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several cases the tree-level result. We consider the normal and inverted hierarchy spectra for

light neutrinos and compute the finite corrections to the different elements of the neutrino

mass matrix. Special attention is paid to their dependence on the parameters of the seesaw

model. Among the cases in which the corrections can be large, we identify the fine-tuned

models considered previously in the literature, where a strong cancellation between the

different parameters is required to achieve compatibility with the experimental data. As a

particular example, we also analyze how these corrections modify the tribimaximal mixing

pattern and find that the deviations may be sizable, in particular for θ13. Finally, we

emphasize that due to their large size, the finite corrections to neutrino masses have to be

taken into account if one wants to properly scan the parameter space of seesaw models.
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1 Introduction

Neutrino oscillation experiments have firmly established that neutrinos have tiny but non-

zero masses and that the mixing in the leptonic sector is in sharp contrast with the small

mixing that characterizes the quark sector [1, 2]. From a theoretical perspective the small-

ness of neutrino masses can be well understood within the seesaw model [3–7], in which

the fermion sector of the Standard Model is extended by adding new electroweak fermionic

singlets (standard seesaw model). In this framework, light neutrino masses are generated

via mixing with the singlet states and their smallness can naturally be explained if the

singlets masses are very large.

The determination of the regions of parameter space consistent with low energy neu-

trino observables in the seesaw model typically relies on parametrizations of the neutrino

Yukawa couplings [8, 9]. Once the Yukawas are properly parametrized, such regions are

found by doing numerical scans in which the neutrino experimental data is used as an

input. This procedure is always based on the tree-level light neutrino mass matrix and

fails if in some regions of the parameter space the one-loop corrections to the tree-level

mass matrix turn out to have sizable values.
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The one-loop corrections to the seesaw light neutrino mass matrix were first discussed

in [10] in a general setup with an arbitrary number of singlets, lepton doublets and Higgs

doublets. They were later analyzed in ref. [11] in a particular realization in which, due

to a particular Yukawa mass matrix, light neutrino masses vanish at tree-level and are

entirely generated by the one-loop corrections. Subsequently, the renormalization of general

theories with Dirac and/or Majorana neutrinos was carried out in [12] and additional

studies were done in references [13–17].

Loop corrections are of two types: renormalizable and intrinsically finite. The renor-

malizable pieces consist of corrections to the tree level parameters already present in the

seesaw Lagrangian, and are suppressed with respect to the tree level piece by extra Yukawa

couplings and by the loop factor 1/16π2. The finite parts instead are corrections to the

vanishing elements of the tree-level mass matrix for the neutral fermions, and are only

suppressed by the loop factor. Thus, they are potentially large.

The aim of this paper is to quantify the impact that the finite one-loop corrections

might have on the effective light neutrino mass matrix. We consider the most general

standard seesaw model and numerically analyze the importance of these corrections for

the different mass matrix elements as well as for the neutrino mass eigenvalues and mixing

angles, differentiating in our discussion between the normal and the inverted light neu-

trino mass spectrum. We will show that the corrections can range over several orders of

magnitude, depending on whether one relies or not on models where consistency with the

measured neutrino masses and mixing angles requires strong cancellations in the tree-level

neutrino mass matrix. Indeed, as we will discuss, once one-loop corrections are taken into

account these models are barely reconcilable with data. Barring these cases, we will prove

that the finite corrections are usually of order 20 − 40% but they may exceed the tree-

level value for certain entries that can be strongly suppressed. In order to make reliable

predictions in the seesaw, therefore, the finite one-loop corrections should be included.

The rest of the paper is organized as follows: in section 2 we define our notation and

briefly describe the seesaw model at tree-level, including its standard parametrization. We

discuss the finite 1-loop corrections in section 3. In sections 4 and 5 our main results

are presented — the calculation of the finite corrections for the normal and inverted light

neutrino mass spectrum. Then, we consider the particular case of tribimaximal mixing

in section 6 and we determined how such mixing pattern is modified by the 1-loop finite

corrections. A brief discussion of our results and some comments on their possible phe-

nomenological implications is given in section 7. In section 8 we draw our conclusions and

summarize our findings. For completeness, in the appendix we present the details of the

calculation of the finite one-loop corrections.

