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1 Introduction

The Standard Model (SM) provides an accurate description of all the presently available

experimental data for flavour changing neutral current (FCNC) and CP violating processes.

Their precision is already good enough to leave room only for small corrections from the

physics beyond the SM (BSM). Thus, if the scale of new physics is O(1TeV), as is relevant

for the hierachy problem, its flavour structure must be strongly constrained. An interesting

hypothesis that is consistent with the present constraints is that the physics beyond the

Standard Model satisfies the principle of Minimal Flavour Violation (MFV): according to

it the only source of FCNC and CP violation, as in the SM, is the CKM matrix. The

MFV conjecture can be implemented in some concrete BSM theories. For instance, it is

satisfied in the MSSM with universal soft scalar masses and coefficients of the trilinear soft

terms proportional to the associated Yukawa couplings. The new FCNC and CP violating

effects are then small enough to be consistent with the data even for squark masses well

below 1TeV. However if the MSSM is extended to include a spontaneously broken family

symmetry MFV is violated even if, before spontaneous family symmetry breaking, the soft

scalar masses are universal and the coefficients of the trilinear soft terms are proportional

to the associated Yukawa couplings.

The phenomenological implications of the MFV hypothesis can be investigated in an

elegant model independent way by using an effective field theory approach (EFT) [1].

In this framework the SM lagrangian is supplemented by all higher dimension operators

consistent with the MFV hypothesis, built using the Yukawa couplings treated as spurion

fields. The potential deviations of the data from the SM predictions are then parametrized

in terms of few free parameters such as the inverse (messenger) mass scale associated with

the higher dimension operators, with their flavour structure fixed by the structure of the

CKM matrices.

The MFV hypothesis relies on the phenomenological knowledge of the CKM matrix

and implicitly assumes that the eventual theory of fermion masses is consistent with it.

However, this may not be the case. Indeed, explicit theories of fermion masses and mix-

ing usually violate the MFV hypothesis and it is the purpose of the present paper to

investigate this problem. Our laboratory will be Froggatt-Nielsen-like models, [2–9], with

spontaneously broken family symmetries and familon field(s) whose vacuum expectation

values (vevs) determine the Yukawa couplings (for an earlier discussion on the possible

violation of the MFV hypothesis in models with broken family symmetries see [11, 12]

and [13]). In [13] a detailed phenomenological analysis has been performed for the MSSM

with some Abelian and non-Abelian [9] family symmetries.1 Following [1] we will analyse

this case using the SM EFT approach. Horizontal symmetries must then be imposed on

the higher dimension operators of the effective SM and the familon fields can be used in

their construction as spurion fields.

Although the effective field theory approach is quite general, care must be taken when

interpreting the bounds on the messenger mass scale because the interpretation does depend

on the nature of the new physics. This occurs if there is more than one scale associated

1See also [10].
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with BSM physics. We shall illustrate this problem with a detailed discussion of the SUSY

case in which there are two basic scales, the SUSY breaking scale and the family messenger

scale. In this case it is useful to apply the EFT approach above the SUSY breaking scale

in the manner suggested in [14, 15], and we extend our family symmetry analysis to cover

this approach too.

We first review the MFV hypothesis for the SM viewed as an EFT. We then construct

the analogous higher dimension operators in Froggatt-Nielsen like theories using the spu-

rion technique generalized to this case (for an earlier discussion of the use of the spurion

technique beyond MFV see [1] and in models with family symmetries see [11]). We illus-

trate the expectation by comparing the bounds on the effective messenger scale obtained

in MFV and in a variety of family symmetry models that have been proposed to explain

the observed pattern of fermion masses and mixings. In the second part of the paper we

discuss the problem of the interpretation of the effective messenger scale in supersymmetric

models and extend our analysis to an EFT description above the SUSY breaking scale. In

this paper we will consider only flavour changing processes originating in the quark sector.

2 Minimal flavour violation and beyond

2.1 MFV

The SM fermions consist of three families with two SU(2)L doublets (QL and LL ) and

three SU(2)L singlets (UR , DR and ER ). Each of these fields is a triplet in flavour space.

The largest group of unitary field transformations that commutes with the gauge group is

U(3)5. This can be decomposed as

GF = SU(3)3q ⊗ SU(3)2l ⊗ U(1)5, (2.1)

where SU(3)3q = SU(3)QL
⊗ SU(3)UR

⊗ SU(3)DR
, SU(3)2l = SU(3)LL

⊗ SU(3)ER
. The

symmetry is broken by the Yukawa interactions,

L = Q̄LYDDRH + Q̄LYUURHc + L̄LYEERH + h.c., (2.2)

where Hc = iτ2H∗ and < H†H >= v2/2. Treating the Yukawa coupling matrix as spurion

fields transforming as

YU ∼ (3, 3̄, 1)SU(3)3q
, YD ∼ (3, 1, 3̄)SU(3)3q

, YE ∼ (3, 3̄)SU(3)2
l

(2.3)

the full Lagrangian has an SU(3)5 invariant form.

MFV postulates that the only source of GF breaking are the Yukawa spurions and

parameterises the higher dimension flavour violating terms by using them to construct the

most general SU(3)5 invariant set of higher dimension operators that make up the full

effective field theory. The leading terms are the dimension 6 operators given in table 1.

Following [1] it is convenient to write them in terms of products of two-fermion operators

which separately should be SU(3)5 invariant, because the flavour structure of all the oper-

ators of table 1 is determined by the flavour structure of these two fermion operators. In
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Flavour violating ΛMFV (in TeV)

dimension six operator − +

O0 = 1
2(Q̄LλFCγµQL)2 6.4 5.0

OF1 = H†
(
D̄RλdλFCσµνQL

)
Fµν 9.3 12.4

OG1 = H†
(
D̄RλdλFCσµνT

aQL

)
Ga

µν 2.6 3.5

Oℓ1 = (Q̄LλFCγµQL)(L̄LγµLL) 3.1 2.7

Oℓ2 = (Q̄LλFCγµτaQL)(L̄LγµτaLL) 3.4 3.0

OH1 = (Q̄LλFCγµQL)(H†iDµH) 1.6 1.6

Oq5 = (Q̄LλFCγµQL)(D̄RγµDR) ∼ 1

Table 1. Bounds on the suppression scale of the dimension 6 operators in the MFV scenario. The

SM is extended by adding flavour-violating dimension-six operators with coefficient ±1/Λ2
MFV (+

or − denote their constructive or destructive interference with the SM amplitude). D’Ambrosio

et al. [1] report the bounds at 99% CL on ΛMFV , in TeV, for the single operator (in the most

representative cases).

particular the four fermion operators factorise into the product of two fermion operators.

As we shall discuss this factorisation does not always apply beyond MFV.

Due to the smallness of the down quark Yukawa couplings the dominant operators

displayed in table 1 have external down quarks for which the up Yukawa couplings are

responsible for the flavour changing terms. The leading two-fermion operators from which

one may determine the MFV predictions for the operators of table 1 are

Q̄LYuY †
u QL, D̄RY †

d YuY †
u QL. (2.4)

The flavour structure of these operators is determined by the flavour structure of

Yukawa matrices. In the electroweak basis where the down-type quarks are mass eigenstates

(EWDD), to a very good approximation, it is determined by the entries proportional to

the “square” of the top quark Yukawa coupling: (YuY †
u )ij where i, j are flavour indices.

In this frame λFC = (YuY †
u )ij ≈ λ2

t U
∗
3iU3j where the matrix U is the CKM matrix. The

relative magnitude of various FCNC effects is determined by the order of magnitude of the

mixing angles and their absolute values depend in addition on the ratios of the couplings

of those operators over the (unknown) scale of new physics that has been integrated out.

For the sake of easy reference, in table 1 we quote the bounds on the suppression scale

Λ from ref. [1], obtained by using the measured values of the mixing angles. Here, the scale

Λ is defined as an effective scale, with the operator coupling equal to 1. If the new physics

contributes e.g. only at the loop level, the bound on its actual physical scale is lower by

factor α.

2.2 The messenger scale

The dimension 6 operators of table 1 appear in the effective Lagrangian multiplied by a

factor 1/Λ2 that has the dimension of two inverse powers of mass. This factor arises due
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to the propagator of the messenger state that is responsible for generating the operator

and that has been integrated out when constructing the effective Lagrangian relevant at

energy scales less than the messenger mass. In phenomenological studies the lower limit

on this factor is determined and gives an estimate of the possible scale of new physics.

However some care is needed in interpreting this limit because there may be more than

one messenger scale involved. In particular, in a realistic extension of the Standard Model

there usually exists a mechanism easing the hierarchy problem, with an associated mass

scale Λh. This role could be played by supersymmetry with the characteristic scale of

mass splittings in supermultiplets, MSUSY , or by a strongly coupled gauge theory with the

confinement scale Λconf or by the mass scale of Kaluza-Klein states in Randall-Sundrum

models. The sector responsible for the flavour violation has its own characteristic scale,

which we shall call the family messenger scale M which can be larger than Λh or coincide

with it. The effective Lagrangian is relevant at energy scales less than the messenger mass

M and less than Λh. Depending on the details of the theory, the suppression factor could

be one of the following: 1/Λ2
h, 1/(ΛhM), 1/M2. If M ≫ Λh, operators suppressed by only

the first factor will be the most important. We will return to a detailed discussion of the

identification of Λ in supersymmetric models in section 5.

2.3 Beyond MFV

MFV is based on the very restrictive assumption that the Yukawa couplings are the only

source of flavour symmetry breaking. This assumption is not valid for many (most) of the

attempts to build a theory of fermion masses and mixing and so it is of interest to develop

a formalism capable of describing such models and highlighting the main discrepancies to

be expected from MFV.

