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1 Introduction

The paradigmatic S-duality of N = 4 super Yang-Mills is the simplest instance of a much

more general web of duality connections relating N = 2 4d superconformal field theories.

This viewpoint has been emphasized by Gaiotto [1], who introduced a large class of N = 2

SCFTs by compactifying the (2, 0) 6d theory on a Riemann surfaces Σ with punctures.

Different ways of cutting Σ into pairs of pants correspond to different S-duality frames for

the 4d theory. A remarkable dictionary relates 4d gauge theory quantities with calculations

in 2d conformal field theory on Σ. For example, the partition function of the gauge theory

on S4, or more generally the Nekrasov instanton partition function [2], is reproduced exactly

by a Liouville or Toda correlation function on Σ [3, 4].

This dictionary was extended in [5] by considering the superconformal index [6], which

can be viewed as a twisted partition function of the 4d gauge theory on S3 × S1. The

superconformal index counts the states of the 4d theory belonging to short multiplets,

up to equivalent relations that set to to zero all sequences of short multiplets that may in

principle recombine into long ones. By construction, the index is invariant under continuous

deformations of the theory, and is also expected to be independent of the S-duality frame.
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Assuming S-duality, it follows that the index must be computed by a topological QFT

living on Σ. In [5] this TQFT structure was discussed for the generalized quiver gauge

theories with SU(2)k gauge group, which arise from compactifications on Σ of the A1 (2,0)

theory. Invariance of the index under S-duality translates into associativity of the operator

algebra of the 2d TQFT. In turn, associativity holds thanks to a beautiful mathematical

identity for an elliptic hypergeometric integral [7].

What distinguishes the A1 theories from their counterparts with An≥2 is that in all

duality frames they have a Lagrangian description. This makes it easy to compute their

superconformal index explicitly and to identify the structure constants of the 2d TQFT [5].

The situation for the generalized quiver theories with higher rank gauge groups is qualita-

tively different: in some duality frames the quivers contain intrinsically strongly-coupled

blocks with no Lagrangian description. The prototypical example of this phenomenon

was discussed by Argyres and Seiberg [8]:1 the SYM theory with SU(3) gauge group and

Nf = 6 fundamental hypermultiplets has a dual description involving the strongly-coupled

SCFT with E6 flavor symmetry [10]. In the absence of a Lagrangian description for the

E6 SCFT, it seems difficult to compute its superconformal index and to define the TQFT

structure for generalized quivers with SU(3) gauge groups.

We solve this problem in this paper. By demanding consistency with Argyres-Seiberg

duality, we are able to write down an explicit integral expression for the index of the E6

SCFT (equation (3.18)). Technically, this is possible thanks to a remarkable inversion

formula for a class of integral transforms [11]. By construction, the resulting expression

for the index is guaranteed to be invariant under an SU(6) ⊗ SU(2) subgroup of the E6

flavor symmetry. The index is seen a posteriori to be invariant under the full E6 symmetry,

providing an independent check of Argyres-Seiberg duality itself.2 We proceed to define a

TQFT structure for generalized quivers with SU(3) gauge symmetries. We check associa-

tivity of the operator algebra, which is equivalent to a check of S-duality for Gaiotto’s A2

theories. Most of our checks are performed perturbatively, to several orders in an expansion

in the chemical potentials that enter the definition of the index. Conversely, S-duality im-

plies that associativity must hold exactly, so as a by-product of our analysis we conjecture

new identities between integrals of elliptic Gamma functions.

The paper is organized as follows. In section 2 we set up the stage by briefly reviewing

the definitions of the superconformal index and of the elliptic Gamma functions. In sec-

tion 3.1 the index of Nf = 6 SU(3) theory is computed in the weakly-coupled frame and the

usual S-duality invariance of this index is discussed. In section 3.2 we use Argyres-Seiberg

duality to write down an explicit expression for the index of E6 SCFT; we check perturba-

tively that the answer is E6 covariant and that it is compatible with physical expectations

about the Coulomb and Higgs branches of vacua. In section 4 we check invariance under

S-duality of the superconformal index for the generalized SU(3) quiver theories, and we

present the TQFT interpretation of this index. In section 5 we briefly discuss our results.

Four appendices complement the text with technical details.

1See also [9] for more examples.
2For earlier checks of Argyres-Seiberg duality see [12] and [13].
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2 Generalities

In this section we briefly review the definition of the superconformal index [6], and the

relevant properties of elliptic Gamma functions.

