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1 Introduction

Green-Schwarz sigma models (GSσM) on the semi-symmetric spaces PSU(2,2|4)
SO(4,1)×SO(5) ⊃

AdS5 × S5 [1] is known to be classically integrable [2]. Similarly, any such GSσM on

semi-symmetric space is classically integrable as well [3]. The existence of the infinite set

of conserved charges depends on the boundary conditions of the string. Usually in this

context, the boundary conditions are taken to be either periodic, or the string’s length

being taken to infinity, where suitable boundary conditions are fixed. When considering

finite open strings, the quantities that are conserved for closed strings are in general no

longer conserved, since the monodromy matrix that generates the charges is not conserved.

In some cases, an infinite set of conserved charges can be generated from of an object

that is constructed using the transition matrix and reflection matrices, and the model

remains integrable. These constructions were introduced first by Sklyanin in [4, 5], and

were used to exhibit integrability of the affine Toda theory [6] and the O(N) non-linear
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sigma-model [7] on the half infinite line. In [8] the construction was generalized for the

principal chiral model (PCM) on the finite line (open strings), and was used to find

integrable D-brane configurations for the bosonic sector of AdS5 × S5 background. Some

of the D-brane configurations, such as the maximal giant graviton, were shown to be

integrable, while the method failed in other cases such as the AdS4 × S2 configuration.

The success of the construction is only a sufficient condition for integrability, thus a failure

of the construction does not imply that the model is not integrable. While analyzing the

bosonic sector, the fermionic sector was ignored.

In this paper we generalize the analysis of [8] in two directions. First, we consider

the complete sectors including the fermionic degrees of freedom, i.e. we consider the

GSσM on supercoset backgrounds. Second, we do not limit ourselves to using reflection

matrices, rather we consider more general boundary conditions involving all involutive

automorphisms of the superalgebra. We express the boundary conditions in terms of

relations between the Maurer-Cartan one form’s components with respect to the Z4

automorphism. We find that in case where the boundary conditions break half of the

supersymmetry, they can be written as

a(z) = Ω(ā(z−1)) , (1.1)

where a(z) is the flat connection in the fixed frame, z is the spectral parameter, a = aτ+aσ,

ā = aτ − aσ and Ω is an involutive metric preserving automorphism (not to be confused

with the Z4 automorphism). In these cases we can construct a generating function for an

infinite set of non-local conserved charges (similar to the methods described above).

We use the method to find integrable D-brane configurations for AdS5 × S5 and

AdS4 × CP3 backgrounds. In the case of AdS5 × S5 we find that the configurations

that were shown to be integrable in [8] (i.e. the maximal giant graviton and AdS5 × S3)

remain integrable when considering also the fermionic degrees of freedom. On the gauge

theory side, configurations of open strings ending on giant gravitons are known to have

integrable structure [9–12].1 In addition, we show that the AdS4 × S2 configuration is

integrable by using outer automorphism of the PSU(2, 2|4) superalgebra. On the gauge

theory side, an evidence for integrability of the AdS4 × S2 configuration at weak coupling

was presented in [18]. However, attempters to prove integrability at strong coupling

were not successful [8]. In [19] it was suggested that the integrable structure found at

one-loop in [18] is accidental. Recently, it was realized in [20–22] that this configuration

is indeed integrable using achiral boundary conditions in the scattering theory and achiral

automorphism for the PCM. We will find rather general solutions for automorphisms and

construct more examples of integrable D-brane configurations.

The paper is organized as follows. In section 2 we construct a class of boundary

conditions for the GSσM. We check the consistency of the boundary conditions with by

analyzing kappa symmetry and supersymmetry. In section 3 we construct the generating

function for the conserved charges, and show that the existence of such a function is

1See also [13–16] for some recent developments and [17] for a recent review on open boundaries and

references therein.
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equivalent to the boundary conditions found in section 2 if half of the supersymmetry is

conserved. In section 4 we use the construction for the AdS5 × S5 background and in

section 5 for the AdS4×CP3 background. Section 6 is devoted to a discussion and outlook.

Details of the PSU(2, 2|4) and OSP(6|4) superalgebras are given in appendices A and B,

respectively. In appendix C we provide a parameterizations of the AdS5 × S5 background.

2 Boundary conditions for Green-Schwarz sigma-models

The GSσM action on a semi-symmetric spaces G/H is given by [1]

S =

∫

d2σStr(J (2) ∧ ∗J (2) + J (1) ∧ J (3)) , (2.1)

where J = g−1dg, g ∈ G is the Maurer-Cartan one-form, and

J (a) =
1

4
(1 + (−i)aΩ̂ + ((−i)aΩ̂)2 + ((−i)aΩ̂)3)J ,

with a = 0, .., 3 and Ω̂ is the Z4 automorphism map.

Next we derive the EOM’s and find the boundary term. We note that

δJ = δ(g−1dg) = −g−1δgJ + g−1dδg = [J,∆] − ∆d(·) + d(∆·) , (2.2)

where we defined ∆ ≡ g−1δg. Therefore,the variation of the action is

δS=

∫

Str

(

δJ ∧ (2 ∗ J (2) + J (3) − J (1))

)

(2.3)

=

∫

Str

(

−∆(J∧(2∗J (2)+J (3)−J (1))+(2∗J (2)+J (3)−J (1))∧J+d(2∗J (2)+J (3)−J (1)))

+ d(∆(2 ∗ J (2) + J (3) − J (1)))

)

.

The equations of motion read

d ∗ J (2) + J (0) ∧ ∗J (2) + ∗J (2) ∧ J (0) + J (3) ∧ J (3) − J (1) ∧ J (1) = 0 , (2.4)

J (2) ∧ (∗J (3) − J (3)) + (∗J (3) − J (3)) ∧ J (2) = 0 ,

J (2) ∧ (∗J (1) + J (1)) + (∗J (1) + J (1)) ∧ J (2) = 0 ,

where we made used the MC equations, dJ + J ∧ J = 0. The boundary term is

δSB =

∫

Str

(

d(∆(2 ∗ J (2) + J (3) − J (1)))

)

(2.5)

=

∫

dτStr

(

∆(−2
√
−hJ (2)

σ − J (3)
τ + J (1)

τ )

)
∣

∣

∣

∣

σ=π

σ=0

,

where h is the determinant of the induced metric hαβ(τ, σ). Let us define Jδ ≡ ∆ = g−1δg,

that we find in the conformal gauge

δSB =

∫

dτStr

(

− 2J
(2)
δ J (2)

σ − J
(1)
δ J (3)

τ + J
(3)
δ J (1)

τ

)∣

∣

∣

∣

σ=π

σ=0

. (2.6)
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Next, we express boundary conditions for which the boundary term vanishes in terms

of the currents. We use conformal coordinates, z = τ +σ, z̄ = τ−σ so that J ≡ Jτ +Jσ and

J̄ ≡ Jτ − Jσ. The boundary term (2.6) vanishes for the following boundary conditions:2

J (2) = Ω(J̄ (2)), J (1) = Ω(J̄ (3)), J (3) = Ω(J̄ (1)), at σ = 0, π (2.7)

with Ω a metric preserving involutive automorphism map3 (Str(Ω(A)Ω(B)) = Str(AB),

Ω2 = 1). These boundary conditions leave the action invariant. Equation (2.7) may be

summarized using the moving frame’s flat-connection A(z) as

A(z) − J (0) = Ω(Ā(z−1) − J̄ (0)) at σ = 0, π (2.8)

with4

A(z) − J (0) = zJ (1) + z−2J (2) + z−1J (3), (2.9)

Ā(z) − J̄ (0) = zJ̄ (1) + z2J̄ (2) + z−1J̄ (3).

z ∈ C the spectral parameter (not to be confused with the conformal coordinate z).