Consider the case of the two fermion operators just discussed. The most general set

of nontrivial SU(3)3q representations of the two fermion operators that can be made up of

quarks and antiquarks is

(3, 3̄, 1), (3̄, 3, 1), (3, 1, 3̄), (3̄, 1, 3), (1, 3, 3̄), (1, 3̄, 3), (8, 1, 1), (1, 8, 1), (1, 1, 8) (2.5)

In MFV, c.f. equation (2.4), the fundamental Yukawa couplings transform as (3̄, 3, 1) and

(3̄, 1, 3) and these must be combined with the quark bilinears to form SU(3)3q invariants

corresponding to the dimension 6 four fermion operators of table 1. However in mod-

els of fermion mass there may be spurions, combinations of fundamental familon fields

with non-vanishing vacuum expectation values (vevs), with different SU(3)3q transforma-

tion properties to those of the Yukawa couplings. This then leads to new possibilities for

the construction of four quark operators. For example in reference [11], the effect of funda-

mental spurions transforming as (8, 1, 1) was studied in detail. However, as stressed below,

building SU(3)3q invariant combinations of four quark operators and familon fields typically

involve familon combinations, i.e. spurions, transforming in all possible SU(3)3q represen-

tations, not necessarily with correlated magnitude, in a manner that does not correspond

to building four fermion operators starting from a single fundamental spurion.

An important consequence of this is that family symmetries often require fewer in-

sertions of the familon fields than would be expected in MFV. For example to construct

– 5 –
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the (8+1,1,1) representation in MFV requires two Yukawa spurion insertions, Q̄LYuY †
u QL

involving LR and RL couplings at the messenger level but can be directly constructed from

familon fields in a manner not involving the RH sector.

3 Family symmetry models

In this paper we shall be concerned with the departures from MFV to be expected in models

of fermion masses and mixings based on spontaneously broken family symmetries. A wide

variety of family symmetries have been considered, varying from one or more Abelian

family symmetries or their discrete subgroups to non-Abelian symmetries or discrete non-

Abelian symmetries. Such models have been shown to be able to generate the hierarchical

structure of quark masses and mixing angles. To illustrate the implications for FCNC we

will consider a variety of representative models.

The first two models [36] have a single Abelian family symmetry factor and a single

familon field whose vacuum expectation value (vev) spontaneously breaks the symmetry.

The third (supersymmetric) model [24, 25] also has a single Abelian factor but has two

familon fields that acquire equal vevs along a D-flat direction. In addition the Higgs field

can carry a charge under the symmetry. The model generates a texture zero that leads to

a precise prediction for the Cabbibo angle in excellent agreement with experiment. The

fourth model [37] involves two Abelian factors. Unlike all the other models considered

here, in the current quark basis, the dominant off-diagonal term generating the Cabibbo

angle comes from the up- and not the down-quark mass matrix. The fifth model involves

a Non-Abelian family symmetry and the model was developed to describe both quark,

charged lepton and neutrino masses and mixing. The group is a discrete non-Abelian

subgroup of SU(3) family symmetry, the discrete subgroup chosen because it leads to near

tri-bi-maximal neutrino mixing in agreement with experimental measurements. However

the structure of the low dimension terms is determined by the SU(3) symmetry and so for

the discussion here it does not matter that only a discrete subgroup is unbroken. Finally we

consider a model [39] with three Abelian factors based on the structure found in F-theory

string models [38] in which the family symmetry is a subgroup of the underlying E(8) string

symmetry. In this the emergence of three Abelian factors is natural and unlike the previous

models the charges of the fermions are strongly constrained by the E(8) symmetry.

For the case that the symmetry is Abelian, all the independent SU(3)3q representations

of spurions bilinear in the fermion fields are generated at a fundamental level. A subset

of the dimension 6 four fermion operators are also fundamental and cannot be built from

the two fermion operators, i.e. they do not factorise. As we shall discuss this leads to a

potential enhancement of flavour violation. For the case the symmetry is non-Abelian,

as for MFV only a restricted set of fundamental spurion representations bilinear in the

fermion fields are present and the dimension 6 operators may be built from them.

One may worry about the possible effects of Goldstone modes resulting from the spon-

taneous breaking of the family symmetry. For the case that the family symmetry is a local

gauge symmetry the familons provide the longtitudinal component of the family gauge

boson. If the symmetry breaking scale is large these bosons will not appear in the effective

– 6 –
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1. Q̄LXQ
LLQL

2. D̄RXD
RRDR

3. ŪRXU
RRUR

4. Q̄LXD
LRDR

5. Q̄LXU
LRUR

Table 2. Flavour changing dimension 3 operators in the Standard Model. The associated Lorentz

and colour structure is not shown.

low energy lagrangian and their effect will be negligible. For the case the family symmetry

is a discrete symmetry there are no Goldstone modes and the familons can be very heavy.

In what follows we will not consider the case that the family symmetry is global and so we

will not discuss thepossible effects of massless familons.

We start with a discussion of the quark bilinear operators relevant to the structure of

quark masses and to the construction of higher dimension operators. In the next section

we extend the analysis to the dimension 6 operators relevant to flavour changing processes.

The set of dimension 3 operators that violate flavour are given in table 2. In this we have

suppressed the family index so, for example, Q̄LXQ
LLQL = Q̄i

LXQ
LL,ijQL,j for i, j = 1, 2, 3.

As discussed above, for the case of MFV only the first and the fourth operators are

needed to construct the dimension 6 flavour changing operators, the remaining ones give

negligible contributions due to the smallness of the down quark Yukawa couplings. However

for family symmetries all operators can be significant. We turn now to a discussion of the

magnitude of the coefficients, X, of these operators.

3.1 Abelian family symmetry

Consider a U(1) family symmetry. Up to coefficients of order unity the elements of the

Yukawa matrices are given in terms of the family charges of fermions defined as qi for the

flavour components of the left-handed doublet QL, and ui and di for the flavour components

of the (left-handed) quark singlet fields U c and Dc, the charge conjugate of the right-handed

flavour triplets UR and DR, respectively.

We first consider the holomorphic case in which the symmetry is spontaneously broken

via familons carrying only one sign of U(1) charge. For a single familon, θ, with U(1) charge

equal +1 the Yukawa matrix of couplings has the form (the U(1) charge of the Higgs doublet

is taken to be zero)2

Q̄LYUURHc = Q̄i
L

[
aj

i

(
θ

M

)uj+qi

]
URjHc if uj + qi ≥ 0, otherwise = 0, (3.1)

where aj
i are coefficients of order unity and θ now denotes the familon vev. Note that

this structure applies to the superpotential (F-terms) in supersymmetric theories because

2We work in the canonical basis for the kinetic terms. The rotation from a non-canonical basis to the

canonical one does not change our considerations, see [37, 40].
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supersymmetry does not allow terms involving the conjugate of the chiral superfields. Non-

supersymmetric theories do not have this restriction so for them the non-holomorphic form

discussed below applies. The same is true of D-terms in supersymmetric theories.

Given this we turn to the structure in the non-holomorphic case. In supersymmetric

theories this applies to F-terms too for the case there are familon fields with the same

charge but of both sign. This is very common in supersymmetric models where the family

symmetry breaking familon fields θ and θ̄ with U(1) charges +1 and -1 acquire equal vevs

along a D-flat direction. We are denoting this common vev by θ. As just mentioned

the non-holomorphic case also applies to the D-terms and to non-supersymmetric theories

because in them the symmetries allow terms involving the familon or its conjugate. In all

these cases the Yukawa couplings take the form

Q̄LYUURHc = Q̄i
L

[
aj

i

(
θ

M

)|uj+qi|
]

URjHc (3.2)

To avoid unnecessary duplication of formula we will use the notation |uj + qi| to denote

both the cases of equations (3.1) and equation (3.2). In practice the holomorphic form is

only relevant to the form of the fermion mass matrix in SUSY theories; the non-holomorphic

form applies to the operator coefficients in all cases.

We assign to the combination aj
i

(
θ

Mm

)|uj+qi|
transformation rule as for (3, 3̄, 1) under

SU(3)3q . One can regard the 3x3 matrix of the coefficients aj
i as a spurion field transforming

as (3, 3̄, 1) under SU(3)3q and the factors Φi
L = (θ/M)qi and Φ† i

u = (θ/M)ui as U(1) spurions

which are singlets under the flavour group.3 It is notationally convenient to write this as

aj
i

(
θ

M

)|uj+qi|

= aj
iΦ

i
LΦ†

Uj ≡ ΦLaLUΦ†
U (3.3)

where ΦL=((θ/M)q1 ,(θ/M)q2 ,(θ/M)q3), (Φ†
u = (θ/M)u1 ,....) and the modulus in the expo-

nent is to be taken for the combined charges.

In terms of the familons the quark Yukawa lagrangian reads

LY = (Q̄LΦLaLDΦ†
DDR)H + (Q̄LΦLaLUΦ†

UUR)Hc + h.c. (3.4)

The quark bilinears in these terms correspond to the operators 4 and 5 of table 2. The

remaining operators can be constructed in an analogous way, with the help of familons and

horizontal and flavour symmetries giving:

Q̄LΦLaLLΦ†
LQL, ŪRΦUaUUΦ†

UUR, D̄RΦDaDDΦ†
DDR. (3.5)

where the matrices of O(1) coefficients aIJ are not related and transform as (8, 1, 1), (1, 8, 1)

and (1, 1, 8), respectively for I, J = LL,UU,DD.

The above analysis is readily extended to the case that the family symmetry is U(1)L×
U(1)R. In this case ΦL=((θL/ML)q

L
1 ,(θL/ML)q

L
2 ,(θL/ML)q

L
3 ) and

ΦR=((θR/MR)q
R
1 ,(θR/MR)q

R
2 ,(θR/MR)q

R
3 ) where we have allowed for different messenger

scales associated with the familon fields breaking the left and right U(1) symmetries.

3We thank A.Weiler for a useful discussion of this point.
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3.2 Non-Abelian family symmetry

There has been a proliferation of models based on non-Abelian symmetries driven by the

possibility that they can explain the near bi-tri-maximal mixing observed in the lepton

sector through neutrino oscillation experiments. It is only through a non-Abelian structure

that Yukawa couplings to different families can be related including the O(1) coefficients

and this is needed to generate bi-tri-maximal mixing. Although the motivation comes from

the lepton sector it is natural to try to extend the symmetry to include quarks and for this

reason we include a discussion of non-Abelian family symmetries here. Again the family

symmetry must be chosen to be a subgroup of SU(3)3q . Here we consider the simple case

that the non-Abelian family group is the diagonal SU(3) subgroup or a discrete subgroup of

it. The symmetry is broken by familon fields in a definite representation of the symmetry.

