeµ, φeτ ) are determined by

φeτ rather than by φeµ appears to be again a consequence of the asymmetric choice of NSI

parameters. Having |ǭeτ | an order of magnitude larger than |ǭeµ|, the two parameters play

an equally important role and huge correlations arise between them, which could explain

the absence of a peak in sensitivity at φeµ ≃ φeτ ≃ −90◦ for the IDS50 setup. When

the two parameters are of the same order, ǫeµ always dominates over ǫeτ , in agreement

with our previous results. A comparison between left panels in figure 9 and, for instance,

figure 12 of ref. [55] indicates that marginalization over NSI hurts the CP sensitivity in a

significant way.

15The concept of CP-fraction was introduced in refs. [83, 84] to compare in a condensed form the perfor-

mances of different proposals regarding the measurement of a given observable. It is defined as the fraction

of the δ-parameter space (i.e., the fraction of 2π) for which a given setup is able to perform a given task.
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Figure 9. Contours for the δCP-fraction Fδ in the (φeµ, φeτ ) plane (as defined in the text) for

θ̄13 = 3◦, obtained using eq. (3.3). From left to right: results for the IDS25, IDS50 and 1B50

setups. From top to bottom: (|ǭeµ|, |ǭeτ |) = (10−3, 10−3), (10−3, 10−2) and (10−2, 10−2). The

white, yellow, cyan, pink and red regions correspond to Fδ(φeµ, φeτ ) ≤ 40%, 60%, 80%, 90% and

95%, respectively.

In figure 10 we show contours corresponding to Fδ(φeµ, φeτ ) ≤ 5%, 40%, 60%, 80% and

95% in white, light yellow, yellow, cyan, pink and red, respectively, after marginalization

over θ13 and θ̄13 below 3◦, using eq. (3.4). Results for the IDS25 setup are not presented

because we have found vanishing Fδ for any choice of |ǭeµ| and |ǭeτ | under consideration.

Similarly, we do not show any results corresponding to (|ǭeµ|, |ǭeτ |) = (10−3, 10−3) either,

since we have found vanishing Fδ for all the three setups. Notice that we have included

in this figure an additional contour for Fδ < 5% in order to achieve a better resolution

in small Fδ regions. When we compare figure 10 to figure 9 we observe some contrived
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Figure 10. Contours for the δCP-fraction Fδ in the (φeµ, φeτ ) plane (as defined in the text) after

searching for intrinsic degeneracies in θ13 and marginalizing over θ̄13, using eq. (3.4). Left (right)

panels: results for the IDS50 (1B50) setup. Top panels: (|ǭeµ|, |ǭeτ |) = (10−3, 10−2); bottom panels:

(|ǭeµ|, |ǭeτ |) = (10−2, 10−2). The white, light yellow, yellow, cyan, pink and red regions correspond

to Fδ(φeµ, φeτ ) ≤ 5%, 40%, 60%, 80%, 90% and 95%, respectively.

features. That is, the CP-fraction obtained for the ISD50 is not always better than that for

1B50. In certain limited regions the CP-fraction is actually larger for the 1B50 setup, but

the area covered by the regions where some sensitivity to CP violation is achieved (light

yellow) is larger for the IDS50 setup. It appears that this feature is an outcome of the

complicated correlations between these phases.

6.3 CP volume fraction

If we focus on the most general possible case in which CP violation comes both from the

νSM as well as from NSI, it would be interesting to understand its global features. For this

purpose we define a new quantity which we call the “CP volume fraction”. This is defined

as the fraction of volume in which CP-violating signal can be distinguished, at a given CL,

from a CP-conserving one in the three-dimensional parameter space spanned by δ, φeµ and

φeτ . We use 99% CL (3 d.o.f.) to define the CP volume fraction presented in the figures

in this subsection.

In figure 11, we present the results of the CP volume fraction computed using eq. (3.3)

for the three setups and the three choices (“small”, “asymmetric” and “large”, as usual)
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Figure 11. Comparison of the CP volume fractions (as defined in the text) as a function of θ̄13,

using eq. (3.3). From left to right: IDS25, IDS50 and 1B50 setups. Results for (|ǭeµ|, |ǭeτ |) =

(10−3, 10−3), (10−3, 10−2) and (10−2, 10−2) are represented by dotted, dashed and solid lines, re-

spectively.

as a function of θ̄13. Consider first the IDS25 and IDS50 setups: we can see that, at both

setups, the CP volume fraction achievable for (|ǭeµ|, |ǭeτ |) = (10−3, 10−3) and (10−3, 10−2)

are extremely similar. This means that the CP discovery potential for both setups is

dominated by |ǭeµ| and the effect of |ǭeτ | is marginal, in agreement with the results obtained

in previous sections. On the other hand, we see that when |ǭeµ| = 10−2 (solid line), the

CP volume fraction rises abruptly to approximately 80% or above for θ̄13 ≥ 2◦.

