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1 Introduction

With the start of the operation of the Large Hadron Collider (LHC) in CERN and the
progress in the analysis of growing data samples for many scattering processes, mastering
the precise evaluation of strong interactions effects within perturbative Quantum Chro-
modynamics (QCD) [1–3] will become quickly more and more important. QCD is a well
established theory — testing the validity of QCD is not an open issue any more. Its
principal role in the LHC data analysis will be providing precise predictions for rates and
distributions of quarks, gluons and hopefully other newly found particles carrying colour
charge, being part of either signal process or background.

The most important theoretical tools in perturbative QCD (pQCD) calculations, apart
from Feynman diagrams, renormalization, etc. are the so called factorization theorems, see
for instance [4–6], which allow to describe any scattering process with a single large mass or
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transverse momentum scale µF (enforcing short distance interaction), in terms of the on-
shell hard process matrix element (ME) squared and convoluted with the ladder parts. The
hard process is calculated up to a fixed perturbative order. The ladder parts are defined for
each colored energetic parton entering (exiting) the hard process. The initial state ladders
are conveniently encapsulated in the inclusive parton distribution functions, PDFs.

The logarithmic dependence of the parton distribution functions (PDFs) on the large
scale µF is described as a DGLAP [7–10] evolution of the PDFs. This evolution was studied
for the inclusive PDFs up to NLO level in the early 80’s, see refs. [11, 12], and was recently
established at the NNLO level [13, 14].

Instead of being encapsulated in the inclusive PDF, the multi-parton emission process
of the initial state ladder, can be modelled using direct stochastic simulation in terms of
four-momenta and other quantum numbers, within the Monte Carlo (MC) parton shower.
Here, the baseline works have been done in mid-80’s, see refs. [15, 16], where the leading
order (LO) ladder was implemented in parton shower MC (PSMC) programs. Standard
LO level PSMCs implement also the process of hadronization of the light quarks and glu-
ons into hadrons and play an important role in the software for all collider experiments
because of that.

Fulfilling the challenging requirements on the quality and precision of the pQCD cal-
culations, needed for the experimental data analysis at the LHC, enforces for the first time
an urgent solution of the problem of upgrading exclusive PSMC to the complete NLO level,
the same level, which was reached for inclusive PDFs two decades ago. This task is highly
nontrivial mainly because the classic factorization theorems [4–6] were never designed for
the exclusive MC implementation, but rather for defining inclusive PDFs and performing
fixed order calculations for the hard process, convoluted with these PDFs.

Let us comment briefly on the longer term physics impact of the present work. Re-
membering that QCD is not any more a new theory, the main impact of this work will be
the improvement of calculations of QCD effects, for hadron collider experiments like LHC,
with the aim of improving chances of discovering directly or indirectly New Physics and/or
better measurement of the Electroweak Standard Model parameters, especially when high
statistics, high precision data are accumulated.

More precisely, this work elaborates on pQCD effects in the initial state, which from
the perspective of the LHC experiments influence mainly: (A) overall normalization of the
hard processes through parton luminosities, (B) distributions of transverse momenta (kT )
of incoming partons deforming many other important distributions in any hard process,
including searches for supersymmetry, etc., (C) and provide one or more jets accompanying
hard process.

The longstanding problem in the data analysis is that the above three classes of
important QCD effects are addressed by three separate theoretical pQCD calculational
tools, based on different incompatible perturbative techniques: (A) strictly collinear
NLO PDFs [7–10], (B) semi-inclusive schemes of infinite order soft gluon kT resumma-
tion [5, 17, 18] or, alternatively, LO parton shower Monte Carlos [15, 19] (C) finite order
NLO (NNLO) calculations [20, 21] sometimes combined with a LO parton shower MC [22]
or collinear PDFs.
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In the analysis of experimental data combining these (and other) techniques is not
only inconvenient, but also is a serious source of irreducible theoretical (and experimental)
uncertainties. This old and well known problem becomes more severe with the increasing
precision of the collider data, and will inevitably plague high statistics, high precision
LHC data. The ultimate aim of the present work is to provide a basis for designing a
single Monte Carlo program addressing all three classes of the above pQCD effects at once,
within the same consistent pQCD theoretical framework. However, for this to be realized
one has to start with solving one basic difficult problem — the upgrade of the initial state
parton shower MC to at least the same level as standard PDFs, that is to the NLO level, in
the fully exclusive manner. The present work provides essential building blocks (exclusive
kernels) for this critical extension of the parton shower, and analyzes factorization scheme
differences with respect to the standard CFP MS scheme. While this work focuses on the
implementation of NLO corrections to the initial state ladder parts (parton showers), the
hard process part at NLO within the same scheme is discussed in ref. [23].1

The critical problems to be solved on the way to NLO PSMC are the following:

1. Violation of four momentum conservation. In the standard collinear factorization
four momentum conservation is broken both between the hard process and the lad-
der as well as between the ladder segments (2PI kernels). The source of this non-
conservation in the standard collinear factorization is the introduction of the projec-
tion operators, Pkin in ref. [4], operator P in ref. [12], or operator Z in ref. [27]. These
operators are absent in the first step of the separation of the collinear singularities
into the ladder parts — they are introduced later on in order to (i) conveniently
isolate the lightcone variable integration out of the phase space for analytical inte-
gration and (ii) facilitate the order-by-order pQCD calculations separately for the
hard process ME and the ladder elements (kernels). This non-conservation happens
in the transverse momenta, which are anyway treated inclusively (integrated over),
hence this bad feature of collinear factorization goes almost unnoticed.2 In the tradi-
tional LO PSMCs the above non-conservation is repaired “by hand” [15, 16], but in
such a way that the NLO effects induced by this reparation are analytically almost
uncontrollable. This is not a problem, unless one attempts to complete NLO in the
ladder, or to combine an NLO hard process ME with a LO PSMC [22]. A systematic
solution of the above problem must involve replacing the projection operator Pkin by
a more sophisticated operation involving a special parametrization of the entire phase
space for the hard process and the ladders. An explicit example of such a solution
for the W/Z production process (Drell-Yan process) can be found in ref. [23].

2. Separation of singularities before phase-space integrations. In the collinear factoriza-
tion, separation of the LO singular contributions in the form of the leading logarithm
ln Q2

m2 or 1
ε poles of dimensional regularization can be done only after the phase space

integration. In order to construct an efficient Monte Carlo algorithm this separation
has to be done at the very beginning, at the integrand level, before the phase space

1A complementary approach can be found in refs. [24–26].
2Except of ref. [27], where it is discussed in a more detail.
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integration. This requires going beyond the inherently inclusive approach of collinear
factorization. The effort of getting the NLO prediction for the semi-inclusive distri-
bution in the phase space of the hard process (like kT and rapidity distributions in
W/Z production) started already quite early, see for instance [20, 28]. More recently,
Monte Carlo tools combining NLO ME for the hard process with the LO PSMC
were developed in [22] and [29]. Studies on redefining PDFs in a partly exclusive
form beyond LO (unintegrated PDFs) [5], or in exclusive form (fully unintegrated
PDFs) [30] are also pursued.

3. Negative “probability distributions”. The NLO corrections in collinear factorization
are negative in some regions of phase space and therefore cannot be generated directly
in the Monte Carlo, if we insist on the realistic simulation using positive-weight MC
events.3 The reasons for non-positiveness of the NLO corrections is well understood.
For instance, in the physical gauge positive squares of the Feynman diagrams are typi-
cally more divergent and form the LO approximation, while non-positive interferences
are collected in NLO corrections. The use of kinematic projection operators in fac-
torization and related subtractions are another sources. The factorization procedure
collects all these non-positive corrections into separate objects and the integration
over the phase space is done for each of them separately. Consequently, part of the
factorization procedure has to be reversed in order to recombine non-positive NLO
distributions with the positive LO distributions, before the MC algorithm is designed.
The above defactorization procedure has to be outlined. An example proposal rely-
ing on Bose-Einstein symmetrization was formulated in ref. [31] and an even more
promissing one is described in ref. [32] (similar to that in ref. [33]).

4. Lack of the published exclusive NLO distributions. We have not found exclusive NLO
distributions forming the NLO corrections in the ladder part in literature — all
published results in the context of the NLO calculations of kernels for evolution of
PDFs are integrated over the phase space. The main objective of this paper is to
provide such distributions for the non-singlet case.

5. Inclusive treatment of multigluon soft limit. One of the critical issues in any type of
collinear factorization is the behavior of many-gluon distributions in the soft limit. In
the inclusive approach it is enough to know that the cancellations between real and
virtual soft contributions allow us in principle to neglect entire classes of diagrams
and/or divergent contributions — they sum up to zero. In the exclusive MC approach
these contributions/singularities, instead of being dropped out, have to be modelled
precisely to infinite order. The above soft gluon behavior is rather well known, albeit
more complicated in QCD than in QED due to the (non-abelian) triple gluon vertex
— the eikonal limit and angular ordering are known to govern it [34]. In ref. [35]
a detailed analysis of the soft limit for the C2

F and CFCA contributions for non-
singlet evolution kernels was performed and the well known angular ordering was

3Unless one admits the painful scenario with negative weight MC events, as in ref. [22].
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exposed, both numerically and analytically, for the first time using exact double
gluon distributions presented explicitly.

6. Inappropriateness of MS factorization scheme. The issue of factorization scheme
dependence has to be revisited and one has to decide about the best factorization
scheme (FS) for the PSMC implementation. It should not be taken for granted that
it will be the MS scheme, which is presently the “industry standard” for the inclusive
PDFs and in pQCD calculations for the hard process.4 In the view of the above the
following question emerges: Can one stay strictly within the MS scheme for the MC
implementation of the NLO ladders combined with the NLO hard process ME? In
the present work we will addres this question partly, for the MC modelling of the
ladder part. It is studied for the hard process ME in ref. [23]. Let us indicate that our
answer will be negative: FS of the NLO MC has to differ from MS scheme for several
reasons. Some of them will be discussed in detail in this paper. The key element
defining FS are the so-called soft collinear counterterms.5 In MC we choose them
to be identical with the distribution used in the LO MC, e.g. the LO level PSMC
is constructed by means of iterating soft collinear counterterms. This choice on one
hand will simplify NLO corrections in the MC, but it will also cause departure from
the MS FS. The second source of discrepancy will be the fact that in the MC, the
factorization scale will be identical to a well defined kinematic variable QF of the LO
MC, replacing the formal parameter µF of the MS FS. The logarithm of QF is then
used in the MC as an ordered evolution time variable. QF will typically be maximum
transverse momentum, maximum angle, or virtuality of the emitted particles. For
the gluonstrahlung, the choice of the maximum transverse momentum results in the
MC FS very close to MS FS.6 However, the soft gluon eikonal limit for contributions
like gluon pair production or quark-gluon transitions, dictates the use of the vari-
able related to the maximum angle (rapidity) as a factorization scale variable in the
MC. Third reason is the presence in the MS FS of certain artifacts of dimensional
regularization which cannot be implemented in the MC in four dimensions.

