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1 Introduction

An important general question about supersymmetric field theories is whether they ad-
mit long-lived metastable states that break supersymmetry. Constructions of such states
often require that the supersymmetric field theory is strongly coupled. In these cases
non-perturbative phenomena, such as the Seiberg duality [1], can sometimes be used to
demonstrate the possibility of metastable supersymmetry breaking [2].

Another tool available for studying strongly coupled gauge theories is the AdS/CFT
duality [3–5]. In this context, the background dual to a metastable state should be a locally
stable non-supersymmetric solution which is asymptotic to a supersymmetric AdS back-
ground of string theory or M-theory. The first construction of a string dual of a metastable
state was presented by Kachru, Pearson, and Verlinde (KPV) [6] in the context of the
warped deformed conifold background [7] of type IIB string theory. In the ultraviolet this
background is close to AdS5×T 1,1 up to logarithmic effects that encode the running of the
couplings and the cascade of Seiberg dualities [8]. In the infrared the throat ends smoothly
with the warp factor approaching a finite value which signals the color confinement. The
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internal space contains a blown-up 3-sphere threaded by M units of R-R 3-form flux. In
the absence of additional space-time filling branes, the infrared N = 1 supersymmetric the-
ory has gauge group SU(M)× SU(2M) coupled to bi-fundamental chiral superfields. The
KPV construction involves adding p coincident anti-D3 branes that break supersymmetry
and are attracted to the bottom of the throat.1 There, due to the R-R 3-form flux, they
get blown up via the Myers effect [11, 12] into an NS5-brane wrapping a 2-sphere located
at a fixed azimuthal angle within the 3-sphere; the NS5-brane carries −p units of world
volume flux that endows it with the D3-brane charge. An explicit calculation [6] of the
potential as a function of the angle shows that for p/M . 0.08 this state is metastable with
respect to decay via “brane-flux annihilation” to the supersymmetric ground state of the
SU(M − p) × SU(2M − p) gauge theory. Estimates of the decay rate via tunneling show
that this state is typically extremely long-lived [6, 13].

In this paper we present an analogous construction of long-lived metastable states in
the N = 2 supersymmetric (2 + 1)-dimensional theory dual to the AdS4×V5,2 background
of M-theory supported by N units of 4-form flux. The 7-dimensional Sasaki-Einstein space
V5,2 = SO(5)/SO(3) is the base of the conical CY 4-fold

∑5
i=1 z

2
i = 0 [14]. The Kaluza-

Klein spectrum of the AdS4 × V5,2 background, and a proposal for the dual gauge theory,
were originally discussed in [15]. Recently, two different new proposals for the dual gauge
theory were made [16, 17]. The first of them [16] is an N = 2 supersymmetric U(N)×U(N)
Chern-Simons gauge theory, quite analogous to the ABJM theory [18]. This gauge theory
is strongly coupled because it involves the minimal Chern-Simons levels (1,−1). A rather
different strongly coupled gauge theory, involving a U(N) gauge group coupled to adjoint
and fundamental matter, was suggested in [17]. On the other hand, at large N , the dual M-
theory description is weakly coupled. This allows us to search for metastable states using
quasi-classical methods. Another crucial fact is that there exists a natural deformation of
the gauge theory whose weakly curved M-theory dual was found by Cvetic, Gibbons, Lu,
and Pope (CGLP) [19]; it is a warped product of R2,1 and the eight-dimensional Stenzel
space [20]

∑5
i=1 z

2
i = ε2, which is a higher-dimensional generalization of the deformed

conifold [21]. The CGLP background [19] is similar to the KS solution [7], except it is
asymptotic to AdS4 × V5,2 without any UV logarithms. In the infrared the background
contains a blown-up 4-sphere threaded by M̃ units of 4-form flux (as shown in [16], N =
M̃2/4), and the warp factor approaches a finite value. Thus, the background has a discrete
spectrum of normal modes which describe bound states in the dual field theory [22, 23].
Some aspects of the infrared physics were discussed in [16, 24], but the dual infrared gauge
theory remains to be elucidated.

Our M-theory construction of metastable states involves adding p anti-M2 branes that
fall to the bottom of the CGLP warped throat (for the proposal of [16], the UV conformal
gauge theory is then U(N − p) × U(N − p)). The 4-form flux blows the anti-M2 branes
up into a single M5-brane wrapping a 3-sphere located at a fixed azimuthal angle inside
the 4-sphere. Our explicit calculation of the potential as a function of the angle shows

1A further important problem, which was addressed in [9, 10], is finding the back-reaction of the anti-

D3 branes.
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that this state is metastable for p/M̃ . 0.054. We construct a smooth O(3)-symmetric
Euclidean bounce solution for the M5-brane world volume theory that describes the decay
of the false vacuum [25]: the inner region is near the true vacuum while the outer region is
in the false vacuum. Calculation of the Euclidean action shows that the metastable state
is extremely long-lived. Nevertheless, for p not too small our result deviates significantly
from the thin-wall limit that has been used in the literature [6, 13]. In the present case,
the thin domain wall is the M5-brane wrapped over the 4-sphere. Due to the M̃ units of
4-form flux through the S4, there must be M̃ M2-branes ending on the domain wall. Thus,
the domain wall interpolates between the non-supersymmetric state containing p anti-M2
branes and a supersymmetric state with M̃ − p M2-branes. For p = 0 this domain wall
becomes BPS and interpolates between two supersymmetric vacua.

We also discuss an analogous type IIA construction where the CGLP solution is com-
pactified along one of the longitudinal directions, x2. In this case, the metastable state
corresponds to adding p fundamental strings oriented in such a way that they break super-
symmetry; they blow up into a D4-brane wrapping a 3-sphere inside the 4-sphere. In this
case, the metastable vacuum decays via nucleation of a D4-brane and an anti-D4 brane
wrapping the 4-sphere. We treat the tunneling amplitude for this Schwinger process rela-
tivistically and show that the result agrees with the Euclidean approach where we obtain
the requisite O(2)-symmetric solution.

The structure of the paper is as follows. In section 2 we review the CGLP solution [19]
of 11-dimensional supergravity and also present some new results. In particular, we express
the forms σi, σ̃i, and ν in terms of the 7 angular coordinates of V5,2 found in [26]; this allows
us to obtain an explicit form of the Stenzel metric. We also put the 4-form field strength
in a manifestly SO(5)-invariant form. In section 3 we present a reduction of the CGLP
background to type IIA along one of the spatial coordinates of R2,1. In section 4 we
study the UV (τ → ∞) and IR (τ → 0) limits of the backgrounds. We also discuss the
BPS domain walls made of D4 or M5 branes wrapping the S4 at τ = 0. In section 5 we
show that strings placed at the bottom of the type IIA background can blow up into a
D4-brane wrapping an S3 inside the S4; we also carry out the analogous calculation for
anti-M2 branes at the bottom of the M-theory background. In section 6 we calculate the
semiclassical decay rate of these metastable states. In section 7 we conclude and discuss
some open problems. In appendix A we show that the blown-up brane does not reside
at τ > 0.

2 Review of the CGLP background

2.1 The eight-dimensional Stenzel space

The eleven-dimensional supergravity background [19] is given by a warped product of R2,1

and the eight-dimensional Stenzel space, which is a deformed cone over the Sasaki-Einstein
space V5,2. Let us review the construction of this background.