2 The standard seesaw model at tree level

In the standard seesaw model, three fermionic electroweak singlets NRi
are added to the

Standard Model. In the basis in which the matrix of charged lepton Yukawa couplings and

the singlet mass matrix are diagonal the Lagrangian accounting for the new interactions

can be written as

− L = −iN̄Ri
∂�NRi

+ φ̃†N̄Ri
λijℓLj +

1

2
N̄Ri

CMRi
N̄T

R + h.c. (2.1)
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where φT = (φ+φ0) is the Higgs electroweak doublet, ℓL are the leptonic SU(2) doublets,

C is the charge conjugation operator and λ is a Yukawa matrix in flavor space. In the

left-handed chiral basis nL
T = (νL, (NR)C)T , and once electroweak symmetry breaking is

taken into account, the neutral fermion mass terms can be written as

− LF 0 =
1

2
nT

LCMnL + h.c. (2.2)

where M, the 6 × 6 neutral fermion mass matrix, is given by

M =

(

0 MT
D

MD M̂R

)

, (2.3)

with MD = vλ (v =
√

2MW /g ≃ 174 GeV). The mass spectrum is obtained by rotating

the fields to the mass eigenstate basis, denoted by χi, via the unitary matrix U:

χL = U†nL . (2.4)

In this basis, the Lagrangian mass terms, equation (2.2), become

−LF 0 =
1

2
χM̂PL χ + h.c. (2.5)

where

UT MU = M̂ = diag(mχ1 , . . . mχ6) (2.6)

and χi are the physical Majorana neutrino fields. Note that by decomposing the matrix U

as [10, 16, 17]

U =

(

UL

U∗
R

)

(2.7)

the νLi
and NRi

states can be expressed as

νLi
= ULijPLχj , NRi

= URij
PRχj . (2.8)

In the seesaw limit (MD ≪ MR), the diagonalization of the mass matrix (2.3) gives rise

to a split spectrum consisting of three heavy states with masses MRi
and three light states

with an effective mass matrix, m
(tree)
ν , given by

m
(tree)
ν = −MT

D M̂−1
R

MD . (2.9)

The light neutrino mass spectrum, mixing angles and CP violating phases — the so-called

low-energy observables — are obtained from this matrix after diagonalization:

UT
ℓ m

(tree)
ν Uℓ = m̂ν , (2.10)

where Uℓ is the leptonic mixing matrix parametrized according to

Uℓ = Uℓ(θ23)Uℓ(θ13, δ)Uℓ(θ12) × diag(e−iϕ1 , e−iϕ2 , 1) (2.11)

– 3 –
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with δ, ϕ1,2 being respectively the Dirac and Majorana CP violating phases and Uℓ(θ)

rotation matrices.

The determination of the seesaw parameters compatible with neutrino experimental

data relies on parametrizations of the Yukawa couplings or, equivalently, of the Dirac

neutrino mass matrix, MD = v λ. In the numerical analysis of the finite one-loop cor-

rections, we have used the most common parametrization of the seesaw, the Casas-Ibarra

parametrization [8]. In this parametrization, the most general MD compatible with eq. (2.9)

is given by

MD = iM̂
1/2
R

Rm̂1/2
ν Uℓ

† , (2.12)

where R is any orthogonal matrix. This matrix can be written as a rotation matrix

determined by three complex angles.

The neutrino mass eigenvalues and the mixing matrix entering into this equation are

strongly constrained by experimental data whereas the masses of the singlet neutrinos and

the matrix R are entirely free parameters of the seesaw model. In the numerical treatment

of our results (sections 4 and 5) we also impose the perturbativity condition suggested

recently in [18]:

Tr
[

λ†λ
]

≤ 3. (2.13)

Now that we have reviewed the seesaw mechanism at tree level, let us take a look at the

1-loop corrections to neutrino masses.

3 Finite one loop corrections to the neutral fermion mass matrix

In the standard seesaw mechanism, the one-loop corrections to the ν −N mass matrix are

determined by the neutrino interactions with the Z boson, the neutral Goldstone bosons

(G0), and the Higgs boson (h0) — see appendix A. All together, in addition to the correc-

tion involving the standard model leptonic charged current, they define the one-loop two

point function −iΣ(p) [17].

Once the one-loop corrections are taken into account the neutral fermion mass matrix

is given by

M = M(tree) + M(1−loop) , (3.1)

where the 1-loop contribution can be decomposed as

M(1−loop) =

(

δML δMT
D

δMD δMR

)

. (3.2)

Notice that the 03×3 matrix appearing at tree-level is replaced by the contribution δML,

which among all the sub-matrices in M(1−loop) is the dominant one [17].