7. Constrained evolution. Constrains on the momenta and other quantum numbers
imposed by the hard process on the initial state parton shower (ladder), especially
important in the presence of the narrow resonances, must be taken into account by
the PSMC. The clever and powerfull MC technique of backward evolution of ref. [15]
is good for the LO PSMC, but for the NLO case one may need something more
sophisticated. The dependence of the ladder part (PDF) on the factorization scale
is described in pQCD by the integro-differential DGLAP [7–10] evolution equation.
Its solution has the form of a time ordered (T.O.) exponential with the ordering in

4Since then the FS dependence is reduced to the discussion of the residual dependence on the factorization

scale µF of MS scheme due to higher orders.
5We refer to the exclusive version of soft collinear counterterm, which is the distribution within the

1-particle phase space encapsulating collinear (and soft) singularity — not its integral as in inclusive FS.
6This fact is well known, see also analysis of ref. [36].
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the logarithm of the factorization scale.7 This T.O. exponential can also be obtained
directly from the ladder Feynman diagrams. In the Monte Carlo T.O. exponential
is conveniently modelled using a Markovian MC algorithm.8 However, a Markovian
MC algorithm would be highly inefficient for modelling the initial state radiation
(ISR) ladder, when hard process selects very narrow range of energies and flavors of
the partons incoming into hard process (with narrow W/Z resonances). Here, the
backward evolution MC algorithm is a standard solution [15] — used in all standard
LO PSMCs. It is to be seen whether backward evolution MC is upgradable to NLO
PSMC. In the meantime, the constrained MC algorithm of refs. [38, 39] offers an
interesting alternative. While the backward evolution MC needs pretabulated solu-
tions (PDFs) of the evolution equations, which have to be prepared beforehand using
non-MC auxiliary codes, the constrained MC performs evolution on its own.

In this article we mainly addres point 4 in the above list of problems. However also
point 6 is discussed in some detail.

Let us now establish precise terminology concerning diagrams and phase space inte-
gration. We will elaborate on the diagrams contributing to non-singlet evolution kernels
at the NLO level.

Generally, in the calculation of the exclusive/inclusive evolution kernels in this work
we will take paper of Curci Furmanski and Petronzio [12] (CFP) as the starting point and
as the reference in all NLO calculations. For the non-singlet part of the QCD DGLAP
evolution we will calculate (or recalculate) both the standard inclusive NLO kernels and
the new exclusive (unintegrated) ones, which are needed for constructing NLO PSMC.
This work prepares building blocks for NLO PSMC, whereas the actual MC algorithm and
all issues related to the factorization scheme used in NLO PSMC will be discussed in a
separate paper [23].

Our main object of interest in the present work are the diagrams depicted in figure 1,
with two emitted on-shell quarks and/or gluons, that is diagrams with two cut lines. We
will call them 2-real, or shortly 2R, contributions. The other diagrams with 1-real and 1-
virtual, nicknamed 1V1R, will be also partly considered. Diagrams with 2 virtual (2V) will
not be discussed, because they will be treated in the same way as in CFP (deduced from
the baryon number conservation rule, which we keep in the Monte Carlo by construction).

The NLO 2PI diagrams feature amplitude-squares, depicted in the upper row in fig-
ure 1: double gluon emission 1(a), gluon pair production 1(b) and fermion pair produc-
tion 1(c) as well as interferences, displayed in the lower row in figure 1. Interference
diagrams enter into the MC kernels for the first time at NLO and their correct incorpo-
ration in the MC requires more care. They can potentially make negative contributions
to the kernel, spoiling the MC weight. It turns out that the interference diagrams have
different statuses in the MC, in the following we explain the reasons for it.

Let us make a simple observation that interferences 1(d) and 1(e) together with

7Running of the coupling constant is included with the help of the usual renormalization group argument.
8Known already since prehistory of the Monte Carlo methods at Los Alamos National Laboratory [37].
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 1. Real contributions to NLO non-singlet DGLAP kernel.

squares 1(a) and 1(b) form the full amplitude square∣∣∣∣∣
∣∣∣∣∣
2

.

Positiveness of this amplitude square will cause the MC weight introducing these two
interferences to be positive. Both interferences 1(e) and 1(d) can be implemented in the
MC in the 2R group of diagrams.

The interference diagram 1(f) originates from the following amplitude-squared∣∣∣∣∣
∣∣∣∣∣
2

,

where qq̄ pair production 1(c) is already included in the non-singlet class, while qq̄ transi-
tions amplitude (squared) belongs to the singlet kernel. Apparently, diagram 1(f) corrects
quark-gluon transitions absent in non-singlet kernel and must be included in the MC to-
gether with the singlet contributions.

Similarly, the diagram 1(g) is the interference part in the amplitude square∣∣∣∣∣
∣∣∣∣∣
2

,

where both amplitudes representing qq̄ transitions essentially belong to the singlet NLO
kernel.
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In the case of both interferences related to quark-gluon transitions the MC weight is
not protected by the Schwartz inequality due to the absence of amplitude squares in the
non-singlet kernels. The above problem will naturally disappear when singlet diagrams are
included in the game, and we need some temporary fix, while staying in the non-singlet
class. In order to keep the fermion number conservation we keep these contributions in
the kernel, but add them to the 1R1V class and treat inclusively. In the following such a
combination of the 1R1V and integrated subclass of 2R interferences we will call collectively
unresolved contribution.

Another important point concerns internal singularities of Feynman diagrams. They
are present in graphs of figure 1(a), 1(b) and 1(c). The double bremsstrahlung diagram
figure 1(a) does not enter into NLO kernel as a whole9 but only what remains after sub-
tracting soft collinear counterterm of the CFP factorization. On the other hand, diagram
of figure 1(b) features internal collinear singularity cancelled by the corresponding virtual
(gluon self-energy) diagram. These diagrams may enter into the unresolved part in the
MC, or may be modelled in an exclusive manner. In the latter case diagram 1(b) requires
the construction of a dedicated soft-collinear counterterm which encapsulates the above
internal singularities and is instrumental in the MC construction. Such a counterterm will
be defined in section 3.6. Diagram 1(c) can be also modelled in an exclusive way and also
needs a dedicated counterterm, see section 4.3.

Before that, section 2 presents an overview of calculations illustrated by the example
of the LO kernel. Notation and methodology of extracting kernels will be introduced using
this simple example. The integration procedure for NLO kernels is reviewed in sections 3
and 4. The contributions from each appropriate Feynman diagram in the axial gauge are
calculated in integrated and unintegrated form needed for the MC. Analytical integration
for control will also be done. Discussion of the collinear and soft singularity structure will
have the highest priority.

Sections 3 and 4 summarize results of analytical integrations. In contrast to the results
presented in [12], 2R contributions will be shown separately instead of the sum of 2R and
1R1V. Section 5 provides final discussions and conclusions.

2 Leading order example

Using the LO diagram of figure 2 we are going to introduce some basic notation, which
will also be useful in the NLO calculations. In addition we will show correspondence
between elements of the CFP [12] scheme using dimensional regularization (n = 4 + 2ε)
and calculations in the Monte Carlo (n = 4) in this simple example.

On one hand, the non-singlet bare PDF of CFP [12], from which the DGLAP kernel
is extracted, reads as follows

ΓLO(x, ε) = δ(1− x)(1−Z [1]
F ) + PP

[ ∫
dΨn(k) µ−2ε xδ

(
x− qn

pn

)
CF g

4 WLO(k, ε)
]
, (2.1)

9It is not two-particle-irreducible (2PI).
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Figure 2. Born level diagram.

where PP is the pole part operator, CF is the color factor, ZF = 1 + Z [1] + . . . is the
fermion wave function renormalization factor.

Let us explain step by step the other elements in the above formula. One particle
phase space of emitted on-shell gluon (cut line), in n = 4 + 2ε dimensions, reads:

dΨn(k) =
dnk

(2π)n
(2π)δ+(k2) =

1
2(2π)3+2ε

dαα1+2εd|a||a|1+2εdΩ2+2ε. (2.2)

The emitted gluon 4-momentum kµ is parametrized using Sudakov variables

k = αp+ βn+ k⊥, (2.3)

where p is the momentum of the incoming parton and the lightlike vector n defines axial
gauge. The conditions p2 = k2 = 0 lead to relation β = − k2

⊥
2α(pn) . Non-abelian coherence

effects in the soft limit beyond LO are easier to handle if we use the variable

a =
k
α
, (2.4)

instead of transverse momentum k. Its modulus, |a| ≡ a, will be used to define the
factorization scale in the MC — we will refer to it as an angular scale.10

Phase space in eq. (2.1) requires to be closed from the above, at least temporarily.
In the CFP scheme this closure plays a marginal role, as Γ(x, ε) consists of pure poles.
The upper limit merely influences intermediate results, through the parametrization of the
phase space, before taking PP and executing all kind of internal infrared (IR) cancellations.
On the contrary in the Monte Carlo scheme the variable defining the upper limit of the
phase space plays an important role of the factorization scale. Its logarithm is the evolution
time variable in the MC algorithm/code. The most popular choices are: maximum angular
scale (angular ordering), and maximum transverse momentum of all real emitted partons.
Virtuality of the emitter line in the ladder or maximum k− = k0 − k3 are the other valid
but less attractive choices.

The function W is just one simple γ-trace factor (see [12]):

WLO(k, ε) =
1

4(qn)
1
q4

Tr[/pγα/q/n/qγβ]dαβ(k) =
2
x

1 + (1− α)2 + εα2

α2

1
a2
. (2.5)

10Traditional rapidity variable is equal, up to a constant, to its logarithm, η = ln(k+/k−)
2

= ln |a|+ const.
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Setting the upper phase space limit for the angular variable, |a| ≤ Q, we obtain:11

ΓLO(x, ε) =δx=1(1 + Z
[1]
F ) + PP

{
CF
µ2ε

g2

(2π)3+2ε

∫
dΩ2+2ε

∫
dα δ1−x=α

× 2− 2α+ (1 + ε)α2

α1−2ε

∫ ∞
0

d|a||a|2ε−1 θ|a|≤Q

}
=δx=1(1 + Z

[1]
F ) + PP

{
g2CF
µ2ε

Ω2+2ε

(2π)3+2ε

1 + x2 − ε(1− x)2

(1− x)1−2ε

Q2ε

2ε

}
=δx=1 +

1
2ε

2CFαS
π

(
1 + x2

2(1− x)

)
+

.