2.1 The superconformal index

The superconformal index is defined as [6]3

I = Tr(−1)F t2(E+j2)y2 j1v−(r+R) , (2.1)

where we trace over the states of the theory on S3 (in the usual radial quantization).4 The

chemical potentials t, y, and v keep track of various combinations of quantum numbers

associated to the supercorformal algebra SU(2, 2|2): E is the conformal dimension, (j1, j2)

the SU(2)1 ⊗ SU(2)2 Lorentz spins, and (R , r) the quantum numbers under the SU(2)R ⊗
U(1)r R-symmetry.5

For a theory with a weakly-coupled description the index can be explicitly computed

as a matrix integral,

I(V, t, y, v) =

∫

[dU ] exp





∞
∑

n=1

1

n

∑

j

fRj(tn, yn, vn) · χRj
(Un, V n)



 . (2.2)

Here U is the matrix of the gauge group, V the matrix of the flavor group and Rj label

representations of the fields under the flavor and gauge groups. The measure [dU ] is the

invariant Haar measure, and it has the following property

∫

[dU ]

n
∏

j=1

χRj
(U) = #of singlets in R1 ⊗ · · · ⊗ Rn . (2.3)

The quantities fRj(t, y, v) are the single-letter partition functions for matter in represen-

tation Rj. The “single letters” of an N = 2 gauge theory contributing to the index must

obey E − 2j2 − 2R + r = 0 [6] and are enumerated in table 1. The first block of table 1

shows the contributing letters from the N = 2 vector multiplet, including the equations of

motion constraint. The second block shows the contributions from the half hypermultiplet

(or N = 1 chiral multiplet). The last line shows the spacetime derivatives contributing to

the index. Since each field can be hit by an arbitrary number of derivatives, the derivatives

give a multiplicative contribution to the single-letter partition functions of the form

∞
∑

m=0

∞
∑

n=0

(t3y)m (t3y−1)n =
1

(1 − t3y)(1 − t3y−1)
. (2.4)

3See also [14].
4For definiteness we consider the “right-handed” Witten index I

WR of [6], which computes the coho-

mology of the supercharge Q̄2+. We use the notations of [15] where the supercharges are denoted as QI
α,

Q̄Iα̇, SIα, S̄I
α̇, with I = 1, 2 SU(2)R indices and α = ±, α̇ = ± Lorentz indices.

5Our normalization convention for the R-symmetry charges is as in [15] and differs from [6]: Rhere =

Rthere/2, rhere = rthere/2.
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Letters E j1 j2 R r I
φ 1 0 0 0 −1 t2v

λ1
±

3
2 ±1

2 0 1
2 −1

2 −t3 y, −t3 y−1

λ̄2+
3
2 0 1

2
1
2

1
2 −t4/v

F̄++ 2 0 1 0 0 t6

∂−+λ
1
+ + ∂++λ

1
− = 0 5

2 0 1
2

1
2 −1

2 t6

q 1 0 0 1
2 0 t2/

√
v

ψ̄+
3
2 0 1

2 0 −1
2 −t4√v

∂±+ 1 ±1
2

1
2 0 0 t3 y, t3 y−1

Table 1. Contributions to the index from “single letters”. We denote by (φ, φ̄, λI
α, λI α̇, Fαβ , F̄α̇β̇)

the components of the adjoint N = 2 vector multiplet, by (q, q̄, ψα, ψ̄α̇) the components of the

N = 1 chiral multiplet, and by ∂αα̇ the spacetime derivatives. Here I = 1, 2 are SU(2)R indices

and α = ±, α̇ = ± Lorentz indices.

The single-letter partition functions of the N = 2 vector and N = 1 chiral multiplets are

thus given by

vector : fvect(t, y, v) =
t2v − t4

v − t3(y + y−1) + 2t6

(1 − t3 y)(1 − t3y−1)
, (2.5)

chiral : f chi(t, y, v) =

t2√
v
− t4

√
v

(1 − t3 y)(1 − t3y−1)
. (2.6)

Throughout this paper we will assume

0 < |t|4 < |v| < 1 . (2.7)

2.2 Elliptic hypergeometric expressions for the index

As was observed by Dolan and Osborn [16] the expressions for the index can be recast

in an elegant way in terms of special functions. First, recall the definition of the elliptic

Gamma function,

Γ(z; p, q) ≡
∏

j,k≥0

1 − z−1 pj+1qk+1

1 − z pjqk
. (2.8)