This is not the case for the 1B50 setup: we can see that in the case of “small” NSI

parameters (dotted line) it shows a similar (but slightly worse) sensitivity than that of the

IDS50. The CP volume fraction is approximately 50% for θ̄13 ≥ 2◦. However, as soon as

|ǭeτ | = 10−2, it rises to 70%, and reaches 90% for larger |ǭeµ| = 10−2 at larger θ13. The

behaviour clearly indicates that the 1B50 setup is taking advantage of the combination of

both channels in an efficient way.

Another interesting observation that we can draw from figure 11 concerns the θ13-

dependence of the CP volume fraction. Firstly, the CP volume for θ13 = 0 reflects the

ability of each setup of observing CP violation exclusively due to NSI. While for the IDS25

setup the CP volume is nonzero only when |ǭeµ| is “large”, the higher energy setups would

be able to measure a CP violating signal even in the case of “small” NSI parameters. This

confirms the results presented in section 6.1 (figures 7 and 8). Secondly, we can see in

the “small” NSI parameters case, and also in the “asymmetric” case for the IDS25 and

IDS50 setups, that the CP volume fraction decreases at “large” θ13, reaching a maximum

for θ̄13 ∈ [1◦, 2◦]. It means that, when the NSI parameters are rather small, correlations

with a “large” θ13 can actually reduce the CP-discovery potential of those facilities. This is

no longer true when the NSI parameters are set to be “large”: in this case, the CP volume
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Figure 12. Comparison of the CP volume fractions (as defined in the text) as a function of

θ̄13 for (|ǭeµ|, |ǭeτ |) = (10−3, 10−2). From left to right: IDS25, IDS50 and 1B50 setups. Results

for the first detector (MIND at the Intermediate Baseline) and for the second detector (either

MIND at the Magic Baseline or MECC at the Intermediate Baseline) are shown in red and green,

respectively. Combination of the two detectors (V1+2, see text) is shown in blue. The dotted black

line corresponds to the simple sum of the CP volume fractions of the separate baselines or detectors,

V1,2 (see text). The dashed black lines represent the synergy, i.e. V1+2 − V1,2 (see text).

fraction increases for increasing θ13 value but remains practically unchanged for θ13 ≥ 2◦.

No destructive correlations arise when the NSI parameters are sufficiently “large”.

To conclude this section, we address here the issue of the relative importance of the

different detectors and different baselines, and of the possible synergies between them.

We present in figure 12 the CP volume fractions computed for each detector and their

combinations for the three setups. Only the case of “asymmetric” NSI parameters,

(|ǭeµ|, |ǭeτ |) = (10−3, 10−2), is shown. Notice that it is precisely the case where the synergy

between channels/detectors is most important because the two NSI parameters are equally

relevant in the golden channel, which presents the largest statistics.

Let Vi be the CP volume fraction obtained by analyzing data given by a detector i,

where i = 1 refers to the MIND detector at L = 4000 km and i = 2 to the MIND detector

at L = 7500 km (left and middle panels) or to the MECC detector at L = 4000 km (right

panel), respectively. The volume V1 is represented by red lines, V2 by green lines in all

panels. The CP volume fraction obtained combining two detectors, V1+2, is represented

by the blue lines. Notice that V1+2 is not the simple sum of the CP volume fractions of

the two detectors, V1 + V2. When we combine the CP volume fractions of two detectors,

we must take into account that some part of the parameter space can be covered by both

detectors at the same time. We call the latter volume fraction as Voverlap, the fraction of

the three-dimensional parameter space that is covered simultaneously by both detectors.

Then the correct definition of the simple sum of the CP volume fractions of two detectors

is V1,2 = V1 +V2−Voverlap. The volume V1,2 is shown by the black dotted lines in figure 12.