(2.6)

In the above Z [1]
F = −1

ε
2CFαS
π

(
ln 1

δ −
3
4

)
provides proper normalization, with regularization

of the IR pole 1
1−x →

1−x
(1−x)2+δ2 done exactly as in CFP. The evolution kernel is defined as

twice the residue of Γ at ε = 0:

PLO
qq (αS , x) = 2Res0

(
ΓLO(x, ε)

)
=

2CFαS
π

(
1 + x2

2(1− x)

)
+

. (2.7)

How does the above compare with the Monte Carlo? In the Monte Carlo the same
integral taken in the limits q0 < a < Q in n = 4 looks simpler:

GLO(x,Q) = (1− S[1]
1 )δx=1 +

∫
dΨ4xCF g

4WLO(k, ε = 0)δx=1−αθQ>a>a0 (2.8)

= (1−S[1]
1 )δx=1+

2CFαS
π2

∫
Q>a>q0

d3k

2k0

1 + x2

2k2
δx=1−αθα>δ = ln

Q

q0

2CFαS
π

(
1 + x2

2(1−x)

)
+

,

where S[1]
1 = ln Q

q0
2CFαS
π

(
ln 1

δ −
3
4

)
is the Sudakov formfactor. As we see, the same LO

kernel is now the coefficient in front of the collinear logarithm:

PLO
qq (αS , x) =

∂

∂ lnQ
GLO(x,Q) =

2CFαS
π

(
1 + x2

2(1− x)

)
+

. (2.9)

Apparently, 1/ε pole of CFP translates into ln Q
q0

:

∫ Q

0
d|a||a|2ε−1 =

Q2ε

2ε
→
∫ Q

q0

d|a|
|a|

= ln
Q

q0
. (2.10)

The relation between PDFs and evolution kernels in CFP and Monte Carlo factorization
schemes is, however, more complicated beyond LO. This is discussed in more detail in
ref. [40], see also refs. [23, 36]. Generally, all differences between MC and CFP factoriza-
tion schemes will be traced back to diagrams with subtractions, or with internal collinear
singularity cancellations.

11We will often use shorthand notation δa=b ≡ δ(a− b), Ω2+2ε = 2π1+ε

Γ(1+ε)
and αS = g2/(4π).
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3 2R contributions to non-singlet NLO kernels

In the following we shall calculate bare PDFs and the resulting inclusive evolution kernels
from 2-real phase space of the Feynman diagrams contributing to the non-singlet NLO
DGLAP kernels in QCD. Let us stress that our real aim are the distributions over the 2R
phase space integration. Analytical integrations will be performed mainly as a crosscheck
with the know results and for testing parts of the Monte Carlo code.

We shall start with explaining notation and 2R phase space parametrization used in
the calculations. Differential distributions and 2R phase space integrals will be listed for
each Feynman diagram separately.

3.1 Kinematics

Sudakov parametrization is introduced for both emitted partons:

ki = αip+ βin+ ki⊥ qi = p− ki for i = 1, 2 (3.1)

where pµ is the momentum of the incoming quark (p2 = 0) and lightlike nµ is the axial
gauge vector. Real on-shell emitted gluon or quark has 4-momentum kµi , and qµi denotes 4-
momentum of the virtual (off-shell) emitter parton. We will also denote k = k1 +k2, q =
p − k. 4-dimensional transverse momenta ki⊥ = (0,ki, 0) for i = 1, 2 will be also used (to
be extended to n = 4 + 2ε dimensions wherever necessary). From k2

1 = k2
2 = 0 we obtain

βi =
k2
i

2αi(p · n)
. (3.2)

The lightcone variable decreases from 1 to x = 1−α1−α2 after two emissions. The angular
scale variable

ai =
ki
αi

(3.3)

is a preferred choice, instead of transverse momentum. The virtuality of the emitter parton
after two emissions (entering its propagator) and the gluon pair effective mass are:

q2 = −α1α2q̃
2(a1,a2), q̃2(a1,a2) =

1− α2

α2
a2

1 +
1− α1

α1
a2

2 + 2a1 · a2,

k2 = α1α2a2(a1,a2), a2(a1,a2) = a2
1 + a2

2 − 2a1 · a2.

(3.4)

3.2 Inclusive evolution kernels, CFP vs. MC

In the CFP scheme, the NLO inclusive kernel is extracted from the second order expression
for the bare PDF, which in compact CFP notation reads:

Γ =ZF
1

1−PK0(1− (1−P)K0)−1
= 1Z

(2)
F + (1 + Z

[1]
F )PK [1]

0

+PK
[2]
0 +PK

[1]
0 ((1−P)K [1]

0 ) + (PK [1]
0 )(PK [1]

0 ) +O(α3
S)

(3.5)

where Z(2)
F = 1 +Z

[1]
F +Z

[2]
F is the quark renormalization constant and K0 = K

[1]
0 +K

[2]
0 is

the 2-particle irreducible kernel (truncated to 2-nd order in perturbative expansion) defined
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in refs. [12, 41]. The NLO contributions to the evolution kernels are coming from PK
[2]
0 and

PK
[1]
0 ((1−P)K [1]

0 ). Diagrams (b-g) in figure 1 are in the first class and only diagram (a) is
in the second class (with subtraction). The other 2-nd order terms like (PK [1]

0 )(PK [1]
0 ) and

Z
[1]
F PK

[1]
0 yield pure 1

ε2
poles times elements of LO kernels and do not contribute to NLO

kernels. The 1-st order 1Z [1]
F +PK

[1]
0 was already analyzed in the previous section. From

now on we drop flavor indices as all but one diagram contributing to the non-singlet kernel
at NLO level describes qq transitions. The qq flavor indices will be understood implicitly
if not indicated otherwise.12 The NLO contribution to the evolution kernel (to bare PDF
of CFP) from a given 2R Feynman diagram X in figure 1 reads:

PX(x) = 2Res0

(
ΓX(x, ε)

)
,

ΓX(x, ε) = PP
{

1
µ4ε

∫
dΨn(k1)dΨn(k2) xδ

(
x− qn

pn

)
Cg4WX(k1, k2, ε) θQ>s(k1,k2)

}
,

(3.6)

where the θ-function limits phase space from the above using variable s(k1, k2) =
max{a1, a2} (resulting CFP kernel is independent of this cut-off), C is a color factor of a
diagram X.

Monte Carlo featuring complete NLO evolution, can be expressed as a time-ordered
exponential in the logarithm of its factorization scale Q, see [31]. Hence, at the inclusive
level, it obeys its own evolution equation in lnQ with its own inclusive NLO evolution
kernel, being the derivative in lnQ of the MC [31] distribution (truncated to 2-nd order)13

∂

∂ lnQ

∫
dLips δ1−x=

P
αi P

′
Q

{s
K0 · (1−P′s)K0

}
. (3.7)

Here K0 is the same as in CFP and comes from the Feynman diagrams, albeit with real-
virtual collinear cancellations executed before taking the derivative — so above formula is
finally executed in n = 4.

For the use of P′ it is enough to apply eqs. (3.9), (3.10) below. It acts on the inte-
grand, contrary to P of CFP acting on the integrals, hence it provides unintegrated NLO
distributions for the MC [23, 31]. For our purpose (2R diagrams) the above reduces to the
following:

P(x) =
∂

∂ lnQ
(Gb(Q, x) +Ga(Q, x)), (3.8)

where
Gb(Q, x) = x

∫
dΨ4(k1)dΨ4(k2) δ1−x=α1+α2 P

′K
[2]
0 θQ>s(k1,k2)>q0 (3.9)

contains two-particle-irreducible diagrams and

Ga(Q, x) =x

∫
dΨ4(k1)dΨ4(k2) δ1−x=α1+α2

×
{
P
′(K [1]

0 K
[1]
0 )θQ>s(k1,k2)>q0 −P

′(K [1]
0 )P′(K [1]

0 )θQ>s(k1)>s(k2)>q0

} (3.10)

12Possible ways of implementing multi-flavor partons in MC have been presented in refs. [42, 43].
13Strictly speaking, diagrams like (b-c) in figure 1 produce lnk(Q/µR), k > 1 (similarly to higher 1/εk

poles in CFP), to be resummed into running coupling constant, before applying this formula.
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contains diagrams requiring soft counterterms.14 The remaining action of P′ is spin projec-
tion, the same way as in CFP. On the other hand, the subtraction term −P′(K [1]

0 )P′(K [1]
0 )

is identical to the double gluonstrahlung LO distribution of the MC, hence it deviates from
CFP. For example interference diagrams contribute

GXb (Q, x) =
∫
dΨ4(k1)dΨ4(k2) δ1−x=α1+α2 xCg

4WX(k1, k2, 0) θQ>s(k1,k2)>q0 (3.11)

and subtracted NLO diagrams contribute

GXa (Q, x) =
∫
dΨ4(k1)dΨ4(k2) δ1−x=α1+α2 xCg

4

×
[
WX(k1, k2, 0)θQ>s(k1,k2)>q0 −W

ct(k1)W ct(k2)θQ>s(k1)>s(k2)>q0

]
.

(3.12)

Since MC distribution W ct(k1)W ct(k2) encapsulates (by construction) all collinear and soft
singularities, subtracted GXa (Q, x) can be evaluated in n = 4.

Alternative expressions for NLO inclusive kernels of eq. (3.6) and eq. (3.8) provide
precisely the same results for graphs (d-e) in figure 1, which do not have internal divergences
nor require subtraction (as in LO case), and are evaluated at n = 4. For diagrams (a-c) in
figure 1 we shall see certain small but important differences, which indicate that the MC
represents a slightly different factorization scheme than CFP.

