
J
H
E
P
0
8
(
2
0
1
1
)
0
1
5

Published for SISSA by Springer

Received: May 19, 2011

Revised: June 27, 2011

Accepted: July 5, 2011

Published: August 2, 2011

Interference effects in medium-induced gluon radiation

J. Casalderrey-Solanaa and E. Iancua,b

aCERN, Theory Division,

CH-1211 Geneva, Switzerland
bInstitut de Physique Théorique, CEA Saclay,
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Abstract: As a step towards understanding the in-medium evolution of a hard jet, we con-

sider the interference pattern for the medium-induced gluon radiation produced by a color

singlet quark-antiquark antenna embedded in a QCD medium with size L. We focus on

the typical kinematics for medium-induced gluon radiation in the BDMPS-Z regime, that

is, short formation times τf ≪ L and relatively large emission angles θ ≫ θc ≡ 2/
√

q̂L3,

with q̂ the ‘jet quenching’ parameter. We demonstrate that, for a dipole opening angle θqq̄

larger than θc, the interference between the medium-induced gluon emissions by the quark

and the antiquark is parametrically suppressed with respect to the corresponding direct

emissions. Physically, this is so since the direct emissions can be delocalized anywhere

throughout the medium and thus yield contributions proportional to L. On the contrary,

the interference occurs only between gluons emitted at very early times, within the char-

acteristic time scales for quantum and color coherence between the two emitters, which in

this regime are much smaller than L. This implies that, for θqq̄ ≫ θc, the medium-induced

radiation by the dipole is simply the sum of the two BDMPS-Z spectra individually pro-

duced by the quark and the antiquark, without coherence effects like angular ordering. For

θqq̄ ≪ θc, the medium-induced radiation by the dipole vanishes.
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1 Introduction

The phenomenon of jet quenching globally denotes the modifications in the properties

of a jet which occur when the jet propagates through the dense QCD matter created in

the intermediate stages of a ultrarelativistic heavy ion collision. One of the most striking

effects of this kind is the large di-jet asymmetry observed in Pb+Pb collisions at the LHC,

as reported by the ATLAS [1] and CMS [2] collaborations (see also [3] for related results

at RHIC). These data imply that, as a consequence of the interactions between the jet

and the medium, the jet energy is transported to larger angles and redistributed into softer

fragments as compared to the p+p baseline. Understanding this phenomenon of strong jet

broadening and also the strong suppression of particle production at high pT in nucleus-

nucleus collisions as compared to p+p, as observed at RHIC [4–7] and the LHC [8], is

essential for using jet probes as a diagnosis tool of hot and dense QCD matter.

From a microscopic point of view, the dominant mechanism for jet quenching at weak

coupling and high energy is radiative energy loss associated with medium-induced gluon

radiation [9–17] (see also the review papers [18, 19] for more references). If the medium
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is sufficiently dense, both the parton that initiates the jet and its descendants undergo

multiple scattering leading to additional radiation which is described by the BDMPS-Z

(from Baier, Dokshitzer, Mueller, Peigné, Schiff, and Zakharov) formalism. While this

mechanism for jet quenching has been quite successful in describing the suppression of

single particle spectra observed at RHIC (see, for example [20, 21]), it has been realized

for long that the respective data refer to inclusive measurements which are quite limited

in constraining the underlaying dynamics. By contrast, the differential jet measurements

that are performed at the LHC provide more detailed informations, in particular, on the

spectrum of the medium-induced radiation which could help us to better pinpoint the

physical mechanisms at work.

At this point, one should stress that the BDMPS-Z mechanism predicts that gluons

are emitted at relatively large angles — the softer the gluon, the larger its emission angle

— and thus it has the potential to explain the di-jet asymmetry measured at the LHC

(see the recent publications [22–25] for related studies). However, from the experience

with jet evolution in the vacuum, one knows that large angle radiation can be prohibited

by coherence effects leading to angular ordering : within the partonic cascade produced

via jet fragmentation in the vacuum, the emission angles are bound to decrease from one

emission to the next one. So far very little is known about the corresponding property for

the medium-induced gluon radiation. The only analyses in that sense so far [26, 27] are

either restricted to the single-scattering approximation [26] or concerned with a different

mechanism for medium-induced radiation [27], which applies to relatively soft and collinear

emissions which are less effective in broadening the transverse energy distribution of a jet.

It is therefore crucial to clarify whether interference effects can frustrate medium-

induced radiation at large angles, in the interesting regime where the medium is relatively

opaque and the multiple scattering is important. This is the main objective in this paper.

To that aim, we shall study the interference between the medium-induced gluon emissions

by two sources immersed into the medium: a quark (q) and an antiquark (q̄). More

precisely, we shall address the problem of the in-medium ‘dipole antenna pattern’, that is,

the radiation produced by a qq̄ pair in a color singlet state (a ‘color dipole’) where the two

particles separate from each other at constant velocities which make a relative angle θqq̄ —

the dipole opening angle. This ‘dipole antenna’ is a familiar set-up for studies of interference

and angular ordering for radiation in the vacuum [28, 29] and has been generalized in

refs. [26, 27] to corresponding studies in a medium. As usual in the related literature, we

shall work in the ‘multiple soft scattering approximation’ which assumes that successive

scattering centers are independent from each other. Formally, the results of ref. [26] can be

recovered from this formalism as the lowest order term in the ‘opacity expansion’, that is,

the perturbative expansion of the medium effects. But this is only formal, since the effects

of multiple scattering are non-perturbative and the final results cannot be expanded out

anymore1 (see e.g. the discussion in [31]). In that sense, we expect our conclusions to differ

from those in ref. [26] at qualitative level, and not only quantitatively.

1This is similar to the failure of the twist expansion for high-energy scattering in the vicinity of the

unitarity limit, or in the gluon saturation region [30].
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The main conclusion which emerges from our analysis is that the interference effects

for medium-induced gluon radiation are parametrically small and hence irrelevant for all

values of the dipole angle θqq̄ except for very small values θqq̄ . θc, where direct emissions

and interference terms become comparable with each other, and even cancel each other

when θqq̄ ≪ θc.

In order to explain this conclusion and in particular the special angle θc, we need to

first recall some basic features of the BDMPDS-Z mechanism (see section 2 for a physical

discussion). The corresponding phase-space is characterized by two limiting values, a

maximal frequency ωc and a minimum angle θc, which are expressed in terms of the medium

properties as ωc = q̂L2/2 and θc = 2/
√

q̂L3. (q̂ is the jet quenching parameter and L is

the longitudinal extent of the slice of the medium which is crossed by the dipole.) The

energy loss by the leading particle is dominated by the emission of relative hard gluons

with ω ≃ ωc, but such gluons make a small angle θ ≃ θc with respect to their source and

thus are not effective in broadening the jet energy distribution in the transverse plane.

Rather, the dominant transverse broadening comes from softer gluons with ω ≪ ωc, which

are emitted at relatively large angles θ & θf (ω) ≫ θc. Here, θf (ω) is the minimal emission

angle for a gluon with frequency ω (the ‘formation angle’) and increases when decreasing

ω below ωc.

An important property of these soft gluons, which is favorable too for the physics of

jet broadening, is the fact that they are promptly emitted: the corresponding formation

time is much smaller than the medium length L. Hence, such gluons can be emitted at any

point inside the medium. Accordingly, the longitudinal phase-space for direct emissions by

the quark or the antiquark is proportional to L. By contrast, the interference between the

two partonic sources occurs only for the gluons emitted at sufficiently early times t < τmin,

when the quark and the antiquark are still close enough to each other to ensure color

and quantum coherence. The precise mechanism which determines τmin depends upon the

value of the dipole angle θqq̄: (i) when θc ≪ θqq̄ ≪ θf (ω), the interference is limited by

the color decoherence of the qq̄ pair (the two sources suffer different color precessions in the

medium); (ii) when θqq̄ & θf (ω), τmin is rather determined by the condition of quantum

coherence (the radiated gluon must overlap with both sources). But in both cases, i.e. so

long as θqq̄ ≫ θc, this upper limit τmin is much smaller than L, meaning that the phase-

space for interference, which is proportional to τmin, is parametrically suppressed relative

to that for direct emissions. Then the interference effects are negligible. On the other hand,

when θqq̄ . θq, τmin becomes as large as L, so the interference is not suppressed anymore.

But then the total medium-induced radiation vanishes, since a gluon emitted at an angle

θ & θf (ω) ≫ θc ‘sees’ the total color charge of the qq̄ pair, which is zero.

To summarize, the medium-induced radiation by the dipole is non-zero only when

θqq̄ ≫ θc and in that case it is simply the sum of the two BDMPS-Z spectra separately

produced by the two emitters, without any coherence effect like angular ordering. In order

to substantiate this conclusion and the above physical picture, we shall explicitly estimate

the contribution of the interference effects to the spectrum of the medium-induced radiation

by the dipole and compare the result with the corresponding contribution due to direct

emissions. Our main results in that sense, namely eq. (5.14) for the contribution of the
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interference terms and eq. (4.21) for that of the direct emissions, are confirmed by two

different calculations (one exposed in the main text, the other one in the appendix), which

involve approximation schemes with different degrees of rigor, but which agree with each

other to parametric accuracy.

Our paper is organized as follows: in section 2 we present a qualitative discussion

of the medium-induced radiation, including the BDMPS-Z mechanism (for completeness

and pedagogy), but focusing on our original results on interferences. Our purpose there

is to motivate our conclusions via physical considerations, which hopefully will provide

the guidelines for the subsequent, more formal, developments. In section 3, we give a

streamlined presentation of the BDMPS-Z formalism adapted to the problem at hand and

also make contact with the analysis in ref. [27]. Sections 4 and 5 are the main sections of this

paper. They present detailed calculations of the medium-induced contributions to direct

emissions (section 4) and to the interference terms (section 5). To keep the presentation

as fluent as possible, in these sections we resort on analytic approximations which are

correct at parametric level. (More refined versions of these calculations are deferred to

appendix A.) This allows us to provide an explicit expression for the BDMPS-Z spectrum

(consistent with the respective results in the literature) and to deduce an equally explicit

result for the interference contribution to the spectrum. Finally, in section 6 we discuss

the implications of our results for the in-medium evolution of a hard jet and we mention

some open problems.

Note added. When this work was already finished, a preprint appeared, ref. [32], in

which the general formula for the interference contribution to the medium-induced radiation

by the dipole (our eq. (5.2)) was also derived. However, the physical consequences of this

formula were not explicitly worked out. In particular ref. [32] did not identify the physical

mechanism responsible for the suppression of the in-medium interference terms, which is

the reduction in the corresponding longitudinal phase-space. Also the conclusions drawn

there by inspection of the general formula turned out to be incorrect in some cases.

2 Physical discussion and summary

We start our presentation with a section which summarizes, at a qualitative level, the phys-

ical picture and the main conclusions that we shall eventually reach through our analysis.

This discussion will motivate the subsequent, more formal, manipulations and hopefully

provide the guidelines for the approximations to come. It will also allow us to introduce

the various time scales which control the dynamics and which for the benefit of the reader

are summarized in table 1.

2.1 A primer on BDMPS-Z physics

The propagation of a high energy parton through a dense QCD medium leads to energy loss

and transverse momentum broadening via medium-induced radiation, that is, the emission

of gluons stimulated by the interactions between the quark, or the radiated gluon, and

the medium. The radiation process requires a characteristic formation time which can be
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Parameter Definition Parametric estimate Physical meaning

τq
2ω
k2
⊥

τf

(

θf

θq

)2
vacuum formation time

τf

√

2ω
q̂

√

ω
ωc

L in-medium formation time

θf

(

2q̂
ω3

)1/4
θc

(

ωc
ω

)3/4
formation angle

θs

√
q̂L
ω θc

ωc
ω saturation angle

τint
2

ωθ2
qq̄

τf

(

θf

θqq̄

)2
interference time

τλ
1

θqq̄(ωq̂)1/4 τf
θf

θqq̄
transverse resolution time

τcoh
2

(q̂θ2
qq̄)1/3 τf

(

θf

θqq̄

)2/3
color decoherence time

Table 1. Scales relevant for medium-induced gluon radiation. The dimensionless ratios are related

to the BDMPS medium parameters ωc = q̂L2/2 and θ2
c = 4/q̂L3.

understood as the time for the (virtual) gluon to separate enough from its parent quark for

the quantum coherence between the two quanta to be lost. This formation time τq can be

estimated from the condition that the transverse separation b⊥ = τqv⊥ between the quark

and the gluon at the formation time be of the order of the gluon transverse wavelength

λ⊥ = 1/k⊥. Here ‘transverse’ refers to the direction orthogonal to the trajectory of the

quark, k⊥ is the gluon transverse momentum and v⊥ = k⊥/ω is its transverse velocity. We

have also introduced the gluon energy ω, assumed to be large compared to k⊥. Accordingly,

the gluon emission angle is small, θq ≃ k⊥/ω ≪ 1. The previous discussion implies (the

factor of 2 in the equation below is conventional)

τq
k⊥
ω

≃ 2

k⊥
=⇒ τq ≃ 2ω

k2
⊥

≃ 2

ωθ2
q

. (2.1)

The above argument is completely general: it holds for gluon emissions in either the medium

or the vacuum. What is different, however, is the typical value of k⊥ in the two cases.

For emissions in the vacuum, k⊥ is a priori arbitrary. However, the associated,

bremsstrahlung, spectrum, which takes the familiar form

ω
dNvac

dωdk2
⊥

≃ αsCF

k2
⊥

≃ αsCF θ2
qτ

2
q , (2.2)

is such that large values of k⊥ are strongly suppressed, so most of the radiation is quasi-

collinear with its source (θq → 0). The second equality in eq. (2.2), which is clearly true in

view of eq. (2.1), has a simple physical interpretation. After the quark is created at t0 = 0,

a gluon with energy ω and transverse momentum k⊥ is emitted by a time t ∼ τq and not

much later. The factor τ2
q represents the temporal (or longitudinal) phase-space for such

emissions. The factor θ2
q ≃ v2

⊥ is the square of the emission vertex.

Within a medium, on the other hand, the gluon can acquire an additional transverse

momentum via scattering off the medium constituents (see the graphical representation

– 5 –



J
H
E
P
0
8
(
2
0
1
1
)
0
1
5

k

L

q

Figure 1. The standard representation of the Feynman graph for medium-induced gluon radiation:

both the quark and the emitted gluon undergo multiple scattering off the medium constituents.

in figure 1). If the medium is sufficiently dense, the momentum acquired in this way can

be large and then the gluon spectrum is shifted towards a non-zero central value. At

weak coupling, one can assume the successive collisions to be independent even when the

medium is dense: the gluon mean free path ℓ scales like 1/αs and for sufficiently small

αs = g2/(4π) it becomes much larger than the screening length µ−1
D ∝ 1/g for charge

correlations in the medium (µD is the Debye mass). The gluon receives random kicks from

the medium constituents, with each kick transferring a momentum squared ∼ µ2
D, so its

average transverse momentum squared grows at a rate

d〈k2
⊥〉

dt
≃ µ2

D

ℓ
≡ q̂ . (2.3)

The quantity q̂ is a local transport coefficient known as the jet quenching parameter.

The interactions within the medium wash out the quantum coherence between the

gluon and its source, and thus determine the formation time τf for medium-induced emis-

sions. Specifically, within a time τf , the gluon acquires a transverse momentum squared

k2
f ≃ q̂τf with τf related to k2

f as shown in eq. (2.1). We thus deduce

k2
f ≃ (2ωq̂)1/2 and τf ≃

√

2ω

q̂
. (2.4)

At the time of emission, the gluon has an average transverse momentum kf and hence it

makes a typical angle θf ≃ kf/ω (the formation angle).

In order for the gluon to be formed in the medium, one needs τf ≤ L, with L the

longitudinal extent of the slice of the medium which is crossed by the quark. Hence, the

maximal possible value for kf , known as the saturation momentum Qs, is given by Q2
s = q̂L

and is reached for a gluon with a frequency ωc such that τf (ωc) = L. These relations imply

ωc =
1

2
q̂L2 , Q2

s = q̂L , θc =
Qs

ωc
=

2

QsL
=

2
√

q̂L3
. (2.5)

θc is the formation angle for a gluon with frequency ωc and is the minimal angle in the

problem: gluons with larger frequencies ω > ωc and smaller angles θq < θc cannot be
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emitted via this mechanism. The medium is dense provided kf ≫ µD. In view of eq. (2.3),

this requires the in-medium formation time τf to be substantially larger than the mean

free path ℓ: τf ≫ ℓ ≫ µ−1
D . Given the ω-dependence of the formation time τf , this last

constraint implies a lower limit on the gluon energy: ω ≫ ωmin with

ωmin ≡ 1

2
ℓ µ2

D =
1

2
q̂ ℓ2 . (2.6)

Since, moreover, Qs > kf and L > τf , the above relations also imply that the limiting

angle θc ∼ 1/(QsL) is truly small: θc ≪ 1. (Some typical values for heavy ion collisions at

RHIC and the LHC are L = 6 fm and q̂ = 2 ÷ 10GeV2/fm, yielding θc = 0.01 ÷ 0.02.)

