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1 Introduction and results

The evolution of the Quark-Gluon Plasma (QGP) produced in heavy ion collisions is fairly

well described, after a short period of thermalization and before hadronization, by rela-

tivistic hydrodynamics, consistently with the strongly coupled regime of such system [1–4].

Numerical simulations of the hydrodynamic evolution of the QGP require as input the

value of the transport coefficients. While recent simulations indicate that the evolution of

the QGP should be quite insensitive to most of the second order coefficients (see for ex-

ample [5–7]), it is definitely sensitive to the value of the shear viscosity [8–11], and can be

influenced in a sizable way by the bulk viscosity and possibly the relaxation times [6, 7, 12].

Moreover, a complete characterization of the Quark-Gluon Plasma of QCD up to second

order still requires the knowledge of the whole set of coefficients.

There are currently no first-principle reliable calculations of almost all the second order

coefficients for QCD at strong coupling: lattice results give some estimates of the viscosities

and the shear relaxation time [13–17], but they are affected by considerable uncertainties

(see for example [18]). In fact, actual simulations, lacking solid data for QCD, make

often use, as benchmark values of the transport coefficients, of the ones derived from the

gravitational dual of N = 4 SYM [19–21] (in some cases together with the bound on the

bulk viscosity proposed in [22] and a relation for the relaxation times from [23]). While the

N = 4 SYM values for the “shear” coefficients are expected to be in the right ballpark for

QCD, they still concern an exactly conformal theory, and in particular the bulk viscosity

and many of the second order coefficients are not determined.

In order to improve this situation, the first step is to break conformal invariance.

Since QCD is approximately conformal in the temperature window 1.5Tc . T . 4Tc, the

conformality breaking effects can be treated perturbatively. In this situation, probably the

simplest way of modeling QCD holographically is by a theory where conformality is slightly

broken by a marginally relevant operator.

The aim of this note is to point out that, in such a scenario, all the transport coefficients

up to second order for the uncharged plasma are given in terms of a single parameter

(weighting the conformality breaking) by making use of the results in [23, 24]: they are

collected in table 1. In particular, the behavior of the shear and bulk relaxation times is

briefly discussed in section 1.2.
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There are surely more precise ways of modeling holographically QCD (none of which

is of course completely correct). Nevertheless, the model considered in this note has the

considerable advantage of full calculability, providing one of the few examples in which all

the second order transport coefficients are determined. Moreover, the results in table 1

hold for any theory with gravity dual, where conformality is broken at leading order by a

marginally (ir)relevant operator (dual to a scalar with the simplest possible potential (2.1)),

including the cascading plasma [25] and the D3D7 plasmas [26].

1.1 Notation

Uncharged relativistic hydrodynamics is determined, up to second order in the deriva-

tive expansion, by seventeen transport coefficients, fifteen of which are possibly indepen-

dent [19–21, 23]. On a general space with metric gµν , the energy momentum tensor

T µν = εuµuν + p∆µν + πµν + ∆µνΠ , where ∆µν = gµν + uµuν , (1.1)

is determined by the energy density ε, fluid velocity uµ (uµuµ = −1), the transport coeffi-

cients in its “viscous shear” part:

πµν = −ησµν + ητπ

[

〈Dσµν〉 +
∇ · u

3
σµν

]

+ κ

[

R<µν> − 2uαuβRα<µν>β

]

+ λ1σ
<µ
λ σν>λ

+λ2σ
<µ
λ Ων>λ + λ3Ω

<µ
λΩν>λ + κ∗2uαuβRα<µν>β

+ητ∗
π

∇ · u
3

σµν + λ4∇<µ log s∇ν> log s (1.2)

and in its “viscous bulk” part:

Π = −ζ(∇ · u) + ζτΠD(∇ · u) + ξ1σ
µνσµν + ξ2(∇ · u)2 + ξ3Ω

µνΩµν

+ξ4∇⊥
µ log s∇µ

⊥ log s + ξ5R + ξ6u
αuβRαβ , (1.3)

while the pressure is given by the equation of state p(ε). The various structures in (1.2)

and (1.3), apart from the obvious Riemann and Ricci tensors and scalar curvature

(Rµνρσ , Rµν , R), are given by:

D ≡ uµ∇µ , ∇µ
⊥ ≡ ∆µν∇ν , σµν ≡ ∇µ

⊥uν + ∇ν
⊥uµ − 2

3
∆µν(∇ · u) ,

Ωµν ≡ 1

2
(∇µ

⊥uν −∇ν
⊥uµ) , (1.4)

and for a generic tensor Aµν it was used the notation:

〈Aµν〉 = A<µν> ≡ 1

2
∆µα∆νβ(Aαβ + Aβα) − 1

3
∆µν∆αβAαβ . (1.5)

Finally, s is the entropy density, while the speed of sound will be denoted as c2
s = dp/dε.

The shear viscosity η and the second order coefficients τπ (“shear” relaxation time), κ,

λ1, λ2, λ3 are the only ones defined in conformal fluids, as the one of N = 4 SYM. All the

others coefficients, i.e. the bulk viscosity ζ and the second order coefficients κ∗, τ∗
π , λ4, τΠ

(“bulk” relaxation time), ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, are only defined in non-conformal plasmas.
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η
s

1
4π Tτπ

2−log 2
2π + 3(16−π2)

64π δ Tκ
s

1
4π2

(

1 − 3
4δ

)

Tλ1

s
1

8π2

(

1 + 3
4δ

)

Tλ2

s − 1
4π2

(

log 2 + 3π2

32 δ

)

Tλ3

s 0

Tκ∗

s − 3
8π2 δ Tτ∗

π −2−log 2
2π δ Tλ4

s 0

ζ
η

2
3δ TτΠ

2−log 2
2π

Tξ1
s

1
24π2 δ

Tξ2
s

2−log 2
36π2 δ Tξ3

s 0 Tξ4
s 0

Tξ5
s

1
12π2 δ Tξ6

s
1

4π2 δ

Table 1. The transport coefficients, in the notation of (1.1)–(1.3), for a marginally (ir)relevant

deformation of a conformal theory, at leading order in the deformation parameter δ ≡ (1 − 3c2

s
).

The holographic equation of state is ε = 3(1 + δ)p.

1.2 The estimate

Consider a gravity dual model for QCD at large temperature, where the leading confor-

mality breaking effect is captured by adding to the five dimensional metric a non trivial

dilaton profile, dual to a marginally relevant operator. The main observation of this note is

that, for the simplest scalar potential, the transport coefficients are completely determined

in terms of a single parameter. Defining:

δ ≡ (1 − 3c2
s) , (1.6)

at first order in δ the transport coefficients are given in table 1. This result, which is the

main content of this note, follows directly from [23, 24] (which already contains a part of

the relations in table 11) and will be derived in section 2.

Possibly the main novel results contained in table 1 concern the two relaxation times

τπ, τΠ. Specifically, at leading order in the conformality breaking, the bulk relaxation time

τΠ is not proportional to the bulk viscosity. The behavior of the shear relaxation time τπ is

instead more interesting, since it depends on the speed of sound. For a phenomenologically

1See also [22, 24, 27–35].
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η
s

1
4π Tτπ 0.222 Tκ

s 0.022

Tλ1

s 0.014 Tλ2

s −0.021 Tλ3

s 0

Tκ∗

s −0.006 Tτ∗
π −0.031 Tλ4

s 0

ζ
η 0.101 TτΠ 0.208 Tξ1

s 0.001

Tξ2
s 0.001 Tξ3

s 0 Tξ4
s 0

Tξ5
s 0.001 Tξ6

s 0.004

Table 2. The transport coefficients at T ∼ 1.5Tc and c2

s ∼ 0.283.

realistic behavior of the latter, τπ is decidedly increasing when reducing the temperature.

In particular, it increases faster than τΠ.

Moreover, using the above results it is easy to verify that the relation

4λ1 + λ2 = 2 η τπ , (1.7)

holds, at first order in δ. It has been shown in [36, 37] that (1.7) is satisfied in all the known

examples of conformal plasmas (in d ≥ 4 spacetime dimensions, with of without conserved

global charges) with dual gravity description. Our results provide a unique validity check

of the above relation in non-conformal settings.2

While the present system can model at best the regime of QCD away from the critical

temperature, where there are certainly other ways of modeling QCD, it would be unex-

pected if the qualitative behavior of the transport coefficients described above turned out

to be drastically different.