In order for this boundary condition to be consistent it should respect the kappa-

symmetry of the action. Kappa symmetry acts as g → geκ̂ [1, 3] with

κ̂ = [J (2)
α , κα(1)] + [J (2)

α , κα(3)] (2.10)

so the kappa-symmetry variation is ∆ = g−1δg = κ̂. If Ω(κ̂) = κ̂, the boundary term

vanishes. Let us act on (2.10) with Ω, then

Ω(κ̂) = Ω([J (2)
α , κα(1)−] + [J (2)

α , κα(3)+]) (2.11)

= [J (2)
τ ,Ω(κτ(1)−)] − [J (2)

σ ,Ω(κσ(1)−)] + [J (2)
τ ,Ω(κτ(3)+)] − [J (2)

σ ,Ω(κσ(3)+)],

where κα± = Pαβ± κβ = 1
2(hαβ ± ǫαβ/

√
−h)κβ . Requiring Ω(κ̂) = κ̂ we get

Ω(κ) = κ̄, with Ω2 = 1, and κ = κ(1)− + κ(3)+. (2.12)

Thus, we conclude that our boundary conditions (2.7) are consistent.5

Let us now consider the supersymmetry breaking. The supersymmetry transformation

is given by g → eǫg, ǫ = ǫ1 + ǫ3 ∈ g1̄, so g−1δg = g−1ǫg. On the boundary we should

have Ω(g−1δg) = g−1δg. We will encounter two types of automorphisms [31], one in which

Ω(AB) = Ω(A)Ω(B) and the second in which Ω(AB) = −Ω(B)Ω(A). In the first case,

if Ω(g) = g we should have Ω(ǫ) = ǫ which breaks half of the supersymmetry, since the

2Gluing conditions in CFT’s in terms of the currents were introduced in [23]. There are many cases

where the gluing conditions were given in terms of automorphisms in the analysis of D-branes, e.g. for

Gepner-models [24], WZW-models on group manifolds [25] and supergroup manifolds [26, 27], PCM’s on

symmetric spaces [28] etc.
3Note that the automorphism map Ω is not related to the Z4 automorphism which we denote by Ω̂.
4Taking A(z) is related to Ā(z−1) through a parity transformation [29].,Bena:2003wd,Beisert:2005bm
5We assumed that the automorphism acts as a linear transformation, see [31] for a classification of

superalgebras automorphisms.
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relation is linear. In the second case, if Ω(g) = −g−1 we also find that Ω(ǫ) = ǫ which

breaks half of the supersymmetry.

If the configuration breaks half of the supersymmetry as explained above, then equa-

tion (2.7) may be rewritten in the form

a(z) = Ω(ā(z−1)) at σ = 0, π (2.13)

with

a(z) = (z − 1)j(1) + (z−1 − 1)j(3) + (z−2 − 1)j(2), (2.14)

ā(z) = (z − 1)j̄(1) + (z−1 − 1)j̄(3) + (z2 − 1)j̄(2),

the flat connection in the fixed-frame and j(m) = gJ (m)g−1.

Finally, we note that the boundary conditions do not modify the Virasoro constraint

Str

(

J (2)
α J

(2)
β − 1

2
gαβg

γδJ (2)
γ J

(2)
δ

)

= 0 (2.15)

on the boundary.

3 Integrable D-brane configurations

Adding boundaries to (1+1)-dimensional integrable models (originally with periodic bound-

ary conditions) may break the integrable structure, since the monodromy matrix ceases to

be conserved. It is sometimes possible to construct a generating function for an infinite

set of conserved charges for models with boundaries by using the bulk transition matrix

together with appropriate reflection matrices [4, 5]. The construction was used for O(N)

sigma models on the half infinite line in [7], and was generalized to the finite line (open

strings) in [8] for the bosonic principal chiral model (PCM). In this section we generalize

the procedure for Green-Schwarz sigma-models (GSσM’s) on supercoset backgrounds.

The GSσM [1] has a flat-connection one-form a(z), namely da(z) + a(z) ∧ a(z) = 0

with z ∈ C the spectral parameter [2]. This property allows one to construct the transition

matrix given by [32]

T (σ2, σ1; z) = Pe
R σ2

σ1
dσaσ (σ;z)

, (3.1)

where P is the path ordering symbol. Using the flatness of a(z), it follows that the

transition matrix satisfies

∂τT (σ2, σ1; z) = aτ (σ2; z)T (σ2, σ1; z) − T (σ2, σ1; z)aτ (τ1; z). (3.2)

Defining the monodromy matrix Tγ(z) ≡ T (2π, 0; z), we see that if the boundary conditions

are periodic (namely, a(0; z) = a(2π; z)) then

∂τStr(Tγ(z)) = 0, (3.3)

so Str(Tγ(z)) is a generating function for integrals of motion. Note, that in fact these

boundary conditions imply Str(Tγ(z)
n) = 0 for any n ∈ Z+. Obviously, without the

– 5 –
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periodic boundary conditions the monodromy matrix is generally not conserved. Next we

describe how to construct a generating function for integrals of motion in the case of open

string boundary conditions.

We start by following the construction given in [8] (though we use different notations).

First we define the function

T (z) ≡ U0T
−1(π, 0; z−1)UπT (π, 0; z). (3.4)

The U0/π matrices are the reflection matrices at the two ends of the string. We take them

to be constant matrices as explained in [8]. Generally U may depend on z, but as we

explain at the end of the section, the relevant U ’s for our constructions are z-independent.

In [8] our T−1(π, 0; z−1) is denoted by a function TR, which is equivalent to our T−1 at

the bosonic level. Furthermore, note that we work with a Z4 coset sigma-model while

in [8] the PCM was analyzed, so the flat-connection takes a different form, and also our

string range is σ ∈ (0, π).