We start with the (undeformed) cone over the Sasaki-Einstein manifold V5,2, which
is a four-complex dimensional space that generalizes the three-complex dimensional coni-
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fold [21]. It is described by the subset of C5 given by

5∑
i=1

y2
i = 0 , (2.1)

where yi are the five complex coordinates on C5. A Ricci flat metric on this cone which
respects the SO(5) symmetry that acts on the yi can be derived from a Kähler potential

of the form
(∑5

i=1|yi|2
) 3

4 . The base of this cone, namely the Stiefel manifold V5,2, can be

found by intersecting (2.1) with the unit sphere in C5,

5∑
i=1

|yi|2 = 1 . (2.2)

Topologically, V5,2 is an S3 bundle over S4, and the cone (2.1) is not smooth at the tip
where yi = 0. V5,2 is not a product space S3 × S4 because the S3 fiber bundle over S4 is
not trivial (see, for example, [27]). In this respect V5,2 differs from its lower dimensional
analog T 1,1 = V4,2, which is topologically S2 × S3. The only non-trivial cycle in V5,2 is a
Z2 torsion 3-cycle, which is represented by the S3 fiber.

One can resolve the conical singularity by deforming the cone, i.e. by replacing it with
the Stenzel space [20]

5∑
i=1

z2
i = ε2 , (2.3)

where ε is a deformation parameter that can be taken to be real without loss of generality.
A convenient way of parameterizing this deformed space2 is by using a “radial” coordinate
τ and the coordinates yi that, subject to the constraints (2.1) and (2.2), parameterize V5,2:
by writing

zi =
ε√
2

(
e
τ
2 yi + e−

τ
2 ȳi

)
, (2.4)

it is easy to see that (2.3) follows from (2.1) and (2.2). In order to cover the deformed
conifold only once, the range of τ should be taken to be from zero to infinity. At τ = 0,
eq. (2.3) shows that the space reduces to an S4 of finite size. In fact, the Stenzel space (2.3)
is topologically the tangent bundle3 TS4 of S4, where, for example, Re yi parameterize
the S4 base and τ Im yi parameterize the tangent vectors to it. Indeed, (2.1) and (2.2)
imply that

5∑
i=1

(Re yi)2 =
5∑
i=1

(Im yi)2 = 1/2 ,
5∑
i=1

Re yi Im yi = 0 , (2.5)

so
√

2 Im yi parameterize unit tangent vectors to S4, and τ is the radial coordinate in the
tangent space. Replacing the R4 fiber in TS4 by the unit 3-sphere S3 ⊂ R4, one recovers the
Stiefel manifold V5,2, so any constant τ > 0 section of the Stenzel space is topologically V5,2.

2We thank J. Lin and T. Klose for useful discussions about possible parameterizations of this space.
3The tangent bundle TS4 and the cotangent bundle T ∗S4 are homeomorphic as 8-manifolds.
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The Stenzel space (2.3) is a non-compact Calabi-Yau four-fold which we will denote by
Cε. Its Calabi-Yau metric [19, 20] can be derived from a Kähler potential K that depends
only on τ . In particular,

ds2
8 = K ′(ρ)dzidz̄i +K ′′(ρ)|zidz̄i|2 , ρ ≡

5∑
i=1

|zi|2 = ε2 cosh τ , (2.6)

and the Kähler potential can be found from integrating the expression

K ′(ρ) =
√

2λ2

3
1
4

(
ρ+ 2ε2

) 1
4√

ρ+ ε2
, (2.7)

where λ is an arbitrary constant. The reason why (2.7) contains an arbitrary multiplicative
factor λ2 is that any rescaling of a Ricci flat metric is also Ricci flat.

Using the parameterization of yi from [26],4 let us write down this Ricci flat metric
explicitly. In [26], the yi are expressed in terms of seven angles (α, β, θ1, φ1, θ2, φ2, ψ). It is
convenient to define the quantities

s+ ≡
1
2

[
cosα cosψ sin

β

2
+ sinψ cos

β

2

]
, s− ≡

1
2

[
cosα cosψ cos

β

2
− sinψ sin

β

2

]
,

t+ ≡
1
2

[
cosψ sin

β

2
+ cosα sinψ cos

β

2

]
, t− ≡

1
2

[
cosψ cos

β

2
− cosα sinψ sin

β

2

]
,

(2.8)
and the differential one-forms

eβ ≡ dβ − cos θ1dφ1 − cos θ2dφ2 ,

ν ≡ −dψ − 1
2

cosα eβ ,

σ1 ≡ cosψdα+
1
2

sinψ sinα eβ ,

σ2 ≡ −s+(dθ1 − dθ2)− s−(sin θ1dφ1 − sin θ2dφ2)

σ3 ≡ −s−(dθ1 + dθ2) + s+(sin θ1dφ1 + sin θ2dφ2)

σ̃1 ≡ sinψdα− 1
2

cosψ sinα eβ ,

σ̃2 ≡ t−(dθ1 − dθ2)− t+(sin θ1dφ1 − sin θ2dφ2) ,

σ̃3 ≡ −t+(dθ1 + dθ2)− t−(sin θ1dφ1 + sin θ2dφ2) .

(2.9)

The metric on the deformed cone over V5,2 is then

ds2
8 = c2

(
1
4
dτ2 + ν2

)
+ b2

3∑
i=1

σ̃2
i + a2

3∑
i=1

σ2
i , (2.10)

4There is a typo in the expression for Λ− in [26]. The correct expression is Λ− = cosα sin β
2
− i cos β

2
.

We thank C. Herzog for sending us the corrected formula.
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with a, b, and c being functions only of the radial coordinate τ :

a2 = ε2 cosh2 τ

2
K ′(ρ) =

λ2ε
3
2

3
1
4

(2 + cosh τ)
1
4 cosh

τ

2
,

b2 = ε2 sinh2 τ

2
K ′(ρ) =

λ2ε
3
2

3
1
4

(2 + cosh τ)
1
4

sinh2 τ
2

cosh τ
2

,

c2 = ε2 cosh τK ′(ρ) + ε4 sinh2 τK ′′(ρ) = 3
3
4λ2ε

3
2

cosh3 τ
2

(2 + cosh τ)
3
4

.

(2.11)

While the form (2.10) of the metric on the Stenzel space is well-known [19], our new
expressions (2.9) for the angular forms make it perfectly explicit. Setting λ = 3−

3
8 ε−

3
4 one

recovers the conventions of [16, 19], but this normalization constant should not affect any
observable quantities. We find it convenient to set instead

λ =

√
3
2
. (2.12)

Let us comment on the τ →∞ and τ = 0 limits of the metric. At large τ , the deformed
cone Cε should approach the undeformed cone over V5,2. One can define the standard radial
coordinate r of the cone by the relation

ρ =
3

1
3

4
r

8
3 . (2.13)

In terms of this coordinate, the metric (2.10) becomes approximately

ds2
8 = dr2 + r2

[
9
16
ν2 +

3
8

3∑
i=1

σ̃2
i +

3
8

3∑
i=1

σ2
i +

3
2
3 ε2

2
1

r
8
3

3∑
i=1

(σ2
i − σ̃2

i ) +O
(
r−16/3

)]
.

(2.14)
Using the explicit formulae (2.9) one can show that the leading term in the square brackets
is the metric on V5,2 given in [26].