We can see that, in general, V1,2 does not coincide with V1+2, because the combination
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of the data from two detectors could in principle cover regions of the parameter space

that are not accessible to each detector separately. This is nothing but the effect of the

synergy between two detectors, an increase in the CP volume fraction due to simultaneous

analysis of the data sets of two detectors, a procedure different from the simple sum of the

sensitivities achieved by each one separately. The synergy V1+2−V1,2 is represented by the

black dashed lines in figure 12.

The first thing to be noticed is that the synergy is never much larger than approxi-

mately 10% for any of the considered setups. In the IDS25 and IDS50 setups, V1,2 (black

solid lines) almost coincides with V1 (red lines for the intermediate detector). This means

that most of the CP volume fraction due to the magic baseline detector is already covered

by the intermediate detector. In the case of 1B50 setup the situation is different. For

θ̄13 ≤ 1◦ the MECC detector does not contribute at all, as the red, black and blue lines

coincide. For θ̄13 ≥ 1◦, the MECC contribution grows linearly and it starts to cooperate

with the MIND detector, as expected. However, we see that V1,2 (black) and V1+2 (blue)

are closer compared to the cases of IDS25/50. This means that the overlap region Voverlap

is relatively small in this case. The two detectors are complementary, as they test different

regions of the parameter space.

7 Summary and conclusions

In this paper, we have performed a complete study of the effects of NSI in neutrino propa-

gation at the High Energy Neutrino Factory (HENF). We paid particular attention to the

correlations among the whole set of oscillation parameters, the νSM and the NSI ones. Our

analysis is the first one which takes into account all the NSI parameters at the same time

in the simulations. Among all the new facilities proposed and discussed in the literature,

we have chosen HENF due to its high energies and very long baselines, as it is likely to

be best suited to study effects of NSI in propagation. We have examined the three setups

defined in section 3.4: (a) IDS25, the standard IDS setup; (b) IDS50, a 50 GeV upgraded

version of IDS25; and (c) 1B50, a one baseline 50 GeV setup with a composite detector

capable of detecting νµ as well as ντ . The comparison among the three different setups has

been performed keeping in mind that a possible optimization of HENF could be performed

in order to search for New Physics (NP) in case that θ13 turns out to be at reach by the

ongoing (or forthcoming) neutrino experiments.

Our analyses have been divided into two parts: in the first part (sections 4 and 5)

the sensitivities to NSI parameters have been studied after a brief discussion of effects of

NSI on the measurement of νSM parameters; the second part (section 6) is devoted to the

analysis of the CP violation discovery potential of the setups under study associated to the

three phases, δ, φeµ , and φeτ .

Results for the first part can be summarized as follows:

• Significant correlations between θ13, ǫeµ and ǫeτ have been found at HENF setups.

Such effects can be reduced placing a detector at the magic baseline, but they cannot

be eliminated. The ultimate sensitivity to θ13 is worsened by a factor 3, 5 and 10

for the IDS50, IDS25 and 1B50 setups, respectively, when NSI are included in the
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marginalization procedure compared to the case without NSI (see figure 2). On

the other hand, no correlations with ǫµτ and only a marginal effect of ǫαα have

been observed.

• The sensitivities to |ǫeµ| and |ǫeτ | essentially come from νe → νµ (and, to a lesser

extent, νe → ντ ) oscillations channels, while the sensitivities to |ǫµτ | and the diagonal

NSI parameters are achieved mostly through the νµ → νµ disappearance channel. We

have numerically checked that these two sectors are practically decoupled, since no

significant correlations on their sensitivities have been found. The marginalization

over ǫeτ does not affect significantly the sensitivity to ǫeµ, however the converse is

not true.

• A higher sensitivity to |ǫeµ| is achieved by the higher energy setups, IDS50 and 1B50.

For these setups, the sensitivity to |ǫeµ| at 95% CL (2 d.o.f.’s) for θ̄13 = 0 (3◦) is in

the range [0.5, 1.7] × 10−3 ([0.7, 2.5] × 10−3), depending upon φeµ. The sensitivity

obtained by the IDS25 setting is worse by a factor of 3 (see figure 3).

• The sensitivity to |ǫeτ |, which is worse than the sensitivity to |ǫeµ|, varies significantly

between the different setups, although generally better for the two baseline setups.

The smallest value of |ǫeτ | that can be excluded at 95% CL (2 d.o.f.’s) for θ̄13 = 0 (3◦),

depending on φeτ , is in the range [4, 5.5] × 10−3 ([5.5, 12] × 10−3) for the IDS25,

[2, 3.3] × 10−3 ([4, 6] × 10−3) for the IDS50 and [5, 10] × 10−3 ([6, 17] × 10−3) for the

1B50 (see figure 4).