More generally, for a given energy ω < ωc, the quantities kf and θf introduced above

— the average transverse momentum and emission angle at the formation time — represent

lower limits on the respective kinematical variables in the BDMPS-Z spectrum. For what

follows, it is useful to express the quasi-local quantities kf and θf , which are controlled by

the physics at the scale τf , in terms of the global (L-dependent) quantities in eq. (2.5),

which represent their absolute limits for τf = L:

τf = L

√

ω

ωc
, kf = Qs

(

ω

ωc

)1/4

, θf ≃ kf

ω
= θc

(

ωc

ω

)3/4

. (2.7)

These formulæ make clear that the relatively soft gluons with ω ≪ ωc are emitted very

fast (τf ≪ L) and at relatively large angles (θf ≫ θc). Such gluons are very efficient in

broadening the jet energy in the transverse plane.

While the quark propagates though the medium it receives kicks from the medium

constituents and it can radiate after any of those kicks. When ω ≫ ωmin, the typical

distance ℓ between two consecutive kicks is much shorter than the formation time τf .

Accordingly, a large number of scattering centers Ncoh ≃ τf/ℓ ≫ 1 act coherently as

a single source of radiation. This subset of Ncoh constituents can be located anywhere

inside the medium, meaning that the time t1 at which a particular emission is initiated is

delocalized within the interval 0 < t1 < L− τf . Thus, unlike vacuum emissions which start

right away after a hard scattering, the medium-induced emissions can be initiated at any

point inside the medium. Accordingly, the longitudinal phase-space for medium-induced

gluon radiation is (L − τf )τf ∼ Lτf , which for ω ≪ ωc is parametrically larger than the

corresponding bremsstrahlung phase-space τ2
q (for the same kinematics). We shall later

derive the gluon spectrum at the formation time and thus find a Gaussian centered at kf :

ω
dN

dωdk2
⊥

∣

∣

∣

∣

form

∝ αsCF θ2
q τfL exp

{

−k2
⊥

k2
f

}

. (2.8)

The prefactor in this expression is similar to that in eq. (2.2): the only difference refers

to the replacement τ2
q → τfL for the longitudinal phase-space. Since θq ∝ k⊥, it is clear

that this spectrum is strongly peaked at k⊥ = kf . Hence, for parametric estimates, one

can replace θq → θf in the prefactor. For k⊥ ∼ kf and ω ≪ ωc, one has τq ∼ τf ≪ L,

hence eq. (2.8) is indeed enhanced w.r.t. the vacuum spectrum (2.2), by the large factor

– 7 –
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t1

q

f

Lf1

kf

k

0

Figure 2. A cartoon illustrating the space-time picture of a medium-induced gluon radiation. The

gluon formation is initiated at time t1 and terminated at time t1 +τf . The gluon leaves the medium

with its final momentum k at time L. The interactions with the medium are not explicitly shown.

L/τf ≫ 1. This factor counts the number of times that a medium-induced gluon can be

formed inside the medium.

Eq. (2.8) is not yet the final BDMPS-Z spectrum: after being formed, the gluon

will still propagate inside the medium over a distance L − τf − t1 and thus acquire an

additional momentum broadening ∆k2
⊥ ≃ q̂(L− τf − t1). Accordingly, its final momentum

k2
⊥ = k2

f + ∆k2
⊥ can take any value between k2

f = q̂τf and Q2
s = q̂L. This results in the

following kinematics domain for the final gluon, as would be measured by a detector:

ωmin . ω . ωc , kf . k⊥ . Qs . (2.9)

Within this range in k⊥, the BDMPS-Z distribution is roughly flat (see eq. (4.22) below).

In discussing interference phenomena in what follows, it will be more convenient to use

angular variables instead of transverse momenta. Using eq. (2.9), one immediately finds

the following range for the final gluon angle θq ≃ k⊥/ω:

θf = θc

(

ωc

ω

)3/4

. θq . θs = θc
ωc

ω
, (2.10)

where θs ≃ Qs/ω. The space-time picture of medium-induced radiation is illustrated in

figure 2.

2.2 Qualitative discussion of interference

To study interference effects, we shall replace the quark probe considered in the previous

subsection with a color dipole, that is a quark (q) and antiquark (q̄) in a color singlet

state which separate from each other at constant velocities which make a relative angle

θqq̄ (the dipole opening angle), which is relatively small: θqq̄ ≪ 1. The two fermions are

massless, so they propagate at the speed of light. The dipole is created at time t0 = 0

and for later times its transverse size grows like r⊥(t) ≃ θqq̄ t. By ‘transverse’ we here

mean the direction perpendicular to the common direction of motion of the quark and the

antiquark (the ‘longitudinal axis’), as defined by the trajectory of their center of mass.

Interference occurs if the transverse wavelength of the gluon which is about to be emitted

– 8 –
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0

q

L

qqqqq

q

q

k 0
ft1

f1

kkf

q

q

q

L

~ qq

Figure 3. Gluon emission by the dipole. Left: the geometry of the final state. Right: the space-

time picture of a typical emission contributing to interference in the case θqq̄ > θf . When the

emission is initiated, at time t1 ∼ τint by the antiquark, the virtual gluon is co-moving with the

quark. When the emission is completed, at time t1 + τf , the gluon makes an angle θf with the

quark.

is large enough for the gluon to have an overlap with both sources. When this happens,

the gluon ‘sees’ the overall color charge of the qq̄ pair, which is zero, so it is not emitted

anymore (destructive interference).

For vacuum radiation, the interference effects are well known to lead to angular order-

ing [28, 29]. The distance between the quark and the antiquark at the time of emission is

∼ θqq̄ τq with τq = 2ω/k2
⊥. Interference occurs if this distance is smaller than the trans-

verse wavelength λ⊥ ≃ 1/k⊥ of the gluon. Using k⊥ ≃ ωθq, with θq the emission angle, we

deduce

θqq̄
1

ωθ2
q

.
1

ωθq
=⇒ θq & θqq̄ . (2.11)

That is, the interference is important only for emissions at large angles, outside the

dipole cone.

The interference effects can be also discussed at the level of the bremsstrahlung spec-

trum produced by the dipole. This is given by the following generalization of eq. (2.2)

ω
dNvac

dip

d3k
≃ αsCF

(

θqτq − θq̄τq̄

)2
, (2.12)

with kµ = (ω,k) the 4-vector of the emitted gluon, τq ≃ 2/(ωθ2
q ) and τq̄ ≃ 2/(ωθ2

q̄ ). (Note

that our sign conventions for the emission angles are such that θq < 0 and θq̄ > 0 for

emissions inside the dipole and θq θq̄ > 0 for emissions outside the dipole; see also figure 3

left. With this convention, one has θqq̄ = θq̄ − θq > 0. Also, when using an angle within a

parametric estimate or an inequality, we always mean its absolute value.) By expanding

the square in the r.h.s. one generates the direct emission terms, from the quark (θ2
qτ

2
q ) and

respectively the antiquark (θ2
q̄τ

2
q̄ ), together with the interference term −2θqθq̄τqτq̄, which

has an overall minus sign because the two sources have opposite charges. Inside the dipole

cone, where θqθq̄ < 0, the interference term is relatively unimportant: the radiation is

strongly peaked around the direction of the quark (θq ≈ 0) or of the antiquark (θq̄ ≈ 0),

– 9 –
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where it is dominated by the respective direct emission. However for large emission angles

θq, θq̄ ≫ θqq̄ one has θq ≃ θq̄ and τq ≃ τq̄ and then the total radiation vanishes: the direct

emissions are compensated by the interference term.

We now turn to the description of the medium-induced gluon radiation from an en-

ergetic qq̄ dipole created in the medium. It is intuitively clear that, if the dipole angle

is sufficiently large (larger than the maximal emission angle θs introduced in the previous

subsection, cf. eq. (2.10)), the radiation patterns produced by the quark and the antiquark

via interactions in the medium have no overlap with each other and thus they are inde-

pendent. The question we would like to address is what happens when the dipole opening

angle is not that large. In that case, and in view of the experience with radiation in the

vacuum, one may expect the dipole antenna pattern to be affected by interference effects

between the emissions by the quark and the antiquark. However, as we shall now argue,

this expectation is generally incorrect: for a sufficiently dense medium and a dipole an-

gle θqq̄ which is not very small (see below for the precise condition), only those gluons

which are emitted very close to the qq̄ vertex can be coherent with both emitters and thus

lead to interference. Accordingly, the interference effects are parametrically suppressed as

compared to the direct emissions from each of the quarks.

The requirement that the two sources (q and q̄) be coherent with each other has two

aspects:

(i) Quantum coherence. The emission process preserves the quantum coherence of the

qq̄ system so long as the virtual gluon overlaps with both sources in the course

of formation. (After formation, the gluon rescattering in the medium can change

its momentum but cannot affect the interference process since the gluon is already

decorrelated from its sources.) For that to be possible, the transverse wavelength

λf = 1/kf of the gluon at the time of formation should be larger than the typical qq̄

distance around that time. For emissions in the vacuum, this condition immediately

leads to angular ordering, as discussed around eq. (2.11). But for the medium-induced

emissions, the situation is more subtle: during the gluon formation, the transverse

size of the qq̄ system increases from rmin ≃ θqq̄ t1 to rmax ≃ θqq̄ t2, where t1 is the

time when the emission is initiated and t2 = t1 + τf . Our calculations in section 5

and in appendix A (see eqs. (5.12) and (A.7)) show that the relevant qq̄ size to be

compared to λf is the geometric average of these two extreme scales. This reflects

the diffusive nature of the gluon dynamics during formation. That is, the condition

of quantum coherence amounts to
√

rminrmax . λf , or

√

t1(t1 + τf ) .
λf

θqq̄
≡ τλ . (2.13)

The scale τλ introduced above will be referred to as the transverse resolution time.

Using λf = 1/kf with kf given by eq. (2.4), it is easy to see that

τλ =
1

θqq̄ (q̂ω)1/4
= τf

θf

θqq̄
, (2.14)

where the second estimate follows since kf ≃ ωθf and τf ≃ 2/(ωθ2
f ).
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Eq. (2.13) implies an upper limit on t1 that we shall now explicitly work out. It

is first of all clear that t1 < τλ. But the actual constraint on t1 can be even more

restrictive, depending upon the ratio θqq̄/θf [cf. eq. (2.14)]:

(i.a) For relatively small dipole angles θqq̄ ≪ θf , one has τλ ≫ τf and then eq. (2.13)

implies t1 . τλ. In this regime, the interference occurs between the typical

BDMPS-Z spectra of the two emitters, which during the formation process are

localized at angles ∼ θf ≫ θqq̄ around their respective sources: if initiated at a

time t1 . τλ, the medium-induced emissions by the quark and respectively the

antiquark will overlap with each other and thus interfere.

(i.b) For larger dipole angles θqq̄ ≫ θf , one has τλ ≪ τf and therefore t1 ≪ τf as

well. Then eq. (2.13) simplifies to

t1 .
τ2
λ

τf
≡ τint , (2.15)

which introduces a new temporal scale — the interference time τint — which in

this regime is much smaller than τλ. This new scale can be rewritten as

τint =
2

ωθ2
qq̄

= τf

(

θf

θqq̄

)2

, (2.16)

which is recognized as the vacuum-like formation time for a gluon emitted at

an angle ∼ θqq̄. The emergence of this scale is quite natural: in order to overlap

with both sources, the gluon must be emitted at a relatively large angle, of order

θqq̄, with respect to its parent fermion. Since θqq̄ ≫ θf , it is clear that such an

emission cannot be triggered by medium interactions; rather, it occurs like in

the vacuum, with formation time (2.16). But such a vacuum-like emission by

one fermion can interfere with a medium-induced emission by the other fermion

and thus contribute to the BDMPS-Z spectrum of the dipole. Indeed, a gluon

emitted at an angle ∼ θqq̄, say, by the antiquark will be co-moving with the

quark and hence it will behave in the same way as a typical gluon from the quark

wavefunction. That is, it will decohere from the quark via medium rescattering

and eventually emerge at an angle ∼ θf w.r.t. the quark (see figure 3 right).

Thus, in this regime, one can speak of vacuum-medium interferences.

(ii) Color coherence. In the vacuum, the color state of the dipole is conserved until a

gluon emission takes place and the interference pattern is governed solely by quantum

coherence. In the medium, the interactions with the medium change the color of

each of the propagating parton, via ‘color rotation’. For an energetic parton, this

rotation amounts to multiplying its wavefunction by a SU(Nc) matrix-valued phase

(a Wilson line) which involves the random color field generated by the constituents

of the medium evaluated along the parton trajectory.

For the qq̄ pair we have two such Wilson lines, one for each fermion. The color

coherence is measured by the 2-point correlation function of these Wilson lines, as
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obtained after averaging over the fluctuations of the background field. Within the

‘multiple soft scattering approximation’, this 2-point function can be computed to

all orders in the medium effects (see eq. (3.27) and eq. (5.3)). As discussed around

eq. (5.4), the quark and the antiquark lose any trace of their original color correlation

after the decoherence time

τcoh =
2

(q̂θ2
qq̄)

1/3
= τf

(

θf

θqq̄

)2/3

. (2.17)

Accordingly, interference effects are possible only for the gluon emissions initiated at

a time t1 smaller than τcoh. This scale τcoh can be related to L by using eqs. (2.17)

and (2.7):

τcoh ≃
(

θc

θqq̄

)2/3

L . (2.18)

Quite remarkably, this estimate involves the limiting angle θc of the BDMPS-Z spec-

trum, although the present physical context is quite different: the scale τcoh refers to

the color coherence between the two emitters independently of their radiation.

The previous discussion shows that the study of interference effects for the medium-

induced dipole radiation is a multi-scale problem. While the details of the in-medium

dipole antenna pattern are expected to depend upon all these scales, the phase-space

for interference is controlled by the smallest of them, τmin = min(τλ, τint, τcoh). As a

consequence, the interference contribution to the gluon spectrum (that is, the contribution

of diagrams in which the gluon is emitted by the quark in the amplitude and by the

antiquark in the complex conjugate amplitude, or vice versa), does not scale with the

medium length L, but with τmin.

Remarkably, eqs. (2.14), (2.16) and (2.17), which can be summarized as

τf ∼ τcoh

(

θqq̄

θf

)2/3

∼ τλ
θqq̄

θf
∼ τint

(

θqq̄

θf

)2

∼ L

√

ω

ωc
, (2.19)

show that, for a given in-medium formation time τf , all the three time scales relevant for

coherence depend solely upon the ratio θqq̄/θf . Physically, this is a consequence of the fact

that, at formation, the medium-induced gluon distribution (2.8) is characterized by the

formation angle θf alone (for a given τf ). Hence, when discussing interference effects, it

is natural to compare θqq̄ to θf . In addition, as we shall see, there is a change of regime

when τcoh becomes as large as the medium size L, which according to eq. (2.18) happens

when θqq̄ ≃ θc. We are thus led to consider the following three ranges for θqq̄:

1. Relatively large dipole angles, θf . θqq̄ . θs. In this regime eqs. (2.14), (2.16)

and (2.17) imply the following hierarchy of scales

τint . τλ . τcoh . τf when θqq̄ & θf , (2.20)

which shows that, for such large dipole angles, the condition (2.15) of quantum co-

herence is the most restrictive one. Accordingly, in this regime, the longitudinal
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phase-space for interferences is of order ∼ τintτf and thus is suppressed with re-

spect to the corresponding phase-space ∼ τfL for direct emissions by each of the two

sources by a factor

R =
τint

L
∼

√

ω

ωc

(

θf

θqq̄

)2

≪ 1 . (2.21)

The range of values spanned by R within this regime is displayed in eq. (5.17) below.