Neglecting the subdominant pieces in M(1−loop) and after block diagonalization of the

neutral fermion mass matrix, the effective light neutrino mass matrix, up to one-loop order,

can be written as

mν = m(tree)
ν + m

(1−loop)
ν = −MT

D M̂−1
R

MD + δML . (3.3)
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The sub-matrix δML and all the other sub-matrices entering in M(1−loop) are entirely

determined by the self-energy functions ΣS

L
(p2) (see appendix A) via the diagonalization

relation (2.6):

M(1−loop) = U∗ΣS

L(p2)U† . (3.4)

Accordingly, the finite contribution is given by

δML = UL
∗ΣS

L(p2)UL
† = UL

∗ΣS

L(0)UL
† , (3.5)

where we have used the fact that ΣS

L
can be evaluated at zero external momentum [17].

The self-energy functions ΣS

L
(0) are determined by three Feynman self-energy diagrams

involving the Z, the neutral Goldstone boson G0 and the Higgs boson h0. Each diagram

contains a divergent piece but when summing up the three contributions the result turns

out to be finite, as it has to be since there are no counterterms that would allow to absorb

a possible divergence (see appendix A for more details). The final expression for the finite

one-loop correction is given by [17]

δML = MT
DM̂−1

R

{

g2

64π2M2
W

[

m2
h ln

(

M̂2
R

m2
h

)

+ 3M2
Z ln

(

M̂2
R

M2
Z

)]}

MD . (3.6)

Notice that this correction is not suppressed, with respect to tree-level result, by additional

factors of MD/MR. Thus, it is expected to be smaller than the tree-level mass term solely

by a factor of order (16π2)−1 ln(MR/MZ).

In spite of the similar structure of the 1-loop correction and the tree-level result, they

are not proportional to each other unless the heavy neutrinos are degenerate — MR ∝ I.

Hence, one could in principle have that m
(tree)
ν = 0 and that neutrino masses arise entirely

from 1-loop effects, as proposed in [11]. Such models, however, are rather contrived and will

not be discussed in the following. We are interested, instead, in the generic modifications

to the neutrino mass matrix induced by the 1-loop corrections.

To evaluate these corrections, we first find sets of MD and M̂R compatible with the

experimental data at tree-level — using equation (2.12) — and then use them to evaluate

δML.1 Specifically, we generate the diagonal matrix of light neutrino masses (according

to the desired spectra: normal or inverted) and the mixing matrix Uℓ such that they are

compatible with neutrino data. For simplicity, the phases in Uℓ were assumed to vanish.

Then, we randomly generate the three masses of the heavy states (in the range 1 TeV to

1012 GeV) and the elements of the orthogonal matrix R. From equation (2.12), we can

then obtain MD, which together with the generated MR allows us to evaluate δML.2 The

size of the corrections is then determined by the ratio between the contributions up to 1-

loop order and the tree-level result for the different elements of the neutrino mass matrix,

(m
(tree)
ν + m

(1−loop)
ν )/m

(tree)
ν .

In the next two sections our main results are presented: we compute the corrections to

the neutrino mass matrix in the seesaw model for the two different kinds of light neutrino

spectra, with normal and inverted hierarchy.

1Alternatively, one could choose the seesaw parameters so that at 1-loop they are compatible with the

experimental data. Both procedures give rise to the same effects.
2In our analysis we fix mh0 = 150 GeV.
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4 Corrections for the normal hierarchy spectrum

If the spectrum of light neutrinos has a normal hierarchy (mν3 =
√

∆m2
atm, mν2 =

√

∆m2
sol,

mν1 ≪ mν2,mν3), the elements of the neutrino mass matrix take values within the following

ranges:

mexp
ν =







(2.5, 5.5) × 10−12 (2.3, 9.8) × 10−12 (−3.3, 4.9) × 10−12

− (2.0, 3.4) × 10−11 (1.9, 2.3) × 10−11

− − (2.1, 3.4) × 10−11






GeV (4.1)

as the oscillation parameters vary within their 2-σ experimentally allowed intervals [1, 2].

Since the matrix is symmetric, we only show the six independent matrix elements. Notice,

in particular, that the element (1, 3) is the only one that can vanish in this case. It can be

easily checked that this can happen if θ13 is between 4◦ and 6◦. All other elements vary

within a relatively small range — not so small for (1,2) — between 10−11 and 10−12 GeV.

Since the corrections to the neutrino mass matrix are not proportional to the matrix element

itself, the correction to the element (1, 3) could easily exceed its tree-level value.