For the case that the LH and charge conjugate RH fields are in the triplet representation

they acquire a vev the form Φ = (c1, c2, c3) where ci are constants. This field must be

used to build the Yukawa couplings and the higher dimension operators. Thus the quark

Lagrangian may contain terms of the form

LY = αDQ̄LΦΦ†DRH/M2
D + αU Q̄LΦΦ†URHc/M2

U + h.c., (3.6)

where we have allowed for different messenger masses in the down and the up sector. The

parameters αU,D are (family independent) constants and the relative magnitude of the

Yukawa matrix elements is set by the constants in Φ. In practice, in order to generate the

observed masses and mixing angles, several familon fields are necessary. The remaining

two quark operators are constructed in a similar manner and have the form

αLLQ̄LΦΦ†QL/M2
D, αUU ŪRΦΦ†UR/M2

U , αDDD̄RΦΦ†DR/M2
D. (3.7)

In what follows we will compare the prediction of MFV with four representative family

models. The structure of these models is given in appendix 1.

4 Comparison of MFV and family symmetry models. Dimension 3 quark

bilinear operators

In this section we compare the predictions for the magnitude of the FCNC effects based on

the MFV conjecture with those to be generically expected in models with family symme-

tries. For the case the operators of table 2 involve down quarks it is necessary to work in

the electroweak basis with diagonal down quark Yukawa matrix (EWDD), as used in the

beginning of this section to discuss the MFV results.

For the case the operators of table 2 involving up quarks it is necessary to transform

to the basis in which the up quarks are diagonal before estimating the coefficients. As

mentioned above, these operators are negligible in the MFV case due to the smallness of

the down Yukawa couplings but may be significant in the family symmetry case.

The mass eigenstate (primed) basis is obtained by rotating right and left fields,

D
′

R = V †
DDR, U

′

R = V †
UUR, Q̄L = Q̄

′

LS†
d. (4.1)

– 9 –
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where Sd, VU,D are unitary matrices. In the EWDD basis the down Yukawa couplings are

diagonal so the Lagrangian has the form

L = Q̄
′

LYDdD
′

RH + Q̄
′

LS†
dSuYUdU

′

RHc + h.c., (4.2)

where the subscript d denotes diagonal matrices. The CKM matrix is U = S†
uSd. From

this point on we work in the EWDD basis but drop the primes. To determine the matrices

Su,d we must diagonalise the associated mass matrices. Following from equation (3.4) the

up and down mass matrices have the form

Mu
ij ∝

(
θ

MU

)|qi+uj |

, MD
ij ∝

(
θ

MD

)|qi+dj |

, (4.3)

where we have allowed for different expansion parameters in the up and down sectors. The

first two and the fourth Abelian family symmetry examples presented in appendix 1 have

the same expansion parameter in the up and down sectors, MU = MD. The third Abelian

example and the non-Abelian example both allow for different expansion parameters.

We write the mass matrices in the form

M = m3




m̃1 ǫ1 ǫ2

ǫ′1 m̃2 ǫ3

ǫ′2 ǫ′3 1


 .

For the models considered here the matrix can be written in leading order of powers of

ǫ = θ/M and up to coefficients of O(1) as

M = m3




1 ǫ1/m̃2 ǫ2

−ǫ1/m̃2 1 ǫ3

−ǫ2 −ǫ3 1







m̃1 0 0

0 m̃2 0

0 0 1







1 −ǫ′1/m̃2 −ǫ′2
ǫ′1/m̃2 1 −ǫ′3

ǫ′2 ǫ′3 1


 ,

where ǫi and ǫ′i are small and determined by powers of ǫ (see below). The m̃i are the ratios

of the two light mass eigenvalues to the third generation mass.

This leads to

Su,d ≈




1
ǫu,d
1

m̃u,d2
ǫu,d
2

− ǫu,d
1

m̃u,d2

1 ǫu,d
3

−ǫu,d
2 −ǫu,d

3 1


 . (4.4)

For the case of the U(1) models (models I,II amd III), expressing S in terms of the horizontal

U(1) charges one gets

Su,d ≈




1 ǫ
|q1+d2|−|q2+d2|
u,d ǫ

|q1−q3|
u,d

−ǫ
|q1+d2|−|q2+d2|
u,d 1 ǫ

|q2−q3|
u,d

−ǫ
|q1−q3|
u,d −ǫ

|q2−q3|
u,d 1


 , (4.5)

where ǫu,d = θ/MU,D and for model III the charge should be evaluated setting ω = 0. It

is straightforward to determine S for the remaining models and the result in all have the
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form

Su,d ≈




1 ǫu,d ǫ3
u,d

−ǫu,d 1 ǫ2
u,d

−ǫ3
u,d −ǫ2

u,d 1


 . (4.6)

Note that the Su,d is determined entirely by the charges of the left-handed doublet fields.

For the U(1) models the unitary matrices needed to go to the mass basis of the singlet

quarks are given by

VD ≈




1 ǫ
|q2+d1|−|q2+d2|
d ǫ

|d1−d3|
d

−ǫ
|q2+d1|−|q2+d2|
d 1 ǫ

|d2−d3|
d

−ǫ
|d1−d3|
d −ǫ

|d2−d3|
d 1


 (4.7)

and VU is given by the same form with u instead of d. It is again straightforward to

determine V for the remaining models. For all the models the resulting mixing matrices

are given in terms of the Yukawa couplings listed in the appendix by

VD ≈




1 YD,21/YD,22 YD,31

−YD,21/YD,22 1 YD,32

−YD,31 −YD,32 1


 (4.8)

and the equivalent form for VU .

We are now ready to analyze the family symmetry implications for the magnitude of

the dimension 3 two fermion flavour changing operators. Consider first the first operator

in table 2 with down quarks as the external quarks. In MFV XQ
LL is YuY †

u transformed to

EWDD and, for the U(1) models considered here, is given by

XQ,MFV
LLij = λ2

t U
†
3iU3j ∼ λ2

t ǫ
|qi−q3|+|qj−q3|. (4.9)

Transformation to EWDD of the relevant first flavon operator of equation (3.5) gives

Q̄LΦLaLLΦ†
LQL → Q̄LS†

d(ΦLaLLΦ†
L)SdQL. (4.10)

so the equivalent coupling for the U(1) family symmetry case is given by

X
Q,U(1)
LLij =

(
S†

d(ΦLaLLΦ†
L)Sd

)
ij

. (4.11)

For the first two U(1) models of appendix 1 qi > 0 and thus X
Q,U(1)
LLij ≈ ǫ|qLi−qLj |. For

i or j equal to 3 the magnitude is the same for MFV and for the U(1) family symmetry.

However there is a difference for ij = 12. We have (for λt = 1)

XQ,MFV
LL12 ∝ ǫ|q1|+|q2|, X

Q,U(1)
LL12 ∝ ǫ|q1−q2|. (4.12)

For the model III the situation is different since the contribution from Sd in equa-

tion (4.11) is governed by the charge |q1| − |q2| = 1 while the contribution from ΦL is

governed by the charge |q1 − q2| = 5. In this case X
Q,U(1)
LL12 is dominated by Sd12 and is of

the same order as for the first two models. However if, in the absence of family symmetry
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breaking, the interactions are family blind there is a GIM cancellation that eliminates this

contribution from Sd. This is clear from equation (4.11) because the family blind assump-

tion requires aLL
11 = aLL

22 and then the contribution to the (1, 2) matrix element cancels

between the S†
d and Sd contribution. In what follows we will take the extreme family blind

case in our estimates of the possible suppression from family symmetries so for model III

too we have X
Q,U(1)
LLij ≈ ǫ|qLi−qLj |.

The analysis is readily extended to the U(1) × U(1) model IV and the results are

summarised in table 3. Note that in this case it is not necessary to assume the family blind

assumption in the down sector before spontaneous breaking because, in this model, the

rotations needed to diagonalise the down quark sector are very small. However we have

assumed the up sector is family blind when computing the up quark operator suppression

factors given in the table. In the table the operator charges p are listed; the associated

operator coefficients are given by ǫ|p|. A similar notation is used in the case of the F-theory

models involving three Abelian factors. In this case XD
LR and XU

LR do not appear except

in combination with a Higgs fields suppressed by vevs. We shall return to a more detailed

discussion of the family blind assumption in the supersymmetric context.

In the model based on a non-Abelian symmetry it is a prediction of the symmetry

that, in the absence of family symmetry breaking, the interactions are family blind and so

X
Q,U(1)
LLij is given entirely by the spurion contribution. The symmetries of the model [24, 25]

limit the spurion combinations to Φ3Φ
†
3, Φ23Φ

†
23, Φ23Φ

†
123 and Φ123Φ

†
123 and this leads to

the suppression factors shown in the fifth column of table 3.

As a second example consider the fourth operator in table 2. In MFV the leading

term transforming as (3, 1, 3̄) is Y †
d YuY †

u so in the MFV the operator matrix of coefficient

XD,MFV
RL is given by Y †

d XQ,MFV
LLij .

For the first two Abelian U(1) models we have

Q̄LΦLaLDΦ†
DDR → Q̄LS†

d(ΦLaLDΦ†
D)VdDR ∼

∑

k,p

Q̄Liǫ
|qi−qk|+|qk+dp|+|dp−dj |DRj , (4.13)

so the equivalent coupling is

X
D,U(1)
LRij ≈

∑

k,p

ǫ|qi−qk|+|qk+dp|+|dp−dj |. (4.14)

For the third model the result takes a different form due to the appearance of negative

charges that change the form of Sd and VD. For the non-Abelian model the structure is the

same as that for the first operator considered above because the LH and charge conjugate

RH states have the same transformation property under the family symmetry.