3.3 Overview of the 2R phase space integration

It is convenient to introduce slightly differently normalized phase space

dΦn(k)=
dn−1k

2k0

1
|k|2

=
dα

2α
d|k|
|k|
|k|2εdΩ2+2ε=

dα

2α
da

a
(αa)2εdΩ2+2ε=dΨn(k)

(2π)3+2ε

a2α2
, (3.13)

which is dimensionless in n = 4.
Most of the presented differential results will be normalized using the above integration

element. For instance in eq. (3.6) we replace dΨn(k)→ dΦn(k) and

WX → W̃X(k1, k2, ε) = Cg4x
a2

1a
2
2α

2
1α

2
2

(2π)6+4ε
WX =

Cx

(2π)4ε

( αS
2π2

)2
a2

1a
2
2α

2
1α

2
2 W

X . (3.14)

Let us outline the general methodology used in the 2R phase space integrations. It
will be described in n = 4, with some small modifications it will also apply in n = 4 + 2ε.
The integration procedure consists of the following steps:

(a) Using the identity ΘQ>max{a1,a2} ≡
∫ Q

0 dQ̃ δQ̃=max{a1,a2}, the integration variable Q̃ is
introduced:

GX =
∫
dα1

α1

dα2

α2
δ1−x=α1+α2

Q∫
0

dQ̃ δQ̃=max{a1,a2}

×
∫
da1

a1

da2

a2

1
2π

∫
dφ W̃X(a1/a2, φ, α1, α2) Θmax{a1,a2}>q0 .

(3.15)

14Cut-off q0 plays no role in evolution kernel.
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(b) Dimensionless variables yi = ai/Q̃, yi ∈ [0, 1] are introduced:

GX =
∫
dα1

α1

dα2

α2
δ1−x=α1+α2

Q∫
q0

dQ̃

Q̃

∫ 1

0

dy1

y1

dy2

y2

∫
dφ

2π

× W̃X(y1/y2, φ, α1, α2)δ1=max{y1,y2}.

(3.16)

(c) Integration over overall scale Q̃ is performed:

GX = ln
Q

q0

∫
dα1

α1

dα2

α2
δ(1− x− α1 − α2)

∫ 1

0

dy1

y1

dy2

y2

∫
dφ

2π

× W̃X(y1/y2, φ, α1, α2)δ1=max{y1,y2}.

(3.17)

In n = 4 + 2ε this integration yields
∫ Q

0 dQ̃Q̃4ε−1 = Q4ε

4ε .

(d) Nontrivial azimuthal angle dependence enters in the kernels only through the relative
angle between 2 partons φ = φ1 − φ2. Integration over φ and φ2 is done.

(e) Integration over y1, y2 (eliminating δ1=max{y1,y2}) is performed.

(f) Integration over lightcone variables α1 and α2 (eliminating δ1−x=α1+α2) is done using
the IR regularization of CFP:15

∫ 1−x

0

dα

α
F (α)→

∫ 1−x

0

dα α

α2 + δ2
F (α). (3.18)

3.4 Gluonstrahlung interference diagram - Bx

Let us start with the relatively simple ladder interference diagram Bx of figure 1(e). The
expression for 2R dimensionless differential distribution reads

W̃Bx(k1, k2) = 4
(
C2
F −

1
2
CACF

)( αS
2π2

)2

× a2
1a

2
2

q̃4(a1, a2)

[
TBx0 + TBx1

a1 · a2

a2
1

+ TBx2

a1 · a2

a2
2

+ TBx3

(a1 · a2)2

a2
1a

2
2

]
,

(3.19)

where:

TBx0 = 2x
1 + x2

1− x

(
1
α1

+
1
α2

)
− 2x, TBx1 =

1 + 2x2

α1
− 1 + x− x2,

TBx2 =
1 + 2x2

α2
− 1 + x− x2, TBx3 = 2(1 + x2).

(3.20)

15This leads to two elementary integrals: I0 ≡
R 1

0
dα
α

= − ln δ, I1 ≡
R 1

0
dα lnα
α

= − 1
2

ln2 δ − π2

24
, defined

as in ref. [12].
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The first order expression for the PDF in the MC (performing scalar products) reads:

GBx(Q, x) =
∫
dΦ4(k1)dΦ4(k2) δx=1−α1−α2W̃

Bx(k1, k2) (3.21)

=
∫
dα1

α1

dα2

α2
δ1−x=α1+α2

∞∫
0

da1

a1

∞∫
0

da2

a2

2π∫
0

dφ

2π
4
(
C2
F −

1
2
CACF

)(αS
2π

)2

× a2
1a

2
2

q̃4(a1, a2)

[
TBx0 + TBx1

a2

a1
cosφ+ TBx2

a1

a2
cosφ+ TBx3 cos2 φ

]
θmax{a1,a2}<Q.

The above includes factors 1/2! due to Bose-Einstein (BE) symmetrization as well as 2
multiplying interference diagrams. Following the LO calculation example of section 3.3,
the integration over transverse degrees of freedom is done:

GBx(Q, x) = ln
Q

q0
4
(
C2
F −

1
2
CACF

)(αS
2π

)2
∫
dα1

α1

dα2

α2
δ1−x=α1+α2

×
[
TBx0

α1α2

2x
− TBx1

α2
1α2

2x(1− α1)
− TBx2

α1α
2
2

2x(1− α2)

+ TBx3

(
1
4

ln
(

x

(1− α1)(1− α2)

)
+
α1α2

2x

)]
.

(3.22)

Integration over α-variables finally provides:

GBx(Q, x) = ln
Q

q0
PBx(x), (3.23)

PBx(x) =
(αS

2π

)2(
C2
F −

1
2
CACF

)[1+x2

1−x

(
8I0 + 8 ln(1−x)−2 ln2(x)

)
+4(1+x) ln(x)

]
.

As already said, PBx(x) is the same in CFP and in MC schemes (up to a normalization
factor 2),16 because this diagram has no internal collinear divergence. Uncanceled IR
divergences are still present (I0 term).

Summarizing, the distribution of eq. (3.19) will enter into the NLO correction to the
MC exclusive kernel contribution. The distribution of eq. (3.23) will be used for numerical
overall tests of the MC at the NLO level.

3.5 Subtracted double bremsstrahlung diagram

The double bremsstrahlung diagram of figure 1(a) (denoted as Br) is not 2PI (it consists
of two 2PI LO kernels) and needs a subtraction term (referred to as diagram BrC).

We shall start with a simpler case of integrating Br−BrC contribution to evolution
kernel in the MC scheme in n = 4. Next we shall recalculate the same Br−BrC contribution
to the bare PDF and NLO kernel in the CFP scheme, analyzing all its components and
discussing all differences with the MC case in detail.

16There is a difference between normalization in MC and CFP kernels at NLO level P(x) = 2P (x). It is

due to the definition of MC kernel as a derivative over lnQ not lnQ2.
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The differential distributions for two Br diagrams17 in n = 4 + 2ε read as follows:

W̃Br(k1, k2) = W̃Br1(k1, k2) + W̃Br1(k2, k1),

W̃Br1(k1, k2) =
4C2

F

(2π)4ε

( αS
2π2

)2 a2
1a

2
2

q̃4(a1, a2)

[
TBr0 + TBr1

a1 · a2

a2
1

+ TBr2 (ε)
a2

2

a2
1

]
,

(3.24)

where:

TBr0 = 1 + x2 + (1− α1)2, TBr1 = 2
1− α1

α1
(1 + x2 + (1− α1)2),

TBr2 (ε) = TBr2 (0) + εT ′Br2 , TBr2 (0) =
1
α2

1

[1 + (1− α1)2][x2 + (1− α1)2],

T ′Br2 =
1
α2

1

[α2
1(x2 + (1− α1)2) + α2

2(1 + (1− α1)2)].

(3.25)

The most singular term ∼ TBr2 can be rewritten (modulo O(ε2) terms) as a product of two
LO kernels:

TBr2 (ε) =
α2

α1
(1− α1)P (0)

qq (z1, ε)P (0)
qq (z2, ε),

P (0)
qq (z, ε) ≡ 1 + z2 + ε(1− z)2

1− z
= P (0)

qq (z) + εP ′(0)
qq (z),

(3.26)

where z1 = 1− α1 and z2 = (1− α1 − α2)/(1− α1). The above term coincides in the MC
for the ladder with the following counterterm, being just the LO MC distribution

K̃BrC(k1, k2)=4C2
F

( αS
2π2

)2 α2
1

(1−α1)2
TBr2 (0)=4C2

F

( αS
2π2

)2 α1α2

1−α1
P (0)
qq (z1)P (0)

qq (z2) . (3.27)

It also enters as a subtraction term into the MC weight which implements NLO corrections.
The contribution to the inclusive PDF of the NLO MC, including the explicit Bose-Einstein
(BE) symmetrization factor 1/2!, reads:

GBr(Q, x) = ln
Q

q0
PBrsub(x) =

1
2!

∫
dΦ4(k1)dΦ4(k2) δx=1−α1−α2W̃

Br
sub θQ>max{a1,a2}>q0 ,

W̃Br
sub(k1, k2) = W̃Br1(k1, k2) + W̃Br1(k2, k1)

−K̃BrC(k1, k2)θQ>a2>a1 − K̃BrC(k2, k1)θQ>a1>a2 , (3.28)

where

PBrsub(x) =
(αS

2π

)2
C2
F

[
1 + x2

1− x

(
− 8I0 − 8 ln(1− x) + 4 ln2(x)

)
+ 6(1− x)− 2(1− x) ln(x) + (1 + x) ln2(x)− 2(1 + x) ln(x)

]
,

(3.29)

is obtained from analytical phase space integration using the same methodology as in the
CFP scheme, see below.

17Two diagrams because of interchange of vertices due to the Bose-Einstein symmetrization.
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It should be kept in mind that PBrsub(x) above is obtained for the angular ordering and
it would be different if we would have adopted kT-ordering — the difference would be
PBrKin(x) of eq. (3.32) below, see discussion in refs. [36, 40].

Let us now turn to the CFP scheme which provides, for this particular diagram, a
2R contribution to the NLO kernel, different than in the MC scheme. For calculating
PK

[1]
0 ((1 − P)K [1]

0 ) of the bare PDF of eq. (3.5) we follow procedure (a-f) of section 3.3
step by step. After integrating over Q̃, φ and φ2, at step (e), we deal in the P(K [1]

0 K
[1]
0 )

part with the singular integral in the variable y = max(y1, y2):(
Q2

µ2
F

)2εΩ2
2+2ε

4ε

∫ 1

0

dy

y1−2ε
=
(
Q2

µ2
F

)2εΩ2
2+2ε

4ε

∫ 1

0
dy

{
1
ε
δy=0 +

(
1
y

)
+

+O(ε1)
}
. (3.30)

The most singular part due to the 1
ε δy=0 term in P(K [1]

0 K
[1]
0 ) is easily integrated:

ΓBr '
[

+
1
2

]
1
ε2

(
CFαS
π

)2

(P (0)
qq ⊗ P (0)

qq )(x)
∣∣
2R
,

where (P (0)
qq ⊗P (0)

qq )(x)
∣∣
2R

= 1+x2

1−x [4 ln 1
δ +4 ln(1−x)]+(1+x) lnx−2(1−x) is just the double

convolution of the LO kernel. The counterterm PK
[1]
0 ((−P)K [1]

0 ) contributes the same
expression, but with (−1) in front, and finally (PK [1]

0 )(PK [1]
0 ) adds the same expression

with (+1) in front. Altogether, the pattern of building correct exponential structure of the
LO in CFP is much more complicated than in the MC, with a lot of over-subtractions, see
more discussion in ref. [32].