2. Relatively small dipole angles θc ≪ θqq̄ ≪ θf . In this case, the strongest lim-

itation on the phase-space for interference comes from the requirement of color co-

herence, as clear from the fact that the ordering of time scales is now reverted:

τf ≪ τcoh ≪ τλ ≪ τint when θqq̄ ≪ θf . (2.22)

So, the longitudinal phase-space for interference is now of order τcohτf . So long as

θqq̄ ≫ θc, this is still strongly suppressed as compared to the phase-space ∼ τfL

for direct emissions, as manifest from eq. (2.18). Hence, in this regime too, the

interference contribution to the spectrum is parametrically small (see also eq. (5.18)

for the corresponding range):

R =
τcoh

L
=

(

θc

θqq̄

)2/3

≪ 1 . (2.23)

Note that, in this case, the medium-induced radiation by the dipole (the incoherent

sum of the two corresponding spectra by the quark and the antiquark) is distributed

at large angles θq ≃ θq̄ & θf ≫ θqq̄, that is, well outside the dipole cone. One may

wonder why the total radiation in that case is not simply zero (as it would be for the

large angle radiation by a color-singlet dipole in the vacuum). The reason is that, so

long as θqq̄ ≫ θc, a qq̄ pair immersed in the medium is not a ‘color singlet’ anymore,

except for a very brief period of time τcoh ≪ L.

3. Very small dipoles angles θqq̄ . θc. When the dipole angle is even smaller,

θqq̄ . θc, the color coherence time τcoh becomes as large as the medium size L, cf.

eq. (2.18). Then, the qq̄ pair preserves its color and quantum coherence through-

out the medium, so the interference effects are not suppressed anymore and they

act towards reducing the medium-induced radiation by the dipole. For sufficiently

small angles θqq̄ ≪ θc, the color decoherence is parametrically small and the to-

tal (in-medium) radiation becomes negligible: the interference effects and the direct

emissions nearly compensate each other.2 This conclusion is in agreement3 with the

results in [26], obtained by working to leading order in the ‘opacity expansion’ [13]

(the single scattering approximation).

In summary, we have argued that for sufficiently large dipole angles θqq̄ ≫ θc, the

interference effects for the medium-induced radiation are negligible, so the total BDMPS-Z

2The net result should be of order (θqq̄/θc)
2, as clear by inspection of eq. (3.29) below.

3We would like to thank Carlos Salgado for useful discussions on this point.
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spectrum by the dipole is the incoherent sum of the respective spectra produced by the

quark and the antiquark. For smaller angles θqq̄ . θc, the interference effects are not

suppressed anymore and they eventually cancel the direct emissions when θqq̄ ≪ θc. The

transition between the two regimes, occurring at θqq̄ ≃ θc, could in principle be studied

within the formalism that we shall develop later. However, such a study goes beyond the

approximation schemes that we shall use throughout this paper and which are adapted to

the most interesting regime at θqq̄ ≫ θc.

Note that, although so far we have focused on gluons with relatively soft energies,

ω ≪ ωc, our main conclusions remain valid when ω approaches the limiting value ωc,

as we now argue. When ω ∼ ωc, one has τf ∼ L and θf ∼ θc, so the intermediate

regime of ‘relatively small dipole angles’ disappears. Yet, eq. (2.21) implies that, so long

as θqq̄ ≫ θf (ωc) = θc, the interference effects are relatively small even for ω ∼ ωc. This is

so because the time scale τint which limits quantum coherence is still much smaller than L

in this regime.

We conclude our discussion by observing that the emission of BDMPS-Z-like gluons

is not the only medium-induced radiation by the dipole. Indeed, in ref. [27], it has been

shown that, as a consequence of color decoherence in a dense medium, the dipole produces

additional, soft, gluon radiation, which is emitted outside the medium (t1 & L) and also

outside the dipole cone (θq, θq̄ > θqq̄). As we shall explain in sections 3.2 and 6, this

alternative mechanism operates only for relatively small dipole angles θqq̄ ≪ θf and the

associated radiation is mostly collinear with the qq̄ axis. Moreover, the associated gluon

spectrum is simply the bremsstrahlung spectrum and hence it is independent of the medium

size L. On the contrary, the medium-induced radiation that we consider is emitted at larger

angles, within a range θf . θq . θs, and it has a strength proportional to the medium

length. Hence, these two mechanisms, which are simultaneously present in the medium,

lead to gluon spectra with very small overlap.

3 General set-up and formalism

In this section, we shall more precisely describe our physical problem — a color dipole which

radiates gluons while propagating through a QCD medium (say, a quark-gluon plasma) —

and the formalism to be used for its study. As noticed in the Introduction, a similar set-up

has been also used in refs. [26, 27]. But the focus there was on some special physical con-

ditions, allowing for additional simplifications: the single scattering approximation (‘dilute

medium’) in [26] and the restriction to out-of-medium emissions (‘soft and collinear glu-

ons’) in [27]. Here, we shall keep our discussion as general as possible, in such a way to

encompass the physics of medium-induced gluon radiation in the multiple soft scattering

regime. In the process, we shall also make contact with the results in ref. [27] and clarify

their applicability.

3.1 The amplitude for gluon emission

The in-medium dipole dynamics will be treated in the semi-classical approximation, that

is, by solving Yang-Mills equations in which the dipole enters as a classical source of
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color charge. The medium rescattering will be resummed to all orders via a background

field method. The effects of this rescattering on the quark and the antiquark legs of

the dipole will be treated in the eikonal approximation. The corresponding effects on the

emitted gluon will be treated exactly (within the semi-classical approximation), by using an

appropriate background field propagator. The background field is assumed to be random,

with a Gaussian distribution, and the average over its fluctuations will be performed using

techniques borrowed from the color glass condensate [30]. The underlying assumptions are

that the two quarks are very energetic, with momenta much larger than any momentum

which can be transferred by the medium, whereas the emitted gluon carries (transverse)

momenta comparable to those of the medium. Under these assumptions, our calculations

are correct to lowest order in the color charge of the dipole but to all orders in the medium

effects. This formalism has been used in ref. [33] to study the radiation by a single quark

and shown to encompass the essential BDMPS-Z physics.

The color dipole is a pair of classical, massless, particles with opposite color charges

(so that the pair is a color singlet) which is produced at time t0 = 0 by some hard process

occurring inside the medium. After being produced, the two particles separate from each

other at constant velocities, u = pq/Eq for the quark (q) and ū = pq̄/Eq̄ for the antiquark

(q̄), which make a relative angle θqq̄: u · ū = cos θqq̄. Here pq and Eq = |pq| are the

3-momentum and the energy of the quark (and similarly for the antiquark), assumed to

much larger than any other scale in the problem. We choose the longitudinal axis (x3) as

the direction of motion of the center-of-mass of the qq̄ pair. In the medium rest frame,

the dipole has a relatively large longitudinal boost γ ≫ 1 and hence a small opening angle

θqq̄ ∼ 1/γ. This angle will be nevertheless assumed to be significantly larger than the

critical angle for medium-induced radiation θc ∼ 1/(QsL), which is very small (θc ≪ 1)

as previously explained. The dipole propagates through the medium along a longitudinal

distance L before escaping into the vacuum.

The QCD medium is described as a random color background field Aµ
a with a Gaussian

distribution. As well known e.g. from the experience with the color glass condensate [30],

this description becomes simpler by working in a Lorentz frame in which the medium is

strongly boosted (an ‘infinite momentum frame’). For the problem at hand, it is convenient

to choose the ‘dipole frame’ in which the COM of the qq̄ pair is nearly at rest, meaning that

the plasma is boosted (essentially, by the dipole γ factor introduced above) in the negative

x3 direction. In this new frame and in light-cone (LC) gauge A+
a = 0, the background field

has only one non-trivial component, Aµ
a = δµ−A−

a , which is moreover independent of the

LC ‘time’ x−, by Lorentz time dilation. We have introduced here the LC components of

the 4-vector Aµ
a , defined in the standard way; e.g. xµ = (x+, x−,x⊥), with

x+ =
1√
2

(x0 + x3) , x− =
1√
2

(x0 − x3) , x⊥ = (x1, x2) . (3.1)

In the dipole frame, both the dipole angle θqq̄ and the characteristic medium angle θc are

enhanced by a factor γ (so, in particular, θqq̄ ∼ O(1)), but the inequality θqq̄ ≫ θc remains

of course true. In view of that, and in order to avoid a proliferation of symbols, we shall

use the same notations for quantities in the plasma rest frame and in the dipole frame —
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the difference should be clear from the context. Moreover, we shall often use the small-

angle version of a parametric estimate (e.g., τq ≃ 2/ωθ2
q) even when working in the boosted

frame, where the angles are not necessarily small; what we truly mean by such a writing

is an estimate which becomes true after boosting back to the plasma rest frame.

Another advantage of using the dipole frame refers to the correlations between the

charged constituents of the medium: the longitudinal (x+) range of the correlations, which

was 1/µD in the original frame, is now Lorentz-contracted to 1/(γµD). When probing

this distribution over relatively large longitudinal separations ∆x+ ≫ 1/(γµD), one can

describe the medium constituents as independent color charges with a current density

Jµ,a
med(x) = δµ−ρa(x+,x⊥) and a local 2-point correlation

〈ρa(x+,x⊥)ρb(y+,y⊥)〉 = δabδ(x+− y+) δ(2)(x⊥ − y⊥)n0 , (3.2)

where n0 is the average color charge squared per unit volume, assumed to be homogeneous.

(For a longitudinally expanding medium, this would be a function of x+.) If the medium

is a weakly coupled quark-gluon plasma (QGP), then n0 ∝ γTµ2
D in the dipole frame.

Such a color charge distribution gives rise to the following distribution for the background

field A−
a :

〈A−
a (x+,q⊥)A−

b (y+,k⊥)〉 = δabδ(x
+− y+) (2π)2δ(2)(q⊥ − k⊥)

n0

(q2
⊥ + µ2

D)2
. (3.3)

The Debye screening has been heuristically implemented as a ‘gluon mass’ µD, although

the actual mechanisms at work are generally more complicated.

The gluon radiation by the dipole will be described in the classical approximation, as

the additional color field (on top of the background field) generated by the qq̄ pair. The

classical approximation is correct when the gluon is soft relative to its sources, meaning

that ω = |k| ≪ Eq, Eq̄. The color field aµ
a describing the radiation is a small perturbation

of the background field and will be obtained by solving the linearized version of the Yang-

Mills equation for the total field Aµ = δµ−A− +aµ (color indices will be often kept implicit

in what follows)

DνF
νµ = δµ−ρ + Jµ

dip . (3.4)

The dipole color current Jµ
dip = Jµ

q + Jµ
q̄ involves contributions from the quark and the

antiquark and also depends upon the background field, because it obeys a covariant con-

servation law: DµJµ
dip = 0, where Dµ = ∂µ + δµ−igA−.

In the vacuum (A− = 0), the color current associated with a pair of classical particles

with constant velocities can be written as jµ
dip = jµ

q + jµ
q̄ , with

jµ
q,a(x) = guµ θ(x+) δ(x− − u−x+) δ(2)(x⊥ − u⊥x+) Ca ,

jµ
q̄,a(x) = −gūµ θ(x+) δ(x− − ū−x+) δ(2)(x⊥ − ū⊥x+) Ca . (3.5)

We have used here LC notations, with uµ ≡ pµ
q /p+

q = (1, u−,u⊥) and ūµ ≡ pµ
q̄ /p+

q̄ =

(1, ū−, ū⊥). Note that for the right-moving dipole, x+ plays the role of ‘time’ while x− is

the ‘longitudinal coordinate’. The ‘color charges’ Ca are the components of a color vector

in the adjoint representation describing the orientation of the quark current in the internal
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SU(Nc) space; for the antiquark, C̄a = −Ca. The current is conserved, ∂µjµ
dip = 0, since

∂µjµ
q,a = gCaδ

(4)(x) = −∂µjµ
q̄,a.

In the eikonal approximation, the effect of the medium on the dipole consists merely

in color rotations, separately for the quark and the antiquark:

Jµ
q,a(x) = Uab

q (x+, 0) jµ
q,a(x) , Jµ

q̄,a(x) = Uab
q̄ (x+, 0) jµ

q̄,a(x) . (3.6)

Uq(x
+, 0) is a Wilson line in the adjoint representation, which is the special case of

U(x+, y+; [r⊥]) = P exp

{

− ig

∫ x+

y+

dz+ A−(

z+, r⊥(z+)
)

}

(3.7)

for y+ = 0 and the transverse path r⊥(z+) = u⊥z+ (the quark trajectory in the transverse

plane). In eq. (3.7), A− = A−
a T a is a color matrix in the adjoint representation and the

symbol P denotes time-ordering in z+. Using (∂/∂x+)Uab
q =−igA−

ac(x)Ucb
q , it is easy to

check that DµJµ
q,a = gCaδ

(4)(x) = −DµJµ
q̄,a, so the dipole current is covariantly conserved,

as it should. Note that, although the wavefunction of a physical quark is known to trans-

form according to the fundamental representation of the color group, the corresponding

color current (3.6) involves a Wilson line in the adjoint representation, since this current is

a vector in the color space SU(Nc). The only trace of the underlying fundamental represen-

tation lies in the normalization of the color vector Ca, namely CaCa = CF = (N2
c − 1)/2Nc.

In the LC gauge A+ = 0, only the transverse components ai (with i = 1, 2) of the

radiated field contribute to the matrix element for gluon emission (see below). The corre-

sponding, linearized, equation of motion is readily obtained from eq. (3.4) and reads

(

2∂+D− −∇2
⊥
)

ai = J i
dip − ∂i

∂+
J+

dip . (3.8)

This equation can be formally solved in terms of the background field Klein-Gordon prop-

agator, i.e. the Green’s function for the differential operator in the left hand side. The

corresponding solution is well known in the literature (see e.g. [33]) and will be succinctly

described here. Given that the background field is independent of x−, it is convenient to

first perform a Fourier transform to the k+ representation. Then the solution to eq. (3.8)

can be written as

ai
a(x

+,x⊥; k+) =
i

2k+

∫

dy+dy⊥ Gab(x
+,x⊥; y+,y⊥; k+)J i

b (y+,y⊥; k+) , (3.9)

where J i refers to the total current in the r.h.s. of eq. (3.8) and the Green’s function G obeys

(

iD− +
∇2

⊥
2k+

)

G(x+,x⊥; y+,y⊥; k+) = iδ(x+− y+) δ(2)(x⊥ − y⊥) . (3.10)

G is formally the same as the D = 2 + 1 Schrödinger evolution operator for a quantum-

mechanical particle with mass k+ and time x+ propagating in a time-dependent potential

gA−. As well known, this propagator admits the following representation as a path integral:

G(x+,x⊥; y+,y⊥; k+) =

∫

[Dr⊥(z+)] exp

{

i
k+

2

∫ x+

y+

dz+ṙ2
⊥(z+)

}

U(x+, y+; [r⊥]) , (3.11)
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with the paths r⊥(z+) obeying the boundary conditions r⊥(y+) = y⊥ and r⊥(x+) = x⊥.

The corresponding vacuum propagator (A− = 0) will be also needed:

G0(x
+,x⊥; y+,y⊥; k+) = Θ(x+− y+)

k+

2π i(x+− y+)
exp

{

i
k+(x⊥ − y⊥)2

2(x+− y+)

}

. (3.12)

Note that eq. (3.11) goes beyond the eikonal approximation in the sense that the gluon

trajectory is not a priori imposed (as we did for the quark and the antiquark), but rather

is determined by the gluon interactions with the background field.

Given the solution ai, the gluon emission amplitude is obtained as (for an on-shell

gluon with 4-momentum kµ, color a, and polarization λ)

Ma
λ(k+,k⊥) = − lim

k2→0
k2aa

µ(k)ǫµ
λ(k) , ǫµ

λ(k+,k⊥) =

(

0,
ǫ⊥ ·k⊥

k+
, ǫ⊥

)

. (3.13)

In the LC gauge a+ = 0, this involves only the transverse components ai, as antici-

pated. Using eq. (3.9) for x+ → ∞ together with the following composition law (valid for

x+ > z+ > y+)

G(x+,x⊥; y+,y⊥; k+) =

∫

dz⊥ G(x+,x⊥; z+,z⊥; k+)G(z+,z⊥; y+,y⊥; k+) , (3.14)

applied to z+ = L+ ≡
√

2L (notice that for x+ > L+, one has A− = 0 and then G = G0),

one obtains the amplitude as a sum of two pieces,

Mi
a(k

+,k⊥) ≡ − lim
k2→0

k2ai
a(k) = Mi, in

a + Mi, out
a , (3.15)

describing emissions inside the medium (0 < x+ < L+) and outside the medium (x+ > L+),

respectively. Each of these pieces is a sum of quark and antiquark contributions and below

we only show the respective quark contributions. The ‘out’ piece is the simplest:

Mi, out
a,q (k+,k⊥) =

∫

d4x eik ·x Θ(x+− L+)J i
a,q(x)

= g(ui − vi)Uab
q (L+, 0) Cb

∫ ∞

L+

dx+ ei(k ·u)x+

(3.16)

where k− = k2
⊥/2k+, J i

q = J i
q − (∂i/∂+)J+

q , and in the second line we have used the

δ-functions in eq. (3.5) to perform the integrations over x− and x⊥ and denoted vµ ≡
kµ/k+ = (1, v−,v⊥). The ‘in’ piece of the quark-emission amplitude reads

Mi, in
a,q (k+,k⊥) = g

∫ L+

0
dx+ eik−L++i(k+u−)x+

∫

dz⊥ e−ik⊥ ·z⊥

(ui + i∂i
x/k+)Gab(L

+,z⊥;x+,x⊥; k+)
∣

∣

∣

x⊥=u⊥x+
U bc

q (x+, 0) Cc . (3.17)

The corresponding formulæ for the antiquark are obtained by replacing uµ → ūµ and

Ca → −Ca.
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Given the amplitude, the emission probability P and the gluon spectrum are obtained

by taking the modulus squared and then summing over colors and polarizations:

ω
dN

d3k
=

1

16π3
P(k) , P(k) ≡

∑

a,i

〈|Mi
a|2〉 , (3.18)

where we have written the gluon momentum in normal coordinates as kµ = (ω,k) with

ω = |k| and performed the polarization sum by using
∑

λ ǫi
λ(k)ǫj ∗

λ (k) = δij . The brackets

in eq. (3.18) refer to the medium average according to eq. (3.3).