The τ = 0 section of the R4 bundle over S4 is a round four-sphere of radius

ε
√
K ′(ε2) =

√
3
2
ε

3
4 . (2.15)

The simplest way of showing this fact is by noting that eq. (2.4) implies that at τ = 0, we
have zi = z̄i ≡ εxi, with xi real numbers satisfying

∑5
i=1 x

2
i = 1, and eq. (2.6) implies that

ds2
8 = ε2K ′(ρ)

5∑
i=1

dx2
i =

3
2
ε

3
2

5∑
i=1

dx2
i . (2.16)

From eqs. (2.10)–(2.11) we also see that at τ = 0 the metric can be written as

ds2
8 =

3
2
ε

3
2

[
ν2 +

3∑
i=1

σ2
i

]
, (2.17)

so the four-form ν ∧ σ1 ∧ σ2 ∧ σ3 is actually the volume form of a unit four-sphere [16].
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2.2 The M-theory background

The eleven-dimensional supergravity background [19] constructed as a warped product
between R2,1 and the deformed cone Cε has the metric

ds2
11 = H−

2
3dxµdx

µ +H
1
3ds2

8 , dxµdx
µ = −(dx0)2 + (dx1)2 + (dx2)2 , (2.18)

where ds2
8 is the Calabi-Yau metric on Cε, and H is a function of τ . The four-form field

strength G4 of 11-d supergravity and its Hodge dual G7 = ∗11G4 are taken to be

G4 = dH−1 ∧ dx0 ∧ dx1 ∧ dx2 +mα ,

G7 = H2(∗8dH−1)−mH−1dx0 ∧ dx1 ∧ dx2 ∧ α ,
(2.19)

where α is an anti self-dual closed (hence harmonic) (2, 2)-form on Cε. The ansatz (2.18)–
(2.19) is a solution to the 11-d equations of motion for any eight-dimensional internal space
and any anti self-dual (2, 2)-form on it provided that the function H solves the equation

∇2
8H = −1

2
m2|α|2 , (2.20)

where |α|2 is defined through α ∧ ∗8α = |α|2 vol8. In the case we are interested in where
the 8-d internal manifold is Cε, a normalizable form α was found in [19]:

α ≡ 3
ε3 cosh4 τ

2

[
a3c ν ∧ σ1 ∧ σ2 ∧ σ3 +

1
2
b3c dτ ∧ σ̃1 ∧ σ̃2 ∧ σ̃3

]
+

1
2ε3 cosh4 τ

2

[
1
2
a2bc εijkdτ ∧ σi ∧ σj ∧ σ̃k + ab2c εijkν ∧ σi ∧ σ̃j ∧ σ̃k

]
.

(2.21)

In terms of the coordinates zi introduced above, its expression is given by

α =
9 sinh4 τ

2

2ε7 sinh6 τ
(εijklmziz̄jdzk ∧ dzl ∧ dz̄m) ∧ (zadz̄a) + c.c. (2.22)

The solution to eq. (2.20) can then be written as

H =
m2

ε
9
2

Ĥ , Ĥ(τ) = 2
3
2 3

11
4

∫ ∞
(2+cosh τ)

1
4

dt

(t4 − 1)
5
2

. (2.23)

In obtaining (2.23) we imposed the boundary conditions that H should be regular at τ = 0
and that it should go to zero at large τ . Let us note that in the transverse part of the
metric, H

1
3ds2

8, ε cancels out. Thus, as in the KS background [7], ε can be removed by
rescaling the longitudinal coordinates xµ [28].

For future reference, it is useful to note that G4 can be obtained from the following
three-form gauge potential A3:

A3 = H−1dx0 ∧ dx1 ∧ dx2 +mβ , (2.24)

with

β = − ac

ε3 cosh4 τ
2

[
(2a2 + b2)σ̃1 ∧ σ̃2 ∧ σ̃3 +

a2

2
εijkσi ∧ σj ∧ σ̃k

]
= − 3

4ε5 sinh4 τ
εijklmziz̄jdzk ∧ dzl ∧ dzm +

9 cosh τ
8ε5 sinh4 τ

εijklmziz̄jdzk ∧ dzl ∧ dz̄m + c.c.

(2.25)
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The number of units of M2-brane flux at fixed τ can be computed by integrating ∗G4

over a constant τ section of Cε. The result is

N(τ) =
384m2 Vol(V5,2)

(2π`p)6
tanh4 τ

2
=

81π4m2

(2π`p)6
tanh4 τ

2
, (2.26)

where we used the fact that the volume of V5,2 is 27π4/128 [26]. Asymptotically at large
τ , eq. (2.26) becomes

N =
81π4m2

(2π`p)6
. (2.27)

As we discuss in more detail in section 4, the supergravity background presented above is
dual to a gauge theory where N is the number of colors.

3 Reduction to type IIA

Many of the calculations in this paper will be done not using the 11-d background de-
scribed above, but its dimensional reduction to type IIA string theory. Let us perform a
dimensional reduction along one of the R2 directions, say x2, which we take to be a circle
of radius R11. The dimensionally-reduced background contains the following fields. The
string frame metric

ds2
10 = H−1

[
−(dx0)2 + (dx1)2

]
+ ds2

8 (3.1)

is a warped product of R1,1 and the deformed cone Cε. The dilaton is given by

e2Φ = H−1 (3.2)

and blows up at large τ , signaling that a better description of the UV physics is given by
the M-theory uplift of this construction. The NS-NS 2-form gauge potential B2 and its
field strength H3 are

B2 = H−1dx0 ∧ dx1 , H3 = dH−1 ∧ dx0 ∧ dx1 . (3.3)

In the R-R sector, the two-form F2 and its Hodge dual F8 = ∗10F2 both vanish, while F4

and F6 = ∗10F4 are given by

F4 = mα , F6 = −mH−1dx0 ∧ dx1 ∧ α . (3.4)

The string coupling gs and string length `s =
√
α′ in the type IIA theory are related

to the radius of the circle we compactify over, R11, and the Planck length `p in eleven
dimensions through the formulae [29]

gs`s = R11 , g
1
3
s `s = `p . (3.5)
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4 UV and IR behavior

Let us first comment on the asymptotic behavior of the geometry at large τ and its field
theory interpretation. The radial coordinate r defined in (2.13) brings the Calabi-Yau met-
ric on Cε to the asymptotic form of the cone over V5,2. The 11-d metric (2.18) asymptotes
to a direct product between AdS4 space with radius L = m

1
3 and V5,2 with radius 2L:

ds2
11 ≈

r4

16m
4
3

dxµdx
µ +

4m
2
3

r2
dr2 + 4m

2
3ds2

V5,2
. (4.1)

The standard AdS radial coordinates is rAdS = r2/(4m
1
3 ).