Next we show under what conditions Str(T (z)) is conserved. Using (3.2) we differen-

tiate (3.4) with respect to τ , so

∂τT (z) =U0T
−1(π, 0; z−1)Uπ

(

aτ (π; z)T (π, 0; z) − T (π, 0; z)aτ (0; z)

)

(3.5)

+ U0

(

aτ (0; z
−1)T−1(π, 0; z−1) − T−1(π, 0; z−1)aτ (π; z−1)

)

UπT (π, 0; z).

Requiring ∂τStr(T (z)) = 0 we find that

Uπaτ (π; z) − aτ (π; z−1)Uπ = 0, U0aτ (0; z
−1) − aτ (0; z)U0 = 0. (3.6)

As in the closed string, the boundary conditions (3.6) imply that ∂τStr(T (z)n) = 0, where

n is a positive integer. If we identify

ΩU(x) ≡ UxU−1, x ∈ g (3.7)

as an automorphism, then (3.6) defines a consistent boundary condition given that Ω2 = 1

and ΩU(g) = g. To be more precise, (2.13) with ΩU should also be satisfied so that the

action will be invariant. Throughout the analysis we assume that the reflection matrices

U are invertible. To summarize, we find that if

ΩU0
(aτ (0, z)) = aτ (0, z

−1), and ΩUπ(aτ (π, z
−1)) = aτ (π, z), (3.8)

the model is classically integrable. Plugging the GSσM’s flat-connection

a(z) = (z − 1)j(1) +
1

2
(z − z−1)2j(2) + (z−1 − 1)j(3) − 1

2
(z2 − z−2) ∗ j(2), (3.9)

where j(m) = gJ (m)g−1, in (3.8), we get the explicit relations for integrability

[U, j(2)τ ] = {U, j(2)σ } = 0, (3.10)

j(1)τ = U−1j(3)τ U, j(3)τ = U−1j(1)τ U, (3.11)

j(1)σ = −U−1j(3)σ U, j(3)σ = −U−1j(1)σ U, (3.12)

– 6 –
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with U2 = ±1. The last equation follows from the invariance of the action, or equivalently,

the EOM. If ΩU (g) = g, then the same equations apply for J (the moving frame current).

The result (3.8) calls for a more general condition for integrability, that is, we may con-

sider a general automorphisms not necessarily restricting ourselves to matrix conjugation.6

This is what we will do next. We define the matrices

T (π, 0; z) = P exp

(
∫ π

0
a(z)

)

, TΩ̃(0, π; z−1) = P exp

(
∫ π

0
Ω̃(a(z−1))

)

, (3.13)

with Ω̃ an automorphism map, and define a new object

T (z) ≡ U0T
−1
Ω̃

(π, 0; z−1)UπT (π, 0; z) (3.14)

(so taking Ω̃ to be the identity map, we return to the old definition (3.4)). Differentiating

Str(T (z)) as before, we end up with the integrability conditions

Uπaτ (π; z) − Ω̃(aτ (π; z−1))Uπ = 0, U0Ω̃(aτ (0; z
−1)) − aτ (0; z)U0 = 0. (3.15)

From now on we will consider only the σ = 0 boundary conditions since the σ = π boundary

conditions are equivalent. Let us also introduce the notation Ω(x) ≡ U0Ω̃(x)U−1
0 , which

is a composition of two automorphisms. Finally, combining the integrability conditions

together with consistency of the equations of motion we obtain the conditions

aτ (0; z) = Ω(aτ (0; z
−1)), aσ(0; z) = −Ω(aσ(0; z

−1)) (3.16)

In order for these boundary conditions to be consistent, it is obvious that Ω should be an

involutive automorphism. This definition is not restricted to similarity transformation au-

tomorphisms as the previous one. In the next section we will show that allowing a general

automorphism, changes significantly the classification of integrable boundary conditions.

Comparing to the boundary conditions we found for half-BPS D-branes, we conclude

that all half-BPS D-branes described by the gluing conditions, given in the previous

section, are also integrable.

Let us comment about the z-independence of U . The explicit relations (3.10)–(3.12)

follows from (3.8) by identifying the z-dependent coefficients of the flat-connection. This

means that unless we have the same coefficient functions in front of the Z4 graded one-forms,

they will have to vanish by the boundary conditions (both their σ and τ components). If

U depends on z, it will change the coefficients according to their charge under U , and we

do not find such U which will transform all the coefficient functions by just interchanging

between them up to some constants, in a way that is consistent with (2.13).

4 Integrable configurations for the AdS5 × S5 background

In this section we will first present some general results for the AdS5 × S5 background in

global coordinates. We will then take a closer look at the giant-graviton configuration in

6Automorphisms of superalgebras are classified in [31].
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order to demonstrate how the prescription for finding the integrable structure works. Next

we will consider the Karch-Randall configuration in some detail, since we will use there

a different type of automorphism involving the supertranspose operation, which allows

us to prove integrability of the configuration (some previous attempt to find integrable

structure using reflection matrices failed [8, 19], although recent attempts on the gauge

theory side [20] were successful, see also [21, 22]). We will outline general solutions for

allowed automorphisms and integrable D-brane configurations in AdS5 × S5. The required

details of the PSU(2, 2|4) superconformal algebra are given in appendix A.

4.1 The AdS5 × S5 bosonic background in global coordinates

The AdS5×S5 background metric in global coordinates is given by ds2 = ds2AdS5
+ds2S5 with

ds2AdS5
= dρ2 − cosh2 ρdt2 + sinh2 ρ(dα2 + sin2 αdβ2 + cos2 αdγ2), (4.1)

ds2S5 = dθ2 + sin θ2dφ2 + cos2 θ(dψ2 + sin2 ψdη2 + cos2 ψdϕ2). (4.2)

Concentrating on the bosonic sector, we have only the kinetic term in the action,

Str(J (2) ∧ ∗J (2)), where the H2 space is spanned by the P ’s (translation generators). In

order to get the desired metric we use the coset element representative g = gAdS5
gS5 with

gAdS5
= e−P0te−J13γeJ24βe−J14αeP1ρ, (4.3)

gS5 = e−J79φeP8ϕeJ56ηeP6ψeP7θ. (4.4)

The bosonic sector’s J (2) is given by

J (2) =P0 cosh ρdt + P1dρ+ P2 sinh ρ sinαdβ + P3 sinh ρ cosαdγ + P4 sinh ρdα (4.5)

+ P5 cos θ sinψdη + P6 cos θdψ + P7dθ + P8 cos θ cosψdϕ+ P9 sin θdφ.

The vielbeins are given by

e0t = cosh ρ, e1ρ = 1, e2β = sinh ρ sinα, e3γ = sinh ρ cosα, e4α = sinh ρ, (4.6)

e5η = cos θ sinψ, e6ψ = cos θ, e7θ = 1, e8ϕ = cos θ cosψ, e9φ = sin θ. (4.7)

We constructed the Pâ and Jâb̂ matrices using the 4×4 gamma matrices (given in (A.2))

and their commutators respectively, so we will be able to use their Clifford algebra when

computing their anti-commutation relations.