The amplitude Mi
a is truly a sum of four terms: (q, in), (q, out), (q̄, in), and (q̄, out).

Hence the emission probability in eq. (3.18) involves 16 terms: 8 of them describe direct

emissions by either the quark or the antiquark, and 8 represent qq̄ interference terms. Each

of these types of contributions — direct or interference — involves three types of pieces:

(in, in), (in, out), or (out, out). For the (in, in) contributions, the gluon is emitted inside

the medium in both the direct amplitude and the complex conjugate one;4 denoting the

respective emission times as x+ and y+, we have 0 < x+, y+ < L+. For the (in, out) terms,

one has 0 < x+ < L+ and y+ > L+, or vice-versa. Finally, for the (out, out) pieces, both

x+ and y+ are larger than L+.

We anticipate that, for the problem of medium-induced gluon radiation, the (in, in)

contributions will be the most important ones, both for direct emissions and for the in-

terference terms. Here, however, we shall start by computing the respective (out, out)

pieces, with the purpose of illustrating the medium averaging and the phenomenon of color

decoherence in the simplest possible setting. This will also allow us to make contact with

the results in ref. [27].

3.2 The ‘out-out’ terms as a warm up

Consider first the direct gluon emission, say from the quark. Eq. (3.16) implies

P(out)
q (k) = g2(u⊥ − v⊥)2〈Uab

q (L+, 0)CbCd U�ad
q (L+, 0)〉

∫ ∞

L+

dx+

∫ ∞

L+

dy+ei(k ·u)(x+−y+)

= g2CF
(u⊥ − v⊥)2

(k ·u)2
=

2g2CF

(k+)2
1

v ·u , (3.19)

where the second line follows after using Cb Cd = δbdCF /(N2
c − 1). (This is the condition

that, prior to the emission, the qq̄ pair be in a color singlet state.) We have also used

(recall that e.g. vµ = (1, v−,v⊥) with v2 = 0 and hence 2v− = v2
⊥)

(u⊥ − v⊥)2 = u2
⊥ + v2

⊥ − 2u⊥ ·v⊥ = 2(u− + v− − u⊥ ·v⊥) = 2v ·u . (3.20)

An expression similar to eq. (3.21) but with v · u → v · ū holds for the direct emission

by the antiquark. Note that there is no medium dependence in the final result for P(out)
q

because (a) the quark Wilson lines in the direct and the complex conjugate amplitude

have compensated each other, and (b) there was a similar cancelation of the L-dependent

4It would be perhaps more appropriate to say that the gluon is emitted in the direct amplitude and

reabsorbed in the complex conjugate amplitude. For brevity, we shall refer to all such processes as ‘emissions’.
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phases e±i(k ·u)L+

generated by the lower limit L+ of the time integrations. Accordingly,

eq. (3.21) is formally identical to the corresponding probability in the vacuum, P(vac)
q . For

later use, it is convenient to rewrite this vacuum probability as

P(vac)
q (k) = 2g2CF (u⊥ − v⊥)2 τ2

q , (3.21)

where τq = 1/[
√

2 (k ·u)] is the formation time for a gluon emission by the quark. Indeed,

k ·u =
ωEq

p+
q

(1 − cos θq) ≃
ωθ2

q

2
√

2
=⇒ τq =

1√
2 (k ·u)

≃ 2

ωθ2
q

, (3.22)

where one recognizes the expression (2.1) for the formation time at small angles. (We recall

that the small angle approximations are strictly valid in the plasma rest frame.)

As explained in section 2, throughout this paper we are mostly interested in emissions

at relatively large angles, for which the formation times are small: τq ≪ L+. On the other

hand, the (out, out) piece (3.19) of the emission probability is controlled, by construction,

by emission times x+ and y+ within the range L+ ≤ x+, y+ . L+ + τq, which are much

larger than τq. It would be very unnatural that vacuum-like emissions be delayed up to

times much larger than the characteristic formation time τq. But as a matter of facts, when

τq ≪ L+ there is no physical out-of-medium emission; in that case, eq. (3.19) represents

merely a piece of the total result which cancels against other pieces. More precisely, the

boundary terms generated by emission times within an interval ∆x+ ≃ τq around L+

cancel when adding together the (in, in), (in, out), and (out, out) contributions. Such

cancelations occur separately for the direct emissions and for the interference terms. The

net result is that all the vacuum-like emissions at large angles are emitted at early times

x+, y+ . τq ≪ L+, as expected on physical grounds.

The above argument also explains why the (out, out) piece plays no physical role for

the situation of interest in this paper, which is characterized by small formation times:

τq, τq̄ ≪ L. On the other hand, this piece becomes important for the relatively soft and

collinear emissions with relatively large formation times τq, τq̄ & L. This is the situation

considered in ref. [27]. To make contact with the results in that paper, we shall now consider

the (out, out) contribution to the interference term. From eq. (3.16), this is obtained as

I(out)(k) = −2g2CF

(k+)2
(ui − vi)(ūi − vi)

(v ·u)(v · ū)
cos[L+k ·(u − ū)]Sqq̄(L

+, 0) , (3.23)

where the quark and the antiquark Wilson lines combined in the following 2-point function

Sqq̄(L
+, 0) =

1

N2
c − 1

〈TrUq(L
+, 0)U �̄

q (L+, 0)〉 , (3.24)

which describes the residual color coherence between the two fermions after having crossed

the medium — that is, the probability for the qq̄ pair to remain in a color singlet state.

Sqq̄ is formally the same as the scattering S-matrix for a dipole made with a pair of colored

particles in the adjoint representation that we shall succinctly refer to as the ‘qq̄ dipole’.
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For a background field with a Gaussian distribution, cf. eq. (3.3), the expectation value in

eq. (3.24) is easily computed as (see e.g. [30])

Sdip

(

x+, y+; [r⊥]
)

= exp

{

− g2Nc

x+
∫

y+

dz+n0(z
+)

∫

d2q⊥
(2π)2

1 − eiq⊥ ·r⊥(z+)

(q2
⊥ + µ2

D)2

}

, (3.25)

where for later convenience we have kept generic endpoints in time, y+ and x+, and a

generic ‘trajectory’ r⊥(z+) for the dipole transverse size in the interval y+ < z+ < x+. For

the cases of interest in this work, the dipole size is always much smaller than the medium

screening length, r ≡ |r⊥| ≪ µ−1
D . Then the integral over q⊥ in eq. (3.25) is controlled by

transverse momenta within the range µD < q⊥ < 1/r and to leading logarithmic accuracy

can be estimated by expanding eiq⊥ ·r⊥ to second order. This yields

Sdip

(

x+, y+; [r⊥]
)

≃ exp

{

− αsNc

4

x+
∫

y+

dz+n0(z
+) r2(z+) ln

1

r2(z+)µ2
D

}

, (3.26)

where the logarithm ρ ≡ ln(1/r2µ2
D) is assumed to be relatively large, ρ ≫ 1. A more

compact version of eq. (3.26) can be obtained by assuming n0(z
+) = n0 to be constant and

neglecting the variation of the logarithm within the interval of integration; then,

Sdip

(

x+, y+; [r⊥]
)

≃ exp

{

− 1

4
q̂ ρ

∫ x+

y+

dz+ r2(z+)

}

, (3.27)

where5 (the saturation scale Qs is introduced for later reference)

q̂ ≡ αsNcn0 ∼ αsNcµ
2
DT , Q2

s ≡ q̂L+ , (3.28)

and it is understood that the logarithm ρ in eq. (3.27) is evaluated with the maximal dipole

size rmax within the interval y+ < z+ < x+.

When applying these formulæ to the qq̄ dipole in eq. (3.24), one has r⊥(z+) = (u⊥ −
ū⊥)z+ with 0 < z+ < L+ and therefore

Sqq̄(L
+, 0) ≃ exp

{

− 1

12
q̂ ρ (u⊥ − ū⊥)2(L+)3

}

≃ exp

{

− 1

24

(

Qsθqq̄L
+)2 ρ

}

, (3.29)

where in writing the second estimate we have used a small-angle approximation which

holds, strictly speaking, in the plasma rest frame (the product θqq̄L
+ is boost invariant):

(u⊥ − ū⊥)2 = 2u · ū = 2
pq ·pq̄

p+
q p+

q̄

= 2
EqEq̄

p+
q p+

q̄

(

1 − cos θqq̄

)

≃
θ2
qq̄

2
. (3.30)

At this point one should recall that we consider a relatively large dipole angle, θqq̄ ≫ θc

or Qsθqq̄L
+ ≫ 1. The exponent in eq. (3.29) is therefore large, which implies that Sqq̄ ≪ 1:

the (out, out) contribution to interference is washed out by color decoherence in the

5Eqs. (3.28) and (2.3) are consistent with each other since ℓ ∼ 1/(αsNcT ) for a weakly-coupled QGP.
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medium. Since they follow different trajectories, the quark and the antiquark undergo

different color precessions, so after leaving the medium they do not form a color singlet

anymore. We see that, in the soft and collinear regime where the (out, out) piece yields

a physical contribution, the corresponding interference term vanishes. Then the total out-

of-medium radiation by the dipole is simply the incoherent sum of two vacuum-like con-

tributions (cf. eq. (3.19)), by the quark and the antiquark. This is the main conclusion

in ref. [27] and admits interesting consequences: it implies that, in the presence of the

medium, there should be an enhancement in the radiation at large angles, outside the

dipole cone: θq, θq̄ > θqq̄.

To fully appreciate this conclusion, it is important to specify the kinematical region

where it applies. From the previous arguments, it is clear that this relies on two main

assumptions: (i) relatively large formation times6 τq, τq̄ & L, and (ii) a sufficiently large

dipole angle θqq̄ ≫ θc. As we shall now argue, these conditions are satisfied for sufficiently

soft gluons and for relatively small, but not too small, emission (θq, θq̄) and dipole (θqq̄)

angles. The precise conditions read

ω ≪ ωc and θc ≪ θq, θq̄, θqq̄ . θc

(

ωc

ω

)1/2

. (3.31)

The upper limit on ω comes up by combining the two conditions above and focusing on

emission angles which are commensurable with the dipole angle: θq ∼ θq̄ ∼ θqq̄ (this is

the regime where the conclusion in ref. [27] have non-trivial consequences). Then, one

can write

τq ≃ 2

ωθ2
q

& L =⇒ ω .
2

Lθ2
qq̄

≪ 2

Lθ2
c

= ωc , (3.32)

where we have used θq ∼ θqq̄ ≫ θc and θ2
c = 2/(ωcL), cf. eq. (2.5). Then the upper limit

on the values of the angles follows by rewriting the condition τq & L in the form

θq .

√

2

ωL
= θc

√

ωc

ω
. (3.33)

It should be also clear from the above that for a very small dipole angle θqq̄ . θc, the

medium effects become irrelevant (since the qq̄ pair preserves its color coherence throughout

the medium), so the soft emissions with τq & L proceed exactly as in the vacuum — in

particular, the dipole antenna shows the characteristic angular ordering.

Note that the region (3.31) has some overlap with the ‘small-angle regime’ for medium-

induced gluon radiation as defined in section 2.2 — that is, the regime characterized by

θc ≪ θqq̄ ≪ θf . There is, however, an important difference: the respective range in

section 2.2 refers to the dipole angle θqq̄ alone; while this angle can be as small as θc, the

actual emission angles for the BDMPS-Z gluons are much larger: θq, θq̄ & θf ≫ θc. On

the other hand, the upper limit in eq. (3.31) is much smaller than θf , as it can be easily

6Formally, this condition is necessary to avoid the rapid oscillations of the cosine factor in eq. (3.23),

whose argument is the same as L+k · (u − ū) = L/τq − L/τq̄ . Less formally, the regime of large formation

times & L is the only one where the (out, out) piece of the spectrum is physically irrelevant, as already

explained.
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checked using eq. (2.10). So, even for dipole angles θqq̄ as small as shown in eq. (3.31),

the out-of-medium emissions discussed in ref. [27] and the BDMPS-Z-like emissions that

we presently focus on are geometrically separated, with the latter being distributed at

significantly larger angles than the former.

4 Medium-induced gluon radiation: direct emission

Starting with this section, we shall concentrate on the in-medium, or (in, in), pieces, which

are the dominant contributions to medium-induced gluon radiation in the kinematical range

of interest (relatively small frequencies, ω ≪ ωc, or large emission angles θq & θf (ω) ≫
θc). Although we are ultimately interested in the quark-antiquark interference terms, for

which we shall present original results in the next section, we shall start our analysis

with the direct emission terms, from which we shall extract the BDMPS-Z spectrum.

This will give us the opportunity to develop a series of approximations that we shall test

on the case of direct emissions and then apply to the interference terms. More precise

calculations, which confirm the results to be obtained in sections 4 and 5, will be presented

in appendix A.

The probability for in-medium gluon radiation by the quark is obtained by taking the

modulus squared of the amplitude (3.17), summing over the final color indices, averag-

ing over the initial ones, and performing the medium average over the background field.

This yields

P(in)
q (k) = 2g2CF Re

∫ L+

0
dx+

∫ x+

0
dy+ eik+u−(x+−y+)

×
∫

dz1⊥

∫

dz2⊥ e−ik⊥ ·(z1⊥−z2⊥)
(

ui + i∂i
x/k+

)(

ui − i∂i
y/k

+
)

(4.1)

× 1

N2
c − 1

〈

TrG(L+,z1⊥;x+,x⊥; k+)Uq(x
+, y+)G�(L+,z2⊥; y+,y⊥; k+)

〉

,

where Uq(x
+, y+) is given by eq. (3.7) with r⊥(z+) = u⊥z+ and it is understood that after

the performing the transverse derivatives ∂i
x and ∂i

y one sets x⊥= u⊥x+ and y⊥= u⊥y+.

In writing eq. (4.1) we have restricted the time integrals to 0 < y+ < x+ < L+ and

multiplied the result by a factor of 2. The Feynman graph representing this emission is

shown in figure 4.

Note that the quark Wilson lines prior to the first emission time y+ have canceled

each other between the direct and the complex conjugate amplitude. The color trace in

the last line of eq. (4.1) can be further simplified by using the fact that the background

field correlations are local in time. To that aim one first uses the composition law (3.14)

to break the last gluon propagator in eq. (4.1) into two pieces — from y+ to x+ and from

x+ to L+. Then the medium average factorizes as (below, the k+ variable is kept implicit,
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L+

00

p

L+

0 qq

p

y+
x+

k
+k +

q
q

Figure 4. The standard representation of the Feynman graph for direct emission by the quark

(amplitude times the complex conjugate amplitude).