With the aim of facilitating the study of these corrections and the understanding of

their origin, we will divide our analysis in two parts depending on what is assumed for

the orthogonal matrix R. First it is taken to be real and then the most general case is

considered, a complex matrix. The number of free parameters will therefore increase as we

move from the first case to the second.

4.1 R real

If R is real, the parameters needed to evaluate the 1-loop correction to the neutrino mass

matrix are the oscillation parameters, the three masses of the right handed neutrinos (Mi),

and the three angles that parametrize R. To obtain the numerical results below, we vary

the neutrino mixing angles and mass squared differences within their 2σ ranges, and we

randomly choose Mi between 1 TeV and 1012 GeV and the angles in R between 0 and 2π.

The resulting corrections to the matrix elements are shown in figure 1 as a function of

the mass of the lightest heavy neutrino, M1. We see that they are similar for the elements

(1, 1), (2, 2), (2, 3), and (3, 3), increasing with M1 and reaching values up to order 30%.

Those for the element (1, 2) are slightly different, reaching values as large as 40% or 50%

as well as −20%.

The corrections to the element (1, 3), on the other hand, can be quite large for a

significant fraction of models. As anticipated, this result is due to the fact that the element

(1, 3) can be very small so it may receive a huge fractional correction. It must be noticed in

that case, however, that a large value of (m
(tree)
ν + m

(1−loop)
ν )/m

(tree)
ν does not necessarily

imply a significant deviation in the expected value of the neutrino observables — the mass

eigenvalues and the mixing angles. For that reason it is important to study the effect of

the corrections on both the matrix elements and the predicted observables. We will do so

in the next section, where we consider the most general case: R complex.

– 6 –
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Figure 1. The ratio between the 1-loop and the tree-level result for the different elements of the

neutrino mass matrix as a function of M1. It has been assumed that R is real and that light

neutrinos have a NH spectrum.

Notice then that even in the case R real, where no large parameters are introduced,

the corrections to neutrino masses can be quite important. If M1 & 109 GeV they are

expected to be larger than about 15% and they could easily reach 25% or 30%.

4.2 R complex

This case is not only the most general one, but it is also well motivated by leptogenesis.

In fact, in the case of unflavored leptogenesis, the phases in R are the ones responsible for

the CP-asymmetry in the decays of the heavy neutrinos and ultimately for the generation

of the baryon asymmetry.

In this case, the three angles parametrizing R are complex numbers, with a certain

magnitude and a given phase. In our analysis, we allow these complex angles to have an

arbitrary phase and we restrict their magnitude to be smaller than 3.3 Since cosh 3 ∼
sinh 3 ∼ 10, R can have elements at most of order 103. When the elements of R are

significantly larger than 1, |Rij | ≫ 1, one obtains the so-called fine-tuned models. In them,

strong cancellations between the different terms in equation (2.9) are required to obtain

compatibility with the experimental data. Since the corrections to the neutrino mass matrix

depend on R, the loop suppression in (3.6) can be easily overcome by the large elements

in R, yielding a correction that is significantly larger than the tree level result.

3One can relax this assumption to obtain even larger effects.
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Figure 2. The ratio between the 1-loop and the tree-level result for the different elements of the

neutrino mass matrix as a function of M1. It has been assumed that R is complex and that light

neutrinos have a NH spectrum.

Figure 2 shows the corrections to the different matrix elements for R complex. We see

that, in fact, the 1-loop contribution can exceed, for all the matrix elements, the three-level

result by several orders of magnitude. In that case, there is no doubt that the corrections

will have a huge impact on the predicted neutrino mass eigenvalues and mixing angles.

It is indeed the large elements present in R that make possible a 1-loop correction

much larger than the tree-level result. We illustrate this fact in figure 3, which shows the

size of the corrections as a function of the largest element of the R matrix, |Rij|max. Notice

that when this element is of order 1 the corrections are usually small (those to the element

(1, 3) being the exception) but they increase with it reaching two orders of magnitude or

more for |Rij|max around 100. With such huge corrections, the agreement between the

tree-level seesaw formula and the neutrino data assumed in the parametrization becomes

meaningless. In fact, as illustrated in figures 4 and 5, the oscillation parameters may deviate

significantly from their observed values once the 1-loop corrections are taken into account.

Figure 4 displays the 1-loop mixing angles, those obtained from the diagonalization of

the neutrino mass matrix at 1-loop, as a function of |Rij|max. The region consistent with

the experimental data at 2σ is the area between the two dashed lines. Notice that all the

angles, which were chosen to be consistent with the data at tree level, can at 1-loop become

much larger than allowed by present observations.