In order to give an illustrative example of numerical estimates of the coefficients, we

have to chose one input parameter. As in [7], we use the results for the speed of sound from

the lattice study in [38, 39]. We consider a temperature T ∼ 1.5Tc, which is a reasonable

value for the RHIC experiment. Then from [38, 39] we read c2
s ∼ 0.283 from which we get

the numbers in table 2. The reported values provide corrections up to 17% to the conformal

ones (when the latter are defined). In particular 2πTτπ = 1.394 is a bit larger than the

2We thank Todd Springer for this observation.
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conformal value (1.307) and more similar to the one used in [7]. The numerical difference

is by definition not very large, but sizable. Obviously, increasing the temperature reduces

this difference and at T ∼ 3Tc, which could be a significant temperature for LHC, the

corrections to the conformal values are below 10%.

Let us conclude this section by describing the approximations involved in applying

these relations to QCD. First of all, QCD does not have a purely gravitational dual. Nev-

ertheless, experience teaches that simple gravity models of metric plus scalar are in good

quantitative agreement with the lattice results for certain observables. In particular, we

are interested in the regime, relevant in the early stages of the QGP evolution, at T > Tc

where QCD is nearly conformal and strongly coupled. Moreover, in the hydrodynamic

regime the gravity description and actual QCD are in good agreement (e.g. the result for

the shear viscosity). On the other hand, in QCD the gluon condensate is marginally rele-

vant in the asymptotically free regime, while in the experimental regime we are interested

in, the theory is strongly coupled and this operator can be expected to have developed a

sizable anomalous dimension.3 The other caveat concerns the effects of the flavors and the

chemical potential, which are not accounted for in table 1, but are expected to give the

latter subleading corrections.

In view of these considerations, the relations in table 1 can provide a fair estimate4 of

the initial behavior of the hydrodynamic evolution at RHIC and LHC.

2 Derivation

The leading conformality breaking effects of a source for a marginally (ir)relevant operator

can be captured in the dual gravitational setting by a so-called Chamblin-Reall model.

Consider an effective five dimensional theory with metric plus a single scalar φ with poten-

tial V (φ). It models the breaking of conformality at leading order in a small parameter ǫ if

V (φ)|ǫ=0 = V0, where the negative cosmological constant V0 allows for and AdS solution.

The operator dual to φ (on the unperturbed AdS solution) is of dimension four, that is

it is marginally (ir)relevant, if ∂2
φV (φ)|φ=0 = O(ǫ1+α) with positive α. The simplest such

class of models, and the one we are interested in, is given by:

V (φ) = V0 + ǫφ + O(ǫ1+α) . (2.1)

At leading order:

V (φ) ∼ V0e
ǫφ/V0 , (2.2)

i.e. the model is in the Chamblin-Reall class [40].5

For this class of models, the proof of the relations in table 1 follows directly from [24].

Let us summarize it. The starting point is the fact that Chamblin-Reall models in d + 1

dimensions, for particular values of the coefficient of the exponential in the potential, can

3This situation could be modeled with a scalar dual to a relevant operator [29, 30, 33, 34]. In this case

the computation of the second order coefficients is highly more complicated.
4Better than the one provided by N = 4 SYM [19–21].
5To be precise, with unit AdS radius, V0 = −12 and, from the calculation of the speed of sound,

ǫ2 = 96δ [29, 30].
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be obtained from dimensional reduction on a 2σ−d torus of pure gravity plus cosmological

constant in 2σ + 1 dimensions. This happens when the parameter σ, which determines

together with d the coefficient in the exponential, is semi-integer. For these values of

σ, one can then start from the well-known AdS2σ+1 solution and its dual hydrodynamic

energy-momentum tensor, and obtain the hydrodynamic energy-momentum tensor for the

dual to the Chamblin-Reall model by simple toroidal dimensional reduction.