4.2 The maximal giant graviton D3-brane

The maximal giant graviton [33] is defined by the boundary conditions

ρ = 0, θ = 0, t = φ = φ(τ), (4.8)

and Neumann boundary conditions for the rest of the coordinates, so the D-brane geometry

is R
1 × S3. At the boundary, the bosonic sector’s current (4.5) is reduced to

J (2) = P0dt+ P1dρ+ P5 sinψdη + P6dψ + P7dθ + P8 cosψdϕ, (4.9)

– 8 –
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and in worldsheet components to

J (2)
τ = P0∂τ t+ P5 sinψ∂τη + P6∂τψ + P8 cosψ∂τϕ, (4.10)

J (2)
σ = P1∂σρ+ P7∂σθ. (4.11)

In order to satisfy the integrability conditions we should take U = aP0 + bJ7,9, where

a, b ∈ C are arbitrary for the moment (this result follows easily by using the commutation

relations together with the Clifford algebra). On the boundary [U, g] = 0, so the lower-case

j(2) = gJ (2)g−1 also satisfy

[j(2)τ , U ] = {j(2)σ , U} = 0. (4.12)

Next, we introduce the fermions. We take the super-coset representative to be

g = gF gB , gB = gAdS5
gS5 , gF = eF , (4.13)

where

F = θ ·Q = θIαα′aQIββ′bC
αβC ′α′β′

(iσ2)
abSIJ (4.14)

and

θIαα′1 = θIαα′ , θIαα′2 = 0, QIββ′1 = 0, QIββ′2 = −QIββ′ . (4.15)

α,α′, a and I are the AdS5-spinor, S5-spinor, chirality and internal indices respectively.

The 32×32 gamma matrices that act on the α,α′, a indices are tensor products of the α,α′

and a spaces (see appendix A). θ and Q have opposite chirality, while θ1 and θ2 have the

same chirality, and so do the Q’s. We take SIJ to be diagonal 2 × 2 matrix.

The current J decomposes to

J = g−1
B (g−1

F dgF )gB + g−1
B dgB , (4.16)

where we have already analyzed above the second term, and realized that gB on the bound-

ary commutes with U . The j
(1)
τ and j

(3)
τ should satisfy

j(1)τ = Uj(3)τ U−1, [U2, j(1)τ ] = [U2, j(3)τ ] = 0. (4.17)

In order for these relations to be satisfied, they should be satisfied for the moving frame’s

currents, namely

J (1)
τ = UJ (3)

τ U−1, [U2, J (1)
τ ] = [U2, J (3)

τ ] = 0. (4.18)

We note that the matrix transformation given by U , induces a transformation in the

spinor space7

UQIαα′aU
−1 = U

(s)
αα′a

ββ′bǫIJQJββ′b = (γA)α
β(γS)α′

β′

σa
bǫIJQJββ′b. (4.19)

We require F to be invariant under the similarity transformation (UFU−1 = F ), so the

θ’s should satisfy on the boundary

θββ
′b

J = θαα
′a

I U
(s)
αα′a

ββ′bǫIJ = −θγγ′cJ U
(s)
γγ′c

αα′aU
(s)
αα′a

ββ′b . (4.20)

7We use the ǫIJ symbol since Q1 and Q2 should transform we a relative sign. This can be seen we noting

that Q1

αα′ = iΣQ2

αα′ where Σ = diag(+, +, +, +,−,−,−,−), and [U, Σ] = 0.
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In order not to reduce further the number of degrees of freedom we should have

(U (s))2 = −1, with U (s) = γA ⊗ γS ⊗ σ.

The invariance of F on the boundary guarantees that [U, gF ] = 0 . The boundary

condition for ∂τθ is the same as (4.20), so the first condition in (4.18) is satisfied. Taking

the boundary condition for ∂σθ to be the same as (4.20) but with a minus sign on the

l.h.s. , then UJ
(1)
σ U−1 = −J (3)

σ is satisfied. Finally, the second part of (4.18) is satisfied if

U2
A = U2

S ∝ 14×4.

Since we chose the bosons and fermions boundary conditions such that

U∂τFU
−1 = ∂τF, U∂σFU

−1 = −∂σF, UFU−1 = F, UgBU
−1 = gB ,

it follows that the fermions contribution to J (2) does not modify (3.10).

These conditions fix the a and b coefficients up to normalization and relative sign to be

U = 2P0 − i23P5P6P8, (4.21)

in the superalgebra basis, and

U (s) ⊗ ǫ = Γ0Γ5Γ6Γ8 ⊗ ǫ = γ0 ⊗ γ5γ6γ8 ⊗ (iσ3) ⊗ ǫ, (4.22)

in the spinor basis, so the chirality is preserved, and U2 = −18×8, so all the conditions

for integrability are satisfied and consistent. We can identify the gamma-matrices indices

with the Neumann directions using the vielbeins given in (4.6), so 0, 5, 6, 8 are associated

with the t, η, ψ, ϕ directions respectively. The Majorana condition is also satisfied upon

the identification (4.20) will be explained later.

4.3 Karch-Randall D5-brane

Consider the Karch-Randall D5-Brane [34] wrapping AdS4 × S2. In the analysis of [8] it

is shown that applying the finite line integrability procedure fails for this configuration,

but recent attempts have shown that it is indeed integrable upon using twisted or achiral

boundary conditions [20–22]. We will show that this configuration is integrable by using

an automorphism of the form Ω(x) = −UxstU−1.

We use the parametrization given in appendix C for the Poincaré and spherical coor-

dinates, and take the boundary conditions

x2 = 0, θ7 = θ8 = θ9 = 0. (4.23)

The bosonic sector’s current J (2) in worldsheet coordinates is reduced to

J (2)
τ =

1

y
(P0∂τ t+ P1∂τx1 + P3∂τx3 − P4∂τy) + (P8∂τθ8 + cos θ8(P5∂τθ5)) (4.24)

J (2)
σ = P2

∂σx2

y
+ P9∂σθ9 + P6∂σθ6 + P7∂σθ7. (4.25)

The automorphism which respects the boundary conditions is

Ω(x) = −UxstU−1, U = 2P4 − 4P6P7. (4.26)
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U γ1 γ12 γ123 γ1234 γ12340

comm γ1 γ3, γ4, γ0 γ1, γ2, γ3 γ0 γ1, γ2, γ3, γ4, γ0

anti-comm γ2, γ3, γ4, γ0 γ1, γ2 γ4, γ0 γ1, γ2, γ3, γ4 ∅

Table 1. Commutation and anti-commutation of the gamma matrices. The first row represents

the different U matrices. The second (third) row gives the gamma matrices that (anti-)commutes

with U . The analysis is the same for the AdS and sphere’s 4 × 4 gamma matrices.