Our main aim however is the residue in front of the 1
ε pole. Most of it comes from

the term
(

1
y

)
+

in eq. (3.30), which is in close correspondence with the NLO correction
in the MC. In addition it gets “fall-out” contributions from 1

ε2
× ε terms. In particular

x-independent terms from the expansion

1
(2π)2

(
Q2

µ2
F

)2εΩ2
2+2ε

ε
=

1
ε

+ 2 ln
(
Q2

µ2
F

)
+ 2ω2

luckily cancel between P(K [1]
0 K

[1]
0 ) and the collinear counterterm PK

[1]
0 ((−P)K [1]

0 ). A sim-
ilar but x-dependent contribution from T ′Br2 gives rise to a remnant term

1
4ε

1∫
0

dy
δy=0

ε

∫
x=z1z2

dz1dz2

{ 1
2!

[εP ′(0)
qq (z2)P (0)

qq (z1) +P (0)
qq (z2)εP ′(0)

qq (z1)]− [εP ′(0)
qq (z2)P (0)

qq (z1)]
}
.

The second bracket [. . . ] comes from the counterterm — it lacks 1
2! of the true distribution,

and one of P ′(0)P (0) terms gets killed by the PP operation. Altogether, the above spin
artifact of CFP (absent in MC) contributes the following:

ΓBrSp =
1
2ε
PBrSp (x),

PBrSp (x) =
(αS

2π

)2
C2
F

∫
dz1dz2δx=z1z2

[
− P ′(0)

qq (z2)P (0)
qq (z1) + P (0)

qq (z2)P ′(0)
qq (z1)

]
=
(αS

2π

)2
C2
F 2(1− x) ln(x).

(3.31)
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The last important contribution in the class ∼ 1
4ε
δy=0

ε × ε is due to the (α1α2)2ε term in
our particular choice of the phase space parametrization. In fact its role is to cancel the
dependence on this choice, see also discussion in ref. [36]. It is produced by a similar mech-
anism of partial cancellation with the counterterm as above, and in the z-parametrization
reads:

1
4ε

1∫
0

dy
δy=0

ε

∫
x=z1z2

dz1dz2

{
1
2!

[2ε ln(α1α2)P (0)
qq (z2)P (0)

qq (z1)]− [(2ε lnα2)P (0)
qq (z2)P (0)

qq (z1)]
}

=
1
4ε

∫
dz1dz2 δx=z1z2 P

(0)
qq (z2)P (0)

qq (z1) ln
1− z1

z1(1− z2)
.

Its contribution to the bare PDF and NLO kernel is:

ΓBrKin(x) =
1
2ε
PBrKin(x), PBrKin(x) =

(αS
2π

)2
C2
F

[
2(1− x) ln(x)− (1 + x) ln2(x)

]
. (3.32)

Finally the real physics is in the term
(

1
y

)
+

in eq. (3.30), which happens to be exactly
the same (up to the normalization factor 2) as the MC contribution of eq. (3.28). At step
(f) of the integration procedure it reads:

ΓBrsub =
C2
F

ε

(αS
2π

)2
∫
dα1

α1

dα2

α2
δ1−x=α1+α2

{
TBr0

α1α2

2x
− TBr1

α2
1α2

2x(1− α1)

+ TBr2

α2
1(α1α2 − x)

2x(1− α1)2
+ TBr2

α2
1

2(1− α1)2
ln

(1− α1)2α2

xα1

}
.

(3.33)

After α-integrations we obtain

ΓBrsub =
1
2ε
PBrsub(x), (3.34)

where PBrSub(x) = 1
2PBrSub(x) of eq. (3.29).

Altogether, the CFP kernel from the subtracted Br diagram is:

PBr(x) = PBrsub(x) + PBrKin(x) + PBrSp (x)

=
(αS

2π

)2
C2
F

(
1 + x2

1− x
[−4I0 − 4 ln(1− x) + 2 ln2(x)]

− 1
2

(1 + x) ln2(x)− (1 + x) lnx+ 3(1− x) lnx+ 3(1− x)
)
,

(3.35)

reproducing the result of ref. [12].
As noted in ref. [36] PBrKin(x) is absent in CFP, provided we choose the maximum

transverse momentum as factorization scale variable: s(k1, k2) = max(kT1 , k
T
2 ). It is simply

the case because the factor (α1α2)2ε is absent. However, an additional contribution exactly
equal to PBrKin(x) would appear from the 2R integral of eq. (3.28) due to adopting kT -
ordering, and it would exactly compensate the lack of PBrKin(x) from (α1α2)2ε. In a sense,
the CFP scheme features an automatic self-correcting mechanism, such that it provides the
result for kT -ordering, independently of the kinematic parametrization of the phase space
actually used.
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Summarizing on the subtracted Br diagram, the integrand W̃Br
sub in eq. (3.28) will enter

into the NLO correction to the MC distribution, while eqs. (3.29) and (3.35) will be used
in the numerical tests of the MC codes. The difference between CFP and MC factorization
schemes for the subtracted Br diagram (for Br+Bx as well) at the inclusive kernel is IR
finite and reads:

∆CFP−MCP
Br
sub(x) = PBrKin(x) + PBrSp (x) =

=
(αS

2π

)2
C2
F

[
4(1− x) ln(x)− (1 + x) ln2(x)

]
.

(3.36)

Let us also sum up C2
F contributions of the Br and Bx diagrams (using only C2

F part
of Bx) in the 2R phase space. For the MC scheme we obtain:

GBrsub+Bx(Q, x) =
∫
dΦ4(k1)dΦ4(k2) δx=1−α1−α2(W̃Br

sub + W̃Bx)θQ>max{a1,a2}>q0

= ln
Q

q0
PBrsub+Bx(x), (3.37)

PBrsub+Bx(x) = PBrsub(x) + PBx(x)

=
(αS

2π

)2
C2
F

[
2

1+x2

1−x
ln2(x)+(1+x)

(
2 ln(x)+ln2(x)

)
+(1−x)

(
6−2 ln(x)

)]
.

As we see IR part (I0 term) cancels between Br and Bx diagrams. The same phenomenon
is also true for the differential distributions, see figures and analytical investigation of the
αi → 0 limit in ref. [35], which are based on the above results. The above IR cancellations
are vital for the stability of the NLO MC weight, see tests of the prototype MC in ref. [31].
It should be stressed that it is not guaranteed18 and here it is true thanks to a good choice
of the multigluon LO MC distributions compatible with the soft (eikonal) limit already at
the LO level, see eq. (3.27).

3.6 Gluon pair production diagram - Vg

Let us investigate now another important 2R NLO contribution from the gluon pair pro-
duction diagram Vg of figure 1(b). We shall calculate its contribution to inclusive kernels
focusing on possible differences between MC implementation and CFP scheme. As we shall
see, the 2R gluon distribution from Vg diagram features very different singularity pattern
than Br+Bx diagrams discussed previously — it has an internal collinear singularity for the
mass of produced pair going to zero, a2 → 0, that is located in a1 → a2 (instead of a1 → 0).
Cancellation of this internal singularity happens without an intervention of (1−P) opera-
tor, simply by adding a virtual diagram (gluon selfenergy). The remaining residual double
logarithm (or double pole in ε) singularity is related to the running coupling constant.

Mastering the additional soft-gluon sudakovian IR singularities αi → 0 will be again
very important for stability of the NLO MC weight. A complete discussion of the soft
gluon limit will require introducing the interference diagrams Yg and Bx of figure 1(d) and
figure 1(e), hence it will be deferred until the next section.

18Such IR cancellations would not work for virtuality ordering in the LO MC, s(k1, k2) = −(p−k1−k2)2.
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From the Feynman diagram we obtain:

W̃ V g =
4CACF
(1− x)2

1
(2π)4ε

( αS
2π2

)2 a2
1a

2
2

q̃4(a1, a2)

×
[
T V g0 + T V g+ (ε)

a2
1 + a2

2

a2
+ T V g−

a2
1 − a2

2

a2
+ T V g3 (ε)

(a2
1 − a2

2)2

a4

]
,

T V g0 =−2α1α2 + 4(1− x)− (1− x)(2− x+ x2)
(

1
α1

+
1
α2

)
, T V g3 (ε) = 2x(1 + ε),

T V g+ (ε) = (1− x)2

[
(1 + x2)

( 1
α2

1

+
1
α2

2

)
+ 1
]

+ ε

[
(1− x)4

( 1
α2

1

+
1
α2

2

)
+ (1− x)2

]
,

T V g− = (α1 − α2)
[
(1 + x)− (2− x+ x2)

1− x
α1α2

+ (1 + x2)
(1− x)3

α2
1α

2
2

]
. (3.38)

In the above we have kept only those terms O(ε1) from the γ-trace which lead to ε 1
ε2

poles, because of the extra 1
ε from an internal 1

a2 gluon mass singularity. Using (a2
1−a2

2)2

a4 =
a2

1+a2
2

a2 + [(a1+a2)·a]2−(a2
1+a2

2)a2

a4 the most singular term in eq. (3.38) is isolated even more
clearly:

W̃ V g =
4CACF
(1− x)2

1
(2π)4ε

( αS
2π2

)2 a2
1a

2
2

q̃4(a1, a2)

[
T V g0 + T V g2+ (ε)

a2
1 + a2

2

a2

+ T V g−
a2

1 − a2
2

a2
+ T V g3 (0)

[(a1 + a2) · a]2 − (a2
1 + a2

2)a2

a4

]
.