A final example is given by the second operator of table 2. It has MFV structure

D̄RY †
d YuY †

u YDDR → D̄RλdλFCλdDR. (4.15)

and for the U(1) models is

D̄R(ΦDaDDΦ†
D)DR → D̄RV †

D(ΦDaDDΦ†
D)VDDR ∼ D̄Riǫ

|di−dj |DRj , (4.16)
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XQ
LLij = ΦL i ⊗ Φ†

Lj M I M II M III U(1)2 N − A F−theory MFV

(12) 1 1 −5 (3,−1) ∼ 5 3 (−2, 0, 0) 5 5

(13) 3 3 −3 (3, 0) ∼ 3 3 (−1, 1,−5) 3 3

(23) 2 2 2 (0, 1) ∼ 2 2 (1, 1,−5) 2 2

XD
RR ij = ΦD i ⊗ Φ†

D j M I M II M III U(1)2 N − A F−theory MFV

(12) 1 1 −5 (−5, 3) ∼ 11 3 (−2, 0, 0) 5 5(λdλs)

(13) 1 1 −5 (−1, 1) ∼ 3 3 (−2, 2, 5) 5 3(λdλb)

(23) 0 0 0 (4,−2) ∼ 8 2 (0, 2, 5) 4 2(λsλb)

XU
RR ij = ΦU i ⊗ Φ†

U j M I M II M III U(1)2 N − A F−theory MFV

(12) 1 1 −5 (2, 2) ∼ 6 3 (−2, 0, 0) 5 −
(13) 3 3 −5 (−1, 2) ∼ 5 3 (−1, 1,−5) 5 −
(23) 2 2 0 (1, 0) ∼ 1 2 (1, 1,−5) 4 −

XD
LR ij = ΦL i ⊗ Φ†

D j M I M II M III U(1)2 N − A F−theory MFV

(12) 3 4 −3 + w (7,−1) ∼ 9 3 (−2, 0,−3) − 5(λs)

(13) 3 4 −3 + w (3, 1) ∼ 5 3 (−2, 2, 2) − 3(λb)

(23) 2 3 2 + w (0, 2) ∼ 4 2 (0, 2, 2) − 2(λb)

λd 4 5 4 (2, 2) ∼ 6 4

λs 2 3 2 (4, 0) ∼ 4 2

λb 0 1 0 (0, 1) ∼ 2 0

XU
LR ij = ΦL i ⊗ Φ†

U j M I M II M III U(1)2 N − A F−theory MFV

(12) 5 5 −3 + w (4, 0) ∼ 4 3 (−2, 0, 0)− −
(13) 3 3 −3 + w (3, 0) ∼ 3 3 (−1, 1,−5) − −
(23) 2 2 2 + w (0, 1) ∼ 2 2 (0, 0, 0)− −
λu 6 6 8 (2, 2) ∼ 6 4

λc 4 4 2 (1, 1) ∼ 3 2

λt 0 0 0 (0, 0) ∼ 0 0

Table 3. Charge structure of the dimension 3 operators of table 2.The coefficient of the operator

is given by ǫ|p| where p is the charge. For the U(1)2 model the coefficient is ǫ|p1|+2|p2|.

where, as before, we have assumed for the Model III that, in the absence of family symmetry

breaking, the interactions are family blind.

In table 3 we list the resulting charges associated with the various matrix elements of

the dimension 3 operators given in table 2. The first 5 columns give the charge structure

of the operator coefficients X for the models introduced in appendix 1. The associated

operator coefficients are simply given by ǫp where p is the modulus of this charge. For

the U(1)2 model we also show in parenthesis the underlying coefficient in terms of the

two expansion factors. For comparison we show the equivalent charges for the MFV .

In parenthesis we give the Yukawa coupling factor that must also be included when the
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external quarks are not LH down quarks; these are so small that the operator is usually

dropped in MFV.

5 Comparison of MFV and family symmetry models. Dimension 6 four

quark operators

Of course in phenomenological studies it is the dimension 6 flavour changing operators of

the type shown in table 1 that are relevant.

5.1 Factorisation of operators

We start with a discussion of which dimension 6 operators factorise in the sense that they

are determined by the coefficients of the dimension 3 bilinear operators discussed in the

last section. Note that the factorisation applies to all operators for the case of MFV.

5.1.1 ∆Fi = 1, ∆Fj = −1, i 6= j operators

In our notation, ∆Fi = ±1 means a change by one unit of the i − th flavour, for instance

the operator (b̄....s) annihilates a quark s and creates a quark b, so ∆F2 = −1, ∆F3 =

+1. These operators include OF1,G1,l1,l2,H1,q5 of table 1 together with related operators

involving up quarks. For the operators involving only two quarks it is obvious that the

flavour changing component comes from the quark bilinear operator and so the dimension

6 coefficient is determined by equivalent coefficient of the dimension 3 operator. This class

of operator also involves operators involving four quarks, such as Oq5 that have family

change only in one factor.

In the Abelian family models, up to O(1) factors, the operator coefficient is determined

by the overall sum of the U(1) charges. For the operator Oq5 the charges of the second

bilinear factor sum to zero and the coefficient is determined by the first quark bilinear

operator alone. For the operator related to Oq5 by a Fierz transformation the overall

charge clearly remains the same and so its coefficient is also determined by the flavour

changing quark bilinear operator formed when Fierz transforming back to the form of Oq5.

The same conclusion applies to the other four quark operators of this type.

For the non-Abelian family symmetry the structure is somewhat different because

the number of familon insertions may change for the operators related by Fierz transfor-

mations if the Fierz transformation results in two quark bilinear factors each of which

involves flavour change. In this case the leading term corresponds to the ordering of the

operator with flavour change in a single bilinear factor and this factor alone determines

the coefficient.

5.1.2 ∆Fi = 2, ∆Fj = −2, i 6= j operators

An example of this class of dimension 6 four quark operator is given by the operator O0.

Since it involves the square of a dimension 3 two quark operator the coefficient is determined

by the square of the coefficients of the quark bilinear operator. Again this factorisation

is only up to O(1) factors. For this class of operator Fierz transformation does not affect

this structure.
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Flavour violating Λ/ΛMFV

dimension six operator Ex. 1 Ex. 2 Ex. 3 U(1)2 N-A F

O0 = 1
2(Q̄LXQ

LLQL)2 ǫ−4 ǫ−4 1 1 ǫ−2 1

OF1 = H†
(
D̄RXD†

LRσµνQL

)
Fµν xǫ−2 xǫ−3/2 xǫ−2 xǫ xǫ−2 xǫ−2

OG1 = H†
(
D̄RXD†

LRσµνT
aQL

)
Ga

µν xǫ−2 xǫ−3/2 xǫ−2 xǫ xǫ−2 xǫ−2

Oℓ1 = (Q̄LXQ
LLγµQL)(L̄LγµLL) ǫ−2 ǫ−2 1 1 ǫ−1 1

Oℓ2 = (Q̄LXQ
LLγµτaQL)(L̄LγµτaLL) ǫ−2 ǫ−2 1 1 ǫ−1 1

OH1 = (Q̄LXQ
LLγµQL)(H†iDµH) ǫ−2 ǫ−2 1 1 ǫ−1 1

Oq5 = (Q̄LXQ
LLγµQL)(D̄RγµDR) ǫ−2 ǫ−2 1 1 ǫ−1 1

Table 4. Bounds on the suppression scale of the familon induced operators. The SM is extended by

adding flavour-violating dimension-six operators with coefficient 1/Λ2. Here we report the bounds

on Λ for the family symmetry models in terms of the bounds on ΛMFV for MFV given in table 1.

Here x = (mt/mb)
1/2. The bounds come from the flavour changing operators involving the first

two families.

5.1.3 Non-factorisable operators

There are several types of operator that do not factorise. An example is the ∆Fi =

2, ∆Fj = −1, ∆Fk = −1, i 6= j 6= k operators. Suppressing the Lorentz structure, an

example of these dimension 6 four quark operators is given by (Q̄L1QL3)(Q̄L2QL3). Here

∆F3 = −2, ∆F1 = ∆F2 = +1. Depending on the particular form of the family symmetry

the coefficients of these operators may not factorise into the product of any combination of

the quark bilinear pairs that make up the operator. Further examples of non-factorising op-

erators are Q̄LiURjQ̄LkDRlX
ijkl, Q̄LiQLjŪRkURlY

ijkl
1 and Q̄LiQLjD̄RkDRlY

ijkl
2 with fam-

ily change in both of the factors.

5.2 Determination of the coefficients of the dimension 6 operators

For the ∆Fi = 1, ∆Fj = −1, i 6= j operators the dimension 6 operator coefficients are

given by the coefficient associated with the appropriate flavour changing dimension 3 two

quark operator. As discussed above this is determined by ǫx where x is the modulus of

the associated charge listed in table 3. One exception to this rule are the coefficients of

the operators OF1 and OG1 in the Model III where the horizontal charge −ω of the Higgs

field has to be taken into account. For the Abelian family symmetries these coefficients

are determined up to an O(1) factor but in the case of the non-Abelian family symmetry

the relative magnitude of the coefficients at a given power of ǫx are determined. The

factorisable ∆Fi = 2, ∆Fj = −1, ∆Fk = −1, i 6= j 6= k operator coefficient is given by

the product of the appropriate flavour changing dimension 3 two quark operator.

Using this the resulting bounds on the scale of new physics coming from the operators

listed in table 1 are shown in table 4 for the models of appendix 1 relative to the MFV

value given in table 1. Note that these bounds come from the operators involving the down

and strange quarks that are dominant in the MFV case. Since xǫ ≈ 1 it may be seen that
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Component M I MII M III U(1)2 N − A F

1. X1212 8 9 |6 − 2w| (11, 1) ∼ 13 6 5

2. X2112 8 9 |6 − 2w| (6, 2) ∼ 10 6 5

3. X3223 4 5 |2 + w| (1, 2) ∼ 5 6 7

4. X2131 6 7 |8 − w| (2, 5) ∼ 12 6 3

Table 5. Coefficients X ijkl of dimension 6 four-fermion operators of the form Q̄LiURjQ̄LkDRl.

The coefficient of the operator is given by ǫp where p is the modulus of the charge.

all models except the U(1) × U(1) model require a larger mediator suppression scale to

keep the FCNC associated with the operators OF1 and OG1 within present bounds. The

reason for this is that only the U(1) × U(1) model has, in the current quark basis, very

small mixing between the first two families in the down quark mass matrix, the Cabibbo

angle being generated from the mixing in the up quark sector.