Except for a Z2 torsion 3-cycle, the Sasaki-Einstein space V5,2 does not have non-
trivial topology, so the 4-form field strength may asymptotically be written in terms of a
well-defined three-form gauge potential:

A3 ≈
r3

AdS

m
4
3

dx0 ∧ dx1 ∧ dx2 +
mε

r
2
3
AdS

β̃ , (4.2)

where β̃ is an SO(5)-invariant 3-form on V5,2,

β̃ ∼ εijklmyiȳjdyk ∧ dyl ∧ dȳm + c.c. (4.3)

The second term in eq. (4.2) has the interpretation of a source for a pseudoscalar operator
O of conformal dimension 7/3 or a VEV for an operator of dimension 2/3 in the dual field
theory [30]. Following [16, 24] we will adopt the source interpretation.5 Then the field
theory Lagrangian is

L = LCFT + Λ
2
3O , (4.4)

where Λ is the energy scale of the relevant deformation. From (4.2) we can identify

Λ
2
3 ∼ ε

m
2
3

, so Λ ∼ ε
3
2

m
. (4.5)

A crucial feature of the Stenzel space is the presence of the deformation parameter
ε. Let us argue that the deformation is related to appearance of a VEV of a field theory
operator. The leading effect of the deformation on the asymptotic metric (2.14) is the
appearance of a term proportional to

1

r
4
3
AdS

3∑
i=1

(σ2
i − σ̃2

i ) ∼
1

r
4
3
AdS

5∑
i=1

[
(dyi)2 + (dȳi)2

]
. (4.6)

Such a scaling corresponds either to a source for an operator of dimension 5/3 or to a
VEV of an operator of dimension 4/3. We choose the latter interpretation, since usually in
gauge/gravity duality a smoothing of the apex of a cone corresponds to an infrared effect

5We must stress, however, that the dual dimension 7/3 operator must be SO(5) invariant because the

form β̃ is.
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where an operator gets a VEV [30]. Noting that the metric perturbation transforms as an
SO(5) singlet, we see that the CFT dual to AdS4× V5,2 should contain an SO(5)-invariant
scalar operator of dimension 4/3.

For many calculations in this paper we will not need the full M-theory background
and its type IIA counterpart, but only the τ → 0 limit thereof. Indeed, an anti-M2 brane
in M-theory, or an anti-fundamental string in the type IIA reduction, placed at a non-zero
value of τ will experience a force towards smaller τ and will eventually stabilize at τ = 0.

At τ = 0 there are a few significant simplifications. The first is that the space Cε
reduces to a round S4 of radius

√
3
2ε

3
4 . So ds2

8 in (2.18) and (3.1) can be replaced by

ds2
8 →

3
2
ε

3
2dΩ2

4 , (4.7)

where dΩ2
4 is the standard line element on a four-sphere of unit radius. The second simpli-

fication is that H(τ) approaches a constant that can be computed from the first relation
in (2.23) and

Ĥ → Ĥ0 = 2
3
2 3

11
4

∫ ∞
3

1
4

dt

(t4 − 1)
5
2

≈ 1.0898 . (4.8)

In the warped background (2.18), the radius squared of the 4-sphere is 3
2m

2
3 Ĥ

1
3
0 . Lastly,

the 4-form α becomes proportional to the volume form on S4:

α→ 27
4

volS4 . (4.9)

The number of G4 flux units M̃ through the S4 (or R-R four-form flux units in type IIA)
can be computed from the standard formula

M̃ =
1

(2π`p)3

∫
S4

F4 =
18π2m

(2π`p)3
, (4.10)

where `p is the Planck length in eleven dimensions.
Parameterizing the S4 by an azimuthal angle ψ and a three-sphere such that

dΩ2
4 = dψ2 + sin2 ψ dΩ2

3 , (4.11)

one can write down a three-form gauge potential for the 11-d SUGRA field G4 = dA3:

A3 =
27
4
mf(ψ) volS3 , (4.12)

where volS3 is the volume form on S3 and the function f(ψ) is given by

f(ψ) ≡
∫ ψ

0
dψ̃ sin3 ψ̃ =

1
3

cos3 ψ − cosψ +
2
3
. (4.13)

Similarly, one can write down the gauge potentials for F4 = dC3 and F6 = dC5 in type IIA:

C3 =
27
4
mf(ψ) volS3 , C5 = − 27ε

9
2

4Ĥ0m
f(ψ)dx0 ∧ dx1 ∧ volS3 . (4.14)
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The gauge potentials (4.12) and (4.14) are well-defined everywhere except for the South
pole of S4, ψ = π.

It would be very interesting to understand the infrared field theory dual to this back-
ground. Its important feature is that there are M̃ units of G4 flux through the blown-up
4-sphere [16]. Similarly, after the reduction to type IIA, there are M̃ units of R-R 4-form
flux through the 4-sphere. In gauge/gravity duality, the number of units of a quantized
R-R flux is typically mapped to the number of colors in the gauge theory. Therefore, it
is tempting to conjecture that the IR gauge theory dual to the type IIA background is
a (1 + 1)-dimensional U(M̃) SYM theory with N = 2 supersymmetry. The dual gravity
makes some interesting predictions about the IR properties of the gauge theory. Adding
a string at τ = 0 in one of the two possible orientations does not change the energy (such
a string is a BPS object). This implies that the gauge theory is not confining because
separating the endpoints of the string at some large τ does not necessarily produce a linear
potential. Reversing the orientation of the string creates a metastable state.

What is the effect of adding a fundamental string in the dual (1 + 1)-dimensional
U(M̃) gauge theory? It is tempting to suggest that it is analogous to the mechanism
that leads to the existence of bound states of D-strings and fundamental strings [31]: the
state with n units of electric flux corresponds to adding n fundamental strings. Of course,
there are significant differences between the present N = 2 theory and the maximally
supersymmetric gauge theory studied in [31]. In particular, we would need to show why
the addition of electric flux in one direction preserves supersymmetry, and in the other
creates a metastable state.

4.1 BPS domain walls

In the M-theory background, an M5-brane wrapped over the S4 is a BPS domain wall. Since
there are M̃ units of G4 flux through the S4, this domain wall interpolates between the
branches of the moduli space containing no space-time filling M2-branes and M̃ space-time
filling M2-branes.6 Similarly, in the dimensionally reduced type IIA theory, there exists a
BPS domain wall which is a D4-brane wrapped over the S4; it interpolates between the
branch with no BPS fundamental strings and with M̃ BPS fundamental strings.

Let us construct this domain wall as a solution in the D4-brane world volume field
theory. The D4-brane action is

S = − µ4

∫
d5x e−Φ

√
−det(gab +Bab + 2πα′Fab) + µ4

∫
C5

+ µ4

∫
C3 ∧ (B2 + 2πα′F) ,

(4.15)

where µ4 is the D4-brane tension

µ4 =
2π

gs(2π`s)5
=

1

(2π)4gs(α′)
5
2

, (4.16)

6Such a domain wall is analogous to the NS5-brane wrapped over the S3 at the bottom of the warped

deformed conifold; this BPS domain wall interpolates between vacua with no D3-branes andM D3-branes [6,

32].
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and F = dA is the two-form field strength on the brane. Note that since F6 = −B2 ∧ F4

for our background (see eq. (3.4)), one can choose the gauge potentials C3 and C5 so that
C5 +C3∧B2 = 0. The Chern-Simons term in the D4-brane action therefore reduces to the
integral of C3 ∧ F over the brane world-volume.

We are interested in the case where our D4-brane spans (x0, x1) and wraps the S3

inside the S4 located at τ = 0. Let’s take F = 0. The Lagrangian for the azimuthal angle
ψ of the S4 is found to be

L = −M̃V
(0)

string

√1 +
3Ĥ0m2

2ε3
(∂µψ)2

√
Ĥ0

96
sin6 ψ +

9
64
f(ψ)2 − 3

8
f(ψ)

 . (4.17)

The domain wall is a solution ψ(x1) which interpolates between ψ = π at x1 = −∞
and ψ = 0 at some x1 = x1

0. The infinite extension of the D4-brane towards x1 = −∞
corresponds to M̃ fundamental strings emanating from it [33, 34].