(3.39)

The term proportional to T V g2+ (ε) = T V g+ (ε)+T V g3 (ε) is the only one contributing the double
pole 1

ε2
and is explicitly proportional to the product of two LO kernels:

T V g2+ (ε) =
(1− x)3

α1α2

{
1 + x2

1− x

(α2

α1
+
α1

α2
+

α1α2

(1− x)2

)
(3.40)

+ε
[1 + x2

1− x
α1α2

(1− x)2
+ (1− x)

(α2

α1
+
α1

α2

)]}
=

(1− x)3

α1α2
P [0]
qq (x, ε)P [0]

gg (z) + 2xε,

where z = α1/(α1 + α2) and P
(0)
gg (z) = z

1−z + 1−z
z + z(1− z).

What enters into the 2R part of the NLO correction in the MC, see refs. [31, 32], is
not the above divergent W̃ V g, but rather the non-divergent difference with the following
“soft collinear counterterm” (SCC) representing the distribution used in the LO MC:

K̃V g =
( αS

2π2

)2
4CACF

2a2
1a

2
2

a2
maxa2

α2
1α

2
2

(1− x)4
T V g2+ (0), (3.41)

where amax = max(a1, a2). It is the result of a slight simplification of the term ∼ T V g2+

in eq. (3.39). Generally, such a SCC is not unique, but complete NLO corrections to
observables are insensitive to its choice. What is highly sensitive, however, is the dispersion
(and positiveness!) of the MC weight implementing NLO correction. The above choice is
unique in this sense, that it encapsulates not only collinear singularity from a2 → 0, but
also all soft gluon singularities αi → 0 for all three diagrams Vg+Yg+Bx, see next section.
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This property ensures good behavior of the NLO MC weight. Moreover, the factor P
[0]
gg (z)
a2

in eq. (3.41) can be iterated into a separate final state LO sub-ladder for the gluon emitted
from the primary initial state ladder, see refs. [31, 32].

As we are working on the exclusive level we are technically similar to the techniques
of hard process subtractions of ref. [44] (dipole subtraction) or ref. [45] (antenna subtrac-
tion),19 but not to the subtractions used in the inclusive calculations of NNLO evolution
kernels of refs. [13, 14].

In view of the above discussion, it is useful to know analytically, for numerical cross-
check of the MC code and for discussing complete NLO corrections in the ladder MC, the
following subtracted Vg contribution to the NLO PDF20 calculated in n = 4 (as usually
including BE factor)

GV gsub(Q, x) =
1
2!

∫
dΦ4(k1)dΦ4(k2)

[
W̃ V g − K̃V g

]
δ1−x=α1+α2θQ>amax>q0 (3.42)

= ln
Q

q0
P
V g
sub(x),

P
V g
sub(x) =

(αS
2π

)2 (1
2
CACF

){4
3

x

1− x
+

1 + x2

1− x

[
− 8I1 − 8I0 + 8I0 ln

(1− x
x

)
+

22
3

ln(x)− 8 ln(1− x) + 4 ln2(1− x)− 8 ln(x) ln(1− x)
4π2

3
− 68

9

]}
.

Generally, the presence of the SCC subtraction is a natural element in any MC scheme
with soft gluon (photon) resummation, either to the hard process or to the ladders, in order
to eliminate possible double counting of the singular term. However, the use of subtractions
can also simplify non-MC calculations, like analytical integration of the Vg diagram over
the 2R phase space in n = 4 + 2ε dimensions in the CFP scheme, before combining it with
the gluon self-energy virtual diagram. Let us comment more on that, venturing a little bit
in the area of combining 2R and 1R1V contributions (complete discussion is beyond the
scope of this work). In such a case, it is useful to split 2R gluon phase space into a > κamax

and a < κamax, κ� 1, schematically

ΓV g = ΓV ga>κamax
+ ΓV ga<κamax

and split the Vg contribution into a subtracted one and the SCC. The subtracted part in
the decomposition

ΓV g = (ΓV g − ΓCT ) + ΓCTa>κamax
+ ΓCTa<κamax

can be evaluated in n = 4, all over the phase space. On the other hand, the SCC part
ΓCT is evaluated analytically separately in the “resolved” part a > κamax in n = 4, and
separately in the a < κamax part in n = 4 + 2ε. This allows to profit from adjusting phase

19The dipole/antenna subtractions works for at least two ladders (they are dealing with hard process),

whereas our method works within one ladder. Furthermore, we pay special attention to the fact that our

counterterms can be iterated in the MC simulation.
20In the above 1/αi are regularized by a small parameter δ as in CFP, however, this is not necessary once

diagrams Yg and Bx are added, see next section.
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space parametrization to specific complications of the integrand in each part! Finally, one
combines all three parts into a formula for the 2R integrated Vg in n = 4 + 2ε. The
parameter κ, and even the dependence on the particular choice of SCC drops out in the
final result. The other immediate profit from the above methodology is that one may
combine 2R from a < κamax with the 1R1V contribution (gluon self-energy) such that the
Sudakovian part of the 1

ε2
pole gets cancelled.21

This kind of calculation for Vg in n = 4 + 2ε is presented in the appendix using a
slightly different choice (for historical reasons) of the SCC:

W̃ V g
CT =

4CACF
(1−x)2

1
(2π)4ε

( αS
2π2

)2 a2
1a

2
2

q̃4(amax, amax)

[
T V g+ (ε)

2a2
max

a2
+ T V g3 (ε)

(a2
1−a2

2)2

a4

]
. (3.43)

Switching from one kind of SCC in the integration to another is relatively simple, see
appendix.

Last but not least, let us discuss the differences between the MC scheme and the CFP
scheme for the Vg diagram. In the previous case of Br diagram we have seen that the
basic mechanism of producing differences between two schemes is the action of the 1 −P
operator. Since this operator is absent for Vg, one generally expects no differences between
the two schemes. In particular any effect of the terms proportional to ε from γ-traces will
land in the ∼ δ(a2) part, where soft 2R and 1R1V are combined together in the same way
in both schemes.

The only subtle point is the term b0
1
ε2

left over from adding 2R soft and 1R1V contri-
butions. It comes from integrating over the ln q

µR
term in the gluon self-energy, and in the

MC scheme it builds up an αs dependence for some kinematic variable. Which variable?
Changing from one choice of q to another may generate an extra NLO term in the kernel (in
MC scheme). Our preliminary study shows that taking transverse momentum as q is com-
patible with CFP, that is the Vg diagram contribution is then identical in MC and CFP.
The contribution from the diagrams Yg and Bx discussed in the next section, will contribute
the same way in both schemes, due to the lack of any internal collinear singularities.

3.7 Gluon interference diagram - Yg

The Monte Carlo distribution for the gluon interference diagram of figure 1(d) (Yg) is given
by:

W̃ Y g(k1, k2) = W̃ Y g1(k1, k2) + W̃ Y g1(k2, k1),

W̃ Y g1(k1, k2) =
2

1− x

(1
2
CACF

)( αS
2π2

)2 a2
1a

2
2

q̃4(a1, a2)

×
[
T Y g0 + T Y g1

a1 · a2

a2
1

+ T Y g3

a2
2 − a2

1

a2
+ T Y g4

a2
2(a1 · a2)− a4

1

a2
1a2

]
,

(3.44)

21The remaining uncancelled part ∼ CAαs
π

11
12

1
ε2

is related to the running coupling constant.
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where:

T Y g0 = −2α2
1 + (5− 4x)α1 + 2(x2 + 2x− 2) +

4x3 − 2x2 + 3x− 1
α2

+
x2 − x+ 2

α1
,

T Y g1 = 2α2
1 − 2(3− x)α1 + 2(3− x) +

2(x3 − x2 + 2x− 2)
α1

,

T Y g3 = −4(2− x) + 3α1 +
3x2 − 5x+ 8

α1
+

2x2 + x+ 1
α2

+
4(x3 − x2 + x− 1)

α2
1

,

T Y g4 = 2(3− x)− 2α1 −
2(x2 − 2x+ 3)

α1
− 4(x3 − x2 + x− 1)

α2
1

.

(3.45)

The expression for the contribution of the Yg diagram to the NLO kernel is equal to (we
include both factors 1/2! from BE and 2 due to interference):

GY g(Q, x) =
∫
dΦ4(k1)dΦ4(k2)W̃ Y g(k1, k2) δ1−x=α1+α2 θmax{a1,a2}<amax

. (3.46)

The integrand only has the familiar scale singularity which can be extraced in standard
way as a logarithm. Then the integrals over transverse components take form:

GY g(Q, x) = ln
Q

q0

4
1− x

(1
2
CACF

)(αS
2π

)2
∫
dα1

α1

dα2

α2
δ(1− x− α1 − α2)

×
{
T Y g0

α1α2

2x
− T Y g1

α2
1α2

2x(1− α1)
+ T Y g3

α1α2(α1 − α2)
2x(1− x)

+ T Y g4

[
− α2

1

2
ln
(

(1− x)(1− α1)
xα1

)
− α1α2(3α2

1 − 2α1 + α2)
2x(1− x)(1− α1)

]}
.

(3.47)

After the final integration over αi variables we obtain

GY g(Q, x) = ln
Q

q0
PY g(x),

PY g(x) =
(αS

2π

)2
(

1
2
CACF

){
1 + x2

1− x

[
8I1 + 16I0 − 8I0 ln

(1− x
x

)
− 2 ln2(x)

−4 ln2(1− x) + 4 ln(x) ln(1− x)− 3 ln(x) + 16 ln(1− x)− 9− 4Li2(x)
]

+(1 + x) ln(x) + 3(1− x) +
2

1− x

}
. (3.48)

Gluon interference diagram Yg features both double and single logarithmic IR diver-
gences (I1 and I0). Of course, they must cancel when all diagrams are added. Cancellations
occur for 2R diagrams not only on the inclusive integrated level but already on the ex-
clusive unintegrated level, see [35]. We can see them explicitly by adding inclusive kernel
contributions for gluon interference diagram Yg (3.48), subtracted gluon pair production
diagram Vg (3.42) and part of gluonstrahlung interference diagram Bx (3.23) proportional
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to 1
2CACF colour factor:

PY g(x)+P
V g
sub(x)+PBx(x) =

(αS
2π

)2
(

1
2
CACF

)
×
{

1+x2

1−x

[
− 4 ln(x) ln(1−x)+

13
3

ln(x)+
4π2

3
− 149

9
−4Li2(x)

]
−3(1 + x) ln(x) + 3(1− x) +

2
1− x

+
4
3

x

1− x

}
. (3.49)

The above expression for the sum of 2R contribution with colour factor equal 1
2CACF is

free from double and single logarithmic IR divergences (I1 and I0), as expected.