The physical interpretation of the mediator suppression scale depends on the micro-

scopic physics that has been integrated out. In particular in supersymmetric models it

may be related to the supersymmetry breaking scale and in some cases the bounds on

FCNC may be difficult to reconcile with SUSY solving the hierarchy problem. In the next

section we shall discuss the identification of the mediator scale for the case of the Minimal

Supersymmetric Standard Model (the MSSM) and in section 7 consider the FCNC tests

in SUSY models in more detail.

As noted above the U(1)×U(1) model illustrates the fact that family symmetry models

can give approximately the same expectation for the table 1 operator coefficients as MFV.

In this case one must turn to the other possible operators involving the third generation to

distinguish them. We emphasised above that, in contrast to the MFV case, the operators

appearing in table 1 may not be the only ones contributing significantly to flavour changing

processes in the family symmetry models. For the factorising operators it is easy to use

table 3 to determine the coefficients of the remaining operators. For example for flavour

changing involving the light quarks, the (1, 2) sector, the first three dimension 3 operators

of table 2 all have the same order of coefficients for the family models considered. This is to

be compared to MFV in which only the first operator is significant c.f. table 1. The second

and third operators have a different Lorentz structure and consequently the implications

for the phenomenological importance of the dimension 6 operators involving them may be

significantly different from those involving the first operator of table 2. It is beyond the

scope of this paper to perform a complete analysis of the FCNC effects following from these

terms. However in section 7 we will consider the phenomenological implications of all the

operators of table 2 for the case of supersymmetric models.

Finally we turn to the non-factorising operators of the form ∆Fi = 2, ∆Fj =

−1, ∆Fk = −1, i 6= j 6= k. There are many possible operators of this type because

one can combine the different dimension 3 bilinear operators in many ways. In tables 5

and 6 we illustrate the family symmetry prediction for the coefficients of these operators
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Component M I MII M III U(1)2 N − A F

1. Y 1212
2 2 2 10 (6, 2) ∼ 10 8 10

2. Y 1213
2 4 4 8 (6, 1) ∼ 8 8 10

3. Y 1231
2 2 2 2 (0, 1) ∼ 2 6 6

4. Y 2131
2 2 2 3 (6, 1) ∼ 8 8 10

Table 6. Coefficients Y ijkl
2 of dimension 6 four-fermion operators of the form Q̄L,iQL,jD̄R,kDR,l.

The coefficient of the operator is given by ǫp where p is the modulus of the charge.

by just two examples. For the Abelian family symmetries the coefficient of the dimension

6 four quark operator is given by the factor ǫp where p is the modulus of the overall charge

of the operator. For the non-Abelian symmetry the coefficient is determined by identify-

ing the product of familon fields needed for a given operator, chosen from the allowed set

listed above. One sees a very wide range of coefficients and low suppression in many cases.

Moreover the predicted coefficients differ significantly between models so the the observa-

tion of a specific pattern of flavour changing processes would provide strong evidence for a

particular family symmetry.

6 SUSY

The analysis has so far considered the effective field theory relevant at energy scales below

the mass of the new states responsible for generating the flavour changing operators. It

is important to stress that the analysis is quite general and covers all possibilities for

Beyond the Standard Model physics. However, as discussed above, the interpretation of

the meaning of the inverse mass scale characterising the bound on the operator requires

a discussion of the underlying physics origin. In this section we discuss the case that the

hierarchy problem is solved by low-energy supersymmetry but allow the flavour symmetry

breaking scale to be much higher.

6.1 Identification of the scale Λ

Since there are two fundamental scales it is necessary to determine the scale, or combination

of scales, that is relevant to the bound on the scale, Λ, of table 1. To answer this it is

necessary to consider the leading flavour changing operators in the supersymmetric theory

above the supersymmetry breaking scale, MSUSY , but below the flavour symmetry breaking

scale, M . Since the quarks and leptons have scalar partners there are new operators that

may violate flavour and the leading ones have a lower dimension than the dimension 6

operators built of SM states alone. The SUSY operators generate the SM dimension 6

operators but, as we shall discuss, Λ should not be interpreted as the flavour changing scale

if the underlying SUSY operators have dimension < 6. The leading SUSY operators are the

soft supersymmetry breaking operators, the dimension 2 operators bilinear in the squark

fields, the dimension 3 operators trilinear in the squark and Higgs fields and the dimension
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4 four squark operators. The first two contribute to the Standard Model dimension 6

operators at one loop order while the latter contributes at two loop order and is sub-

leading. In general they are not diagonalised by the same rotations that diagonalise the

fermion masses and in this case will induce flavour changing processes. At higher order

there are SUSY operators of dimension 5 and above that are suppressed by additional

inverse powers of M that may also induce flavour changing processes.

The Lagrangian involving the dimension 2 bilinear operators has the form

M2
SUSY bijφ

†
iφj, where φi,j are both left-handed or right-handed squark fields and i, j are

family indices, corresponding to the squark mass matrix. In the case there is an unbroken

family symmetry, both the squark and quark mass matrices are simultaneously diago-

nalised. However once the family symmetry is broken this is no longer the case and family

symmetry breaking squark mass terms of the form M2
SUSY φ†

iφj(θ/M)qi−qj are generated.

The important point to note is that the family symmetry breaking scale only appears in

the ratio ǫ = (θ/M), the parameter that orders the family symmetry breaking terms. The

SUSY operators subsequently generate the SM dimension 6 operators at one-loop order

principally through gaugino interactions involving gauginos with mass scale MSUSY . Thus

it is the SUSY breaking scale in the visible sector and not the family symmetry breaking

scale that appears in the denominator after integrating out the supersymmetric states. In

this case Λ = MSUSY /α where α is the one loop factor associated with the gaugino dressing

— the strong fine structure constant.

The discussion extends readily to the remaining operators. The dimension 3 terms

involving LH- and RH-squarks and a Higgs scalar have a coefficient of O(MSUSY ). Thus

again for them we have Λ = MSUSY /α. The dimension 4 operators have Λ = MSUSY /α2.

There may be dimension 5 terms in the superpotential such as QucQdc/M with a single

inverse power of M . For them the relevant scale is Λ =
√

MSUSY M/α.

6.2 SUSY GIM suppression

There is a further important effect that must be taken into account when determining

FCNC in supersymmetric theories, namely the supersymmetric analogue of the SM GIM

mechanism that leads to a suppression of FCNC. To discuss the contribution of the squark

bilinear operators to the fermionic dimension 6 operators of table 1 we have to go to

the EWDD basis for fermions. For the squarks we still have a choice. A frequently used

approach is to apply the EWDD rotations to supermultiplets and to work with non-diagonal

squark mass matrices. Another possibility is to go to the squark mass eigenstate basis (by

independent rotations of the fermion and scalar components of the supermultiplets), with

the physics of the flavour violation by the squark sector encoded in the quark-squark-

gaugino couplings and closely resembling the GIM mechanism of the SM. To emphasize

this aspect, we first discuss the latter approach for the simplified case of two generations

and later we will work in the EWDD basis for supermultiplets, to make easy use of the

results already existing in the literature.

In addition to the suppression factor Λ−2 the dimension 6 quark operators have a

further suppression due to the SUSY GIM mechanism as we now discuss. We denote

the physical squark masses by m̃i, their squared mass difference by ∆m̃2 and the average
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squark mass squared m̃2. Let us concentrate on the LL squark mass matrices and restrict

ourselves to the 2-family case. For the supersymmetry induced 1-loop coefficient to the

operator O0 in table 1 one obtains the well known result

α2
s

m̃2

∣∣∣∣∣
∑

i

Ũd
diŨ

d†
is

∆m̃2
i

m̃2

∣∣∣∣∣

2

+ O
(

1

k2 − m̃2

)5

, (6.1)

where the elements of the matrix Ũ enter into the quark-squark-gluino couplings.4 This

matrix is in general a composition of two rotations: the first is the rotation which diag-

onalizes the down quark mass matrix (from the original electroweak basis to the EWDD

basis for quarks) and the second rotation diagonalizes the squark mass matrix (written in

the original electroweak basis). Equivalently, we may look at the matrix Ũ as the one that

diagonalizes the squark mass matrix transformed to the EWDD basis by the rotations on

the supermultiplets. Denoting the rotation angle in Ũ by ρ, equation (6.1) takes the form

α2
s

m̃2
cos2(ρ) sin2(ρ)

∣∣∣∣
m̃2

d − m̃2
s

m̃2

∣∣∣∣
2

. (6.2)

The supersymmetric GIM mechanism is evident in this formula. Let us first consider two

limiting cases. Suppose that in the original electroweak basis the squark mass matrix is

diagonal with split eigenvalues. The matrix Ũ is then given by the matrix Sd of equation

(13) and the angle ρ is just the quark mixing angle. In this case the effective scale Λ

associated with these operators should be identified with m̃/(αs sin(ρ)∆m̃2/m̃2)n where αs

is the one loop factor and n = 1 for the operator O0 and n = 1/2 for the other operators

from the table 1. It is dominated by the gluino contribution in which case αs is the strong

coupling fine structure constant divided by a numerical factor of the order of 100. To a

good approximation the value of ∆m̃2, evaluated at the SUSY breaking scale is the same as

it evaluated at the messenger scale associated with the communication of SUSY breaking

from the hidden to the visible sector. However, due to family blind gaugino interactions,

the mean mass m̃2 is significantly increased in running to the low SUSY breaking scale.

Phenomenological implications of the bounds on Λ will be discussed in section 7.

The second limiting case we consider has the initial squark mass matrix with degenerate

diagonal masses m2 and with the off diagonal terms of the form m̃2φ†
iφj(θ/M)q̃i−q̃j . (The

two mass parameters are not exactly equal because of the renormalization effects but

we neglect this difference in the present discussion.) This matrix is diagonalized by a

rotation ρ′ = 45 degrees and it dominates the quark mixing angle in the effective angle ρ

in equation (6.2), ρ ≈ ρ′. For this contribution Λ = m̃/(sin(ρ′) cos(ρ′)α∆m̃2/m̃2)n where

∆m̃2/m̃2 ≈ (θ/M)q̃i−q̃j . Similar results hold for the RR down squark mass matrix.