For fields depending on x1 only, it is convenient to use a Hamiltonian formalism and
define the canonical momentum Pψ = ∂L/∂(∂1ψ). The corresponding Hamiltonian density
H ≡ Pψ∂1ψ − L is

H = M̃V
(0)

string

√Ĥ0

96
sin6 ψ +

9
64
f(ψ)2 − 32π4Ĥ0g2

sα
′5

243ε6
P 2
ψ −

3
8
f(ψ)

 . (4.18)

Since the Lagrangian density (6.1) does not depend on x1, the Hamiltonian (4.18) is con-
stant on all solutions to the Hamilton equations following from it. Since we want the
solution to asymptote to ψ = π as x1 → −∞, we necessarily have Pψ(−∞) = 0 and, as a
consequence, H = 0 also (see [6] for a similar argument). This last requirement allows us
to find the trajectory of the solution in phase space:

Pψ = ± 9ε3

32π2gsα′
5
2

sin3 ψ . (4.19)

The Hamilton equation for ψ′ (where the prime denotes derivative with respect to x1)
implies

ψ′ = ±2ε
3
2

9m
sin3 ψ

f(ψ)
, (4.20)

which can be integrated to give

x1 − x1
0 = ∓ 3m

4ε
3
2

[
− tan2 ψ

2
+ log cos4 ψ

2

]
, (4.21)

for an integration constant x1
0. Note that ψ approaches π as x1 → ±∞, while ψ = 0 at

x1 = x1
0. Since the Hamiltonian vanishes for this solution, the on-shell action is given just

by the phase space area:

SD4 =
∫
dx0

∫ π

0
dψ Pψ . (4.22)
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Identifying SD4 =
∫
dx0mD4 where mD4 is the mass of the BPS domain wall, we obtain

mD4 =
3ε3

8π2gsα′
5
2

. (4.23)

This formula agrees precisely with the mass of a static D4-brane wrapping the S4 at τ = 0
and located at a fixed value of x1.

The domain wall (4.21) can be interpreted as follows. Because of the M̃ units of F4-
flux through the S4 the D4-brane wraps, the D4-brane sources the open string gauge field
A creating M̃ fundamental strings ending on it. The strings ending on the D4-brane pull
on the brane deforming it and making it extend over a range of x1 [33, 34]. The actual
BPS D4-brane gets deformed into a domain wall that starts at x1

0, where ψ = 0, and then
continues to, say, smaller values of x1, as ψ(x1) varies from 0 to π; ψ(x1) reaches π only
asymptotically as x1 → −∞. Thus, the M̃ fundamental strings that end on the brane
thicken into a (hollow) tube — and indeed, one can check that the asymptotic tension of
the tube (as computed from the DBI term in the action) equals precisely the tension of M̃
fundamental strings. The M̃ fundamental strings, however, don’t cost any energy because
they are BPS objects. This explains why the mass of the BPS domain wall agrees with
that of a D4-brane wrapping the S4 at the bottom of the throat at a fixed value of x1.

5 Metastable states from string and M-theory perspective

When an anti-M2 brane filling the (x0, x1, x2) directions, and located at fixed values of
the other coordinates, is placed in the M-theory background (2.18)–(2.19), it falls towards
smaller values of τ until it stabilizes at τ = 0. So let us examine a stack of p anti-M2
branes at τ = 0 located at a fixed point on S4, which without loss of generality can be
assumed to be the North pole, ψ = 0. Because of the non-zero A3 field, one expects the
anti-M2 branes to polarize through an analog of the Myers effect [11, 12], and get blown
up into an M5-brane that fills the (x0, x1, x2) directions that the original anti-M2 brane
was filling, and in addition wraps an S3. The most likely scenario is that the M5-brane is
located at τ = 0 and wraps an azimuthal S3 ⊂ S4 at a fixed value of ψ.7

To demonstrate this effect, one would need to compute the potential for an M5-brane
with p anti-M2 branes dissolved in it, and see whether it has a local minimum at some
value of ψ > 0. We find it more convenient, however, to study this process from the point
of view of the dimensionally reduced type IIA theory presented in section 3. Since the
dimensional reduction to type IIA was performed along a direction parallel to the branes,
the anti-M2 branes reduce to anti-fundamental strings in type IIA, while the M5-brane
becomes a D4-brane. If we then place a number of anti-fundamental strings at τ = ψ = 0,
we want to know whether they blow up into a D4-brane filling (x0, x1) and an azimuthal
S3 ⊂ S4 at some fixed ψ and τ = 0. We thus compute the potential for such a D4-brane

7Another possibility is, for instance, that the M5-brane wraps an S3 ⊂ R4 at a fixed value of τ . In

appendix A we show that the potential for such an M5-brane has only one minimum at τ = 0, so there is

no tendency for the anti-M2 branes to blow up into an M5-brane located at fixed τ > 0.
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as a function of ψ. Clearly, the corresponding potential for an M5-brane in M-theory can
be inferred from that of a D4-brane in type IIA.

Let’s first get some idea of the energy scales involved. From the action for QNS1

fundamental strings,

S = −|QNS1|
2πα′

∫
d2x
√
−g +

QNS1

2πα′

∫
B2 , (5.1)

we notice that if we put any number QNS1 > 0 of fundamental strings at τ = ψ = 0,
there is an exact cancellation between the two terms in (5.1), indicating that fundamental
strings at τ = 0 are BPS objects. If, however, one places some number p = −QNS1 > 0
of anti-fundamental string at τ = ψ = 0, the two terms in (5.1) are equal and they add.
The potential V (0)

string per unit x1 length for just one such anti-fundamental string (p = 1)
is then

V
(0)

string =
1
πα′

ε
9
2

Ĥ0m2
. (5.2)

In the M-theory uplift of this construction, M2-branes placed at τ = ψ = 0 are also BPS,
while anti-M2 branes are not. The potential V (0)

M2 per unit (x1, x2)-area for one anti-M2
should be identified with V

(0)
string/(2πR11), so

V
(0)

M2 =
1

2π2`3p

ε
9
2

Ĥ0m2
(5.3)

upon using (3.5).

5.1 Fundamental strings blowing up into a D4-brane

We can add p units of anti-fundamental string charge dissolved in the D4-brane by turning
on the electric component F01 of the world-volume flux on the brane [35]. It is convenient
to define a rescaled electric field E by

F01 =
1

2πα′
ε

9
2

Ĥ0m2
E . (5.4)

Using eqs. (3.1)–(3.4), (4.7)–(4.9), and (4.14) that describe the IR limit of the type IIA
background, we can write the D4-brane action (4.15) as

S =
∫
d2xLE , LE ≡ −A1 sin3 ψ

√
1− (1 + E)2 −A2f(ψ)E , (5.5)

where we have defined

A1 ≡ µ4
3

3
2 ε

9
2

2
3
2 Ĥ

1
2
0 m

Vol(S3) , A2 ≡ µ4
27ε

9
2

4Ĥ0m
Vol(S3) , (5.6)

and chosen the D4-brane orientation that gives the minus sign in the last term of (5.5).
The electric field F01 defined in (5.4) is in general not a conserved quantity in the

sense that it may depend on x0 and x1. Indeed, in the gauge where A0 = 0, the electric
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field F01 = ∂0A1 has the form of a velocity field, and it is usually the momentum, not
the velocity, that is a conserved quantity. As in any electrostatics problem, the conserved
quantity in the absence of sources is the electric displacement ∂L/∂F01, which in our case
equals the fundamental string charge −p [36]. We can express the Lagrangian LE in terms
of p by performing a Legendre transform:

LD = LE −DE = −
√
A2

1 sin6 ψ + [D +A2f(ψ)]2 + [D +A2f(ψ)] , (5.7)

where the rescaled displacement D = ∂LE/∂E is related to p through

D =
1

2πα′
ε

9
2

Ĥ0m2
(−p) . (5.8)

This Lagrangian should be identified with minus the potential of the D4-brane per unit
x1-length, LD = −V (ψ). Using (4.10) as well as (5.6)–(5.8), one finds

V (ψ) = M̃V
(0)

string

√Ĥ0

96
sin6 ψ +

(
3
8
f(ψ)− p

2M̃

)2

− 3
8
f(ψ) +

p

2M̃

 . (5.9)

Let us try to understand a few limits of this formula. First, when ψ = 0 we have
f(0) = 0, and therefore V (0) vanishes when p < 0, and V (0) = |p|V (0)

string when p > 0.
This is just a consistency check that our D4-brane has (−p) units of fundamental string
charge, and when the S3 it wraps shrinks to zero size its energy is precisely that of the
fundamental (or anti-fundamental) strings dissolved in it — see the discussion around
eq. (5.2). Secondly, when ψ = π, we have f(π) = 4

3 , so as long as p < M̃ the potential
V (π) vanishes, suggesting that at ψ = π the D4-brane represents a BPS object. Indeed,
as we move the D4-brane from ψ = 0 to ψ = π we are effectively inducing M̃ extra units
of fundamental string charge, so at ψ = π we are describing M̃ − p fundamental strings. If
p < M̃ these fundamental strings are BPS and cost no energy; if p > M̃ they are in fact
anti-strings and V (π) > 0.

In figure 1 we plotted V (ψ) for various values of p/M̃ . This plot shows that for small
positive values of p/M̃ (corresponding to a small number of anti-strings) the potential
has a metastable minimum at some ψ = ψmin, the global minimum being at ψ = π as
discussed above. The metastable minimum disappears above p/M̃ ≈ 0.0538 where V (ψ)
becomes a monotonically decreasing function of ψ, or for p/M̃ ≤ 0 where V (ψ) has two
supersymmetric minima at ψ = 0 and ψ = π and is strictly positive for all other values of ψ.

It is possible to get some analytic insight into the location of the metastable minimum
and its vacuum energy. Using (5.9) one can show that cosψmin satisfies the following
quartic equation

(3− 2Ĥ0) cos4 ψmin − 2(6− Ĥ0) cos2 ψmin + 12
(

1− 2
p

M̃

)
cosψmin − 3 = 0 . (5.10)

This equation does have closed form solutions, but their expressions are long and not very
illuminating. Only one of these solutions corresponds to the metastable minimum and we
plotted it against p/M̃ in figure 2. At small p/M̃ one finds that

cosψmin = 1− 6
Ĥ0

p

M̃
+O(p2/M̃2) , (5.11)
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Figure 1. The D4-brane potential given in eq. (5.9). The potential has a metastable minimum
marked by a black dot for p/M̃ . 0.0538—see eq. (5.14).
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Figure 2. The angle ψmin at which there is a metastable minimum as a function of p/M̃ . The
exact solution value of ψmin found by solving eq. (5.10) is plotted in solid black, and the small p
approximation (5.11) is plotted in dotted orange.

and then from (5.9),

V (ψmin) = M̃V
(0)

string

[
p

M̃
− 9
Ĥ2

0

p2

M̃2
+O(p3/M̃3)

]
. (5.12)

As can be seen from figure 2, eq. (5.11) approximates quite well the exact solution up to
p/M̃ ≈ 0.03.

It is possible to use eq. (5.10) to find an analytic formula for the maximal value of
p/M̃ at which the metastable minimum disappears. At this maximal value, the potential
has an inflection point with zero slope at ψmin, so the derivative of the function appearing
on the l.h.s. of eq. (5.10) also vanishes:

4(3− 2Ĥ0) cos3 ψmin − 4(6− Ĥ0) cosψmin + 12
(

1− 2
pmax

M̃

)
= 0 . (5.13)
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Combining eqs. (5.10) and (5.13), we obtain ψmin = arccos 1√
3
≈ 0.955. This gives

pmax

M̃
=

1
2
− 15− Ĥ0

18
√

3
≈ 0.0538. (5.14)

As a last comment, we note that we could have also done the above computation in the
M-theory uplift, where the D4-brane wrapped over an azimuthal S3 becomes an M5-brane
wrapped over the same S3 filling now the directions (x0, x1, x2) instead of just (x0, x1).
The potential density for this M5-brane is

Ṽ (ψ) =
V (ψ)
2πR11

, (5.15)

so the curves in figure 1 also represent Ṽ (ψ)/(M̃V
(0)

M2 ), as can be noted from the fact that
the energy density V (0)

M2 of an M2-brane at ψ = τ = 0 defined in (5.3) equals V (0)
string/(2πR11).

6 The decay of the false vacuum

Over long enough time scales, the metastable vacuum described in the previous section
undergoes quantum tunneling to the true vacuum; this is the supersymmetric state where,
in the type IIA case, the D4-brane is at the South pole of S4 and reduces to M̃ − p

fundamental strings. The tunneling event consists of the nucleation of a “bubble” of true
vacuum, namely a configuration where ψ approaches ψmin as x1 → ±∞, while close to
the center of the bubble ψ is on the other side of the potential barrier from figure 1.
This configuration then evolves in time classically: the outward pressure makes the bubble
expand and, eventually, the field ψ will be in the true vacuum at all values of x1.

In order to compute the tunneling rate, we need to consider a generalization of the
Lagrangian discussed in the previous section that allows for the possibility of making ψ

depend on x0 and x1. Such a generalization is

L = −M̃V
(0)

string

√1 +
3Ĥ0m2

2ε3
(∂µψ)2

√
Ĥ0

96
sin6 ψ +

(
3
8
f(ψ)− p

2M̃

)2

− 3
8
f(ψ)+

p

2M̃

 ,
(6.1)

where (∂µψ)2 ≡ −(∂0ψ)2 + (∂1ψ)2. Of course, when ψ is a constant, this Lagrangian
reduces to minus the potential V (ψ) studied in the previous section; see eq. (5.9).

In the rest of this section we calculate the tunneling rate from the metastable state
to the true vacuum. As explained in [25], the decay of the false vacuum is mediated by
an O(2)-invariant Euclidean bounce solution where ψ depends on the Euclidean 2-d radius
r ≡

√
(x0)2 + (x1)2 and ψ → ψmin as r → ∞. At r = 0 ψ is on the other side of the

potential barrier. The action of the bounce can be used to compute the tunneling rate per
unit volume, Γ/V = Ae−B. In particular, the tunneling coefficient B equals the on-shell
action of the bounce. In section 6.1 we give an estimate of this tunneling coefficient based
on a small p approximation. In section 6.2 we compute B numerically at all values of
p < pmax. Finally, in section 6.3 we redo these calculations in M-theory uplift of the type
IIA background.
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6.1 Small p approximation

As explained above, the decay of the false vacuum is realized through the nucleation of a
bubble of true vacuum, which is nothing but a D4-D4 pair with p anti-strings on either side
of the D4-branes and M̃−p strings in between the branes. For p small, the metastable state
of p strings is close to ψ = 0, and their energy in the metastable state is approximately
pV

(0)
string, as can be seen from eq. (5.12). Since the M̃ − p strings in between the two branes

do not cost any energy, the energy gained by nucleating the two branes is

E = −pV (0)
string(x2 − x1) +

√
m2

D4 + P 2
1 +

√
m2

D4 + P 2
2 , (6.2)

where mD4 is the effective (1+1)-d mass of the wrapped branes, and xi and Pi, i = 1, 2, are
their positions and momenta. At small p, the quantity mD4 is well-approximated by (4.23).
In this limit, the decay of the false vacuum is nothing but Schwinger pair-production in
the presence of a constant external electric field.