Similarly, we see in figure 5 that the neutrino mass squared differences at 1-loop

can vary over several orders of magnitude. A fact that is in clear contradiction with

current experiments.
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Figure 3. The ratio between the 1-loop and the tree-level result for the different elements of the

neutrino mass matrix as a function of the largest element of the R matrix. It has been assumed

that R is complex and that light neutrinos have a NH spectrum.
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Figure 4. The neutrino mixing angles at 1-loop as a function of the largest element of the R

matrix. It has been assumed that R is complex and that light neutrinos have a NH spectrum. The

region between the two dashed (red) lines is consistent with current experimental data at 2σ.

As we have seen, for the neutrino spectrum with normal hierarchy the corrections to

the neutrino mass matrix can be quite important. The matrix element (1, 3), in particular,

can receive very large fractional corrections independently of R if mν13 is suppressed. In

addition, all matrix elements as well as the neutrino mass eigenvalues and mixing angles

are expected to receive significant corrections when the elements of the R matrix are larger

than one. In such case, the inclusion of the 1-loop corrections is mandatory.
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Figure 5. The neutrino mass squared differences at 1-loop as a function of the largest element of

the R matrix. It has been assumed that R is complex and that light neutrinos have a NH spectrum.

Next, we analyze the importance of these corrections for the neutrino spectrum with

inverted hierarchy.

5 Corrections for the inverted hierarchy spectrum

If the spectrum of light neutrinos has an inverted hierarchy (IH), mν2 =
√

∣

∣∆m2
atm

∣

∣,

mν1 =
√

∣

∣∆m2
atm

∣

∣− ∆m2
sol, mν3 ≪ mν2,mν1 , the elements of the neutrino mass matrix

take values within the following ranges:

mν
exp =







(4.5, 5.1) × 10−11 (−8.5, 1.7) × 10−12 (−8.5, 1.3) × 10−12

− (1.7, 3.3) × 10−11 (−2.5,−2.0) × 10−11

− − (1.8, 3.4) × 10−11






GeV (5.1)

as the oscillation parameters vary within their 2-σ experimentally allowed intervals [1, 2].

Notice that in this case the elements (1, 2) and (1, 3) are both allowed to vanish, an event

that can happen if θ13 is smaller than about 2◦. We expect, therefore, large fractional

corrections to the entries (1, 2) and (1, 3) of the neutrino mass matrix independently of R.

As before, we will divide the analysis of the 1-loop corrections into two parts: R real and

R complex.

5.1 R real

The finite corrections for R real are shown, as a function of M1, in figure 6. The range of

variation is approximately the same for the elements (2, 2), (2, 3), (3, 3), and (1, 1), reaching

maximum values of order 30% independently of M1. The minimum value of the correction,

on the other hand, is seen to increase with M1. The entries (1, 2) and (1, 3) may feature

large fractional corrections, a consequence of the vanishing matrix elements at tree-level.

Comparing these results with those obtained in the previous section, it is evident that

the type of light neutrino spectrum does not have a decisive impact on the generic size or

behavior of the finite corrections.
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Figure 6. The ratio between the 1-loop and the tree-level result for the different elements of the

neutrino mass matrix as a function of M1. It has been assumed that R is real and that light

neutrinos have a IH spectrum.

5.2 R complex

In the most general case of a complex R matrix, the corrections tend to be quite large

for all entries, as illustrated by figure 7. They can easily reach 2 or 3 orders of magnitude

above the tree-level value, being typically larger for the (1, 2) and (1, 3) matrix elements.

They may also give rise to cancellations between the tree-level and the 1-loop contribution,

such that the full result at 1-loop could only be a small fraction of the tree-level result —

see e.g. the points around 0.1 in the figure.

These large fractional corrections to the elements of the neutrino mass matrix translate

into important deviations in the neutrino mass eigenvalues and the neutrino mixing angles,

just as for the spectrum with normal hierarchy — see previous section.

For a light neutrino spectrum with inverted hierarchy, therefore, the corrections are

even more important than for the normal hierarchy spectrum, as there are two different

matrix elements that can receive large fractional corrections independently of R. If R

contains large numbers then the corrections to all matrix elements are usually significant

for both the normal and the inverted hierarchy spectrum.