This analysis can be easily extended to the realistic 3 × 3 case. The interplay of

the effects due to the diagonal splitting and to the off diagonal terms in the squark mass

matrices in the original eletroweak basis may be then important if, for instance, the squarks

of the third generation are much lighter than the first two generations.

4For significance of other couplings see for instance [41].
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For easy reference to the results in the literature, we now repeat the above analysis in

the EWDD basis for the superfields, where the squark mass matrices remain non-diagonal.

In this case, the mass insertion approximation can be used to calculate the one-loop dia-

grams. Let us note that even if we start with the diagonal squark mass matrix, the rotation

of the superfields to the EWDD basis generates off-diagonal entries, if the initial diagonal

entries are split. Let’s start with the m̃2
dLL sector. In the original electroweak basis

m̃2
dLL ij ∼ m̃2ǫ|qLi−qLj | + ∆iδij , (6.3)

where ∆i = m̃2
ii−m̃2are the mass splittings on the diagonal. We again neglect the difference

in the renormalization of the diagonal and off-diagonal terms (to be discussed later). The

rotation of the superfields to the EWDD basis gives (in leading order in ǫ)

(
S†

dm̃
2
dLLSd

)
ij
∼ m̃2ǫ|qi−qj | + ∆iSdij + ∆jSdji. (6.4)

Since Sdij ≥ ǫ|qi−qj |, the effect of the initial diagonal splitting can be as or even more

important than the contributions of the initial off-diagonal entries in this case. This result

can be used to calculate the Wilson coefficients of the operators in table 1 by integrating

out the squark and gaugino degrees of freedom at one loop in the mass insertion approxi-

mation [14, 15].

6.3 Factorisation of operators in SUSY

As we have discussed the dominant SUSY operators have dimension 2 and dimension 3.5

Both of these are bilinear in the squark fields and one can generate all the the SM dimension

6 flavour changing operators by dressing one or two copies of these SUSY operators. Thus

for these underlying dimension 2 and dimension 3 SUSY operators the factorisation of

the SM operators is always the case. This means that it is possible to translate the

phenomenological bounds on the dimension 6 operators to bounds on the dimension 2

and dimension 3 operators in a model independent way [14, 15]. As we shall discuss in

the next section this proves to be very convenient when exploring the phenomenological

implications of family symmetries in SUSY theories.

7 Comparison with experiment

7.1 Experimental bounds on the squark masses

As we discussed earlier, in a supersymmetric theory above the supersymmetry breaking

scale MSUSY but below the flavour symmetry breaking scale M there are operators bilinear

and trilinear in the scalar fields that may violate flavour. These operators are not sup-

pressed by the scale M and after integrating out the supersymmetric degrees of freedom

we obtain fermionic operators of dimension 6 discussed in section 5, suppressed by the

scale MSUSY . Comparison with experimental data puts bounds on the symmetry breaking

scale MSUSY that may depend on the theory of flavour violation at the scale M (i.e. in our

5Unless the D=4 contributions are relatively enhanced to compensate for the additional loop factor.
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case on the broken family symmetry) and on the mechanism of supersymmetry breaking.

The latter dependence is an additional interesting element of these considerations. For in-

stance, in the absence of a spontaneously broken family symmetry and in the extreme case

of universal soft terms and A terms proportional to the Yukawa couplings at the high scale

(CMSSM), the MFV conjecture for flavour violation in the effective SM is satisfied since

at low scale universality is broken only by the renormalization effects and the bounds on

MSUSY actually do not depend on the theory of flavour violation at the scale M .6 Flavour

physics in the CMSSM has been extensively studied in the literature .

A contrasting picture emerges in gravity mediation scenarios for supersymmetry break-

ing with the flavour pattern of the soft terms at high scale determined solely by the broken

horizontal symmetries responsible for the hierarchies in the fermion mass matrices. In this

case the MFV conjecture does not apply and the bounds on MSUSY do depend on the

underlying family symmetry.

In the following we will discuss the bounds on MSUSY in this case for the family sym-

metry models discussed above, using the analysis of [14, 15]. In this approach the effective

fermionic lagrangian (dimension 6 operators) is obtained by integrating out supersymmet-

ric degrees of freedom at one loop in the EWDD basis for the chiral multiplets, that is

with diagonal down quark masses but with non-diagonal squark mass matrices, with ar-

bitrary off diagonal mass insertions. The Wilson coefficients of the fermionic dimension

6 operators depend on the dimensionful couplings of the operators bilinear and trilinear

in the scalar fields, that is on the diagonal and off diagonal entries in the LL and RR

blocks of the squark mass matrices and on the A-terms contributing to the LR blocks.

Using phenomenological constraints (requiring that the supersymmetric contribution do

not exceed the SM one-justified by the FCNC data) one obtains bounds on the ratio of

off-diagonal squark mass squared insertions to the average of the diagonal mass squared

terms. Since in the family symmetry models we can calculate the off diagonal terms, the

phenomenological bounds can be translated into the bounds on the diagonal entries, that

is on the soft supersymmetry breaking scale in the squark sector. The structure of the

effective lagrangian obtained in [14, 15] is as follows:

Leff =
α2

s

216m̃2
qij

(
(δd

12 LL)2(d̄LγµsLd̄LγµsL) × f(x)

+(δd
12 RR)2(d̄RγµsRd̄RγµsR) × f ′(x)

+(δd
12 LL)(δd

12 RR)(d̄RsLd̄LsR) × f ′′(x) + ... + h.c.

)
(7.1)

where δij MM =
∆m̃2

ijMM

m̃2

qij

, ∆m̃2
ijMM , M = L,R, are the off-diagonal entries in the down

squark mass squared matrices. and m̃2
q̃ij =

√
m̃2

i m̃
2
j is the average diagonal mass squared

for the i, j sector. The loop functions f(x) where x = m̃2
g̃/m̃

2
q̃ij are explicitly given in [14, 15]

and effectively are of the order of 100. All squark masses, the gluino mass and the ratio x

6The MFV conjecture is more general than the CMSSM as it admits nonuniversal soft terms at the high

scale provided they are consistent with MFV. Such scenarios may however be difficult to reconcile with an

underlying family symmetry.
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q ij (δq
ij)MM 〈δq

ij〉
d 12 0.01 ∼ ǫ2 0.0007 ∼ ǫ4

d 13 0.07 ∼ ǫ 0.025 ∼ ǫ2

d 23 0.21 ∼ ǫ 0.07 ∼ ǫ

u 12 0.035 ∼ ǫ2 0.003 ∼ ǫ3

Table 7. The phenomenological upper bounds on (δq
ij)MM and on 〈δq

ij〉, where q = u, d and M =

L, R taken from the summary of Isidori et al. [16, 17]. The constraints are given for mq̃ij = 350GeV

and x ≡ m2
g̃/m2

q̃ = 1.The masses are taken at the soft supersymmetry breaking scale. It is assumed

that the phases could suppress the imaginary parts by a factor ∼ 0.3. The bound on (δd
23)RR

is about 3 times weaker than that on (δd
23)LL (given in table). The constraints on (δd

12,13)MM ,

(δu
12)MM and (δd

23)MM are based on, respectively, refs. [18, 19] and [20].

are taken at the soft supersymmetry breaking scale m̃. Here we show only a few terms of

the long effective lagrangian, the ones depending on the LL and RR off- diagonal blocks

in the down squark mass matrix and contributing to ∆Fi = 2, ∆j = −2, i = 1, j = 2

processes. For the full effective lagrangian for these processes as well as for the processes

corresponding to other values of i, j and for ∆Fi = 1,∆Fj = −1 we refer the reader

to [14, 15] (the terms describing e.g. the BsB̄s are missing there but the generalization

is obvious).

In [14, 15], model independent phenomenological bounds on various δ’s are reported as

a function of the average squark masses, taking account of the GIM cancellation discussed

above. An updated version of the bounds can be found in [16, 17] (based on the results

of [18, 19] and [20]) and for LL and RR insertions and their product
√

LL × RR is given in

the table 7 for an average squark mass of 350 GeV and for x = 1. For other values of the

squark masses the bounds scale as (mq̃/350). The dependence of the bounds on the low

energy value of the ratio x is weak; they are slightly weaker for larger values of the ratio of

the gluino to squark masses. In the table we also express the δ’s in terms of the expansion

parameter ǫ. Up to O(1) factors it is approximately equal to the Cabbibo angle, with a

range between 0.15 and 0.23. In the table we use the lower value as a conservative estimate.

7.2 Family symmetry prediction for soft masses

7.2.1 Contribution from non-degeneracy of squark masses and D-terms

As discussed above, one source of the flavour changing φ†
iφj terms arises if the squarks

are not degenerate for then, in going to the appropriate quark mass eigenstate basis, off

diagonal terms are generated. In the case of a non-Abelian family symmetry such as SU(3)

the symmetry does require that the squarks of a given flavour be degenerate. In general

this is not the case but it may happen that the origin of supersymmetry breaking in the

visible sector is family blind and in this case the squarks will be degenerate. This happens

in gauge mediated supersymmetry breaking models and also in particular supergravity

mediated models. However, even if this is the case, there is a significant additional source

of non-degeneracy in models with a family gauge symmetry. This comes from the D-terms
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associated with the gauge symmetry. For the case of a U(1) symmetry the D-term is

D2 = g2
f

(
|φ|2 − |φ̄|2 + cd̃L|d̃L|2 + cd̃R|d̃R|2 + ...