For reviews of the elliptic Gamma function and of elliptic hypergeometric mathematics the

reader can consult [17–20]. Throughout this paper we will use the standard condensed

notations

Γ(z1, . . . , zk; p, q) ≡
k
∏

j=1

Γ(zj ; p, q), Γ(z±1; p, q) ≡ Γ(z; p, q)Γ(1/z; p, q) . (2.9)

Basic identities satisfied by the elliptic Gamma function that will be of use to us are

Γ (pq/z; p, q) Γ (z; p, q) = 1 , (2.10)

lim
z→a

(1 − z/a) Γ(z/a; p, q) =
1

(p; p)(q; q)
, (2.11)
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with the bracket defined as

(a; b) ≡
∞
∏

k=0

(

1 − a bk
)

. (2.12)

From the definition (2.8), it is straightforward to show [16]

exp

( ∞
∑

n=1

1

n

t2nzn − t4nz−n

(1 − t3nyn)(1 − t3ny−n)

)

= Γ(t2 z; p, q), (2.13)

exp

( ∞
∑

n=1

1

n

2t6n − t3n(yn + y−n)

(1 − t3nyn)(1 − t3ny−n)
(zn + z−n)

)

= − z

(1 − z)2
1

Γ(z±1; p, q)
,

where

p = t3y, q = t3y−1 . (2.14)

Using the above identities the basic building blocks of the superconformal index computa-

tion can be written as follows. The contribution to the integrand of (2.2) from hypers in

a fundamental representation of an SU(n) gauge group is

exp

( ∞
∑

k=1

1

k
f chi

(

tk, vk, yk
) [

χf (Uk) + χf̄ (Uk)
]

)

=

n
∏

i=1

Γ

(

t2√
v
a±1

i ; p, q

)

. (2.15)

The contribution to the integrand of (2.2) from the vector multiplet of SU(n) is

exp

( ∞
∑

k=1

1

k
fvect

(

tk, vk, yk
)

χadj(U
k)

)

=

[

Γ(t2 v; p, q) (p; p)(q; q)
]n−1

∆(a)∆(a−1)

∏

i6=j

Γ(t2 v ai/aj ; p, q)

Γ(ai/aj ; p, q)
.

(2.16)

We have defined the characters of the fundamental representation to be

χf =

n
∑

i=1

ai, χf̄ =

n
∑

i=1

1

a i
,

n
∏

i=1

ai = 1 . (2.17)

The character of the adjoint representation is

χadj = χf χf̄ − 1 =
∑

i6=j

ai/aj + n− 1 . (2.18)

We have also defined

∆(a) =
∏

i6=j

(ai − aj) . (2.19)

The Haar measure is given by

∮

SU(n)
dµ(a)f(a) =

1

n!

∮

Tn−1

n−1
∏

i=1

dai

2πi ai
∆(a)∆(a−1)f(a)

∣

∣

∣

∣

∣

Qn
i=1

ai=1

, (2.20)
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Re τ

Im τ

0 1 10

Re τ

Im τ

(a) (b)

Figure 1. Moduli spaces for N = 2 SU(n) gauge theory with 2n flavors, (a) for n = 2 and (b) for

n = 3 (in fact, for any n > 2). The shaded region in (a) is H/SL(2,Z) while in (b) it is H/Γ0(2),

where H is the upper half plane.

where T is the unit circle. Whenever we gauge a symmetry we have a vector multiplet

associated to the integrated group and thus we will use the following notation

Fa Ga≡
[

2Γ(t2 v; p, q)κ
]n−1

n!

∮

Tn−1

n−1
∏

i=1

dai

2πi ai

∏

i6=j

Γ(t2 v ai/aj ; p, q)

Γ(ai/aj ; p, q)
F (a)G

(

a−1
)

∣

∣

∣

∣

∣

∣
Qn

i=1 ai=1

,

(2.21)

where κ ≡ (p; p)(q; q)/2. In what follows for the sake of brevity we will omit the param-

eters p and q from the elliptic Gamma function, i.e. Γ(x) should always be understood

as Γ(x; p, q).

3 Argyres-Seiberg duality and the index of E6 SCFT

The S-duality group of the N = 2 SU(2) gauge theory with four flavors is SL(2,Z). The

action of this group on the gauge coupling is generated by τ → τ + 1 and τ → −1/τ .