This automorphism transformation can be checked to be involutive, and satisfying

Ω(AB) = −Ω(B)Ω(A) and Ω(gB) = −g−1
B . The spinors transformation is given by

U (s) = γ5γ6 ⊗ γ0γ1γ3γ4 ⊗ 1 , (4.27)

and we see that the supertranspose operation interchanges the role of the two spinor indices,

α ↔ α′. In any case, these gamma indices correspond to the Neumann directions, as can

be read from the expressions for J (2) in appendix A.

4.4 Other integrable configurations

Any metric preserving involutive automorphism of the PSU(2, 2|4) superalgebra may serve

in principle for the gluing of the currents on the boundary. The automorphisms for simple

superalgebras were classified in [31]. We consider two types of automorphisms,

Ω(x) = UxU−1, Ωst(x) = −UxstU−1, U ∈ GL(4|4)0̄. (4.28)

Let us consider Ω first. In this case we represent the U matrix as a product of Pa matrices

plus a product of Pa′ matrices, that is U =
∏

a caPa+
∏

a′ ca′Pa′ ≡ UA+US with ca, ca′ ∈ C

for some set {a, a′}. The P matrices represent the 4× 4 gamma matrices (A.2), so we can

immediately find which P commutes or anti-commutes with U , see table 1. Using the rela-

tion γ4 ∼ γ0γ1γ2γ3, we can always use U ∼ γp+1,..,4 instead of U ∼ γ0,..,p. Then whenever

p is even, it is natural to consider U ∼ γp+1,..,4 since then the a = P +1, .., 4 directions are

the Neumann directions (the ones that commutes with U , so their translation symmetry

is not broken). Then, we see that the number of Neumann directions is always odd for the

AdS and sphere’s subspace, and so totally even for the entire space as should be for IIB.

Next we find the allowed U matrices. The consistency conditions are U2 = ±1,

Ω-should interchange generators H1 ↔ H3, so should have Ω̂(Ω(X1)) = −iΩ(X1) (where

Ω̂(X1) = iX1) and finally the Majorana condition should be preserved (since the total
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number of gamma matrices is even the chirality of the spinors is not changed). The second

condition implies

Ω̂(Ω(X1)) = Ω̂(UX1U−1) = iΩ̂(U−1)X1Ω̂(U) = iΩ̂(U)X1Ω̂(U−1) (4.29)

= iKU tK−1X1KU t−1K−1 = ikU tk−1X1kU t−1k−1

where we used U2 = ±1 in the third equality, and Ω̂(x) = −KxstK−1 (see appendix A).

We also defined

K =

(

C

iC

)

, k =

(

C

C

)

, Σ =

(

1

−1

)

, (4.30)

where C is the charge conjugation matrix defined in appendix A. Then it follows that U

must satisfy

kU tk−1 = ±UΣ. (4.31)

Then we can use the charge conjugation matrix properties, namely CγtµC
−1 = γµ with

C2 = −1, so Cγtµνρ...C
−1 equals γµνρ... for 1, 4 and 5 Lorentz indices and equals −γµνρ...

for 2 and 3 indices. Let us denote U =
(

UA 0

0 US

)

, so UA is a product of 1, 4 or 5 γ-matrices

and US a product of 2 or 3 γ-matrices, or vice-versa. As explained above we trade a

product of two and four γ-matrices with three and one γ-matrices respectively, so we are

left with (1,3), (3,1), (3,5) and (5,3) D-branes only (the notation gives the number of

dimensions the D-brane fills in the AdS and sphere subspaces.

Next we consider the Majorana condition. The odd generators satisfy QI†αα′ =

kQIαα′k−1, so if Q1†
αα′ = kQ1

αα′k−1, then applying Ω we have

Ω(Q1†
αα′) = Ω(k)Ω(Q1

αα′)Ω(k−1), (4.32)

but Ω(Q1†
αα′) is in H3 and should also satisfy

Ω(Q1†
αα′) = kΩ(Q1

αα′)k−1, (4.33)

so Ω(k) = ±k. This relation can also be written as

kUk−1 = ±U, or [k,U ] = 0 or {k,U} = 0. (4.34)

In practice it means that both UA and US should commute or anti-commute with C. Any

UA (US) which contain in its product of P generators P2 or P4 (P7 or P9) but not both

anti-commutes with C, else it commutes with C. Together with (4.31) it leaves us with

U =

{

(

Pa/Pabcde

Pa′b′c′/Pa′ b̃′c̃′

)

,

(

Pã

Pa′b′ c̃′

)

, (4.35)

(

Pabc/Pab̃c̃

Pa′/Pa′b′c′d̃′ẽ′

)

,

(

Pabc̃

Pã

)

}

,
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R
1,0 × S3 U = P0 + iP5,6,9 ρ = 0; θ = 0

R
0,1
+ × S3 U = P1 + P5,6,9 t = 0, α = 0; γ = 0, θ = 0

AdS3 × S1 U = P0,1,4 + iP8 γ = β = 0; θ = ψ = 0

H
3 × S1 U = P1,2,3 + P8 t = 0, β = 0; θ = ψ = 0

AdS3 × S5 U = P0,1,3 + iP5,6,7,8,9 α = 0

H
3 × S5 U = P1,2,3 + P5,6,7,8,9 t = 0, β = 0

AdS5 × S3 U = P0,1,2,3,4 + iP5,6,8 θ = 0

Table 2. Integrable half-BPS D-brane configurations for AdS5 × S5 with Ω(x) = UxU−1. We give

some of the integrable D-brane configurations with the gluing conditions involving Ω(x) = UxU−1

automorphism. The second column gives the U matrices in terms of the superalgebra generators

Pâ, the notation is Pa,b,c,... = (2Pa)(2Pb)(2Pc) . . .. For each boundary condition (3.6) is satisfied

with Ω(g) = g on the boundary.

where the notation is Pabc.. = PaPbPc . . .. The U2 = ±1 requirement fixes the relative

coefficients câ up to normalization, which leaves us with

U =

{

i

(

P0/P01234

iPa′b′c′/iPa′ b̃′ c̃′

)

,

(

Pa

Pa′b′c′/Pa′ b̃′ c̃′

)

,

(

Pã

Pa′b′ c̃′

)

, (4.36)

(

P0bc/P0b̃c̃

iPa′/iP56789

)

, i

(

Pabc/Pab̃c̃

Pa′/P56789

)

,

(

P0bc̃

iPã

)

, i

(

Pabc̃

Pã

)

}

We inserted a factor of i in front of some of the matrices so that all of them are hermitian.

The P ’s should be understood to be normalized by a factor of 2 for each P , namely

Pab.. = (2Pa)(2Pb) . . .. This class of half-BPS integrable D-branes is consistent with the

classification given in the literature e.g. [35, 36].

In table 2 we give some of the possible configurations with U satisfying the conditions

described above.