00

x+

y+

qq

k

k
gg

qg

q

p

p
L+

+

+

Figure 5. A folded version of the Feynman graph for direct emission where the amplitude and the

complex conjugate amplitude are represented on top of each other, to more clearly exhibit the qg

and gg dipoles. The (quark and gluon) Wilson lines are indicated with thick lines.

to simplify writing)

∫

dz⊥
1

N2
c − 1

〈

TrG(L+,z1⊥;x+,x⊥)Uq(x
+, y+)G�(x+,z⊥; y+,y⊥)G�(L+,z2⊥;x+,z⊥)

〉

=

∫

dz⊥
1

N2
c − 1

〈

TrG(L+,z1⊥;x+,x⊥)G�(L+,z2⊥;x+,z⊥)
〉

× 1

N2
c − 1

〈

TrUq(x
+, y+)G�(x+,z⊥; y+,y⊥)

〉

. (4.2)

The two color traces in the r.h.s. of eq. (4.2) are recognized as the 2-body propagators of

two effective dipoles — a quark-gluon (qg) dipole extending from y+ to x+ and a gluon-

gluon (gg) dipole from x+ to L+ — whose interactions in the medium are here computed

beyond the eikonal approximation (cf. the discussion after eq. (3.12)). These dipoles can

be easier visualized by folding the Feynman graph in figure 4 in such a way that the direct

and complex conjugate amplitudes overlap with each other, as shown in figure 5.
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Using (3.11), one obtains the following path-integral representation for the propagator

of the qg dipole:

Kqg(x
+,z⊥; y+,y⊥; k+) ≡ 1

N2
c − 1

〈

TrUq(x
+, y+)G�(x+,z⊥; y+,y⊥)

〉

(4.3)

=

∫

[Dr⊥] exp

{

− i
k+

2

∫ x+

y+

dz+ṙ2
⊥

}

Sqg

(

x+, y+; [r⊥ − u⊥z+]
)

,

which features a qg pair with fluctuating size r⊥(z+)−u⊥z+ and path-dependent S-matrix

Sqg

(

x+, y+; [r⊥ − u⊥z+]
)

≃ exp

{

− 1

4
q̂ ρ

∫ x+

y+

dz+
(

r⊥(z+) − u⊥z+
)2

}

. (4.4)

We recall that the boundary conditions for the gluon paths are r⊥(y+) = y⊥ and r⊥(x+) =

z⊥ and that ρ is a slowly varying function of the dipole size (cf. eq. (3.26)).

As for the gg dipole in eq. (4.2), the corresponding mathematics turns out to be

simpler: on the average, the medium is homogeneous in the transverse plane, as manifest

on eq. (3.3). Then the medium averaging also averages out the fluctuations in the dipole

transverse size, with the net effect that the respective S-matrix depends only upon the

initial dipole size at time x+, that is x⊥ − z⊥. Specifically, the following identity holds

(see e.g. [19, 33] for details):

∫

dz1⊥

∫

dz2⊥ e−ik⊥ ·(z1⊥−z2⊥) 1

N2
c − 1

〈

TrG(L+,z1⊥;x+,x⊥)G�(L+,z2⊥;x+,z⊥)
〉

= e−ik⊥ ·(x⊥−z⊥) Sgg(L
+, x+;x⊥ − z⊥) , (4.5)

with (compare to eq. (3.27))

Sgg(L
+, x+;x⊥ − z⊥) ≃ exp

{

− 1

4
q̂ ρ (L+ − x+)

(

x⊥ − z⊥
)2

}

. (4.6)

Note that in writing eqs. (4.4) and (4.6) above, we have tacitly assumed that the respective

dipole sizes are much smaller than µ−1
D , so that the approximations leading to eqs. (3.26)–

(3.27) indeed apply. This will be checked later, when we shall see that the typical dipole

sizes are of order 1/kf for (4.4) and respectively of order 1/Qs for (4.6).

Putting together the previous results, we deduce the following expression for the prob-

ability for direct emission from the quark

P(in)
q (k) = 2g2CF Re

∫ L+

0
dx+

∫ x+

0
dy+ eik+u−(x+−y+)

(

ui + i∂i
x/k+

)(

ui − i∂i
y/k

+
)

×
∫

dz⊥ e−ik⊥ ·(x⊥−z⊥) Kqg(x
+,z⊥; y+,y⊥; k+)Sgg(L

+, x+;x⊥ − z⊥) , (4.7)

where it is understood that x⊥ → u⊥x+ and y⊥ → u⊥y+ after taking the derivatives.

Within the limits of our calculation, this expression is exact. It is also rather formal, in the

sense of involving a path integral and holding for an arbitrary kinematics of the emitted

gluon. In the ‘harmonic approximation’, which consists in treating the slowly varying
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logarithm ρ in eqs. (4.4) and (4.6) as a fixed quantity, the integrations become Gaussian

and can be performed exactly (see the appendix). To keep the discussion as intuitive as

possible, in what follows we shall perform a series of approximations which are valid in the

kinematics of interest.

But before we proceed with more formal steps, let us emphasize a point of physics:7 the

gluon formation time τf for medium-induced radiation is controlled by the intermediate,

quark-gluon dipole, stage of the dynamics in eq. (4.7) and hence it is of the order of the

typical duration x+− y+ of that stage. Indeed, the S-matrix (4.4) of this effective dipole,

built with the quark in the direct amplitude and the gluon in the complex conjugate one

(or vice-versa), is a measure of the color coherence between the emitted gluon and the

parent quark. So long as this dipole is relatively small (meaning for sufficiently small time

separations x+− y+), one has Sqg ≃ 1 and then one cannot distinguish the gluon from the

quark: in any process involving color exchanges, the emerging quark-gluon pair acts in the

same way as the original, bare, quark would do. But with increasing x+− y+, the dipole

size increases (via gluon diffusion) and then Sqg starts to decrease from one, because of

the medium rescattering. One can consider the gluon as being formed when the qg dipole

suffers a first inelastic collision in the medium, i.e. when the exponent in Sqg becomes of

O(1). The respective value of x+− y+ sets the formation time. For even larger values of

x+, one has Sqg ≪ 1 and the emission probability is strongly suppressed.

The starting point of our approximation is an expression for the propagator (4.3) of

the qg dipole valid in the harmonic approximation. With ρ ≈ const. and absorbed into the

normalization of q̂ for convenience,8 the path integral (4.3) describes a harmonic oscillator

with imaginary squared frequency

Ω2 = i
q̂

2k+
=⇒ Ω =

1 + i√
2

√

q̂

2k+
, (4.8)

and hence it can be exactly computed (see e.g. [11, 19] for details and also the appendix

below). To be specific, let us ignore the transverse derivatives in eq. (4.7) for the time

being (we shall return to them latter) and fix x⊥ = u⊥x+ and y⊥ = u⊥y+. Then one

obtains

Kqg(x
+, b⊥+ u⊥x+; y+,u⊥y+; k+) = exp

{

− ik+

[

(x+− y+)
u2
⊥
2

+ u⊥ ·b⊥
]}

×Kqg(x
+, b⊥; y+,0⊥; k+) (4.9)

where we set b⊥ ≡ z⊥ − u⊥x+ and

Kqg(x
+, b⊥; y+,0⊥; k+) =

k+Ω

2πi sinh Ω(x+− y+)
exp

{

− k+Ω

2i
coth Ω(x+− y+) b2

⊥

}

. (4.10)

7We would like to thank Al Mueller for an illuminating discussion of this point.
8This is a standard convention in the literature; the factors of ρ can be recovered, if needed, by replacing

everywhere q̂ → q̂ρ.
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The quantity b⊥ is the transverse size of the qg dipole at time x+ and thus also the size of

the ensuing gg dipole at any time z+ > x+. We shall denote

τf ≡ 1

|Ω| =

√

2k+

q̂
, (4.11)

anticipating that this quantity plays the role of the formation time.

Two limits of eq. (4.10) will be useful in what follows:

(i) Small times |Ω|(x+− y+) ≪ 1 or x+− y+ ≪ τf : then, by expanding the r.h.s. of

eq. (4.10) to quadratic order in |Ω|(x+− y+) one finds

Kqg(x
+, b⊥; y+,0⊥; k+) ≃ k+

2π i(x+− y+)
exp

{

− i
k+b2

⊥
2(x+− y+)

− 1

12
q̂ (x+− y+) b2

⊥

}

.

(4.12)

This is recognized as the saddle point approximation to (4.3) with the saddle point

determined by the kinetic piece of the action alone; that is, Kqg ≈ G0 Sqg where G0 is

the free propagator (3.12) and Sqg is the S-matrix (4.4) evaluated along the classical

path, which reads:

rclass(z
+) − u⊥z+ =

z+ − y+

x+− y+
b⊥ . (4.13)

(ii) Large times |Ω|(x+− y+) ≫ 1 or x+− y+ ≫ τf : then, one finds

Kqg(x
+, b⊥; y+,0⊥; k+) ∝ k+

τf
e−(x+−y+)/τf exp

{

− 1 + i

4

√

q̂k+ b2
⊥

}

. (4.14)

Eq. (4.12) shows that at early times x+− y+ . τf the size of the qg dipole increases

through diffusion, b2
⊥ ∝ (x+− y+)/k+ (cf. the first term in the exponent) and this increase

enhances the dipole rescattering off the medium (the second term in the exponent, as

coming from Sqg). When x+− y+ ≃ τf , this second term becomes of order one, showing

that τf is the formation time, as anticipated. For larger times x+− y+ ≫ τf , the dipole

propagator is exponentially suppressed, cf. eq. (4.14), meaning that the color coherence

of the qg pair has been destroyed by the medium. The maximal size of the qg dipole, as

attained for x+− y+ ≃ τf , is9

b2
f ≃ τf

k+
∼ 1√

q̂ω
. (4.15)

Via the uncertainty principle, this yields the typical transverse momentum of the gluon

at the formation time as k2
f ≃ 1/b2

f ≃
√

ωq̂, in agreement with eq. (2.4). This obeys

the scaling law k2
f ≃ q̂τf showing that this transverse momentum has been acquired via

medium rescattering during a time τf . Since τf ≪ L+, this k⊥ is much smaller than the

final momentum of the gluon, which can be as large as k⊥ ∼ Qs, as we shall shortly see.

To compute the final gluon spectrum, one has to also take into account the medium

rescattering after the time of formation, as encoded in the S-matrix (4.6) of the gg dipole.

9As usual, when writing parametric estimates, we ignore numerical factors and identify k+ with ω.

– 27 –



J
H
E
P
0
8
(
2
0
1
1
)
0
1
5

Specifically, the function Sgg(L
+, x+;x⊥ − z⊥) controls the range of the integration over

z⊥ = b⊥ + u⊥x+, which in turn fixes the final transverse momentum k⊥ via the Fourier

transform in eq. (4.7). As we shall shortly check, the typical values for b⊥ allowed by the

gg dipole are much smaller than bf . Hence, in evaluating this Fourier transform, one can

replace the propagator Kqg of the qg dipole by the corresponding free propagator G0 (which

carries the whole dependence upon b⊥ in the limit where b⊥ ≪ bf ). Then the integral over

b⊥ reduces to

e−i
k+u2

⊥

2
(x+−y+)

∫

db⊥ eib⊥ ·(k⊥−k+u⊥) exp

{ −ik+b2
⊥

2(x+− y+)

}

exp

{

− q̂

4
(L+−x+)b2

⊥

}

, (4.16)

where it was important to also include the phase factor in the r.h.s. of eq. (4.9) (which is a

part of the free propagator G0(x
+, b⊥+ u⊥x+; y+,u⊥y+; k+)). The overall phase in front

of the above integral is such that it exactly cancels the phase eik+u−(x+−y+) in eq. (4.7).

This is worth emphasizing in view of the discussion of the interference terms in section 5,

where the corresponding phase cancelation does not hold — which in turn has important

consequences.

For medium-induced radiation, the time variables x+ and y+ can lie anywhere within

the medium, 0 < x+, y+ < L+ (except very close to the boundaries10), with the condition

that x+− y+ ∼ τf ≪ L+. Accordingly q̂(L+− x+) is parametrically of the same order as

q̂ L+ = Q2
s, and thus is much larger than k+/τf ∼ k2

f . Hence the integral in eq. (4.16) is

controlled by the last factor inside the integrand and yields

∫

db⊥ eib⊥ ·(k⊥−k+u⊥) exp

{

− 1

4
Q2

sb
2
⊥

}

∼ 1

Q2
s

exp

{

− (k⊥ − k+u⊥)2

Q2
s

}

. (4.17)

Note that k+u⊥ is the transverse momentum inherited by the gluon from its parent quark.

Accordingly, k⊥−k+u⊥ is the additional transverse momentum acquired by the gluon from

the medium and is the same as the component of the gluon momentum which is transverse

to the quark; indeed, using eq. (3.22) one can write

(k⊥ − k+u⊥)2 = 2k+(k ·u) ≃ (ωθq)
2 . (4.18)

Hence, eq. (4.17) shows that the momentum gained by the gluon via medium rescattering

can be as large as Qs, as anticipated. Since Qs ≫ kf , it is clear that most of this momentum

gets accumulated after the gluon formation. This is confirmed by the fact that the Fourier

transform in (4.17) is controlled by the S-matrix of the final gg dipole.

The last ingredient that we need in order to evaluate eq. (4.7) is the action of the

transverse derivatives like (ui + i∂i
x/k+). These will be shortly computed, but their effect

can be anticipated on physical grounds: from the construction of the amplitude in eq. (3.17),

we recall that the derivative ∂i
x acts on the gluon propagator at the emission point. Hence,

the operator (ui + i∂i
x/k+) measures the difference between the transverse orientations of

10Very small values 0 < x+, y+ < ω/Q2
s ≪ τf corresponds to vacuum-like emissions with relatively large

momenta k⊥ & Qs. Values close to L+, such that L+
− τf < x+, y+ < L+, yield boundary terms which

cancel when summing up together the (in, in), (in, out), and (out, out) contributions.
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the source and of the emitted gluon, at the time of formation. Then, clearly, we expect

its magnitude to be of order θf ≡ kf/ω (the formation angle introduced in eq. (2.7)). To

check that, we shall compute

(

ui + i∂i
x/k+

)(

ui − i∂i
y/k

+
)

Kqg(x
+, b⊥ + x⊥; y+,y⊥; k+) (4.19)

with the derivatives evaluated at x⊥ = u⊥x+ and y⊥ = u⊥y+. The general expression

for Kqg which is required for that purpose is given in the appendix. But for a parametric

estimate, one can replace Kqg by the free propagator G0. We thus deduce

(

ui −
i∂i

y

k+

)(

ui +
i∂i

x

k+

)

G0 =

(

ui −
i∂i

y

k+

)[(

ui − k+ bi + xi − yi

x+− y+

)

G0

]

=

[

b2
⊥

(x+− y+)2
+

2i

k+(x+− y+)

]

G0 (4.20)

where the last equality is obtained after setting xi − yi = ui(x+− y+). Using x+− y+ ∼ τf

and b⊥ ∼ 1/Qs, it is easy to check that the second term in the square brackets is the

dominant one and is of order 1/(k+τf ) ∼ θ2
f , as anticipated.

We are finally in a position to estimate the spectrum (4.7) for direct emissions. To

that aim, one has to multiply the Gaussian in eq. (4.17) by a factor L+τf coming from

the integrals over the time variables y+ and x+ (this factor is the longitudinal phase-space

for medium-induced gluon radiation), by the factor θ2
f which estimates the effects of the

transverse derivatives, by a factor k+/(x+− y+) ∼ ω/τf coming from the normalization of

G0 in eq. (4.12) and, finally, by the overall factor g2CF manifest on eq. (4.7). Putting all

that together, one finds

P(in)
q (ω,k⊥) ∝ αsCF θ2

f L+ ω

Q2
s

exp

{

− (k⊥ − k+u⊥)2

Q2
s

}

. (4.21)

Eq. (4.21) is indeed the expected parametric estimate for the BDMPS-Z spectrum of the

medium-induced radiation by a quark. A perhaps more familiar form of this spectrum is

obtained by using eq. (2.7) for θf to deduce (for u⊥ = 0)

ω
dN

dωdk2
⊥

∝ αsCF√
ωq̂

exp

{

− k2
⊥

Q2
s

}

. (4.22)

It is here understood that k⊥ & kf ≃ (ωq̂)1/4, since the gluon acquires a transverse mo-

mentum of order kf already by the time of formation. The spectrum (4.22) is roughly flat

in the range kf < k⊥ < Qs and it is exponentially suppressed at larger values k⊥ ≫ Qs.

After integration over k⊥ and recalling that Q2
s = q̂L+ ≫ k2

f and ωc = q̂L2/2, this yields

ω
dN

dω
∝ αsCF

√

ωc

ω
=⇒ ∆E ≡

∫ ωc

0
ω

dN

dω
∝ αsCF ωc , (4.23)

where the integration has been restricted to the phase-space for medium-induced radiation,

i.e. ωmin < ω ≤ ωc, cf. eq. (2.9) (but the lower limit is irrelevant for computing the total

energy loss, which is dominated by the upper limit ωc).
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y+
q

k

L+

0

k

0

p

pL+

0

q

qq

x+

Figure 6. A Feynman graph for interference (amplitude times the complex conjugate amplitude).