)2
(7.2)

where gf is the gauge coupling constant, φ is the familon field, cd̃L,R are the family charges

of the down squarks and the (...) stands for similar terms for all the other sfermions. This

term gives contributions to the squark masses of the form

∆m2
f̃L,R

= cd̃L,Rgf < D > (7.3)

where

< D >= gf < |φ|2 − |φ̄|2 > (7.4)

Following from this one has

δd
12LL ≈ < D >

m̃2

(
cd̃L

Sd11S
∗
d21 + cs̃L

Sd12S
∗
d22 + cb̃L

Sd13S
∗
d23

)
(7.5)

where m̃2 is the average squark mass squared. Similar expressions are obtained for the other

δs. As discussed in [21–25] the magnitude of the D-term is proportional to (m2
φ−m2

φ̄
) where

m2
i are the soft supersymmetry breaking masses squared of the familon fields. If this factor

is of order m̃2 one sees that the expectation is that δd
12LL is of order ǫ. In table 7 we see

that, for mq̃ij = 350 GeV the phenomenological upper bounds on the LL and RR δ’s are at

most of the order of ǫ2, and the product
√

LL × RR in the (1,2) is bounded by ǫ4 Thus, at

the first sight the D-term contribution is off by a factor ǫ3 compared to the experimental

bounds found assuming mq̃ij = 350GeV . However, these predictions are valid at the

scale M of the family symmetry breaking and before comparing them to the experimental

bounds one should correct them using the renormalisation group running to determine

them at low scales where the experimental bounds apply. The dominant renormalisation

effects are flavour blind strong interaction contributions to the diagonal squark mass entries

coming from terms proportional to the gluino mass. These effects depend strongly on the

ratio x0 = m2
1/2/m

2
0 where m1/2 and m0 are the gluino and squark masses at the scale

M [26]. For a rough estimate of such effects in the running down from the GUT scale

one can use approximate formulae mg̃ ≈ 3m1/2 and m2
q̃ ≈ m2

0 + 6m2
1/2. First, we see that

x = 1 implies x0 = 1/3 and very weak gluino renormalisation effects. The squark mass of

350 GeV corresponds then to m0 = 200GeV and m1/2 = 120 GeV. Next, we can ask for

what values of x0 we can gain at least factor ǫ3 , to make the predictions consistent with

the experimental bound. Neglecting the small renormalisation of the off-diagonal entries,

one finds consistency for m1/2/m0 = 7. For 350 GeV squarks this implies m0 = 20 GeV

and m1/2 = 140 GeV. For this value of x0 larger values of m1/2 are also comfortable. For

instance, for m1/2 = 300 Gev we get mg̃ = 900GeV and mq̃ = 800 GeV, consistent with low

fine-tuning [28, 29]. As a final example, for x0 ≈ 1 the values of the δ’s are renormalised

in the running down from the GUT scale to 1 TeV by a factor of order 0.1 and to bring

the result into agreement with the bounds requires the squarks of the first two generations

of about 15TeV. Such a large mass introduces a large fine tuning implying that SUSY

does not solve the little hierarchy problem. This discussion nicely illustrates the interplay
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between the FCNC effects and the soft supersymmetry breaking spectrum in models with

family symmetries [24, 25, 30, 31].

The magnitude of the D-term can be much smaller also for other reasons [24, 25]. One

possibility in supergravity mediated SUSY breaking occurs in family symmetry models such

as model III with conjugate pairs of familons φ and φ̄. In this case the factor (m2
φ − m2

φ̄
)

vanishes for degenerate familons eliminating the D-term contribution. Such degeneracy

can result if the underlying SUSY breaking field is dominantly the dilaton that couples

universally. For the case of gauge mediated supersymmetry breaking the soft familon

masses are automatically much smaller that the soft squark masses because they are SM

gauge singlets and their coupling to the gauge mediation sector is via their coupling to the

quark, introducing an additional loop factor in the mass squared calculation. Such a factor

is expected to render this contribution subdominant.

Finally it may be that the family symmetries are discrete rather than continuous and

in this case there is no D-term to worry about. Although our discussion has been in the

context of continuous symmetries they may also apply to their discrete subgroups. To

be specific the results are unchanged for the ZN subgroup of U(1) provided the operator

charges are not greater than N/2 giving a lower bound on N .

7.2.2 Contributions from off diagonal squark mass

Consider the bounds coming from the LL terms. For them the squark mass terms in

the Lagrangian have the form mq̃ij q̃
†
i q̃jǫ

|qj−qi| corresponding to (δq
ij)LL = ǫ|qj−qi|. This is

the suppression associated with the dimension 3, ΦLi ⊗ Φ†
Lj, operators listed in table 3.

The other entries of table 3 immediately give the remaining suppression factors associated

with the other (δq
ij)MM . As for the D-terms, these predictions are valid at the scale M

of the family symmetry breaking and one should correct them using the renormalisation

group running to determine them at low scales where the experimental bounds apply. The

previous discussion remains valid in this case, too. Thus, the coefficients taken from table 3

should be rescaled by a factor depending on the value of the ratio x0 of the soft masses at

the scale M, before comparing them with the phenomenological bounds of table 7.

As mentioned earlier, for mq̃ij = 350 GeV the phenomenological upper bounds on

the product
√

LL × RR in the (1,2) sector is ǫ4. A comparison of table 3 with table 7

shows that only this term requires special attention in some of the models for an average

squark mass of 350GeV . In Models I and II, the suppression factor for the
√

LL × RR in

the (1,2) sector is only ǫ so we need either large enough value of the ratio x0 or heavier

squarks or both, as discussed in the previous subsection. The (1,3) and (2,3) sectors are

still safe even for light 3rd generation squarks. Models III, U(1)2, the non-Abelian model

and the F-theory model have suppression factors of ǫ5, ǫ8, ǫ3 and ǫ5 respectively for the√
LL × RR in the (1,2) sector. Allowing for a modest suppression due to running of O(0.1),

corresponding to x0 = 1, even for a light squark sector with masses of O(350 GeV ) they are

safely within the present bounds. It is interesting that Model III predicts an unsuppressed

RR insertion in the (2,3) sector and an improved phenomenological bound separately on

this insertion would be very interesting.
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q ij (δq
ij)LR

d 12 2 × 10−4 ∼ ǫ4

d 13 0.08 ∼ ǫ

d 23 0.01 ∼ ǫ2

d 11 4.7 × 10−6 ∼ ǫ6

u 11 9.3 × 10−6 ∼ ǫ6

u 12 0.02 ∼ ǫ2

Table 8. The phenomenological upper bounds on chirality-mixing (δq
ij)LR, where q = u, d taken

from the summary of Isidori et al. [16, 17]. The constraints are given for mq̃ = 1TeV and for

x = mg̃/mq̃ = 1. It is assumed that the phases could suppress the imaginary parts by a factor

∼ 0.3. The constraints on δd
12,13, δu

12, δd
23 and δq

ii are based on refs. [18–20] and [35] respectively

(with the relation between the neutron and quark EDMs as in [42]).

To summarise, supersymmetric family symmetry models of fermion mass generically

violate the MFV hypothesis. However, they offer a broad spectrum of possibilities, from

being consistent in the FCNC sector with the present experimental bounds with no con-

straints on the soft supersymmetry breaking parameters to requiring special pattern of

SUSY breaking. Various models predict “significant” departures from the MFV but only

in a limited number of processes involving heavy quarks suggesting a systematically study

of all FCNC data may reveal deviations from MFV.

8 A terms

We turn now to the A−terms that enter in the trilinear scalar quark couplings Aq
ijHq q̃

∗
Liq̃Rj

where Hq, q = u, d are the q−type Higgs bosons and vq = 〈Hq〉. These terms give rise to

chirality-mixing (δq
ij)LR =

vqAq
ij |SCKM

m2

q̃ij

squark mass insertions in the SCKM basis, where

q = u, d and mq̃ij is the average squark mass defined above. In table 8 we give the current

bounds on these chirality mixing masses [16, 17], see also [27]. In the table we also express

the δ’s in terms of the expansion parameter ǫ.

To determine the implications of these bounds for the family symmetry models note

that in them Aq
ij are suppressed by the same powers of ǫ as the Yukawa couplings Y q

ij given

in appendix 1. In such models, Aq
ij = Ãq

ijY
q
ij where the coefficients Ãq

ij are given by an

overall mass scale factor multiplied by O(1) constants. Rotated to the appropriate basis

(in the case of the operators involving d squarks the SCKM basis and the EWDD basis are

equivalent) Aq
ij |SCKM ∝

(
S†

dA
qVd

)
ij
. In all examples of charge assignments considered in

this paper, the off-diagonal Aq
ij |SCKM are also suppressed by the same powers of ǫ as the

Yukawa couplings Y q
ij given in appendix 1. Assuming for the moment that the constant

of proportionality is the average squark mass the chirality-mixing (δq
ij)LR ∝ Y q

ijvq/mq̃ij .

Comparing with the factors of appendix 1 and taking into account that vq/mq̃ij < ǫ one

sees that the bounds are satisfied in all cases in Model IV. In the other models the bounds

are satisfied for the off-diagonal entries. In model I the (δd
11)LR entry is too large by the
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factor 1/ǫ. So, for squark masses in the TeV range all but Model I satisfy the bounds, the

discrepancy with Model I being in comparison with the (δd
11)LR entry. Squark masses in

the TeV range are perfectly acceptable from the point of view of still solving the fine-tuning

problem [28, 29].

The strong bounds on (δq
11)LR come from the bounds on the electric dipole moments

(EDM) and, being CP violating, are sensitive to the phase of (δq
11)LR. In supersymmetric

models there are new CP violating phases (beyond those associated with (δq
11)LR) associated

with the gaugino mass and µ-term that must be less that 10−2 to be consistent with

the EDMs. In family symmetry models there is a very natural explanation [33] for this

suppression that follows if the underlying supersymmetric theory is CP conserving and

CP is spontaneously broken by the familon vevs. Taking the phases of the familon vevs

to be of O(1) one readily generates the observed CP violation while keeping the gaugino

mass and µ-term phases below 10−2. In this case the leading contribution to EDMs is that

coming from (δq
11)LR. The bound on the latter assumes that the phases could suppress the

imaginary parts by the factor 0.3 and we consider this a reasonable estimate.

The possibility for weakening the bounds on the A-terms following from the bounds on

(δq
ij)LR and making them consistent with squarks lighter than 1 TeV is that the constant

of proportionality is much less than the average squark mass scale. As discussed in [34]

in the case of gravity mediated supersymmetry breaking the average squark mass is the

normal expectation for the constant of proportionality but in particular cases this may be

significantly reduced [32]. In the latter case the reduction can be by a factor of 1/ǫ. In

gauge mediated supersymmetry breaking the situation changes dramatically because the

constant of proportionality is then expected to be much less than the average squark mass.

In this case the constraint on the A−terms coming from (δq
ij)LR go away.