Next we consider the Ωst automorphism. First we note that in this case we should

have U = ±ΣU t in order for the automorphism to be involutive. Again Ωst should

interchange generators H1 ↔ H3, so we should have Ω̂(Ωst(X
1)) = −iΩst(X

1) (where

Ω̂(X1) = iX1). Also the chirality and the Majorana condition should be preserved. The

second condition implies

Ω̂(Ωst(X
1)) = −Ω̂(U−1)Ω̂(X1st)Ω̂(U) = iΩ̂(U)X1stΩ̂(U−1) ≡ iUX1stU−1. (4.37)

so we conclude that

Ω̂(U) = ±U−1, (4.38)

Similarly to the previous analysis, the Majorana condition requires

kUk−1 = ±U, or [k,U ] = 0 or {k,U} = 0. (4.39)

Applying these conditions on automorphisms with U =
∏

a caPa+
∏

a′ ca′Pa′ ≡ UA+US as

before, we find that the possible combinations are (0,2), (2,0), (2,4) and (4,2) branes. This
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AdS2 U = P3 + P7,9 α = β = γ = 0; θ = ψ = ϕ = 0

S2 ⊂ S5 U = P2,4 + iP6 ρ = 0, t = 0; θ6 = θ7 = θ9 = 0

H
2 U = P0 + iP7,9 t = 0, α = 0; θ = ψ = ϕ = 0

AdS2 × S4 U = P0,2 + P7 xi = 0; θ9 = 0

H
2 × S4 U = P0 + iP6,8 t = 0, α = 0; θ5 = 0

AdS4 × S2 U = P4 − P6,7 x2 = 0; θ5 = θ7 = θ8 = 0

H
4 × S2 U = P1,3 + iP6 t = 0; θ6 = θ7 = θ9 = 0

Table 3. Integrable half-BPS D-brane configurations for AdS5 × S5 with Ωst(x) = −UxstU−1.

We give some of the integrable D-brane configurations with the gluing conditions involving Ω(x) =

−UxstU−1 automorphism. The second column gives the U matrices in terms of the superalgebra

generators Pâ, the notation is Pa,b,c,... = (2Pa)(2Pb)(2Pc) . . .. For each boundary condition (3.6) is

satisfied with Ω(g) = −g−1 on the boundary.

result is also consistent with the classification of [35, 36]8 and preserve the chirality. As

for the previous type of automorphism, we can find several half-BPS integrable D-branes,

see table 3 for examples.

Again we summarizes the possible U ’s

U =

{

(

Pa/P01234

Pa′b′/Pã′ b̃′

)

,

(

Pã

Pã′b′

)

, (4.40)

(

Pab/Pãb̃

Pa′/P5,6,7,8,9

)

,

(

Pab̃

Pã′

)

}

,

where a, b = 0, 1, 3, ã, b̃ = 2, 4, a′, b′ = 5, 6, 8 and ã′, b̃′ = 7, 9. We do not give the relative

coefficient between the two block. Pa, Pã, Pab, Pãb̃, Pab̃ and P1,2,3,4,5 gives 2, 4, 4, 0, 2 and

2-dimensional Neumann boundary conditions respectively and similarly for the P ’s with

the primed indices.

5 Integrable configurations for the AdS4 × CP3 background

As for the AdS5 × S5 case we can analyze the AdS4 × CP3 background and find

integrable configurations. The AdS4 × CP3 background is constructed using the super-

coset OSP(6|4)
U(3)×SO(3,1) , which has Z4 grading structure and so is an integrable background,

see [37, 38]. First we present general results for this background for the bosonic sector

and then we examine the AdS3 × CP1 configuration. Finally, we carry out a more general

analysis and find more examples of integrable configurations.

The relevant superalgebra is OSP(6|4), the details are found in appendix B. The outer

automorphism for the OSP(2k|2n) superalgebra is [31] AdJk,n, with Jk,n ∈ GL(2k, 2n),

det Jk,n = −1, J2
k,n = 12k+2n and Jk,nB2k,nJk,n = B2k,n where B2k,n = diag(12k, Jn),

8Note, however, that the D(-1)-brane is not in this class of integrable boundary conditions.
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Jn =
(

0 1n

−1n 0

)

. So we consider the automorphism generally acting as Ω(x) = UxU−1 with

U ∈ GL(6|4)0̄.

5.1 The AdS4 × CP3 bosonic background in global coordinates

We write the AdS4 × CP3 metric in global coordinates as ds2 = ds2AdS4
+ 4ds2

CP3 with

ds2AdS4
=dρ2 − cosh2 ρdt2 + sinh2 ρ(dα2 + sin2 αdβ2) (5.1)

ds2
CP3 =dµ2 + cos2 µ sin2 µ

(

dψ − 1

2
cos θ1dϕ1 +

1

2
cos θ2dϕ2

)2

(5.2)

+
1

4
sin2 µ(dθ2

1 + sin2 θ1dϕ
2
1) +

1

4
cos2 µ(dθ2

2 + sin2 θ2dϕ
2
2).

In order to get this form of the metric we take the coset representative to be

gAdS4
= eP0teJ12βeJ13αeP3ρ (5.3)

gCP3 = eM25ψe−R4ϕ2eR3(θ2+ π
2
)eT4ϕ1eT3(θ1+ π

2
)e2R6µ (5.4)

where the generators are defined in appendix B.

Then the bosonic sector’s J (2) is given by

J (2) = − P0 cosh ρdt− P1 sinh ρdα− P2 sinh ρ sinαdβ + P3dρ (5.5)

+R1 sinµdθ1 +R2 sinµ sin θ1dϕ1 +R3 cosµdθ2 +R4 cosµ sin θ2dϕ2

−R5 cosµ sinµ(cos θ1dϕ1 − cos θ2dϕ2 − 2dψ) + 2R6dµ.

In order for the transformed generator Ω(x), x ∈ g to be in the superalgebra U must

satisfy

U t = ±BU−1B−1, B = 16 ⊕ J4, (5.6)

see appendix B for notations.