4 Other non-singlet diagrams

The contributions to NLO kernels from diagrams displayed in figure 1(c), figure 1(f) and
figure 1(g) will be presented in the following. They will be referred to as Vf, Yf and Xf
diagrams respectively. As discused in the introduction, before all singlet class diagrams
are included, the contributions from the interference diagrams Xf and Yf should enter the
MC code in the inclusive form.

4.1 Interference diagram Xf

The crossed-ladder diagram Xf contributes the following distribution

W̃Xf (k1, k2) =
(
C2
F −

1
2
CACF

)( αS
2π2

)2

× a2
1a

2
2

q̃4(a1, a2)

(
TXf0 + TXf12 cos2 φ+ TXf1

a2

a1
cosφ+ TXf2

a1

a2
cosφ

) (4.1)

to the quark-antiquark kernel, where:

TXf0 =− (α1 − α2)2x

(α1 − 1)(α2 − 1)
, TXf12 = 2(x2 + 1)

α1α2

(α1 − 1)(α2 − 1)
, (4.2)

TXf1 = (x+ 1)
α2(α2

1 + α1α2 − α1 + α2)
(α1 − 1)(α2 − 1)

, TXf2 = (x+ 1)
α1(α2

2 + α1α2 + α1 − α2)
(α1 − 1)(α2 − 1)

.

The integrated distribution is equal to:

P
Xf
qq̄ (x) =−

(αS
2π

)2
(
C2
F −

1
2
CACF

)[
4(1 + x) ln(x) + 8(1− x)

+
1 + x2

1 + x

(
2 ln2(x)− 4 ln(1 + x) ln(x) + 4Li2

(
x

1 + x

)
− 4Li2

(
1

1 + x

))] (4.3)

and the contribution to the NLO kernel equals:

GXf (Q, x) = ln
Q

q0
P
Xf
qq̄ (x). (4.4)

The above agrees with [12] up to the − sign which is a matter of convention.
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4.2 Fermion interference diagram - Yf

The differential distribution for the fermion interference diagram Yf of figure 1(f) reads:

W̃ Y f =
2

1− x

(
C2
F −

1
2
CACF

)( αS
2π2

)2 a2
1a

2
2

q̃4(a1, a2)

×
[
T Y f0 + T Y f1

a1 · a2

a2
1

+ T Y f3

a2
2 − a2

1

a2
+ T Y f4

a2
2 (a1 · a2)− a4

1

a2
1 a2

]
,

(4.5)

where:

T Y f0 =
1− 4α1α2 − α2

2 + 2α1α
2
2

1− α1
,

T Y f1 =
2α2

(
1− 2α1α2 − α2

2

)
1− α1

,

T Y f3 =
2α3

2 + 3α1α
2
2 − 4α2

2 + 4α2
1α2 − 4α1α2 + 2α2 − 2α2

1 + α1

(1− α1)α1
,

T Y f4 =
2α2

(
−2α2

1 + 2(1− α2)α1 − α2
2 + 2α2 − 1

)
(1− α1)α1

.

(4.6)

The contribution of the Yf interference diagram to the inclusive kernel (bare PDF) is given
by (including interference factor 2):

GY f (Q, x) = ln
Q

q0
PY f (x),

PY f (x) =
(αS

2π

)2 (
C2
F −

1
2
CACF

)
×
{

1 + x2

1− x

[
2 ln2(x)− 4 ln(x) ln(1− x) + 3 ln(x) +

2π2

3
− 4Li2(x)

]
+ 15(1− x) + (1 + x) (1 + 7 ln(x))

}
.

(4.7)

This result agrees with that of ref. [46],22 the difference in sign can be attributed to a
different definition of space dimension (n = 4− 2ε, ε being negative as opposed to CFP).

4.3 Fermion pair production diagram - Vf

The fermion pair production diagram Vf of figure 1(c) features an internal collinear singu-
larity when the mass of the produced pair goes to zero. The kinematical structure of the
Vf graph is quite similar to that of the gluon pair production diagram Vg. The n = 4 + 2ε
dimensional distribution for the Vf diagram reads:

W̃ V f =
4

(1− x)2

(1
2
NFCF

) 1
(2π)4ε

( αS
2π2

)2 a2
1a

2
2

q̃4(a1, a2)

×
[
T V f0 + T V f1 (ε)

a2
1

a2
+ T V f2 (ε)

a2
2

a2
+ T V f3

(a2
1 − a2

2)2

a4

]
,

(4.8)

22The authors use a different regularization technique. In case of the Yf diagram, however, both methods

give the same result, as explained in [46].
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where:

T V f0 = −2α2
1 + 2(1− x)α1 − (1− x)(1 + x),

T V f1 (ε) = −2(1 + x)α1 + 2x(1− x) +
(1− x)(1 + x2)

α2
+ ε

(1− x)3

α2
,

T V f2 (ε) = 2(1 + x)α1 − 2(1− x) +
(1− x)(1 + x2)

α1
+ ε

(1− x)3

α1
,

T V f3 = −2x.

(4.9)

The contribution of this diagram integrated in n = 4 + 2ε dimensions reads:

ΓV f =
1
2NFCF

2ε

(αS
2π

)2 1 + x2

1− x

[
2
3

(
1
ε

+ 2 ln
(

Q2

4πµ2

)
+ 2γ

)
+

8
3

ln(1− x)− 2
3

ln(x)− 10
9

]
.

(4.10)

For exclusive modeling of this diagram we need to deal with its internal collinear singularity
in a similar way as for the gluon pair production diagram Vg. The following counterterm

W̃ V f
CT =

4
(1− x)2

(1
2
NFCF

) 1
(2π)4ε

( αS
2π2

)2

× a2
1a

2
2

q̃4(amax, amax)

[
(T V f1 (ε) + T V f2 (ε))

a2
max

a2
+ T V f3

(a2
1 − a2

2)2

a4

] (4.11)

can be used both for the MC purpose in n = 4 and for combining real and virtual contribu-
tions. In the latter case, we decompose the Vf contribution into a part entering Monte Carlo
(ΓV f − ΓV f CT ) + ΓV f CTa>κamax

and an unresolved part ΓV f CTa<κamax
required for the cancellation

of double poles from the virtual contributions. For completeness we give the subtracted
contribution of the Vf diagram to the NLO PDF:

GV fsub(Q, x) =
∫
dΦ4(k1)dΦ4(k2)

[
W̃ V f − W̃ V f

CT

]
δ1−x=α1+α2θQ>amax>q0 = ln

Q

q0
P
V f
sub(x),

P
V f
sub(x) =

(αS
2π

)2
(

1
2
NFCF

)
1 + x2

1− x

[
14
9
− 4

3
ln(x)

]
. (4.12)

5 Summary and outlook

The main result of this work is a complete collection of 2-real parton (quark, gluon) dif-
ferential (unintegrated) distributions, which enter calculations of the NLO DGLAP non-
singlet evolution kernels, in a form ready for the use in the Monte Carlo implementation
of the ladder (also referred to as NLO parton shower MC). The distributions are given
in eqs. (3.19), (3.24), (3.38), (3.44), (4.1), (4.5), (4.8). These distributions in the fully
differential form are not available in the literature.

We also present the differential distribution of the collinear soft counterterms, which
are used to subtract internal singularities for some diagrams. These subtractions are also
present in the MC weights. The MC collinear soft counterterm distributions are defined in
eqs. (3.27), (3.41).
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Furthermore, we present analytical integration results. They are presented as the con-
tributions to evolution kernels from the same 2-real parton differential distributions listed
above, see for example eqs. (3.37) for all bremsstrahlung diagrams. In case of diagrams
with internal collinear singularities, subtractions of the MC collinear counterterms is done.
For certain diagrams it was possible to compare the integration with available published
results of refs. [12, 46, 47] and agreement was found.

The QCD evolution of the NLO ladder implemented in the MC is slightly different
from that of standard MS, as defined and implemented in Curci-Furmanski-Petronzio
paper [12]. For instace, the differences between MC and CFP schemes are discussed as far
as it is possible for the 2-real contributions. They are typically present in the diagrams
with internal, collinear divergences, see for instance eq. (3.36). The complete discussion of
this issue is beyond the scope of the present work — it will be completed when diagrams
with 1 real and 1 virtual corrections are added into the game in the forthcoming work.
Nevertheless, even incomplete results provide us important insight into the differences
between NLO (integrated) kernels of MC and CFP MS schemes.23 This analysis will also
be a practical outcome of the entire project.

We did not explicitly show results of the numerical cross-checks of the analytical results.
Let us only mention that all analytical integration results in the paper were cross-checked
(up to 4-digits) by means of the MC numerical integration using FOAM program [48] within
the MCdevelop system [49].

Summarizing, the present work marks an important step forward on the way to the
implementation of the complete NLO DGLAP ladder in the Monte Carlo form.
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A Gluon pair production diagram - Vg

Let us present details of the calculation of the evolution kernel contribution for the Vg
diagram. First, we shall show the calculation for Vg subtracted with the counterterm of
eq. (3.43) in n = 4, then we shall show how to switch to the MC counterterm of eq. (3.41)
and finally we will integrate Vg over the collinear part of the phase space, a < κamax, in
n = 4 + 2ε dimensions.