9 Summary and conclusions

The precise measurements of and limits on flavour changing neutral currents and CP viola-

tion provide sensitive tests of the Standard Model and strong limits on physics beyond the

Standard Model. To date there is no definitive indication of a deviation from the Standard

Model predictions so one obtains bounds on the effective suppression scale of the lead-

ing higher dimension operators contributing to such processes. Since the most stringent of

these bounds are in the hundreds of TeV range, significantly above the TeV range expected

for new physics capable of solving the hierarchy problem, the nature of the new physics

must have a mechanism leading to a strong suppression of FCNC effects.

A minimal possibility is that all flavour changing and CP violation originates from the

Yukawa couplings of the Standard Model processes and its generalisation, such as super-

symmetry, that is responsible for solving the hierarchy problem. Within this framework

there is no tension with the current bounds on the mediator scale and the scale of new

physics needed to solve the little hierarchy problem. However MFV does not address the

origin of the Yukawa couplings and it is of interest to ask whether models that do can

still satisfy the bounds and, if so, how one will be able to distinguish them from MFV.

In this paper we have discussed this question in the context of spontaneously broken fam-
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ily symmetries that are able to generate the hierarchical pattern of fermion masses and

mixing angles.

The structure of family symmetry models is significantly different from MFV. In MFV

the Yukawa couplings act as fundamental spurions with definite transformation under

SU(3)3q and all FCNC operators are built using combinations of these spurions. However

in the case of Abelian family symmetries one generates all possible SU(3)3q representations

from the familon fields so FCNC are not so tightly constrained. Having set up the general

formalism to deal with such structures we considered a set of representative models to

get an indication of the magnitude of FCNC and CP violation to be expected in family

symmetry models.

For the case that the structure beyond the Standard Model is not specified one

obtains new bounds on the effective mediator scale needed to suppress the dimension

6 FCNC quark operators. The most sensitive case turns out to be for the operator

H†
(
D̄RλdλFCσµνQL

)
Fµν which has the same family symmetry property as the down quark

mass matrix in the current quark basis. All but one of the models considered here have

Uus originating largly from the down quark sector and for them the bound on the mediator

scale is enhanced by a factor of O(100) relative to that found in MFV. To avoid this it

is necessary that Uus comes dominantly from diagonalising the up quark sector and for it

the bound is the same as that found in MFV. The U(1) × U(1) model of [37] provides an

example of this and illustrates that family symmetry models of fermion mass do not neces-

sarily require much stronger bounds on the scale of new physics than that found in MFV.

Of course if deviations from the Standard Model are found it will be crucial to be able to

distinguish between MFV and family symmetry models and ultimately to determine if a

given family symmetry model is correct. The study presented here shows that this may

be possible through the observation of correlations of FCNC effects in a wide variety of

channels because the different models considered here vary greatly in their predictions for

various FCNC processes involving the different families.

A particularly interesting question is whether any of these family symmetry models

is consistent with the solution to the little hierarchy problem that typically requires new

physics at a scale below that found for the effective mediator mass. In the case of super-

symmetric models the most dangerous SUSY terms capable of generating FCNC are the

SUSY breaking squark masses and the soft trilinear scalar ‘A’ terms. For the former the

D-terms associated with continuous family symmetries are problematic and we considered

them in detail. While the present bounds on FCNC do impose strong constraints on these

terms we demonstrated that there are several ways these constraints can be satisfied with-

out reintroducing the little hierarchy problem. The same is true for the FCNC originating

from the off diagonal terms in the squark mass matrices and the soft A terms.

The conclusion is that supersymmetric models with spontaneously broken family sym-

metries are consistent with all present bounds on FCNC and CP violation without the

need to raise the scale of squark masses beyond that needed to solve the little hierarchy

problem. However there is not much room for manoeuvre and one may expect FCNC to

be close to the present bounds. If they are found then there will be characteristic signals

capable of distinguishing between the models and MFV coming from the study of a variety
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of processes involving different family combinations. For example the recent indication of

CP violation beyond the Standard Model in the B system [43] may be difficult to reconcile

with MFV in which the CP violation is strongly constrained as it has to come from the

Yukawa couplings alone. However in family symmetry models there are more sources of

CP violation possible coming from the (possible complex) familon vevs. In addition, as we

have discussed above, in family symmetry models there are additional operators, such as

that associated with Y 2323
2 , contributing to ∆B = 2, ∆S = −2 processes.
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A Family symmetry models

To illustrate the expectations for FCNC following from a family symmetry model we con-

sider specific models that have been built to explain the quark masses and mixings.

Example I. The first model provides an example of an U(1) holomorphic model with

the familon field, θ, carrying only negative charge +1. It is Model 1 of [36] with charges

given by:

qL 1,2,3 : (3, 2, 0)

dc
1,2,3 : (1, 0, 0)

uc
1,2,3 : (3, 2, 0) (A.1)

This gives the following Yukawa matrices, taking ǫ = <θ>
MP

:

YU =




ǫ6 ǫ5 ǫ3

ǫ5 ǫ4 ǫ2

ǫ3 ǫ2 1


 YD =




ǫ4 ǫ3 ǫ3

ǫ3 ǫ2 ǫ2

ǫ 1 1




Example II. A second U(1) holomorphic example [36] has the charge assignement:

qL 1,2,3 : (3, 2, 0)

dc
1,2,3 : (2, 1, 1)

uc
1,2,3 : (3, 2, 0) (A.2)

This gives the following Yukawa matrices
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U(1) U(1)′

Q̄1 −3 0

Q̄2 0 −1

Q̄3 0 0

D1 1 −2

D2 −4 1

D3 0 −1

U1 1 −2

U2 −1 0

U3 0 0

Table 9. Charges in the U(1)2 model.

YU =




ǫ6 ǫ5 ǫ3

ǫ5 ǫ4 ǫ2

ǫ3 ǫ2 1


 YD =




ǫ5 ǫ4 ǫ4

ǫ4 ǫ3 ǫ3

ǫ2 ǫ ǫ




Example III. The third example is a non-holomorphic model that has not previously

been discussed. In addition to having the good prediction for Vcb = O(ms/Mb) it also has

a (1, 1) texture zero giving the relation Vus = O(
√

ms/md). In this case there are two

familon fields, θ, θ̄, with charges ±1 and equal vevs to ensure D-flatness. The Higgs fields

have charge −ω and the quark charges are

qL 1,2,3 : (−3 + w, 2 + w,w)

dc 1, 2, 3 : (−5, 0, 0)

uc 1, 2, 3 : (−5, 0, 0) (A.3)

where w is a free parameter. It gives the following Yukawa matrices:

YU,D =




ǫ8
u,d ǫ3

u,d ǫ3
u,d

ǫ3
u,d ǫ2

u,d ǫ2
u,d

ǫ5
u,d 1 1




where ǫu,d = <θ>
MU,D

and we have allowed for different messenger masses in the up and the

down sectors.

Example IV: A U(1)×U(1)′ model. The charges are defined in table 9, see also [37].

The expansion parameter for the U(1) is ǫ1 and for the U(1)′ it is ǫ2. We shall assume

(after [37]) that ǫ1 ∼ ǫ, and ǫ2 ∼ ǫ2. The resulting mass matrices are
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U(1) U(1)′ U(3)′′

Q̄1 −1 1 −2

Q̄2 1 1 −2

Q̄3 0 0 3

D1 −1 1 1

D2 1 1 1

D3 1 −1 −4

U1 −1 1 −2

U2 1 1 −2

U3 0 0 3

θ13 −1 −1 5

θ14 1 −1 5

θ53 −1 −3 0

θ54 1 −3 0

Table 10. Charges in the U(1)3 F-theory model.

YU =




ǫ6 ǫ4 ǫ3

ǫ7 ǫ3 ǫ2

ǫ5 ǫ 1


 YD =




ǫ6 ǫ9 ǫ5

ǫ7 ǫ4 ǫ4

ǫ5 ǫ6 ǫ2


 .

Example V: A Non-Abelian model. The family symmetry is SU(3), under which the

quarks transform as follows (see [24, 25]):

QL ∼ 3, DR, UR ∼ 3̄. (A.4)

The familons transform as follows

Φ̄u,d
3 ∼ 3̄, Φ̄23 ∼ 3̄, Φ̄123 ∼ 3̄, (A.5)

expectation values of the form:

Φ̄u,d
3 /MU,D = (0, 0, 1), Φ̄23/MU,D = (0, 1,−1)×ǫu,d, Φ̄123/MU,D = (1, 1, 1)×(ǫu,d)

2, (A.6)

where ǫd = 0.15, ǫu = 0.05 ∼ (ǫd)
2.

The allowed Yukawa couplings involving these familons are restricted by additional

family independent symmetries. For the L̄L and R̄R operators these symmetries require the

familon fields only appear in pairs involving the same familon field. For the LR terms the

familon fields appear in the combinations φ123φ23, φ23φ23 and φ3φ3 with the corresponding

mass matrices given by

YU,D =




0 ǫ3
u,d ǫ3

u,d

ǫ3
u,d ǫ2

u,d ǫ2
u,d

ǫ3
u,d ǫ2

u,d 1



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where we have allowed for different messenger masses in the up and the down sectors.

Example VI: An F-theory model. Recently there has been considerable interest in

F-theory string models and their implications for fermion masses. Such models can have

Abelian family symmetries. These symmetries and the charges of the matter fields under

these symmetries are strongly constrained by the underlying E(8) symmetry of the associ-

ated string theory [38]. To illustrate the structure that can emerge we include here an F-

theory model [39] with an underlying SU(5) GUT symmetry. In this model there is a U(1)3

family symmetry, a subgroup of the SU(5)⊥ subgroup of E(8) ( SU(5) × SU(5)⊥ ⊂ E(8))

when a Z2 monodromy is imposed.

The charges of the quarks under these symmetries are given in table 10. Also shown

are the charges of the familon fields breaking these symmetries. There are four familon

fields, θ13, θ14, θ53, θ54 and they acquire vevs of O(ǫ2, ǫ3, ǫ2, ǫ3) respectively.

The Yukawa couplings have the form

YU =




ǫ6 ǫ5 ǫ3

ǫ5 ǫ3 ǫ2

ǫ3 ǫ2 1


 YD =




0 ǫ3 ǫ3

ǫ3 ǫ2 ǫ2

0 0 1


 .

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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