5.2 Karch-Randall D4-brane

In this case the D4-brane has the topology AdS3 ×CP1. We take the boundary conditions

β = 0 and µ = 0. Then we find that

J (2) = − P0 cosh ρdt − P1 sinh ρdα− P2 sinh ρ sinαdβ + P3dρ (5.7)

+R3dθ2 +R4 sin θ2dϕ2 + 2R6dµ,

and in worldsheet components

J (2)
τ = − P0 cosh ρ∂τ t− P1 sinh ρ∂τα+ P3∂τρ+R3∂τθ2 +R4 sin θ2∂τϕ2, (5.8)

J (2)
σ = − P2 sinh ρ sinα∂σβ + 2R6∂σµ. (5.9)

The matrix that satisfies (3.10) is

U = aP0P1P3 + b(M2
14 −M2

25 +M2
36), a, b ∈ C. (5.10)
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This U also satisfies [U, g] = 0 at the boundary. In order for this automorphism to be

involutive we must have b = ±a. We further need the the transformed generators Ω(x),

x ∈ g to be in the superalgebra so U must satisfy

U t = ±BU−1B−1, B = 16 ⊕ J4, (5.11)

see appendix B for notations. The relation a = ±b can be checked to be consistent

with (5.11). We fix U = 8P0P1P3 +(M2
14−M2

25 +M2
36) so that we have a solution to (3.11),

with

UQ1
αa′U

−1 = (UA)α
β(UCP )a′

b′Q3
βb′ , UQ3

αa′U
−1 = (UA)α

β(UCP )a′
b′Q1

βb′ , (5.12)

where we defined

U =

(

UCP 0

0 UA

)

. (5.13)

Note there is no relative minus sign for the Q1 and Q3 transformations as was in the

AdS5 × S5 case. Similarly to the AdS5 × S5 case we define F = QIαa′θ
Iαa′ . We require F

to be invariant under the U conjugation, and so impose the boundary conditions

(UA)α
β(UCP )a′

b′θ1αa′ = θ3βb′ , (UA)α
β(UCP )a′

b′θ3αa′ = θ1βb′ . (5.14)

Then (3.11) is satisfied. We conclude that the D-brane configuration is integrable,

preserving half of the supersymmetry.

5.3 Other integrable configurations

Similarly to the AdS5×S5 we can find other integrable D-brane configurations repeating

the analysis above. We note that at the bosonic level we can always find U which commutes

with any set of P ’s and anti-commute with the rest.

In table 4 we give examples of integrable D-brane configurations. Our analysis for the

AdS4 × CP3 background is less systematic then the one we gave for the AdS5×S5 back-

ground. Generally, we have automorphisms that work as conjugation with some invertible

matrix U . We require equations (3.10)–(3.12) to be satisfied with Ω being an involutive

automorphism. We further require (5.11) to be satisfied so that the transformed genera-

tors will stay in the superalgebra. We do not know of a complete classification of half-BPS

D-branes in this background, see [39] for some results.

6 Discussion

In this paper we introduced a procedure for constructing a generating function for an infinite

set of conserved charges for the GSσM with boundaries, by generalizing methods that were

used for (1+1)-dimensional bosonic sigma-models. We considered the full sector including

the fermionic degrees of freedom, and found a class of boundary conditions that break half

of the supersymmetry. The boundary conditions are expressed using the simple equation

a(z) = Ω(ā(z−1)), (6.1)
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R
1,0 U = P0 + (M14 +M25 +M36) ρ = 0;µ = 0, θ2 = −π

2 , ϕ2 = 0

R
0,1
+ U = P3 + i(M14 +M25 +M36) t=0, α=0;µ=0, θ2 =−π

2 , ϕ2 =0

S3 ⊂ CP3 U = P0,1,2,3+2i(T1R1+T3R3+T6R6) ρ = 0, t = 0;ϕ1 = ϕ2 = ψ = 0

AdS2 × S3 U = P0,3 + 2i(T1R1 + T3R3 + T6R6) α = 0;ϕ1 = ϕ2 = ψ = 0

AdS3 × S2 U = P0,1,3 + (M2
14 −M2

25 +M2
36) β = 0, µ = 0

H
3 × S2 U = P1,2,3 + i(M2

14 −M2
25 +M2

36) t = 0, µ = 0

AdS4 × S3 U = P1,1 + 2(T1R1 + T3R3 + T6R6) ϕ1 = ϕ2 = ψ = 0

AdS3 × CP3 U = P0,1,3 + (M2
14 +M2

25 +M2
36) β = 0

H
3 × CP3 U = P1,2,3 + i(M2

14 +M2
25 +M2

36) t = 0

Table 4. Integrable half-BPS D-brane configurations for AdS4×CP3 with Ω(x) = UxU−1. We give

some of the integrable D-brane configurations with the gluing conditions involving Ω(x) = UxU−1

automorphism. The second column gives the U matrices in terms of the superalgebra generators.

The notation is such that Pa,b,c,... = (2Pa)(2Pb)(2Pc) . . .. For each boundary condition (3.6) is

satisfied with Ω(g) = g on the boundary.

where a is the flat connection and Ω is an involutive metric preserving automorphism. We

found that these boundary conditions imply integrability of the boundary configuration.

We constructed some general solutions for the automorphism maps Ω for the AdS5×S5

and AdS4 × CP3 backgrounds, and gave examples of integrable configurations in both

cases, see tables 2, 3 and 4. Among these examples we found the AdS4 × S2 configuration

to be integrable, which was recently claimed to be so, see [20–22].

Our analysis of integrability is classical, it will be interesting to find whether the

integrable structure that we found survives quantization.

The integrable D-brane configurations we constructed are half-BPS. It is interesting to

check, whether there are D-brane configurations that breaks more than one-half of the su-

persymmetries and are still integrable. As for flat-space, we can find open strings stretching

between half-BPS D-brane configurations that will preserve some of the supersymmetry, e.g

a string stretching between R
1 × S3 and AdS5 × S3 (with the same S3) preserves 1/4 of the

supersymmetries. Using our construction these configurations should also be integrable.

The gluing conditions that we used are not the most general ones for which the

boundary term vanishes and the action is invariant. Nonetheless, if we are interested

in integrable configurations it is plausible that the automorphism should relate the flat-

connection to some other flat-connection as in (2.13) (possibly with a different function

of the spectral parameter), which seems to be satisfied only for the gluing conditions that

we used. The gluing condition (2.8) with z−1 replaced with (iz)−1 seems to be as a good

candidate, but the analog of (2.13) is not satisfied.

It will be interesting to consider the gauge dual operators corresponding to the inte-

grable D-brane configurations that we found, and compare the integrable structure.
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A The PSU(2, 2|4) superconformal algebra

The PSU(2, 2|4) superconformal algebra in the so(4, 1) ⊗ so(5) basis, which will be conve-

nient for treating the background in global coordinates is given by9

[Pa, Pb] = Jab, [Pa′ , Pb′ ] = −Ja′b′ (A.1)

[Pa, Jbc] = ηabPc − ηacPb, [Pa′ , Jb′c′ ] = ηa′b′Pc′ − ηa′c′Pb′ ,

[Jab, Jcd] = ηbcJad + perm, [Ja′b′ , Jc′d′ ] = ηb′c′Ja′d′ + perm,

[QIαα′ , Pa] =
i

2
ǫIJQJβα′(γa)α

β, [QIαα′ , Pa′ ] = −1

2
ǫIJQJαβ′(γa′)α′

β′

,

[QIαα′ , Jab] = −1

2
QIβα′(γab)α

β, [QIαα′ , Ja′b′ ] = −1

2
QIαβ′(γa′b′)α′

β′

,

{QIαα′ , QJββ′} = δIJ
(

C ′
α′β′(Cγa)αβPa + iCαβ(C

′γa
′

)α′β′Pa′ + C ′
α′β′CαβA

)