23Luckily, all these differences are coming from small subset of diagrams and are relatively simple.
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A.1 Vg-subtracted

The difference of Vg and the counterterm of eq. (3.43) has no collinear divergence and in
n = 4 dimensions reads:

GV g−CT (Q, x) = ln
Q

q0

4CACF
(1− x)2

(αS
2π

)2
∫
dα1

α1

dα2

α2
δ1−x=α1+α2

∫ 2π

0

dφ

2π

×
{∫ 1

0

dy1

y1

[
y2

1

q̃4(y1, 1)

(
T V g0 +

T V g1 y2
1 + T V g2

ã2(y1, 1)
+ T V g3

(y2
1 − 1)2

ã4(y1, 1)

)
− y2

1

q̃4(1, 1)

(
T V g1 + T V g2

ã2(y1, 1)
+ T V g3

(y2
1 − 12)2

ã4(y1, 1)

)]
+
∫ 1

0

dy2

y2

[
y2

2

q̃4(1, y2)

(
T V g0 +

T V g1 + T V g2 y2

ã2(1, y2)
+ T V g3

(1− y2
2)2

ã4(1, y2)

)
− y2

2

q̃4(1, 1)

(
T V g1 + T V g2

ã2(1, y2)
+ T V g3

(1− y2
2)2

ã4(1, y2)

)]}
, (A.1)

where ã2(y1, y2) = y2
1 + y2

2 − 2y1y2 cosφ12 is a dimensionless function, T V g1 = T V g2+ + T V g2−
and T V g2 = T V g2+ − T

V g
2− . Performing integrations over the transverse momenta variables φ,

y1 and y2 yields:

GV g−CT (Q, x) = ln
Q

q0

4CACF
(1− x)2

(αS
2π

)2
∫
dα1

α1

dα2

α2
δ1−x=α1+α2

×
{
T V g0

α1α2

2x
+ T V g1

[
α2

1α
2
2

2(1− x)2

(
ln
(

(1− x)2

xα1α2

)
− 1
)

+
α1α

3
2

2x(1− x)2

]
+ T V g2

[
α2

1α
2
2

2(1− x)2

(
ln
(

(1− x)2

xα1α2

)
− 1
)

+
α3

1α2

2x(1− x)2

]
+ T V g3

[
α1α2(α2

1 + α2
2)

2(1− x)
+
α1α2(α3

1 + α2
1α2 + α1α

2
2 − 2α1α2 + α3

2)
2x(1− x)

+
α1α2(α2

1 + α2
2)

2(1− x)2
+

α2
1α

2
2

(1− x)2
ln
(

(1− x)2

xα1α2

)]}
. (A.2)

Finally the αi integrations result is:24

GV g−CT (Q, x)= ln
Q

q0
CACF

(
2αS
π

)2 1
8

{
1 + x2

1− x

[
− 2I1 − 2I0 + 2I0 ln(1− x)− 2I0 ln(x)

+ln2(1−x)− 2 ln(x) ln(1−x)− 2 ln(1−x)+
11
6

ln(x)+
π2

3
− 25

18

]
− 1

2
(1−x)

}
.

(A.3)

A.2 Two counterterms for Vg

For various purposes it is useful to calculate the contribution from both counterterms of
eqs. (3.43) and (3.41) in n = 4 with the cutoff |a| > κamax (ã > κ). Let us start with the

24We always implicitly use Principal Value type of regularization for α integrals.
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φ θ

Figure 3. The disc represents the region |a1| < |a2|. The dimensionless ratio of y = |a1|/|a2| and
φ, the relative angle between a1 and a2, are shown. Alternative variables (ã, θ) are also shown.

counterterm of eq. (3.43). Introducing dimensionless variables yi = ai/amax, ã = |a|/amax

and performing integration over the overall scale amax we obtain:

GCTã>κ = ln
Q

q0

4CACF
(1− x)2

(αS
2π

)2
∫
dα1

α1

dα2

α2
δ1−x=α1+α2

∫
dφ

2π

×
[ ∫ 1

0
dy1

y1

q̃4(1, 1)

(
T V g+

ã2(y1, 1)
+ T V g3

(y2
1 − 1)2

ã4(y1, 1)

)
+
∫ 1

0
dy2

y2

q̃4(1, 1)

(
T V g+

ã2(1, y2)
+ T V g3

(1− y2
2)2

ã4(1, y2)

)]
θã>κ.

(A.4)

We need to remember that the κ cutoff is infinitesimal and all terms O(κ) are neglected.
Both y1 and y2 integrals are equal because ã2(y1, y2) is symmetric and q̃2(1, 1) = (1−x)2

α1α2

does not depend on yi.

GCTã>κ = ln
Q

q0

8CACF
(1− x)4

(αS
2π

)2
∫
dα1dα2α1α2δ1−x=α1+α2

×
∫ 2π

0

dφ

2π

∫
dy1y1

(
T V g+

ã2(y1, 1)
+ T V g3

(y2
1 − 1)2

ã4(y1, 1)

)
θã>κ.

(A.5)

The integration over α factorizes from the y and φ integrals, hence it is performed sepa-
rately. Moreover, because of the cutoff on ã2 it is convenient to change variables. Instead
of (y, φ) variables we use (ã, θ) depicted in figure 3. The jacobian for this transformation is
equal to ã/

√
1 + ã2 − 2ã cos θ. The two integrals above are calculated separately. Firstly,

1
2π

∫ 2π

0
dφ

∫ 1

0
dy

y

1 + y2 − 2y cosφ
θ(ã > κ) =

1
2π

∫ 2

κ

dã

ã
2
∫ arccos(ã/2)

0
dθ

=
1
π

∫ 2

κ
dã

arccos(ã/2)
ã

=
1
2

ln
1
κ

+O(κ)
(A.6)
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and next

1
2π

∫ 2π

0
dφ

∫ 1

0
dy

y(1− y2)2

(1 + y2 − 2y cosφ)2
θ(ã > κ)

=
1

2π

∫ 2

κ
dã 2

∫ arccos(ã/2)

0
dθ

[
ã− 4 cos θ +

4 cos2 θ

ã

]
=

1
π

∫ 2

κ
dã

[
ã arccos(ã/2)− 3

√
1− ã2/4 +

2
ã

arccos(ã/2)
]

= ln
1
κ
− 1 +O(κ).

(A.7)

Combining both parts together we obtain:

GCTã>κ = ln
Q

q0

8CACF
(1− x)4

(αS
2π

)2
∫

1−x=α1+α2

dα1dα2 α1α2

[
T V g+

1
2

ln
1
κ

+ T V g3

(
ln

1
κ
− 1
)]
. (A.8)

After performing the α-integration the final result for the first counterterm of eq. (3.43)
reads:

GCTã>κ = ln
Q

q0
PCTã>κ(x),

PCTã>κ(x) =
(αS

2π

)2
(

1
2
CACF

)[
1 + x2

1− x

(
4I0 + 4 ln(1− x)− 11

3

)
4 ln

1
κ

+
4
3

(1− x)− 4
3

1 + x2

1− x

]
.

(A.9)

The integration for the counterterm of eq. (3.41) representing the double gluon distri-
bution in the Monte Carlo proceeds for the same phase space quite similarly and the final
results reads:

PKã>κ(x) =
(αS

2π

)2
(

1
2
CACF

)
1 + x2

1− x

(
4I0 + 4 ln(1− x)− 11

3

)
4 ln

1
κ
, (A.10)

The difference between the two counterterms is, of course, colliner-convergent and it
reads

PK−CT (x) = PKã>κ(x)− PCTã>κ(x) =
(αS

2π

)2
(

1
2
CACF

)[
4
3

1 + x2

1− x
− 4

3
(1− x)

]
. (A.11)

The above is used to correct the Vg subtracted result of eq. (A.3) in order to obtain the
result of eq. (3.42).

A.3 2R collinear singularity of Vg in n-dimensions

For the purpose of combining the 2R contribution with virtual corrections (gluon self-
energy) it is useful to calculate the contribution to Γ, bare PDF, or PDF of the MC in
n = 4+2ε dimensions, in the collinear region |a| < κamax. Let us start from the expression
where dimensionless variables yi = ai/amax are already introduced and the integration over
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amax is performed, giving the 1
ε factor:

ΓCTã<κ = PP
{

4CACF
(1− x)2

Q4ε

µ4ε

1
4ε

(αS
2π

)2 Ω2+2ε

(2π)2+4ε

∫
dα1

α1

dα2

α2
(α1α2)2εδ1−x=α1+α2

×
∫
dΩ2+2ε

[ ∫ 1

0
dy1

y1

q̃4(1, 1)

(
T V g+ (ε)
ã2(y1, 1)

+ (1 + ε)T V g3

(y2
1 − 1)2

ã4(y1, 1)

)
+
∫ 1

0
dy2

y2

q̃4(1, 1)

(
T V g+ (ε)
ã2(1, y2)

+ (1 + ε)T V g3

(1− y2
2)2

ã4(1, y2)

)]
θã<κ

}
.

(A.12)

The two integrals over y1 and y2 are equal, hence:

ΓCTã<κ = PP
{

4CACF
(1− x)4

Q4ε

µ4ε

1
4ε

(αS
2π

)2 Ω2εΩ2+2ε

(2π)2+4ε

∫
dα1dα2(α1α2)1+2εδ1−x=α1+α2

× 2
∫ π

0
dθ(sin θ)2ε

∫ 1

0
dy y

(
T V g+ (ε)
ã2(y, 1)

+ (1 + ε)T V g3

(y2 − 1)2

ã4(y, 1)

)
θã<κ

}
.

(A.13)

One more time we see that the α integration factorizes. We start the integration with y

and φ and calculate them separately for the 1/ã2 and 1/ã4 parts. We use the variables
(ã, θ) introduced before instead of (y, φ), then:

J1 = 2

π∫
0

dφ

1∫
0

dy
y(sinφ)2ε

ã2(y, 1)
θã<κ = 2

κ∫
0

dã

arccos(ã/2)∫
0

dθ ã2ε−1

(
sin θ√

1 + ã2 − 2ã cos θ

)2ε

. (A.14)

The ε pole is extracted in form of ã2ε−1 so we can perform the ε expansion of the rest of
the above expression. We also use an additional approximation, since a is smaller then the
cutoff κ and we are only interested in logs of κ we can fix the integration limits of the theta
integral as 0 and π/2, then:

J1 = 2
∫ κ

0
dã ã2ε−1

[
π

2
+ε

(
2ã−π ln(2)

)]
=π

(
1
2ε

+ ln(κ)− ln(2)
)

+O(κ)+O(ε), (A.15)

where we performed expansions in ε and κ. Performing the same operations for the 1/ã4

term (the same order for expansions and integrations) we obtain:

J2 = 2
∫ π

0
dφ

∫ 1

0
dy

y(1− y2)2(sinφ)2ε

ã4(y, 1)
θ(ã < κ)

= 2
∫ κ

0
dã

∫ π/2

0
dθ ã2ε−1(2 cos θ − ã)2

(
sin θ√

1 + ã2 − 2ã cos θ

)2ε

= 2π
(

1
2ε

+ ln(κ)− ln(2)− 1
2

)
+O(κ) +O(ε).

(A.16)
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Finally, we sum up both contributions and perform the α integration obtaining:

ΓCTã<κ =
1
2ε

(αS
2π

)2
(

1
2
CACF

)
×
{

1 + x2

1− x

[(
1
2ε

+ ln
(

Q2

4πµ2

)
+ γ − ln

1
κ

)
2
(

4I0 + 4 ln(1− x)− 11
3

)
+ 8I1 + 8I0 ln(1− x) + 12 ln2(1− x)− 44

3
ln(1− x)− 4π2

3
+

134
9

]
+ (1− x)

(
4I0 + 4 ln(1− x)− 11

3

)}
.

(A.17)

The above result will be useful for combining the 2R contribution from Vg with the virtual
corrections.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribution,
and reproduction in any medium, provided the original author(s) and source are credited.
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