Standard quantum mechanics formulae for the trajectory x2 = −x1 with E = 0 give
the tunneling coefficient in the WKB approximation:

B = 4
∫ x∗1

0
dx1 |P1(x1)| =

πm2
D4

pV
(0)

string

, (6.3)

where x∗1 = mD4/(pV
(0)

string). At small p we therefore expect B ∼ 1/p, so the lifetime of
the metastable state can be made arbitrarily large by taking p to be sufficiently small
compared to M̃ .

The same result can be obtain in Coleman’s formalism [25] that is based on finding a
Euclidean bounce with O(2) symmetry that satisfies the boundary condition that ψ → ψmin

at large Euclidean radius. When p is small, this bounce looks like a domain wall at a large
radius r∗; for r � r∗, ψ ≈ ψmin ≈ 0, while for r � r∗, we have ψ ≈ π. Since r∗ is large
in this limit, the tension of this domain wall can be approximated by mD4. The difference
in the Euclidean action of this configuration and that of the configuration where ψ = ψmin

everywhere is
SE(r∗) = −πr2

∗pV
(0)

string + 2πr∗mD4 . (6.4)

The solution to the Euclidean equations of motion will have minimal action, so
dSE/dr∗ = 0, giving

r∗ =
mD4

pV
(0)

string

=⇒ SE =
πm2

D4

pV
(0)

string

. (6.5)

According to [25] the tunneling coefficient B is precisely equal to the Euclidean action of
the bounce that mediates the transition, and it can be seen that the value of B = SE
computed in (6.5) agrees with the one in (6.3).

6.2 Tunneling rate from a smooth Euclidean bounce

When p is not necessarily small, in order to compute the tunneling rate, we proceed along
the lines of [25] and find the Euclidean bounce that mediates the false vacuum decay. This
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Figure 3. A sample solution to the equation of motion following from (6.8) for the case p/M̃ =
3/100. The numerical solution is shown in black, and the asymptotic value it reaches as r →∞ is
shown in dashed red.

Euclidean solution is an extremum — but not a minimum — of the Euclidean action

SE = −
∫
d2xLE , (6.6)

where LE is the Euclidean Lagrangian computed from (6.1) by substituting (∂µψ)2 =
(∂0ψ)2 + (∂1ψ)2. For an O(2)-invariant bounce where ψ depends only on the Euclidean
radius r ≡

√
(x0)2 + (x1)2 the action becomes

SE = M̃V
(0)

string

∫
dr2πr

√1+
3Ĥ0m2

2ε3
ψ′2

√
Ĥ0

96
sin6 ψ+

(
3
8
f(ψ)− p

2M̃

)2

− 3
8
f(ψ)+

p

2M̃


(6.7)

where ψ′ ≡ dψ/dr. It is convenient to rescale the radial variable r so that the first term in
the square brackets contains a factor of

√
1 + ψ′2. After such a rescaling, a little algebra

gives

SE =
πm2

D4

M̃V
(0)

string

∫
dr

108 r
Ĥ0

√1 + ψ′2

√
Ĥ0

96
sin6 ψ +

(
3
8
f(ψ)− p

2M̃

)2

− 3
8
f(ψ) +

p

2M̃

 .
(6.8)

We solved the Euler-Lagrange equations following from (6.8) numerically with the
boundary conditions that ψ′(0) = 0 and that ψ(r) should approach ψmin at large r. We
plot such a solution in figure 3. In figure 4 we show the value of SE as a function of p/M̃ ,
and we compare it to the small p approximation (6.5).

6.3 False vacuum decay in M-theory

We can also consider the decay of the false vacuum in the M-theory uplift of our type
IIA background. Of course, when the eleventh direction (which we have taken to be x2)
is compactified on a small circle of radius R11, the tunneling rate is the same as in type
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Figure 4. The on-shell action for the Euclidean bounce that mediates the decay of the metastable
vacuum in the type IIA construction. The numerical results are shown in black, and the small p
approximation (6.5) is shown in dashed red.

IIA. But what happens if we don’t compactify the x2 direction? Strictly speaking, we need
to start by considering the action of an M5-brane with M2-brane charge dissolved in it.
However, one can argue that because in the limit where x2 is compactified on a small circle
this action should reduce to that of a D4-brane, the effective (2 + 1)-d Lagrangian density
of an M5-brane with (−p) units of M2-brane charge is just 1/(2πR11) times the (1 + 1)-d
Lagrangian in (6.1):

L̃ = −M̃V
(0)

M2

√1 +
3Ĥ0m2

2ε3
(∂µψ)2

√
Ĥ0

96
sin6 ψ +

(
3
8
f(ψ)− p

2M̃

)2

− 3
8
f(ψ) +

p

2M̃

 .
(6.9)

Here, by Lorentz invariance we have (∂µψ)2 ≡ −(∂0ψ)2 +(∂1ψ)2 +(∂2ψ)2, and we expressed
the answer in terms of the energy density of an anti-M2 brane V (0)

M2 at ψ = τ = 0 that was
defined in (5.3).

The Euclidean bounce that mediates the decay has O(3) symmetry in this case. In the
small p limit, this solution looks like a spherically-symmetric domain wall at some fixed
value of the Euclidean radius r∗, where ψ is approximately equal to ψmin ≈ 0 for small
Euclidean radius r � r∗, and approximately equal to π for r � r∗. The tension of this
domain wall is in this limit well approximated by the tension TM5 of the BPS M5-brane
wall obtained as an uplift of the construction in section 4.1:

TM5 =
mD4

2πR11
=

3ε3

16π3`6p
. (6.10)

The on-shell action for a domain wall at some r∗ is then

SE(r∗) = −4πr3
∗

3
pV

(0)
M2 + 4πr2

∗TM5 , (6.11)
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Figure 5. The on-shell action for the Euclidean bounce that mediates the decay of the metastable
vacuum in the M-theory construction. The numerical results are shown in black, and the small p
approximation (6.12) is shown in dashed red.

where V (0)
M2 was defined in (5.3). Extremizing (6.11) with respect to r∗, we get

r∗ =
2TM5

pV
(0)

M2

=⇒ SE =
16πT 3

M5

3p2
(
V

(0)
M2

)2 =
4Ĥ2

0

729
M̃4

p2
. (6.12)

The tunneling coefficient B = SE behaves as 1/p2 at small p in this case, so again the
lifetime of the metastable state can be made arbitrarily large by taking p/M̃ to be suffi-
ciently small.

When p is not necessarily small, the tunneling coefficient can be computed as in the
previous section by finding the O(3)-symmetric Euclidean bounce numerically. We plot
the tunneling coefficient at various values of p/M̃ in figure 5.