− iǫIJ
1

2

(

C ′
α′β′(Cγab)αβJab − Cαβ(C

′γa
′b′)α′β′Ja′b′

)

with a = 0, .., 4, a′ = 5, .., 9, α = 1, 2, α′ = 1, 2, I = 1, 2. The 32 × 32 gamma matrices are

given by Γa = γa ⊗ 1 ⊗ σ1, Γa′ = 1 ⊗ γa′ ⊗ σ2 with

γ0 = iσ3 ⊗ 1, γ1 = σ2 ⊗ σ2, γ2 = −σ2 ⊗ σ1, γ3 = σ1 ⊗ 1, γ4 = σ2 ⊗ σ3, (A.2)

γ5 = σ3 ⊗ 1, γ6 = σ2 ⊗ σ2, γ7 = σ2 ⊗ σ1, γ8 = σ1 ⊗ 1, γ9 = −σ2 ⊗ σ3,

and the charge conjugation matrix C = C ⊗ C ⊗ iσ2 with Cαβ = (γ2γ4)α
β = i1 ⊗ σ2

and C ′
α′β′ = (γ7γ9)α′

β′

= i1 ⊗ σ2 the charge conjugation matrices of the so(4,1) and so(5)

spinors respectively (CγaC−1 = γat, a = 0, .., 4). We normalize γab = 1
2 [γa, γb]. A is

the U(1) factor of the SU(2, 2|4) superconformal-algebra, which we drop in order to get

PSU(2, 2|4). The charge conjugation matrix acts on the gamma matrices in the standard

way, CΓâC−1 = −(Γâ)t. The odd matrices satisfy (QIαα′)† = CαβCα
′β′

QIββ′ , or in the

super-matrix algebra basis (QIαα′)† = kQIαα′k−1 with k =
(

γ2γ4
0

0 γ7γ9

)

.

The Z4 automorphism map is given by

Ω̂(X) = −KXstK−1, K =

(

γ2γ4 0

0 iγ7γ9

)

=

(

i⊗ σ2 0

0 −1 ⊗ σ2

)

, (A.3)

where
(

A B

C D

)st

=

(

At Ct

−Bt Dt

)

. (A.4)

9This superalgebra agrees with the one in [1] up to normalization of the odd generators by factor of
√
−2i and P → −P .
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The Z4 grading subspaces are spanned by

H0 = {Jâb̂}, H1 = {Q1
αα′}, H2 = {Pâ}, H3 = {Q2

αα′}. (A.5)

B The OSP(6|4) superconformal algebra

The bosonic sp(4) subalgebra is given by

[Pa, Pb] = Jab, [Pa, Jbc] = ηabPc − ηacPb, [Jab, Jcd] = ηbcJad + perm, (B.1)

with a, b = 0, .., 3, with η = (−,+,+,+). The so(6) algebra is given by

[Ma′b′ ,Mc′d′ ] = δb′c′Ma′d′ + perm, (B.2)

with a′, b′ = 1, .., 6. The commutation with the odd generators is given by

[Ma′b′ , Qαc′ ] = δa′c′Qαb′ − δb′c′Qαa′ , (B.3)

[Pa, Qαc′ ] = −1

2
Qβc′(γa)α

β, [Jab, Qαc′ ] = −1

2
Qβc′(γab)α

β , (B.4)

{Qαa′ , Qβb′} = δa′b′(Pa(γ
aC)αβ −

1

2
Jab(γ

abC)αβ) − CαβMa′b′ , (B.5)

with α = 1, .., 4. The gamma matrices are given by

(γ0)α
β = i⊗ σ2, (γ1)α

β = σ3 ⊗ σ1, (γ2)α
β = σ1 ⊗ σ1, (γ3)α

β = −σ2 ⊗ σ1, (B.6)

and the C.C matrix is given by Cαβ = iσ2 ⊗ 1.

The Z4 automorphism map that gives AdS4 × CP3 is given by [40]

Ω̂(x) = KxK−1, K = J6 ⊕ I1
2 ⊕ I1

2 , J2k =

(

0 1k

−1k 0

)

, I ln = diag(1l,−1n−l). (B.7)

The automorphism decomposes the so(6) algebra with respect to its u(3) subalgebra. The

coset graded-2 generators are10

R1 =
1

2
(M1,2 −M4,5), R2 =

1

2
(M1,5 −M2,4), R3 =

1

2
(M1,3 −M4,6), (B.8)

R4 =
1

2
(M1,6 −M3,4), R5 =

1

2
(M2,6 −M3,5), R6 =

1

2
(M2,3 −M5,6),

and the graded-0 u(3) generators are

T1 =
1

2
(M1,2 +M4,5), T2 =

1

2
(M1,5 +M2,4), T3 =

1

2
(M1,3 +M4,6), (B.9)

T4 =
1

2
(M1,6 +M3,4), T5 =

1

2
(M2,6 +M3,5), T6 =

1

2
(M2,3 +M5,6),

T7 = M1,4, T8 = M2,5, T9 = M3,6.

We note that

Ω̂(Qαa′) = −(I1
2 ⊕ I1

2 )α
β(J6)a′

b′Qβb′ , (B.10)

so

Q
(1)/(3)
αa′ =

1

2
(δβαδ

b′

a′ ∓ i(I1
2 ⊕ I1

2 )α
β(J6)a′

b′)Qβb′ (B.11)

for α = 1, .., 4, a′ = 1, 2, 3.

10A similar decomposition is given in [41].
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C More parameterizations for the AdS5×S5 coset

In the main text we gave a parametrization for the AdS5×S5 background in global coor-

dinates for the AdS and Hopf coordinates for the sphere. Here we give a parametrization

for the AdS subspace in Poincaré coordinates. We use the parametrization

g = exp(pµx
µ)yD (C.1)

where

pµ = Pµ − Jµ,4, D = P4. (C.2)

The metric in this case is

ds2AdS5
=
dxµdxµ + dy2

y2
(C.3)

with η = diag(−,+,+,+). The current J (2) for the bosonic sector is

J
(2)
AdS5

=
1

y
(P0dt+ P1dx1 + P2dx2 + P3dx3 − P4dy). (C.4)

The sphere’s metric can be written in the usual spherical coordinates using the parametriza-

tion

g =
9
∏

a′=5

exp(Pa′θa′) = exp(P5θ5) exp(P6θ6) . . . (C.5)

so that

ds2S5 = dθ2
9 + cos2 θ9(dθ

2
8 + cos2 θ8(dθ

2
7 + cos2 θ7(dθ

2
6 + cos2 θ6dθ

2
5)). (C.6)

The current J (2) for the bosonic sector is

J
(2)
S5 = P9dθ9 + cos θ9(P8dθ8 + cos θ8(P7dθ7 + cos θ7(P6dθ6 + cos θ6P5dθ5))). (C.7)
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