• The sensitivities to the diagonal parameters and to ǫµτ , on the other hand, are quite

independent from the setup under consideration. The sensitivity to (ǫee−ǫττ ) is quite

limited, ∼ 0.2 (∼ 0.1) for θ̄13 = 0 (3◦), since this parameter shows up only at O(ε3)

in all the oscillation channels. The sensitivity to this combination of parameters is

strongly limited by the uncertainty on the matter density in the earth.

The sensitivity to (ǫµµ − ǫττ ) is approximately one order of magnitude better and

reaches ∼ 0.03 (∼ 0.05) for θ23 = 45◦ (θ23 = 43◦ or 47◦), see figure 6. The sensitivity

to |ǫµτ | shows a remarkable dependence on the corresponding phase φµτ (much larger

than in the case of |ǫeµ| and |ǫeτ |). The values that can be tested range from O(10−2)

to O(10−3) for |φµτ | = 90◦ and |φµτ | = 0, 180◦, respectively (see figure 5).

In the second part of this work, we have studied the potential of the HENF to discover

CP violation due to the νSM phase and/or the NSI phases φeµ, φeτ . This has been done

by computing the discovery potential in the three-dimensional space, i.e. the region of

sensitivity to CP violation at the 99% CL (3 d.o.f.’s) in the (δ, φeµ, φeτ ) space. Since φµτ is

not expected to be correlated to the above mentioned CP-phases we have not studied the

correlations between φµτ and them in this work.16

16Notice that our results for the CP discovery potential constitutes only a first step toward more careful

studies of the complicated correlations arising between δ, φeµ and φeτ . Analyses which include a proper

treatment of backgrounds, systematic errors and marginalization over other parameters (with particular

emphasis, in this case, on the sign of the mass hierarchy) should be performed to confirm the results

presented here.
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We have distinguished two different cases depending on the value of θ13: either θ13 is at

reach in the currently running (or in the next generation) neutrino experiments, or it is out

of reach. In the former case θ13 has been fixed to be 3◦ as a typical value, and in the latter,

we have marginalized over θ13 in the allowed range, θ13 <∼ 3◦. We have chosen “reasonable”

values for the NSI moduli, (|ǭeµ|, |ǭeτ |) ∈
[

10−3, 10−2
]

, paying special attention to the

particular case where |ǭeτ | is an order of magnitude larger than |ǭeµ|. In this case effects

of both parameters are competitive in the golden channel and interesting correlations arise

between them. Results obtained in this section can be summarized as follows:

• If δ turns out to be at a CP-conserving value (i.e., when CP violation is exclusively

due to NSI) a strong dependence on the true values of θ13 and δ (either 0 or 180◦)

is observed. For θ̄13 = 3◦, CP violation can be established in most of the parameter

space only for “large” NSI parameters, (|ǭeµ|, |ǭeτ |) = (10−2, 10−2) for both δ = 0

and 180◦ in all the three setups. When marginalizing over θ̄13, however, CP violation

can be established in a significant amount of the parameter space only for δ̄ = 0 and

only for the IDS50 and 1B50 setups. For δ̄ = 180◦ destructive interference occurs

and CP violation can be distinguished from CP conservation only in the points where

(|φeµ|, |φeτ |) = (90◦, 90◦).

• For generic values of the νSM CP phase, the δCP fraction Fδ (defined in section 6.2)

is larger than 60% for θ̄13 = 3◦ and “large” NSI parameters in all (most) of the

phase space for the IDS50 and 1B50 (IDS25) setups. Yet, the regions in which

Fδ > 40% extend to most of the phase space even for “small” NSI parameters,

(|ǭeµ|, |ǭeτ |) = (10−3, 10−3), for all the setups. When marginalizing over θ̄13 the CP

sensitivity coverage becomes much poorer, though. Vanishing CP sensitivity (Fδ = 0)

is found for the IDS25 setup for all the input values of the moduli. The same result

is obtained for the IDS50 and the 1B50 setups for “small” NSI parameters, and non-

vanishing Fδ is found only in some regions for the “asymmetric” and “large” choices

of the NSI moduli.