In Gaiotto’s description [1] this theory is constructed by compactification of the 6d (2, 0)

theory on a sphere with four punctures of the same kind. Then, the S-duality group could

be understood as the mapping class group of this Riemann surface. The moduli space of

the gauge coupling is shown in figure 1 (a). We can see that a fundamental domain can be

chosen such that nowhere in the moduli space does the coupling take an infinite value.

For the case of N = 2 SU(3) gauge theory with 6 flavors, however, the S-duality

group is Γ0(2). The action of the S-duality on the complex coupling is generated by the

transformations τ → τ + 2 and τ → −1/τ . In Gaiotto’s setup this theory is obtained

by compactifying the (2, 0) theory on the sphere with two punctures of one type and

two of another. The mapping class group of such a sphere is Γ0(2). The fundamental

domain of this group is shown in the figure 1 (b) and, unlike the SU(2) case, this does

– 6 –
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SU(3)y

U(1)bU(1)a

SU(3) SU(3)

U(1)b U(1)a

SU(3)z SU(3)y SU(3)z

Figure 2. SU(3) SYM with Nf = 6. The U(6) flavor symmetry is decomposed as SU(3)z⊗U(1)a⊕
SU(3)y ⊗ U(1)b. S-duality τ → −1/τ interchanges the two U(1) charges.

unavoidably contain a point with infinite coupling. In [8], it was shown that this infinitely

coupled cusp could be described in terms of an SU(2) gauge group weakly-coupled to a

single hypermultiplet and a rank 1 interacting SCFT with E6 flavor symmetry. Figure 3

describes this duality pictorially. The SU(2) subgroup of the flavor symmetry of the SCFT

that is gauged commutes with the SU(6) subgroup of E6. This SU(6) combined with

SO(2) flavor symmetry of the single hypermultiplet generates the full U(6) flavor symmetry

of the original SU(3) gauge theory. In other words, the SO(2) flavor symmetry of the

single hypermultiplet corresponds to the baryon number of the original SU(3) gauge theory.

Under this U(1)B , the quarks of the SU(3) theory have charges ±1 while the quarks of the

SU(2) theory have charges ±3.

The E6 SCFT has a Coulomb branch parametrized by the expectation value of a

dimension 3 operator u which is identified with Trφ3 of the dual SU(3) theory, while the

Trφ2 of the SU(3) theory corresponds to the Coulomb branch parameter of the SU(2) gauge

theory. The E6 CFT also has a Higgs branch parametrized by the expectation value of

dimension 2 operators X, which transform in the adjoint representation of E6 (78). As

shown in [13] the Higgs branch operators obey a Joseph relation at quadratic order which

leaves a 22 complex dimensional Higgs branch. When coupled to the SU(2) gauge group,

the resulting Higgs branch has complex dimension 20. The dual SU(3) theory also has a

Higgs branch of complex dimension 20 and its Higgs operators can be easily constructed

by combination of squark fields. See appendix C for more details.

The moduli space might contain also other infinitely coupled cusps which however are

S-dual to the weakly-coupled cusp τ = i∞. This is the usual S-dualty mapping the Nf = 6

SU(3) gauge theory to itself with some of the U(1) flavor factors interchanged. This duality

is represented in figure 2.

We proceed to compute the superconformal index of the SU(3) theory and, by using

the Argyres-Seiberg duality, of the interacting E6 SCFT.

3.1 Weakly-coupled frame

We take the chiral multiplets to be in the fundamental and antifundamental of the color

and flavor. U(1)B rotates them into each other. The vector multiplet is in the adjoint of

the color. The SU(3) characters of the relevant representations are:

χf = z1 + z2 + z3 χf̄ =
1

z1
+

1

z2
+

1

z3
and χadj = χfχf̄ − 1 (3.1)

while writing down these characters, we have to impose z1z2z3 = 1.

– 7 –
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Let z’s stand for the eigenvalues of the flavor group and x’s be the eigenvalues of

the color group. The U(1)B charge is counted by the variable a. Let us write down the

characters of the representation of the matter

χhyp =

3
∑

i=1

3
∑

j=1

a zi xj +

3
∑

i=1

3
∑

j=1

1

a zi xj
. (3.2)

Using (2.15) the index contributed by the matter can be written in a closed form as

Ca,x,y =

3
∏

i=1

3
∏

j=1

Γ

(

t2√
v

(axi yj)
±1

)

. (3.3)

The index for the SU(3) gauge theory with six hypermultiplets is then given by the following

contour integral.