The crucial observation in [24] is that, from the point of view of the theory in d + 1

dimensions, the equations are smooth in the parameter σ. This allows for the computation

of the hydrodynamic energy-momentum tensor for arbitrary values of σ > d/2.6

The procedure is as follows. One starts from a Chamblin-Reall model in d + 1 di-

mensions for whatever σ > d/2 and performs the continuation (which is smooth) to the

nearest value σ̃ which is semi-integer. The latter theory is the compactification of a theory

admitting a AdS2σ̃+1 solution, so its dual energy-momentum tensor, which will be a func-

tion of σ̃, can be calculated straightforwardly. This energy-momentum tensor can thus be

continued (smoothly) back to the one of the theory corresponding to the original value σ.

In particular, all the transport coefficients for this theory will automatically be deter-

mined by the conformal ones in the higher dimensional theory, modulo an overall constant

(the volume of the torus) which can be fixed knowing just one coefficient.

Let us see concretely how this procedure is implemented. One can determine σ by the

fact that the equation of state in these models is ε = (2σ−1)p [24], so that σ = 2+3δ/2 in

the notation of table 1.7 Thus, for a small deformation δ of a conformal theory, σ̃ = 5/2 and

the relevant starting solution is AdS2σ̃+1 = AdS6, whose dual conformal hydrodynamics

was considered in [41]. Let us write the results of [41] in the present notation:

η(2σ̃) =
s(2σ̃)

4π
,

κ(2σ̃) =
η(2σ̃)σ̃

πT (2σ̃ − 2)
,

τ (2σ̃)
π =

σ̃

2πT

(

1 −
∫ ∞

1

y2σ̃−2 − 1

y(y2σ̃ − 1)
dy

)

,

λ
(2σ̃)
1 =

η(2σ̃)σ̃

4πT
,

λ
(2σ̃)
2 = −η(2σ̃)σ̃

πT

∫ ∞

1

y2σ̃−2 − 1

y(y2σ̃ − 1)
dy ,

λ
(2σ̃)
3 = 0 . (2.3)

The procedure to obtain the desired coefficients involves reducing the energy momentum

tensor on a circle (2σ̃ − d = 1) of volume V , continuing it back to σ and expanding it

at first order in δ [24]; examples of results of this procedure are (the arrows denote the

6At σ = d/2 the action is singular [24].
7And σ = 2 + ǫ2/64 in the notation of (2.1).
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analytic continuation):

η = η(2σ̃)V → η(2σ̃)V , (2.4)

κ = κ(2σ̃)V → η(4 + 3δ)

2πT (2 + 3δ)
∼ η

πT

(

1 − 3

4
δ

)

, (2.5)

τπ = τ (2σ̃)
π V → (4+3δ)V

4πT

(

1−
∫ ∞

1

y2+3δ−1

y(y4+3δ−1)
dy

)

∼ V

πT

[

2−log 2

2
+

3(16−π2)

64
δ

]

,

(2.6)

λ1 = λ
(2σ̃)
1 V → η

2πT

(

1 +
3

4
δ

)

, (2.7)

λ2 = λ
(2σ̃)
2 V → −η(4 + 3δ)

2πT

∫ ∞

1

y2+3δ − 1

y(y4+3δ − 1)
dy ∼ − η

πT

(

log 2 +
3π2

32
δ

)

, (2.8)

λ3 = 0 , (2.9)

ζ = 2η(2σ̃)V
2σ̃ − d

(2σ̃ − 1)(d − 1)
→ 2η

3δ

3(3 + 3δ)
∼ 2

3
ηδ , (2.10)

where the leading “conformal” term in (2.6) fixes the value V = 1 [19–21]. The other

coefficients in table 1 are obtained in the same way.

Let us conclude by stressing again the fact that the relations in table 1 are valid

for any theory where conformality is broken at leading order by a marginally (ir)relevant

deformation, with the dual scalar having the potential (2.1). These theories8 include the

cascading plasmas [25] and the D3D7 plasmas [26]. The latter are the first examples of

holographic plasmas including the effects of dynamical flavors in a completely controllable

framework. In this case, the relations in table 1 match precisely the coefficients calculated

in [35]9 and complete the determination of all the second order transport coefficients in

those plasmas.
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