• We have also analyzed the CP volume fraction, defined in section 6.3. The relevant

features are as follows: (1) The high energy setups have higher CP volume fraction

than the IDS25 for all cases considered; (2) The CP volume fraction at the IDS25 and

the IDS50 setups is determined by the value of |ǭeµ|, whereas |ǭeτ | has no impact; (3)

For “small” values of the NSI parameters, the CP volume fraction shows a maximum

at θ13 ∼ 1◦ at all setups (the same is true also for “asymmetric” NSI in the IDS25 and

IDS50 setups). For |ǫeτ | = 10−2 the 1B50 setup has the largest CP volume fraction

among the three setups, ∼ 70% (90%) for θ13 ≥ 2◦ for |ǭeµ| = 10−3(10−2).

• Finally, we have also studied the synergy between the two detectors located at differ-

ent baselines (IDS25 and IDS50) and between the golden and silver channels (1B50)

for “asymmetric” NSI parameters, since the synergy may be most prominent in this

case. We found the synergy to be most significant for the IDS50 setup, though it is

still small (roughly speaking, 10%).

– 32 –



J
H
E
P
0
8
(
2
0
1
1
)
0
3
6

To summarize the outcome of our comparison between the three setups we make the

following remarks: (1) generally speaking, the high energy setups, IDS50 and 1B50, are

better than IDS25, a naturally expected result since NSI behave as a generalized matter

effect; (2) the former two settings have their own merit and demerit: their sensitivities

to |ǫeµ| are comparable, while the one to |ǫeτ | is higher for the IDS50. An accurate mea-

surement of θ13 is more robust to a possible obstruction by NSI for the IDS50. The CP

violation discovery potential is higher for the 1B50 setup, in particular for large θ13 ∼ 5◦.

However, the IDS50 setup may yield a better global performance than the 1B50 because

of its robustness thanks to the detector located at the magic baseline.

As a final remark, it should be noted that the sensitivities achieved at the high energy

setups studied in this paper are remarkable, and close to the edge of the effects produced by

some neutrino models of New Physics. If New Physics is at the TeV scale, it is quite likely

that new sources of CP violation beyond that of νSM exist. If one interprets our exercise

as an example for such generic cases, apparently, the lessons we have learned are that

interplay between these phases are highly nontrivial, and any regularities between them

or knowledge of the right model would be of crucial importance. What we have definitely

learnt in this study is that higher neutrino energies (such as 50 GeV) have proven to be

crucial in order to pursue these elusive NSI effects in neutrino oscillation experiments.

Note added: after submission of this paper, an excess of νe appearance events far above

background was reported by the T2K [85] and the MINOS [86] experiments, indicating

a large value of θ13. A global fit which includes these new data gives θ13 ≃ 8.3◦ [87].

Therefore, we have performed a first scrutiny of our results under the premises of such a

large value of θ13, which is larger than what we examined during our analysis, i.e., θ13 up

to 5◦. The main outcomes of this preliminary analysis are the following:

1. the maximal sensitivity to ǫeµ and ǫeτ is not affected significantly at any of the

considered setups although the results are, in general, slightly worsened; in addition,

the sensitivity minima are slightly displaced in the φeτ axis with respect to the θ13 =

3◦ case;

2. the sensitivity to ǫµτ and to the diagonal parameters ǫαα is not affected significantly,

either; the only exception being the sensitivity to (ǫµµ−ǫττ ) at the 1B50 setup, which

gets worse by a factor ∼ 3;

3. from a very preliminary scan of the CP discovery potential, we get slightly worse

results since a large θ13 gives stronger correlations between the NSI phases and δ, (as

mentioned above). These preliminary results are in reasonable agreement with the

extrapolation of figure 12.

Since full understanding of effects of NSI in propagation in the case of large θ13 requires

new theoretical machinery and the analysis can go beyond what we have presented in this

paper, we leave the detailed discussion of this case to a future communication.
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A Expressions of expanded oscillation probabilities

In this appendix, we show the oscillation probabilities Pαβ in matter with constant density,

in presence of NSI affecting only to propagation in matter. We start from the oscillation

probability expansions derived in [68] where ǫαβ , θ13, and ∆m2
31/∆m2

21 are considered the

expansion parameters.17 Here we expand also on δθ23 ≡ θ23 − π/4, considering therefore:

ε :
{

ǫαβ, θ13, ∆m2
31/∆m2

21, δθ23

}

as the order ε expansion parameters.