6 A specific example: tribimaximal mixing

We would like now to apply the ideas discussed in the previous sections to a particular

and well-motivated scenario: seesaw models with tribimaximal mixing (see e.g. [19]). In
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Figure 7. The ratio between the 1-loop and the tree-level result for the different elements of the

neutrino mass matrix as a function of M1. It has been assumed that R is complex and that light

neutrinos have a IH spectrum.

scenarios with tribimaximal mixing, the neutrino mixing matrix is given at tree level by

Uℓ =







√

2/3 1/
√

3 0

−1/
√

6 1/
√

3 −1/
√

2

−1/
√

6 1/
√

3 1/
√

2






. (6.1)

As a result, the mixing angles take the values θ12 = 35.3◦, θ23 = 45◦, θ13 = 0 at tree level.

One may therefore wonder how they would change once the finite one-loop corrections

to the seesaw neutrino mass matrix that we have studied are taken into account.4 For

simplicity, we will limit ourselves in this section to the normal hierarchy spectrum and to

the case R real. Larger corrections are expected if R is complex.

Figure 8 shows the 1-loop value of θ23 as a function of the lightest heavy neutrino

mass. We see that it can deviate from its tree-level value by up to 2.5 degrees and that

the maximum deviation decreases with M1. In fact, for M1 & 1012 GeV the correction is

smaller than half a degree. This dependence with M1 is very different to that observed for

the matrix elements but it is consistent with it. Since the mixing angles are determined

by ratios between different matrix elements, in order to have a sizable variation in the

mixing angles, the structure of the neutrino mass matrix should vary significantly at 1-

loop, implying that the correction should no be proportional to the identity. Hence, in

4Additional corrections from other sources may also be important but are not considered here.
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Figure 8. The mixing angle θ23 at 1-loop as a function of the lightest heavy neutrino. At tree level

θ23 was assumed to be 45◦, in agreement with the tribimaximal mixing pattern.

models where there is a large hierarchy between the masses of the heavy neutrinos, the

corrections to the mixing angles are larger. That is exactly what is observed in figure 8.

The 1-loop corrected value of θ12 is shown in figure 9 as a function of M1. The

variation in this case is smaller and it also decreases with M1. More interesting for the

phenomenology of neutrinos and for future experiments is the correction to θ13, which is

exactly zero at tree level. Figure 10 shows that the 1-loop corrected value of θ13 can reach

almost 2 degrees, corresponding to sin2 θ13 ∼ 10−3, for M1 around 1 TeV. As expected, the

maximum correction decreases with M1, amounting to about 1 degree (sin2 θ13 ∼ 3×10−4)

for M1 ∼ 108 GeV. Given that a neutrino factory could be sensitive to sin2 θ13 ∼ 10−5 [20],

these corrections are certainly within the reach of future experiments.

7 Discussion

The huge corrections we have found for fine-tuned models are not surprising. It is well-

known in the literature that radiative corrections to fine-tuned models should spoil the

tuning imposed at tree-level between the different parameters (see e.g. [21]) and that it is

unnatural to expect otherwise. We have explicitly shown that that is the case. The 1-loop

corrections to the neutrino mass matrix in fine-tuned seesaw models are so large that the

compatibility between the tree-level seesaw formula and the experimental data becomes

irrelevant. The inclusion of the 1-loop corrections is in such case necessary.
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Figure 9. The mixing angle θ12 at 1-loop as a function of the lightest heavy neutrino. At tree level

θ12 was assumed to be 35.3◦, in agreement with the tribimaximal mixing pattern.

As a way of avoiding such large corrections, one may think of including the 1-loop

correction into the seesaw parametrization from the very beginning. That is, one would like

to look for the most general solution to equation (3.3) rather than to equation (2.9). Doing

so, however, would not completely solve the problem. We would, instead, be constructing

fine-tuned models at the 1-loop level, which are expected to receive large corrections at

2-loops. Fine-tuned models, it seems, are better avoided.

One possibility to do so is simply to restrict from the very beginning the magnitude

of the complex angles that parametrize R. If they are such that |Rij |max . 1 then no fine-

tuning occurs and the corrections are usually under control. This additional restriction,

however, has not been taken into account in previous analysis. And it was recently sug-

gested in [18] that a fair scan of the seesaw parameter space is one in which no restriction

beyond the perturbativity of the neutrino Yukawa couplings, which we have implemented,

is imposed. Our results clearly demonstrate, on the contrary, that perturbativity is not

enough to guarantee the stability of the neutrino mass matrix under radiative corrections

and that wrong results can easily be reached if the 1-loop corrections are not taken into

account. In fact, as we have seen, a significant fraction of models which are compatible with

the data at tree level are no longer so once the 1-loop corrections are considered. Thus,

when one is randomly scanning the parameter space of the seesaw model, it is necessary

to include the finite corrections to neutrino masses.