7 Discussion

In this paper we uncovered some new infrared effects in the (2 + 1)-dimensional N = 2
supersymmetric field theory dual to the AdS4 × V5,2 background of M-theory. We showed
that this theory possesses metastable states described by some number of anti-M2 branes
placed at the bottom of the CGLP background [19] (this background is a warped product
of R2,1 and the eight-dimensional Stenzel space [20]

∑5
i=1 z

2
i = ε2). We also used semi-

classical methods to calculate the decay rates and found them to be highly suppressed for
typical parameters.

Our construction is quite analogous to the KPV construction of metastable states [6]
in the KS background [7]. The gauge theory dual of the KS background is well-understood
in terms of a cascade of Seiberg dualities. In particular, an N = 1 supersymmetric
SU(M) × SU(2M) gauge theory provides a good description of the infrared physics [37].
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Nevertheless, a systematic gauge theory description of the KPV metastable states has not
been found. While our M-theory construction of the metastable states is analogous to the
KPV construction, the dual gauge theory is quite different [16, 17]: it is (2+1)-dimensional
and asymptotically conformal in the UV. It would be very interesting to improve our un-
derstanding of the effective infrared gauge theory for the CGLP background, and to try
describing the metastable states in this context. We have also noted that dimensional re-
duction to type IIA string theory gives a warped product of R1,1 and the eight-dimensional
Stenzel space. The curvature of the IIA background is small in the IR. In view of the pres-
ence of M̃ units of R-R flux through the S4 at τ = 0, it is tempting to conjecture that the
infrared theory is an N = 2 supersymmetric U(M̃) gauge theory. We have argued that this
gauge theory is not confining because there are BPS fundamental strings with vanishing
effective tension at τ = 0. A more detailed understanding of these effects is desirable.

Our M-theory and type IIA arguments for the metastable states were made from the
point of view of the M5 and D4-brane world-volume theories, in analogy with the NS5-
brane picture used in [6]. It should be possible to provide a complementary picture starting
with the world-volume gauge theory of p coincident anti-M2 branes. Based on the available
results, we expect that these branes would blow up into a fuzzy three-sphere [38], but a
more detailed investigation of this effect would be interesting. It would also be useful to
find the back-reaction of the p anti-M2 branes on the CGLP background.

Note added. After the original version of this paper was submitted, it became clear that
the number of M2-branes attached to the M5-brane wrapped over S4 is not exactly M̃ , but
rather M̃ −1. This difference does not significantly affect the calculations presented in this
paper, because these calculations are reliable in the regime M̃ � 1 where the difference
between M̃ and M̃ − 1 can be neglected. One way to see that the number of M2-branes
is M̃ − 1 as opposed to M̃ is from the number of units of the self-dual G4 flux, which
changes from M̃ on one side of the wrapped M5-brane to M̃ − 2 on the other [39]. As a
result, the average flux “felt” by the wrapped M5-brane is M̃ − 1, and there are M̃ − 1
M2-branes attached to it. A consistency check on this result is that the net M2-brane
charge at infinity is the same on the two sides of the BPS domain wall of section 4.1:
M̃2/4 = (M̃ − 2)2/4 + M̃ − 1. Similarly, the metastable state with p anti-M2 branes in
presence of M̃ units of G4 flux decays into a supersymmetric vacuum with M̃−1−p branes
in presence of M̃ − 2 units of flux. We thank Aki Hashimoto and Peter Ouyang for very
useful discussions of these issues.
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A D4-branes wrapping a 3-sphere at non-zero τ

Recall that the M-theory background is topologically R2,1 times R4 fibered over S4, where
the radial coordinate of R4 is τ . In section 5.1 we showed that if we place a small number
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of anti-M2 branes extended along (x0, x1, x2) at τ = ψ = 0 they tend to blow up into a
M5-brane that sits at τ = 0 and at a non-zero value of ψ where it wraps an S3 ⊂ S4.

In this section we investigate whether anti-M2 branes at τ = ψ = 0 filling the
(x0, x1, x2) directions could blow up into an M5-brane which sits at ψ = 0 and wraps
an S3 at a fixed value of τ > 0.8 We again find it convenient to answer this question in the
dimensionally reduced type IIA background of section 3 by computing the potential as a
function of τ for a D4-brane with p units of anti-fundamental string charge extended along
(x0, x1) and wrapping the S3 ⊂ R4 at fixed τ . The fundamental string charge comes from
a world-volume electric field F01 on the D4-brane, which we write as

F01 =
1

2πα′
E
H
. (A.1)

In the notation introduced in section 2, the S3 wrapped by this D4-brane has volume
form volS̃3 = σ̃1 ∧ σ̃2 ∧ σ̃3 [16]. The relevant component of the form α is

3
2

b3c

ε3 cosh4 τ
2

dτ ∧ σ̃1 ∧ σ̃2 ∧ σ̃3 =
27
8

sinh3 τ
2

cosh4 τ
2

dτ ∧ σ̃1 ∧ σ̃2 ∧ σ̃3 , (A.2)

so integrating C3 over this S3 we obtain∫
S3

C3 =
9mVol(S3)
4 cosh3 τ

2

[
1− 3 cosh2 τ

2
+ 2 cosh3 τ

2

]
. (A.3)

Using (4.15) and the observation that C5 +C3∧B2 = 0, one finds that the probe D4-brane
action for the brane we are interested in is

S =
∫
d2xLE , LE =

µ4ε
9
2

m
Vol(S3)

[
−A(τ)

√
1− (1 + E)2 −B(τ)E

]
, (A.4)

where

A(τ) =
3

7
8 (2 + cosh τ)

3
8 sinh3 τ

2

2
3
2 Ĥ(τ)

1
2 cosh

3
2
τ
2

, B(τ) =
9
(
1− 3 cosh2 τ

2 + 2 cosh3 τ
2

)
4Ĥ(τ) cosh3 τ

2

, (A.5)

the function Ĥ(τ) being defined in (2.23).
As in section 5.1, in order to express the Lagrangian in terms of the fundamental string

charge (−p) as opposed to the electric field E , we need to perform a Legendre transform.
The fundamental string charge is related to the displacement D = ∂LE

∂E through

D =
µ4ε

9
2

Ĥm

9(−p)
M̃

, (A.6)

From the Legendre transformed Lagrangian LD = LE −DE , one can compute the potential
density (potential per unit x1 coordinate length) V (τ) = −LD:

V (τ) = M̃V
(0)

string


√√√√ Ĥ2

0

324
A(τ)2 +

(
Ĥ0

18
B(τ)− Ĥ0

Ĥ(τ)
p

2M̃

)2

− Ĥ0

18
B(τ) +

Ĥ0

Ĥ(τ)
p

2M̃

 .
(A.7)

8A similar computation was done in [37] in a type IIB context.
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We expressed V (τ) as a multiple of the potential V (0)
string for an anti-fundamental string

placed at τ = ψ = 0 that was computed in eq. (5.2). It is not hard to see that since at
τ = 0 the functions A and B vanish while Ĥ(0) = Ĥ0 by definition, we have V (0) = 0 if
p ≤ 0 and V (0) = pV

(0)
string if p > 0, confirming that our D4-brane contains (−p) units of

fundamental string charge spread over its world-volume.
Plotting V (τ) for various values of p/M̃ one can check that this function has only one

minimum at τ = 0 regardless of p/M̃ .
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