It is finally interesting to compare the spectrum (4.22) for medium-induced radiation

to the bremsstrahlung spectrum in eq. (2.2), for the same kinematics. By inspection of

these equations, it is apparent that the medium-induced spectrum is formally the same (for

any k⊥ within the range kf < k⊥ < Qs) as the vacuum spectrum evaluated at k⊥ = kf .

Hence, clearly,

P(in)
q

P(vac)
q

∼ k2
⊥√
ωq̂

∼ k2
⊥

k2
f

, (4.24)

which shows that the medium-induced radiation dominates over bremsstrahlung for all the

relevant momenta. This ratio is largest for k⊥ ≃ Qs, when it becomes

P(in)
q

P(vac)
q

∼ L+

τf
∼

√

ωc

ω
≫ 1 for k⊥ ≃ Qs . (4.25)

Physically, this is so because a gluon which is formed via medium rescattering can be emit-

ted at any place inside the medium (x+, y+ . L+), in contrast to the vacuum-like emissions,

which are restricted to relatively short distances/times x+, y+ . τq ≪ L+. Accordingly,

the longitudinal phase-space L+τf for medium-induced radiation is parametrically larger

than the corresponding phase-space ∼ τ2
q for bremsstrahlung.

5 Medium-induced gluon radiation: interference terms

We now turn to the main problem of interest for us in this paper, namely the contri-

bution of the quark-antiquark interference to the medium-induced gluon radiation (see

figure 6). Once again, we shall focus on the (in, in) piece, where the gluons are emit-

ted inside the medium in both the direct and the complex conjugate amplitude. The

respective contribution to the gluon spectrum is obtained by multiplying the quark ampli-

tude (3.17) by the complex conjugate of the corresponding antiquark amplitude, performing

the average over the medium and the sum (average) over the final (initial) color indices.
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0

x+ q

L+

k

k

p

p

qq

y+

qg
gg

q

Figure 7. A folded version of the Feynman graph for interference where the amplitude and the

complex conjugate amplitude are represented on top of each other, to more clearly exhibit the qq̄,

qg and gg dipoles. The (quark and gluon) Wilson lines are indicated with thick lines.

This yields

I(in)(k) =−2g2CF Re

∫ L+

0
dx+

∫ x+

0
dy+ eik+(u−x+−ū−y+)

×
∫

dz1⊥

∫

dz2⊥ e−ik⊥ ·(z1⊥−z2⊥)
(

ui + i∂i
x/k+

)(

ūi − i∂i
y/k

+
)

× 1

N2
c −1

〈

TrG(L+,z1⊥;x+,x⊥; k+)Uq(x
+, 0)U �̄

q (y+, 0)G�(L+,z2⊥; y+,y⊥; k+)
〉

,

+(q → q̄) , (5.1)

where the Wilson lines Uq(x
+, 0) and U �̄

q (y+, 0) refer to the quark and the antiquark, re-

spectively, and it is understood that after performing the transverse derivatives ∂i
x and ∂i

y

one has to identify x⊥ and y⊥ with the emission points u⊥x+ and ū⊥y+, respectively. The

explicit integrals in eq. (5.1) are written for the situation where the gluon is emitted at x+

by the quark in the direct amplitude and absorbed by the antiquark at y+ in the complex

conjugate amplitude, with y+ < x+. The other possible configurations are obtained by

exchanging the quark and the antiquark, as indicated in the last line of eq. (5.1). After

‘folding’ the Feynman graph as shown in figure 7, in such a way to superpose direct and

conjugate amplitudes, one can view y+ as the ‘first emission time’, for an emission off the

antiquark, and x+ as the ‘second emission time’, for an emission by the quark. Although

somewhat formal, this perspective allows one to easily visualise the effective ‘color dipoles’

encoded in eq. (5.1), that we now discuss.

The subsequent manipulations are rather similar to those in section 4. Once again,

one splits the quark Wilson line as Uq(x
+, 0)= Uq(x

+, y+)Uq(y
+, 0) and one breaks the last

gluon propagator into two pieces, from y+ to x+ and from x+ to L+, by introducing an

intermediate integration point z⊥. Then one uses the locality of the medium correlations

in time to factorize the color trace into effective dipole contributions (cf. eq. (4.2)). This

procedure now generates three dipole S-matrices: a quark-antiquark (qq̄) dipole which
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extends in time from 0 up to y+, a quark-gluon (qg) dipole from y+ to x+, and a gluon-

gluon (gg) dipole from x+ to L+. The integrations over z1⊥ and z2⊥ are again performed

as in eq. (4.5) and the outcome can be written as (compare to eq. (4.7))

I(in)(k) = −2g2CF Re

∫ L+

0
dx+

∫ x+

0
dy+ eik+(u−x+−ū−y+)

(

ui + i∂i
x/k+

)(

ūi − i∂i
y/k

+
)

×Sqq̄(y
+, 0)

∫

dz⊥ e−ik⊥ ·(x⊥−z⊥) Kqg(x
+,z⊥; y+,y⊥; k+)Sgg(L

+, x+;x⊥− z⊥)

+(q → q̄) , (5.2)

where it is understood that x⊥→ u⊥x+ and y⊥→ ū⊥y+ after taking the derivatives. The

qq̄ dipole is evaluated similarly to eq. (3.29):

Sqq̄(y
+, 0) ≃ exp

{

− 1

12
q̂ ρ (u⊥ − ū⊥)2(y+)3

}

≃ exp

{

− 1

24
q̂ ρ θ2

qq̄ (y+)3
}

. (5.3)

(We have also used (u⊥−ū⊥)2 ≃ θ2
qq̄/2 for small angles.) The qg dipole is now built with the

quark line in the direct amplitude and the gluon emitted by the antiquark in the complex

conjugate amplitude. The corresponding propagator Kqg is defined as in eqs. (4.3)–(4.4)

but with different boundary conditions for the path integral (4.3), namely r⊥(y+) = ū⊥y+

and r⊥(x+) = z⊥. Finally, the gg dipole is given by eq. (4.6), as before.

There are several important differences between the interference term (5.2) and the

corresponding expression (4.7) for the direct emission. Two of them are quite obvious:

(a) The presence of the initial qq̄ dipole, which measures the color coherence between

the quark and the antiquark at the time y+ of the first emission. This phenomenon

introduces an upper limit on y+ (as anticipated in eq. (2.17)):

y+ . τcoh ≃
(

24

q̂ρ θ2
qq̄

)1/3

∼ L+

(

θc

θqq̄

)2/3

. (5.4)

Indeed, for larger values y+ & τcoh, one has Sqq̄(y
+, 0) ≪ 1, meaning that the color

coherence is washed out. The parametric estimate in the r.h.s. shows that τcoh ≪ L+

so long as θqq̄ ≫ θc. (As before, in writing parametric estimates we neglect numerical

factors and treat ρ as a constant, conveniently reabsorbed into the definition of q̂.)

(b) The fact that the qg dipole starts at y+ with a non-zero transverse size r0 equal to

the separation between the quark and the antiquark at that time (the maximal size

of the qq̄ dipole): r0 = |u⊥ − ū⊥|y+ ∼ θqq̄ y+.

A third difference between direct and interference terms, which is perhaps less obvious

at this stage but will play a major role for the final results, is the following:

(c) The vacuum-like phase eik+(u−x+−ū−y+) in eq. (5.2) is not compensated in the cal-

culation of medium-induced radiation, in contrast to what happened for the direct

emissions (recall the discussion after eq. (4.16)). Rather, there is a left-over phase

which controls the quantum coherence between the two emitters (see eq. (5.10) below).
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By itself, the constraint (5.4) represents a strong limitation on the longitudinal phase-

space for interference and shows that the interference terms are suppressed with respect to

the direct emissions. However, it turns out that the limitation introduced by the quantum

coherence, cf. point (c) above, can be even stronger, depending upon the value of θqq̄. To

understand this, we now perform a more detailed analysis of eq. (5.2).

The first step consists in clarifying the formation time. From section 4, we recall that

this is controlled by the propagator Kqg of the quark-gluon dipole. In the present case, this

propagator measures the (quantum and color) coherence between the gluon emitted by one

of the emitters and the other emitter. The ‘exact’ expression of Kqg valid in the harmonic

approximation will be given in the appendix. Here we shall merely use a combination

of small-time and large-time approximations, like in eqs. (4.12)–(4.14). The time scale

separating between the two regimes is, once again, τf = 1/|Ω|, cf. eq. (4.11).

For small x+− y+ ≪ τf , Kqg can be approximated by the saddle point approximation

to the path integral in eq. (4.3), with the saddle point determined by the kinetic term

alone. The corresponding classical path is readily determined as

rclass(z
+) − u⊥z+ = r0 +

z+− y+

x+− y+

(

z⊥− u⊥x++ r0

)

, r0 ≡ (ū⊥− u⊥)y+ . (5.5)

As in section 4, it is convenient to change variables from z⊥ (the gluon transverse position

at time x+) to b⊥ ≡ z⊥ − u⊥x+ (the final size of the qg dipole and hence also the size of

the gg dipole at any time z+ ≥ x+). Then the saddle point (5.5) yields Kqg ≈ G0Sqg, with

G0(x
+,z⊥; y+, ū⊥y+; k+) =

k+

2π i(x+− y+)
exp

{

− i
k+(b⊥+ u⊥x+− ū⊥y+)2

2(x+− y+)

}

, (5.6)

Sqg

(

x+, y+; b⊥
)

≈ exp

{

− 1

12
q̂ (x+− y+)(b2

⊥ + r2
0 + b⊥ ·r0)

}

. (5.7)

For larger time difference, x+− y+ ≫ τf , the qg dipole is exponentially suppressed, as

manifest on eq. (4.14): Kqg ∝ e−(x+−y+)/τf .

So, clearly, the actual formation time cannot be larger than τf . However, depending

upon the value of r0 ∼ θqq̄ y+, this time could be shorter — that would be the case if the

exponent in eq. (5.7) could become of order one already for x+−y+ ≪ τf . To find out what

is the actual scenario, one needs to consider Kqg simultaneously with the other constraints

on the time integrations in eq. (5.2), which are specific to the interference problem. The

first one is the condition for color coherence between the two emitters, as expressed by

eq. (5.4). The second one is the condition for their quantum coherence, as encoded in the

phase eik+(u−x+−ū−y+) manifest in eq. (5.2) together with a similar phase encoded in Kqg

(see below).

To better appreciate the role of these phases, let us first consider the vacuum limit

of the present calculation. In the vacuum, all the dipole S-matrices are set to one, the

function Kqg reduces to the free gluon propagator G0, and then the integral over z⊥ in

eq. (5.2) is straightforward. Using the integration variable b⊥ ≡ z⊥ − u⊥x+, one finds

eik+(u−x+−ū−y+)

∫

db⊥ eib⊥ ·k⊥ G0(x
+− y+; b⊥ + u⊥x+− ū⊥y+) = ei(k ·u)x+−i(k ·ū)y+

(5.8)
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where the r.h.s. is recognized as the product of phases controlling the in-vacuum emission

times, for the quark and the antiquark respectively. These phases imply x+ . τq and

y+ . τq̄, where we recall that τq ∝ 1/(k · u) ∼ 1/ωθ2
q and similarly for τq̄. Then the

time integrations generate the expected longitudinal phase-space τqτq̄ for interference in

the vacuum.

In the medium, the integral over b⊥ is controlled by the S-matrix Sgg(L
+, x+; b⊥)

of the gg dipole, which enforces a rather small value b⊥ ∼ 1/Qs. One can then replace

Kqg ≈ G0 for the purposes of the b⊥-integration, which thus amounts to

eik+(u−x+−ū−y+)

∫

db⊥ eib⊥ ·k⊥ exp

{

− i
k+(b⊥ + u⊥x+− ū⊥y+)2

2(x+− y+)

}

exp

{

− 1

4
Q2

sb
2
⊥

}

∼ eiΦ 1

Q2
s

exp

{

− 1

Q2
s

(

k⊥− k+ u⊥x+− ū⊥y+

x+− y+

)2}

, (5.9)

with the phase

Φ ≡ k+(u−x+− ū−y+) − k+(u⊥x+− ū⊥y+)2

2(x+− y+)
= −k+(u⊥ − ū⊥)2x+y+

2(x+− y+)
. (5.10)

In these manipulations, we have anticipated that k+/(x+− y+) ∼ k2
f ≪ Q2

s and we have

used u2
⊥ = 2u−. At this point, one should recall that in the corresponding calculation for

direct emissions, eqs. (4.16)–(4.17), the analog of this phase Φ has exactly canceled. The

phase (5.10) is not quite the same as it would be in the vacuum, cf. eq. (5.8): it does not

constrain the x+ and y+ variables individually, but a particular combination of them.

To summarize, the integrations over x+ and y+ are controlled by the following product

exp

{

− i
k+θ2

qq̄ x+y+

4(x+− y+)

}

exp

{

− 1

24
q̂ (x+− y+)

(

θqq̄y
+
)2

}

exp

{

− x+− y+

τf

}

, (5.11)

together with the constraint (5.4) coming from color coherence. The first factor in eq. (5.11)

is the ‘vacuum-like’ phase Φ. The second factor comes from the S-matrix (5.7) of the qg

dipole, where we have neglected b⊥ ∼ 1/Qs next to r0 ∼ θqq̄y
+. The third factor is of

course the large-time decay of the qg propagator.

The four constraints introduced by the three factors in eq. (5.11) together with eq. (5.4)

have to be simultaneously considered. Their analysis becomes streamlined if one first

identifies the characteristic times scales associated with each of them. Let us enumerate

these scales here:

(i) The color coherence time τcoh: this is the maximal value of the first emission time

y+ at which the quark and the antiquark do still form a color singlet. This scale is

shown in eq. (5.4).

(ii) The in-medium formation time (here in the context of interference): this is the typical

time interval x+− y+ during which the qg dipole loses quantum and color coherence.

As we shall shortly argue, this scale is still determined by the last factor in eq. (5.11),

like for direct emissions, and thus is equal to τf , cf. eq. (2.4).
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(iii) The transverse resolution time τλ: this represents the characteristic time scale for

quantum coherence between the two emitters during the process of gluon formation.

This scale is determined by the phase in the first factor in eq. (5.11): the condition

Φ . 1 together with the fact that x+− y+ ∼ τf implies the following constraint on

the emission times x+ and y+:

x+y+ .
4τf

k+θ2
qq̄

=⇒
√

x+y+ .
λf

θqq̄
≡ τλ , (5.12)

where λf = 1/kf is the transverse wavelength of the gluon at the time of formation

(we have used τf ∼ k+/k2
f ). Some useful estimates for τλ have been given in eq. (2.14).

Eq. (5.12) represents in an average way the condition that the gluon overlap with

both sources during the formation time. Since x+ ≃ y+ + τf , it is clear that this

condition must be viewed as a constraint on the first emission time y+.

(iv) The interference time τint: as discussed in section 2.2, this is the upper limit on y+

which follows from eq. (5.12) in the large angle regime where θqq̄ ≫ θf (and hence

τλ ≪ τf ):

y+ . τint ≡
τ2
λ

τf
=

2

ωθ2
qq̄

. (5.13)

Some useful estimates for τint are shown in eq. (5.13). In the other interesting regime

at small angles θqq̄ ≪ θf (or τλ ≫ τf ), the upper limit on y+ is essentially τλ (see

section 2.2 for details).

Above, we have implicitly assumed that the original size r0 ∼ θqq̄y
+ of the qg dipole

does not to influence the formation time. Let us now check that this is indeed the case.

The exponent in the middle factor in eq. (5.11) becomes of order one when x+− y+ ∼ τf

and y+ ∼ τλ (we have used q̂τf ≃ k2
f ). Since y+ cannot become larger than τλ, as clear

from eq. (5.12), we conclude that the original dipole size r0 plays at most a marginal role in

the formation process and thus cannot modify the formation time to parametric accuracy.

We have thus recognized in our calculation all the characteristic time scales for color

and quantum coherence that were previously introduced, via physical considerations, in

section 2.2. The interplay between these scales leads to the various regimes for interference

identified in section 2.2, that we shall not repeat here. Rather, we shall now explicitly

check the arguments in section 2.2 concerning the suppression of the interference effects

relative to the direct emissions.