Another possible way out is the use of a different parametrization. An alternative to

the R parametrization that has been used in previous works is the VL parametrization. In

– 14 –



J
H
E
P
0
8
(
2
0
1
1
)
0
1
3

10000 1e+06 1e+08 1e+10 1e+12
M

1
 [GeV]

0

0.5

1

1.5

2

θ 13
 [

de
gr

ee
s]

Figure 10. The mixing angle θ13 at 1-loop as a function of the lightest heavy neutrino. At tree

level θ13 was assumed to vanish, in agreement with the tribimaximal mixing pattern.

it, MD is written as

MD = V
†
R

M̂DVL , (7.1)

where M̂D is a diagonal matrix defined by the eigenvalues of MD (real and positive)

and VL,R are unitary matrices determined by three rotation angles and three complex

phases. In this parametrization, M̂D, VL and the neutrino data are used as inputs. Using

equation (7.1) and the effective light neutrino mass matrix the following relation is obtained

M̂−1
D

V∗
Lm(tree)

ν V
†
L
M̂−1

D
= V∗

RM̂−1
R

V
†
R

, (7.2)

which allows us to determine VR and M̂R for a given set of input parameters. We have

computed the corrections to the neutrino mass matrix also in this parametrization, and

have observed that the results for R = I and R real are easily reproduced for VL = I and

VL real. In particular, the large corrections for certain matrix elements are obtained there

too. An important difference occurs, however, for R complex. Due to the different way in

which the VL parametrization samples the parameter space of the seesaw model, it is way

more difficult to find fine-tuned models, with the consequence that models with very large

corrections are rather scarce in the VL parametrization.

In a future publication, we will discuss additional implications of these corrections,

including their evaluation in supersymmetric scenarios as well as their possible effects in

leptogenesis and lepton flavor violating processes.
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8 Conclusions

The seesaw model is one of the most appealing extensions of the Standard Model that

can explain neutrino masses. In this model, the mass matrix of light neutrinos receives

finite corrections from 1-loop diagrams mediated by the heavy neutrinos. We considered

the two different kinds of light neutrino spectra, hierarchical and inverted, and computed

the corrections to the entries of the neutrino mass matrix as a function of the seesaw

parameters. We found these corrections to be quite important, exceeding in several cases

of interest the tree level result by orders of magnitude. Two different reasons were identified

as leading to a large correction: an unusually suppressed tree-level result and an R matrix

with elements much larger than 1. Examples of the first case are the corrections to the

matrix element (1, 3) for NH neutrinos and to (1, 2) and (1, 3) for IH neutrinos. The second

case can occur for R complex and includes the so-called fine-tuned models considered in

the literature. Since these corrections can be large, models that at tree-level are compatible

with the experimental neutrino data will not necessarily be so at the 1-loop level, modifying

in a significant way the viable regions in the parameter space of the seesaw model. As a

particular example, we studied the corrections to the mixing angles in seesaw scenarios with

tribimaximal mixing and show them to lead to observable effects in future experiments.

We stressed, therefore, that because of their size and importance, these corrections must

necessarily be taken into account in the study and analysis of seesaw models.
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A Finite self-energy functions

In this appendix we present the calculation of the finite 1-loop corrections δML discussed in

section 3, we will closely follow ref. [17]. The self-energy function ΣS

L
(0), that determines

these corrections, can be written as

− iΣS

L(0) = −i
[

ΣS

L

(Z)
(0) + ΣS

L

(G0)
(0) + ΣS

L

(h0)
(0)
]

, (A.1)

where the ΣS

L

(Z,G0,h0)
(0) functions arise from the self-energy Feynman diagrams (evaluated

at zero external momentum) involving the Z, the neutral Goldstone boson G0 and the Higgs
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h0 shown in figure 11. The calculation of these functions is determined by the coupling of

the Z with the Majorana eigenstates χ:

LZ =
g

4cw
Zµχ̄γµ

[

PL(UL
†UL) − PR(UL

TUL
∗)
]

χ , (A.2)

(cw = cos θw with θw the weak mixing angle), the couplings with the Higgs boson, derived

from the Lagrangian (2.1),

− Lh0 =
1

2
√

2
h0χ̄

[

OS

LPL + OS

RPR

]