17Remember that, in the set-up considered in this paper, A ∼ ∆31.
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The oscillation probabilities for golden and silver channels at O(ε2) are given by the

following formulae:

Peµ =

∣

∣

∣

∣

∣

ASM
eµ + ǫeµ

[

sin

(

AL

2

)

e−i
∆31L

2 +

(

A

∆31 − A

)

sin

(

∆31 − A

2
L

)]

−ǫeτ

[

sin

(

AL

2

)

e−i
∆31L

2 −
(

A

∆31 − A

)

sin

(

∆31 − A

2
L

)]

∣

∣

∣

∣

∣

2

+ O(ε3)

=

∣

∣

∣

∣

∣

√
2c12s12

∆21

A
+ ǫeµ − ǫeτ

∣

∣

∣

∣

2

sin2 AL

2

+

∣

∣

∣

∣

√
2s13e

−iδ ∆31

A
+ ǫeµ + ǫeτ

∣

∣

∣

∣

2( A

∆31 − A

)2

sin2 ∆31 − A

2
L

+4 Re

[(

c12s12
∆21

A
+

1√
2

(ǫeµ − ǫeτ )

)(

s13e
iδ ∆31

A
+

1√
2

(

ǫ∗eµ + ǫ∗eτ
)

)]

× A

∆31 − A
sin

AL

2
cos

∆31L

2
sin

∆31 − A

2
L

+4 Im

[(

c12s12
∆21

A
+

1√
2

(ǫeµ − ǫeτ )

)(

s13e
iδ ∆31

A
+

1√
2

(

ǫ∗eµ + ǫ∗eτ
)

)]

× A

∆31 − A
sin

AL

2
sin

∆31L

2
sin

∆31 − A

2
L + O(ε3) ,

(A.1)

Peτ =

∣

∣

∣

∣

∣

ASM
eτ + ǫeτ

[

sin

(

AL

2

)

e−i
∆31L

2 +

(

A

∆31 − A

)

sin

(

∆31 − A

2
L

)]

−ǫeµ

[

sin

(

AL

2

)

e−i
∆31L

2 −
(

A

∆31 − A

)

sin

(

∆31 − A

2
L

)]

∣

∣

∣

∣

∣

2

+ O(ε3)

= |
√

2c12s12

∆21

A
+ ǫeµ − ǫeτ

∣

∣

∣

∣

2

sin2 AL

2

+

∣

∣

∣

∣

√
2s13e

−iδ ∆31

A
+ ǫeµ + ǫeτ

∣

∣

∣

∣

2( A

∆31 − A

)2

sin2 ∆31 − A

2
L

−4 Re

[(

c12s12

∆21

A
+

1√
2

(ǫeµ − ǫeτ )

)(

s13e
iδ ∆31

A
+

1√
2

(

ǫ∗eµ + ǫ∗eτ
)

)]

× A

∆31 − A
sin

AL

2
cos

∆31L

2
sin

∆31 − A

2
L

−4 Im

[(

c12s12
∆21

A
+

1√
2

(ǫeµ − ǫeτ )

)(

s13e
iδ ∆31

A
+

1√
2

(

ǫ∗eµ + ǫ∗eτ
)

)]

× A

∆31 − A
sin

AL

2
sin

∆31L

2
sin

∆31 − A

2
L + O(ε3) ,

(A.2)

where ASM
αβ stands for the standard oscillation amplitude, A for the matter density, ∆ij =

(∆m2
ij/2E), and sij and cij stand for sin θij and cos θij , respectively.

On the other hand, since the sensitivities to ǫǫµ and ǫeτ are mainly achieved through
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the golden and silver channels, for the νµ − ντ sector we show here only the dependence on

ǫαα and ǫµτ of the relevant oscillation probabilities, which will be called PNSI
αβ :

PNSI
µµ = −PNSI

µτ

= −{δθ23 (ǫµµ − ǫττ ) + Re (ǫµτ )} (AL) sin (∆31L)

+

{

4δθ23 (ǫµµ − ǫττ )
A

∆31

+ (ǫµµ − ǫττ )
2

(

A

∆31

)2
}

sin2 ∆31L

2

−1

2
(Re(ǫµτ ))2 (AL)2 cos (∆31L) − (Im(ǫµτ ))2

A

∆31

(AL) sin (∆31L) . + O(ε3)

(A.3)

The complete oscillation probabilities at quadratic order in ε can be found in [68].
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