To that aim, we shall estimate the contribution of the interference terms to the spec-

trum for medium-induced radiation for dipole angles θqq̄ ≫ θc. This contribution is ob-

tained by multiplying the Gaussian in eq. (5.9) by the corresponding longitudinal phase-

space τminτf , by the normalization k+/(x+− y+) ∼ ω/τf of the gluon propagator (5.6),

and by a factor θ2
f which estimates the transverse derivatives in eq. (5.2). As in section 2.2,

τmin ≡ min(τint, τcoh) is the smallest among the coherence scales which limit y+ in the

context of interference: τmin = τint when θqq̄ & θf and, respectively, τmin = τcoh when
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θc ≪ θqq̄ . θf . The angular factor θ2
f is the same as for direct emissions, as it will be

shortly checked. Putting all this together, one finds

I(in)(ω,k⊥) ∝ −αsCF θ2
f τmin

ω

Q2
s

exp

{

− (k⊥− ∆k⊥)2

Q2
s

}

. (5.14)

The off-set ∆k⊥ in the Gaussian is obtained from the respective quantity in eq. (5.6) after

averaging over the emission times:

∆k⊥ = k+

〈

u⊥x+− ū⊥y+

x+− y+

〉

≃ k+u⊥ + k+(u⊥ − ū⊥)
τmin

τf
. (5.15)

Since τmin/τf ≪ 1, it is clear that the second term in the r.h.s. is negligible as compared

to the first one. Hence the ensuing off-set ∆k⊥ ≃ k+u⊥ is the same as for direct emissions

by the quark, cf. eq. (4.21). This is in agrement with our physical picture that, in order

to allow for interferences, the gluon emitted by the antiquark must be co-moving with the

quark (cf. figure 3 right). Clearly, for the reversed situation, where the gluon is emitted by

the quark (and thus is co-moving with the antiquark), one would obtain ∆k⊥ ≃ k+ū⊥.

By taking the ratio between the interference term (5.14) and the spectrum (4.21) for

a direct emission by the quark, one finds, for kf . k⊥ . Qs,

R(ω,k⊥) ≡
∣

∣I(in)
∣

∣

P(in)
q

≃ τmin

L
, (5.16)

which in turn implies

(

ω

ωc

)1/2

& R(ω, k⊥) &
ω

ωc
when θf . θqq̄ . θs , (5.17)

for relatively large dipole angles θqq̄ & θf where τmin = τint, and respectively

1 ≫ R(ω, k⊥) &

(

ω

ωc

)1/2

when θc ≪ θqq̄ . θf , (5.18)

for smaller angles, θc . θf , where τmin = τcoh. Eqs. (5.16)–(5.18) explicitly show the

suppression of the interference effects relative to the direct emissions for the medium-

induced radiation of the dipole and confirm the respective estimates in section 2.2.

To complete the argument, one still needs to evaluate the transverse derivatives ap-

pearing in eq. (5.2), that is

(

ui + i∂i
x/k+

)(

ūi − i∂i
y/k

+
)

Kqg(x
+, b⊥ + x⊥; y+,y⊥; k+) (5.19)

with the derivatives evaluated at x⊥ = u⊥x+ and y⊥ = ū⊥y+. Like in the corresponding

calculation for direct emission, eq. (4.19), we can replace Kqg → G0 to obtain a parametric

estimate. This yields

(

ui + i∂i
x/k+

)(

ūi − i∂i
y/k

+
)

G0 →
(

ui − bi + uix+− ūiy+

x+− y+

)(

ūi − bi + uix+− ūiy+

x+− y+

)

+
2i

k+(x+− y+)
. (5.20)
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The last term in the r.h.s. if of order 1/(k+τf ) ∼ θ2
f . For small dipole angles θqq̄ ≪ θf it

is easy to check that this is the dominant term. So, in what follows we focus on the less

trivial case where θqq̄ ≫ θf . Then one can use y+ ≃ τint ≪ x+ ≃ τf and b⊥ ∼ 1/Qs to

simplify the algebra. The terms within the brackets in the r.h.s. of eq. (5.20) thus yield

[bi − (ūi − ui)y+][bi − (ūi − ui)x+]

(x+− y+)2
≃ b⊥ ·(u⊥ − ū⊥) + τint(u⊥ − ū⊥)2

τf
. (5.21)

Using (u⊥−ū⊥)2 ∼ θ2
qq̄ together with eq. (2.19), it becomes clear that the last term above is

of order θ2
f . As for the first term, this is estimated as (after performing the b⊥-integration,

cf. eq. (5.9))
(k⊥ − k+u⊥) ·(u⊥ − ū⊥)

Q2
s τf

.
ωθqθqq̄

Q2
s τf

∼ θ2
f

θqθqq̄

θ2
s

. θ2
f . (5.22)

We have also used here eq. (4.18) together with the relations k2
f ∼ ω/τf and kf/Qs = θf/θs.

To conclude, the dominant effect of the transverse derivatives in the interference terms is

a factor θ2
f , so like for the direct emissions.

6 Discussion and outlook

Throughout this work, we have mostly focussed on medium-induced radiation of the

BDMPS-Z type, whose main characteristic is that the gluons are emitted inside the

medium, as a result of multiple scattering. However, we have also noticed at several places

that this is not the only type of medium-induced radiation for the case of a dense medium.

Indeed, as found in refs. [26, 27] (and reviewed in our section 3.2), the color decoherence of

the qq̄ antenna leads to additional radiation outside of the medium, which is localized in a

region of (angular) phase space that would be forbidden — by destructive interference —

in the vacuum. The essential reason why this new type of radiation exists is because the

characteristic time scale τcoh beyond which the qq̄ pair loses its color coherence becomes

much smaller than the vacuum-like formation time for a gluon radiated outside the dipole

cone, which is typically τint = 2/(ωθ2
qq̄). However, according to eq. (2.19), the inequality

τcoh ≪ τint holds whenever θqq̄ ≪ θf , which allows for (vacuum) formation times τint that

are both larger and smaller than the medium size L. Hence, the same mechanism could

in principle lead to additional gluon radiation inside the medium. This possibility has

not been mentioned in the previous literature, so we shall succinctly explore it here, via

qualitative considerations based on our previous results.

Specifically, one has τint ≃ L when θqq̄ ≃ θout, where

θout ≡
√

2

ωL
= θc

√

ωc

ω
= θf

(

ω

ωc

)1/4

, (6.1)

is the same as the upper limit in our eq. (3.31). So, a priori there are two angular regions

where the mechanism proposed in refs. [26, 27] could operate:11 (i) θc ≪ θqq̄ . θout, where

τint & L, so the respective emissions take place outside the medium; this is the situation

11We recall that the lower limit θc on θqq̄ comes from the condition that τcoh ≪ L, cf. eq. (2.18).
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considered in [26, 27] and (ii) θout ≪ θqq̄ ≪ θf where τint ≪ L, so the gluons are emitted

(via vacuum-like processes) inside the medium; this is the new possibility that we would

like to explore. Note that, together, these two angular domains completely overlap with our

region of ‘relatively small dipole angles’ for BDMPS-Z radiation, as defined in section 2.2.

This observation naturally leads to the following two questions: (a) what is the dominant

mechanism for medium-induced radiation for dipole angles within this common range at

θc ≪ θqq̄ ≪ θf , and (b) what are the most interesting values of θqq̄ for applications to the

phenomenology? These are the main questions that we would like to address in this section.

With respect to the first question above, its answer depends upon the ration θqq̄/θout,

as we argue now. When θc ≪ θqq̄ . θout, that is, in region (i) above, the radiation due to

the new mechanism of refs. [26, 27] is concentrated outside the dipole cone, but relatively

close to it : indeed, this radiation has the angular distribution of the usual bremsstrahlung

spectrum, that is, it is strongly peaked around the sources and it decays as 1/θ at large

emission angles θ ≫ θqq̄. By contrast, the BDMPS-Z gluons are emitted at relatively

large angles θf ≫ θout w.r.t. their sources, meaning far outside the dipole cone. Hence

in range (i) for θqq̄, both types of medium-induced radiation exist, but they are widely

separated in angle from each other: the out-of-medium emissions dominate the spectrum

for θq , θq̄ ∼ θqq̄, while the in-medium emissions à la BDMPS-Z dominate for θq , θq̄ ∼ θf .

Consider now larger dipole angles, θout ≪ θqq̄ ≪ θf (the angular region (ii)). Then

the previous discussion of the BDMPS-Z gluons goes unchanged, whereas the mechanism

proposed in refs. [26, 27] is expected to become ineffective: indeed, in-medium radiation

with small emissions angles θqq̄ ≪ θf and hence relatively large formation time τint ≫ τf is

strongly suppressed as compared to the BDMPS-Z radiation, since the soft gluons cannot

avoid accumulating transverse momenta of order kf , via medium rescattering; as a conse-

quence, they are liberated from the parent quark after a relatively short time τf and at an

angle ∼ θf . Hence, for dipole angles within region (ii), the medium-induced radiation is

predominantly of the BDMPS-Z type and is distributed at large angles θ & θf ≫ θqq̄, far

outside the dipole cone.

We thus expect the physical consequences of the two mechanisms for medium-induced

radiation to be quite different: whereas the BDMPS-Z gluons are more effective in broad-

ening the energy distribution of a jet in the transverse plane, in qualitative agreement with

the observations at the LHC [2, 3], the mechanism proposed in [26, 27] is probably more

important for the softening of the intra-jet radiation and its redistribution at small angles.

A more detailed phenomenological analysis is still needed before drawing firm conclusions

on the last point.

Since the in-medium antenna pattern is so sensitive to the value of the dipole angle, it

is important to estimate what are the relevant values in the context of heavy ion collisions.

A physical process where in-medium, color-singlet, antennas like the one that we have

discussed are naturally generated is the hadronic decay of a heavy vector boson like the Z

or the W. In this scenario, the dipole angle of the pair depends upon the boson kinematics,

in particular, on its boost: θqq̄ ∼ 1/γ. However, while such bosons are copiously produced

in Pb+Pb collisions at the LHC, their identification via hadronic decays is complicated, if

at all possible, by the large QCD background.12

12We thank P. Quiroga, S. Sapeta and G. Soyez for useful discussions on this topic.
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Another source of in-medium antennas, but typically in non-singlet color representa-

tions, is the evolution of jets produced via hard processes in heavy collisions. Although our

calculations have been restricted to the color singlet case, our arguments are sufficiently

general to be applicable to a qualitative discussion of antennas in other representations.

We expect that the physical regimes for interference summarized in section 2.2 will apply

for any color representation. In particular, our main conclusion remains unchanged: for

relatively large angles θqq̄ ≫ θc, the interference effects are suppressed and the overall

antenna pattern is the sum of two independent BDMPS-Z spectra produced by the two

legs of the antenna. For smaller angles, on the other hand, the interference effects are

important and their result is such that, when θqq̄ ≪ θc, the total in-medium radiation by

the antenna coincides with that by a single source which carries the global color charge of

the antenna (e.g., a source in the adjoint representation if the antenna was produced by a

gluon decay). It would be interesting to check this conclusion explicitly. (The calculation

of the octet channel in [27] provides a partial check in that sense.)

Within the in-medium jet evolution we can distinguish two types of antennas: those

generated via hard, vacuum-like, parton splittings and those arising via medium-induced

emissions. Addressing the relevant angles in either case will ultimately resort on in-medium

Monte-Carlo generators, such as [34–39], which can keep track of all the kinematical and

probabilistic effects. Here we will provide some simple estimates based on physical argu-

ments, to be ultimately confronted to explicit calculations. For simplicity, we shall treat

q̂ as a fixed parameter in these estimates, in lines with our general strategy throughout

this paper.

Consider first an antenna resulting from medium-induced radiation. The main question

is, what is the typical angle between the emitted gluon and the parent parton by the

time of a subsequent gluon emission. This angle starts with a value ∼ θf at the time

of formation but it can be enlarged by additional multiple scattering occurring after the

formation. So, we need to estimate the typical time interval τrad between two successive

emissions. The probability for emitting a new gluon can be estimated as P ∼ αsCR neff

where neff ≡ τrad/τf is the number of effective scattering centers along τrad. This probability

becomes of O(1) when

τrad ∼ τf

αsCR
. (6.2)

This estimate is a bit simplistic, since emissions can happen at different frequencies and the

relevant probability is the inclusive one. Since the number of emitted gluons grows with

decreasing ω, cf. eq. (2.8), a more realistic estimate (or, at least, a strict lower limit) reads

τrad >
τf (ωmin)

αsCR
=

ℓ

αsCR
, (6.3)

where ωmin is the lowest energy for BDMPS-Z gluons, cf. eq. (2.6), and ℓ is the mean free

path for elastic collisions. Thus, for gluon frequencies which are not parametrically larger

(in αs) that ωmin, we have τrad ≫ τf (ω) and the partons that form the antenna acquire

a significant momentum by the time of secondary emissions, leading to an effective dipole

angle much larger than θf . Thus, medium-induced gluons lead, typically, to relatively
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large dipoles according to the classification of section 2.2. This implies that the interference

effects can be safely ignored when studying the jet evolution via medium-induced radiation.

Note also that for the medium-induced parton cascade, this radiation time τrad plays the

role of an effective medium length. Hence that fact that τrad ≫ τf guarantees the validity

of our central argument for the suppression of the interference terms (the suppression factor

being τf/τrad in this case).

A different source of antennas propagating in the medium is the vacuum-like evolution

of hard partons. This refers to the emission of gluons with large transverse momenta

k⊥ ≫ Qs and hence very short formation times τq ≪ τf (for a given frequency). The

precise values of the dipole opening depends on the kinematics of the intervening hard

processes, in particular on their energy and virtuality. Indeed, for a hard parton of energy

E and virtuality Q which emits a hard gluon carrying a fraction z of its energy, the angle

of emission is

θ2
hard ≈ 1

z(1 − z)

Q2

E2
, (6.4)

and the emission time is estimated via the uncertainty principle as

τhard ∼ E

Q2
∼ 1

z(1 − z)

1

θ2
hard E

. (6.5)

(Using ω ≃ zE for a small-z emission and ωθhard ≃ k⊥, it becomes clear that eq. (6.5) is

consistent with our basic formula (2.1) for the formation time.) Thus, unless the branchings

are very asymmetric, the vacuum-like evolution can produce antennas with very small

angles and at very early times τhard ≪ L. We conclude that light jets (those with jet mass

much smaller than their total energy) can be sources for all the different types of dipoles

discussed in section 2.2, with a predilection though for small and very small dipoles in the

sense of that discussion. Depending upon the precise relation between the emission angle

θhard and the characteristic medium angle θc, the antenna created via such a hard branching

can either act as a set of two independent sources of BDMPS-Z gluons (if θhard ≫ θc), or

radiate such gluons in the same way as the parent parton would do (if θhard . θc).

So far, we have discussed the in-medium hard branchings only as a mechanism for

generating antennas, but we have not addressed the medium effects on such a branching by

itself. As a matter of facts, we do not expect such effects to be significant: the in-medium

emissions of relatively hard gluons with transverse momenta k⊥ ≫ Qs should proceed

exactly as in the vacuum, for both direct emissions and the corresponding interference

phenomena leading to angular ordering. This is quite clear from the fact that the respective

formation time τhard is much shorter than the time scale τcoh for the color decoherence of

the sources. Since there was some confusion on this point in the recent literature [40], we

would like to take this opportunity and fully clarify this issue. The analysis in ref. [40] was

based on the assumption that the color decorrelation time (the analog of our τcoh) is to be

identified with the mean free path ℓ of a colored parton propagating through the medium

(as introduced in the discussion in section 2.1). That assumption would be correct if and

only if the two emitters which form the antenna would undergo independent color rotations

in the medium, which would be the case if their transverse separation r⊥ ∼ τqθqq̄ at the
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time of emission was larger than the Debye screening length µ−1
D . Clearly, this can only

happen for extremely soft radiated gluons, with transverse momenta k⊥ ≃ ωθqq̄ . µD.