χ , (A.3)

where the couplings OS

L,R are given by

OS

L =U
†
R

λUL + UT
LλTU∗

R (A.4)

OS

R =U
†
L
λ†UR + UT

Rλ∗U∗
L , (A.5)

and finally the couplings with G0 that can be obtained from the Lagrangian (A.3) by

replacing OS

L,R → −iOS

L,R. From these Lagrangians and the diagonalization relation (3.4)

it can be seen that ΣS

L

(Z)
(0) contributes only to δML whereas ΣS

L

(G0,h0)
(0) contribute to

all the block matrices of the 6× 6 neutral fermion mass matrix. The contributions of these

self-energies to δML can be identified by means of the relation (3.5).

Using dimensional regularization (d = 4 − ǫ) and working in the Rξ gauge the Z

self-energy function is found to be

ΣS

L

(Z)
(0) = UL

T
[

δML
(Z)(1) + δML

(Z)(2, 1) + δML
(Z)(2, 2)

]

UL , (A.6)

where the different matrices can be expressed in terms of the Passarino-Veltman function

B0(0,m
2
0,m

2
1) [22], namely

δML
(Z)(1) = − g2

64π2c2
w

(4 − ǫ)UL
∗ M̂ B0(0,M

2
Z ,M̂2) UL

† , (A.7)

δML
(Z)(2, 1) = − g2

64π2c2
wM2

Z

UL
∗ M̂3 B0(0, ξZM2

Z ,M̂2) UL
† , (A.8)

δML
(Z)(2, 2) =

g2

64π2c2
wM2

Z

UL
∗ M̂3 B0(0,M

2
Z ,M̂2) UL

† . (A.9)

As regards the G0 and h0 self-energies they are given by

ΣS

L

(X)
= UL

T δML
(X)UL (X = G0, h0) (A.10)

with δML
(X) given by

δML
(G0) =

g2

64π2c2
wM2

Z

UL
∗ M̂3 B0(0, ξZM2

Z ,M̂2) UL
† (A.11)

δML
(h0) = − g2

64π2c2
wM2

Z

UL
∗ M̂3 B0(0,m

2
h,M̂2) UL

† . (A.12)
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In the calculation of the above expressions we have used the relation

UR
† MD = M̂ UL

† , (A.13)

that follows from the diagonalization relation (2.6) and the unitarity constraints of the

matrix U.

Some words are in order regarding these results. Corrections (A.8) and (A.11) cancel,

ensuring the gauge invariance of the result. The Passarino-Veltman function B0 has a finite

and infinite part,5 the infinite piece in δML
(Z)(1) cancels due to the constraint

UL
∗ M̂ UL = 0 , (A.14)

whereas the divergent pieces in δML
(Z)(2, 2) and δML

(h0) cancel among them,6 thus

demonstrating that δML is finite as anticipated in section 3. Taking into account that

the finite part of B0 can be recasted as

Bf
0 (0,m2

0,m
2
1) = −

[

1

m2
1/m

2
0 − 1

ln

(

m2
1

m2
0

)

+ ln m2
1

]

= −





m2
1/m

2
0 ln

(

m2
1

m2
0

)

m2
1/m

2
0 − 1

+ ln m2
0



 (A.15)

the finite parts of δML
(Z)(1) and δML

(Z)(2, 2) combine to yield

δML
(Z)f =

3g2

64π2M2
W

UL
∗M̂3

(

M̂2

M2
Z

− 1

)−1

ln

(

M̂2

M2
Z

)

UL
† . (A.16)

Finally the finite contribution from the Higgs self-energy function reads

δML
(h0)f =

g2

64π2M2
W

UL
∗M̂3

(

M̂2

m2
h0

− 1

)−1

ln

(

M̂2

m2
h0

)

UL
† . (A.17)

The finite correction δML, discussed in section 3, is obtained from the dominant parts

of eqs. (A.16) and (A.17) (order M̂−1
R

). These pieces can be extracted by using eq. (A.13)

and by taking into account that in the seesaw limit MD ≪ MR, in the basis for which

MR is diagonal, the matrix UR can be written as

UR = (−ξ†Uℓ,1) , (A.18)

where ξ = MD
T M−1

R
.

5Here by infinite part we mean B
(inf)
0 (0, m2

0, m
2
1) = 2ǫ−1

− γ + 4π + 1.
6There is also a finite term, lnM̂

2, that cancels.
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