For the medium created in heavy ion collisions at the current energies, this scale µD is of

the order of a few hundred MeV. Gluons with such momenta are truly soft and do not

significantly contribute to the in-medium evolution of a hard jet, which rather proceeds

via hard, vacuum-like, emissions and semi-hard, medium-induced, ones.
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A Momentum space analysis of the gluon spectrum

The total radiation probability from the dipole, which includes the direct emissions from

the quark, eq. (4.7), and the antiquark (as obtained by replacing u → ū within eq. (4.7))

and the quark-antiquark interference terms, eq. (5.2), can be compactly expressed as

P(in)
tot = 2g2CF Re

∑

F, L=q, q̄

Sign(F,L)× (A.1)

∫ L+

0
dx+

∫ x+

0
dy+

∫

d2b⊥eik⊥·b⊥Sgg(L
+, x+; b⊥)SF,L(y+,0) IuL,uF

(x+, y+, b⊥)

(Note a slight change in the notations for the quark 4-velocities as compared to the main

text: we identify uq ≡ u and uq̄ ≡ ū. To avoid cumbersome notations, we shall indicate the

transverse components of uF and uL by boldface symbols without the ‘⊥’ subscript: uF

and uL.) The quark-quark dipole is trivial when both indexes are the same (Sqq = Sq̄q̄ = 1)

and the function Sign(F,L) = 1 if F = L and Sign(F,L) = −1 otherwise.13 These four

terms summarize the four possible combinations appearing in the total emission probability

which are the direct emissions from either the quark or the antiquark (Fig 5) and the two

interference terms in which the gluon is first emitted, at time y+, by the fermion which

has velocity uF and then absorbed, at time x+, by the other fermion, with velocity uL

(figure 7). The function IuL,uF
(x+, y+, b⊥) encodes the quark-gluon dipole together with

its transverse derivatives:

IuL,uF
(x+, y+, b⊥) = eik+(u−

L x+−u−

F y+)
(

ui
L + i∂i

x/k+
)(

ui
F − i∂i

y/k
+
)

(A.2)

Kqg(x
+,x⊥ + b⊥; y+,y⊥; k+)

∣

∣

x⊥=uLx+ , y⊥=uF y+

For the case of direct emissions, where uL and uF coincide with each other, the qg dipole

is made with the gluon and the quark which has emitted that gluon (the parent quark).

13Eq. (4.7) corresponds to the term uL = uF = u and eq. (5.2) is obtained by setting uL = u and uF = ū.

A change of variables b⊥ = z⊥ − x⊥ has been also performed.
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For the interference terms, this dipole is made with the gluon emitted by the quark with

velocity uF and the other quark, which has a velocity uL.

We restrict ourselves to the ‘harmonic approximation’, where the slowly varying loga-

rithm ρ which enters the various dipole S-matrices (see e.g. eqs. (4.4) and (4.6)) is treated

as a fixed quantity, reabsorbed into the normalization of q̂. In this approximation, the

quark-gluon path integral (4.3) is exactly known [11, 19] for the case of a single emitter

with vanishing transverse velocity. The generalization to the present case, where the quark

which enters the quark-gluon dipole possesses a non-zero transverse velocity uL, is easily

to find and reads

Kqg(x
+,x⊥; y+,y⊥; k+) = (A.3)

e−ik+u−

L (x+−y+)+ik+uL·(x−y)⊥

×A

2π
exp

{

− A

2

(

B(x̄2
⊥ + ȳ2

⊥) − 2x̄⊥ · ȳ⊥
)

}
∣

∣

∣

∣

x̄⊥=x⊥−uLx+ , ȳ⊥=y⊥−uLy+

where Ω has been already defined in eq. (4.8) and we have introduced

A ≡ k+Ω

i sinh Ω(x+− y+)
, B ≡ cosh Ω(x+− y+) . (A.4)

A.1 The gluon spectrum at the time of formation

The quark-gluon dipole encodes the process of in-medium gluon formation. Right after

formation, the gluon spectrum is obtained via the Fourier transform of eq. (A.2). After

some lengthy but straightforward algebra, we obtain

IuL,uF
(x+, y+,q⊥) =

1

B

[

(v⊥ − uL)2
1

B
+ (v⊥ − uL) ·(uL − uF )

(

1 + C Ωy+
)

]

× exp

{

− iC
k+(v⊥ − uL)2

2Ω
+ i

k+

2
(uL − uF )2

(

1 + C Ωy+
)

y+

+ i
k+

B
(v⊥ − uL) ·(uL − uF )y+

}

, (A.5)

where v⊥ ≡ q⊥/k+ is the gluon transverse velocity when it is formed and C ≡ tanh Ω(x+−
y+) has the properties that C/Ω ≃ x+ − y+ when x+ − y+ ≪ τf and C → 1 when

x+− y+ ≫ τf . (Recall that τf ≡ 1/|Ω|, cf. eq. (4.11).)

The analysis of this expression shows the main features of the gluon spectrum at the

time of formation. For x+− y+ ≃ τf , which is the typical value fixed by the subsequent

integrations over x+ and y+, one can write CΩ ≈ 1/τf to parametric accuracy, and then

the first term in the exponent is parametrically the same as

exp

{

− i
k+(v⊥ − uL)2

2τf

}

= exp

{

− i
(q⊥ − k+uL)2

2k2
f

}

. (A.6)

Hence, for both the interference and the direct terms, the transverse momentum distribution

is a Gaussian with width k2
f ∼ √

ωq̂ centered around the direction uL of the quark which
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enters the quark-gluon dipole. (Note that, in the interference term, this is not the quark

which emitted the gluon, but the other quark.)

Concerning the angular structure of the spectrum, as encoded in the first line of

eq. (A.5), this is a natural generalization of the corresponding result in the vacuum, to

which it reduces, as it should, in the limit |Ω| → 0. Indeed, in that limit, B → 1, C → 0, so

the expression within the square brackets becomes (v⊥−uL)·(v⊥−uF ); this is the expected

result for both the direct terms, cf. eq. (3.21), and the interference ones, cf. eq. (3.23). (Of

course, in the vacuum, the gluon velocity at the time of formation is the same as its final

velocity.) One can similarly check that, when |Ω| → 0, the exponent in eq. (A.5) reduces

to the respective vacuum result, i.e., to the formation-time phases visible e.g. in eq. (5.8).

In addition to the angle and momentum distributions, eq. (A.5) also shows what are

the time scales involved in the radiation process. The overall prefactor 1/B, which at

long times behaves as 1/B ∼ exp{−Ω(x+− y+)}, sets the formation time of the gluons as

x+−y+ ≃ τf , in agreement with eq. (2.4). The other relevant time scale is the typical value

of the first emission time y+ (more properly, this is the time at which the gluon formation

is initiated). For direct emissions (uL = uF ), there is no characteristic value of y+ and

emissions happen all along the medium length with equal probability. By contrast, for the

interference terms (uL 6= uF ), the values of y+ are constrained by two new time scales,

τλ and τint, which are generated by the middle term in the exponent in eq. (A.5) and its

interplay with the other terms.

Specifically, for x+− y+ ≃ τf , one can write 1 + C Ωy+ ≈ (τf + y+)/τf ≈ x+/τf to

parametric accuracy, and hence

ik+

2
(uL − uF )2

(

1 + C Ωy+
)

y+ ≈ i
k+θ2

qq̄ x+y+

4τf
. (A.7)

This is clearly equivalent with the first factor in eq. (5.11). As explained in sections 2.2

and 5, this term encodes two time scales: τλ, which is an upper limit on
√

y+(y+ + τf ) for

generic values of θqq̄, cf. eq. (5.12), and τint, which is the ensuing limit on y+ for relatively

large angles θqq̄ ≫ θf , cf. eq. (5.13). The last term in the exponent in eq. (A.5), which

involves the momentum acquired by the gluon during formation, leads to the same time

scale τλ, as clear from the fact that k+|v⊥ − uL| ∼ ωθf for the typical gluon velocity

v⊥. Finally, in addition to eq. (A.5), the time dependence of the interference term is also

sensitive to the overall suppression due to the initial qq̄ dipole, eq. (5.3), which introduces

the additional time scale τcoh for color decoherence.

At this level, it is straightforward to make contact between eq. (A.5) and the expres-

sion (2.8) for the ‘formation’ spectrum deduced in section 2.2 via qualitative arguments: for

direct emissions, the only surviving term in the first line of eq. (A.5) is (v⊥−uL)2 ≃ θ2
q . To

compute the spectrum at the formation time, one needs to perform the time integrations in

eq. (A.1) without the factor Sgg there, which describes multiple scattering after formation.

For τf ≪ L the integral over the time difference x+− y+ is cut off by the factor 1/B2

and yields a factor τf , while the subsequent integral over y+ is unrestricted and yields a

factor L. Altogether, we have a factor θ2
fτfL multiplying the Gaussian in eq. (A.6) plus,

of course, the overall factor αsCF . This reproduces the parametric estimate in eq. (2.8).
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A.2 The final gluon spectrum

The previous arguments also show that, in order to compute the final spectrum, as it

would be measured by a detector, one needs to also take into account the S-matrix Sgg

of gg dipole. Working in the momentum representation, the final spectrum is obtained

by convoluting the spectrum at the time of formation with the Fourier transform of Sgg.

Within the ‘harmonic approximation’, this amounts to an additional Gaussian broadening:

FuL,uF
(x+, y+,k⊥) =

∫

d2q⊥
(2π)2

IuL,uF
(x+, y+,q⊥)

4π

Q2
s

e−(k⊥−q⊥)2/Q2
s (A.8)

where Q2
s ≡ q̂(L+− x+) depends upon the final formation time x+. Since the typical

gluons are produced within the bulk of the medium (x+ ≪ L+), one can neglect the x+-

dependence of Q2
s to parametric accuracy. After also using τf ≪ L, we find (with Q2

s = q̂L+

from now on)

FuL,uF
(x+, y+,k⊥) ≈ (A.9)

≈ 2k+Ω

B Q2
s

[

2

B

Ω

ik+
+

y+Ω(uL − uF )2

sinh Ω(x+− y+)

(

1 + y+Ω

(

1 +
2

B

))

−

2i
Ω

Q2
s

(k⊥ − k+uL) ·(uL − uF )

(

1 + y+Ω

(

1 +
4

B

))]

×

exp

{

i
k+

2
(uL − uF )2

(

1 + Ωy+
)

y+ − 1

Q2
s

(

k⊥ − k+uL − k+Ω y+(uL − uF )

sinh Ω(x+− y+)

)2}

,

where we have further approximated C ≈ 1 since we anticipate that x+− y+ ≃ τf . To

understand eq. (A.9) to parametric accuracy, one can also set B ≈ 1 and sinhΩ(x+−
y+)/Ω ≈ τf .

As before, the first line of eq. (A.9) specifies the angular dependence of the final

spectrum. Unlike in eq. (A.5), there is not a term proportional to the square of the

final angle formed by the gluon and the quark. This is so since the final gluon spectrum

receives contributions from the entire gluon spectrum at formation. The final distribution

is characterized by θf , the typical angle at formation, which can be identified in the first

term of this line: |Ω|/k+ = 1/(τfk+) ≃ θ2
f . For the interference term there is, however, a

residual dependence upon the final direction of the gluon: this enters via the middle line of

eq. (A.9), which is due to the fact that there is some correlation between the final direction

of the gluon and its direction at the time of emission (as encoded in the off-set k+uL in

the final gluon momentum). This term is essentially the same as that in eq. (5.22) from

the main text and, as shown there, it is generally subleading.

The last line in eq. (A.9) encode both the time and momentum dependence. The first

term in the exponent was already present in eq. (A.5) (the middle term in the exponent

there) and, as already explained, it encodes the condition of quantum coherence — that

is, the two time scales τλ and τint. The second term in the exponent shows the transverse

momentum spectrum, which is a Gaussian of width Q2
s around the direction uL of the

quark which participates in the formation process (i.e., the quark from the qg dipole). The

q⊥-dependence of the exponent in eq. (A.9) leads to a shift in the center of the transverse
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momentum gaussian; in fact, by using sinhΩ(x+−y+)/Ω ≈ τf to parametric accuracy, one

sees that this additional shift is the same as the second term in the r.h.s. of eq. (5.15). As

will be later verified, this additional shift is negligible in all the interesting cases.

Note finally that, as in the case of the spectrum at formation, eq. (A.9) must be

supplemented with the qq dipole eq. (5.3), which introduces the coherence time.

A.3 Direct emission: the BDMPS-Z spectrum

In the case of direct emission by either the quark or the antiquark, the final spectrum is

obtained by integrating the following expression

Fq(x
+, y+,k⊥) ≃ 4Ω2

iQ2
s

1

B2
exp

{

− (k⊥ − k+u⊥)
2

Q2
s

}

(A.10)

over the time variables x+ and y+. For definiteness, we have shown here the direct emission

by the quark but there is of course a similar contribution by the antiquark. As expected,

at this level of approximation the spectrum is a Gaussian centered around the transverse

momentum k+u⊥ inherited from the parent parton. As already explained, the subsequent

integrations over the time variables introduce a factor τfL. By also using τf ∼ 1/ |Ω| and

θ2
f ∼ |Ω|/k+ we recover the parametric dependencies shown in eq. (4.21) of the main text.

A.4 The interference terms for relatively large dipoles: θf . θqq̄ . θs

We shall now provide estimates for the interference contributions to the gluon spectrum, as

obtained by integrating the expression in eq. (A.9) with uL 6= uF over the time variables

x+ and y+. We first consider dipole angles within the range θf . θqq̄ . θs. As before,

the integration over x+− y+ is dominated by τf . But unlike the previous case of direct

emissions, the y+-integration is now more complicated since there are several competing

time scales. As we have extensively discussed in section 2.2, within the present range for

dipole angles, the relevant time scales are strictly ordered, τint . τλ . τcoh . τf , and the

integral over y+ is controlled by the smallest time scale, τint. In addition, since τint/τf ≪ 1,

all terms proportional to y+Ω in eq. (A.9) can be neglected. Then the only dependence

upon y+ which survives in the exponent is that encoded in the first term there, ≃ ik+θ2
qq̄y

+,

which after integration yields a factor τint, as expected. The same approximations allow

us to simplify the angular dependence of the final spectrum (the first line of eq. (A.9))

which contains terms proportional to θ2
f , θ2

qq̄ and θLθqq̄, where θL = θq or θq̄ is the gluon

angle with respect to the quark which enters the qg dipole. By also using |Ω|/k+ ∼ θ2
f ,

|Ω|k+ ∼ k2
f and the following estimates,

τint|Ω|θ2
qq̄ ∼ θ2

f ,
k2

f

Q2
s

θLθqq̄ ∼ θ2
f

θ2
qq̄

θ2
s

θL

θqq̄
, (A.11)

one eventually finds that the total interference term is parametrically given by

I(in)(ω, k⊥) ∝ −αsCF θ2
f

(

1 − c1

θ2
qq̄

θ2
s

θL

θqq̄

)

τint
ω

Q2
s

exp

{

− (k⊥ − k+uL)2

Q2
s

}

(A.12)

– 45 –



J
H
E
P
0
8
(
2
0
1
1
)
0
1
5

where c1 is a number of order one. We see that, unless θL is arbitrary large, θL ≫ θqq̄,

the interference term, eq. (A.12), is suppressed with respect to the direct term, eq. (4.21),

by τint/L
+ ≪ τfL+ ≪ 1. Note that the term proportional to c1 within the parentheses in

eq. (A.12) is the same as that appearing in eq. (5.22) of the main text.

A.5 The interference terms for relatively small dipoles: θc ≪ θqq̄ ≪ θf

Consider similarly the other relevant range for the dipole angles, at θc ≪ θqq̄ ≪ θf . Then, as

discussed in section 2.2, the ordering of time scales gets now reverted, τf ≪ τcoh ≪ τλ ≪ τint

and the y+ integration is restricted by the smallest of the coherence time scales, that is τcoh.

In this case, one we can safely neglect the y+ dependence of the exponential in eq. (A.9).

(The integral over y+ is rather controlled by the qq̄ dipole and yields a factor τcoh.) In

addition, since
(k+)2θ2

qq̄

k2
f

τ2
coh

τ2
f

∼
(

θqq̄

θf

)2/3

≪ 1 , (A.13)

we can neglect the shift in the transverse momentum Gaussian in eq. (A.9) for any final

momentum k⊥ & kf . The overall magnitude of the interference term is controlled by the

prefactor encoding the angular dependence (the first line in eq. (A.9)). In the present case

τcoh|Ω| ≫ 1 and we need to determine the relative value of the three different contributions

to the spectrum. Simple manipulations show that

(τcohθqq̄|Ω|)2 ∼ θ2
f

(

θqq̄

θf

)2/3

≪ θ2
f ,

k2
f

Q2
s

τcoh

τf
θLθqq̄ ∼ θ2

f

θLθf

θ2
s

(

θqq̄

θf

)1/3

. (A.14)

Using this expression and taking into account that the x+ and y+ integration lead to

an overall factor of τfτcoh we can estimate the parametric dependence of the interference

spectrum as

I(in)(ω, k⊥) ∝ −αsCF θ2
f

(

1 − c2
θLθf

θ2
s

(

θqq̄

θf

)1/3)

τcoh
ω

Q2
s

exp

{

− (k⊥− k+uL)2

Q2
s

}

(A.15)

where c2 is a number of order 1. It is then clear that, unless one considers gluons emitted

at very large angles θL ≫ θs, the interference term is proportional to θ2
f and it is magnitude

is suppressed as compared to the direct term by τcoh/L ≪ 1 (cf. eq. (2.18)).
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