Ia,z;b,y = Cb,y,xCa,z
x = (3.4)

2

3
κ2Γ(t2v)2

∮

T2

2
∏

i=1

dxi

2πi xi

3
∏

i=1

3
∏

j=1

Γ

(

t2√
v

(

azi
xj

)±1
)

Γ

(

t2√
v

(b yi xj)
±1

)

∏

i6=j

Γ

(

t2v
xi

xj

)

∏

i6=j

Γ

(

xi

xj

) .

By expanding this integral in t one can show that it is symmetric under interchanging the

two U(1) factors (see appendix A),

a ↔ b . (3.5)

Interchanging the two U(1)s is equivalent to performing a usual S-duality between a weakly-

coupled and infinitely-coupled points of the moduli space and thus we expect the index to

be invariant under this operation.6

One can analytically prove this statement in a special case. Notice that if t = v, the

integral (3.4) is given by

Ia,z;b,y|v=t = I
(2)
A2

(

1| t 3

2a−1z−1, t
3

2 by; t
3

2 az, t
3

2 b−1y−1
)

, (3.6)

where [21]

I
(m)
An

(Z|t0, . . . , tn+m+1;u0, . . . , un+m+1; p, q) = (3.7)

2n

n!
κn

∮

Tn−1

n−1
∏

i=1

dxi

2πi xi

∏n
i=1

∏m+n+1
j=0 Γ(tj xi, uj/xi; p, q)
∏

i6=j Γ(xi/xj ; p, q)

∣

∣

∣

∣

∣

Qn
i=1

xi=Z

.

6The integral (3.4) is an SU(3) generalization of the SU(2) integral in [5] for which the analogous

statement to (3.5) has an analytic proof [7]. It is easy to generalize (3.4), (3.5) for SU(n) theories with

arbitrary n, see appendix D.
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U(1)bU(1)a

SU(3) U(1)SU(3) ⊃ SU(2)E6

SU(3)z SU(3)y SU(3)z

SU(3)y

Figure 3. Argyres-Seiberg duality for SU(3) SYM with Nf = 6.

If the integral I
(m)
An

(Z| . . . ti . . . ; . . . ui . . .) satisfies the condition that
∏m+n+2

i=1 tiui =

(pq)m+1 then due to [21], the following theorem holds

I
(m)
An

(Z| . . . ti . . . ; . . . ui . . .) = I
(n)
Am

(

Z| . . . T
1

m+1

ti
. . . ; . . .

U
1

m+1

ui
. . .

)

m+n+2
∏

r,s=1

Γ (trus) , (3.8)

where T ≡ ∏m+n+2
r=1 tr and U ≡ ∏m+n+2

r=1 ur.
7 Coincidently, our integral (3.4) satisfies the

above requirement and applying the theorem we can transform it into

I
(2)
A2

(

1|t 3

2 bz, t
3

2 a−1y−1; t
3

2 b−1z−1, t
3

2 ay
)

= I
(2)
A2

(

1|t 3

2 b−1z−1, t
3

2 ay; t
3

2 bz, t
3

2 a−1y−1
)

. (3.9)

Note that the factor
∏m+n+2

r,s=1 Γ(trus) in (3.8) reduces to 1 after pairwise cancelations using

the property (2.11). What we have effectively achieved through this transformation is that

we have exchanged the U(1) quantum numbers of the matter charged under the SU(3)2

flavor. This in particular implies that both the SU(3) flavor groups are on the same footing

and are not associated with separate U(1)’s.

3.2 Strongly-coupled frame and the index of E6 SCFT

In the strongly-coupled S-duality frame, figure 3, we have a fundamental hypermultiplet

coupled to an SU(2) gauge theory. This gauge group is identified with an SU(2) subgroup

of the E6 flavor symmetry of a strongly-coupled rank one SCFT. We do not know the

field content of the strongly-coupled rank 1 E6 SCFT. This implies that we can not write

down the “single letter” partition function for that theory and, a priori, can not directly

compute its index. In what follows we will use the index computed in the weakly-coupled

frame (3.4) and the above statements about Argyres-Seiberg duality to infer the index of

the E6 SCFT.

Let C(E6) denote the index of rank 1 E6 SCFT [10]. Consider the maximal subgroup

SU(3)3 of E6. Two among these three SU(3)’s are identified with the two SU(3) factors

in the flavor group of the weakly-coupled theory, see figure 3. Let the additional SU(3)

be denoted by w. The fundamental representation of E6 is decomposed under SU(3)w ⊗
SU(3)y ⊗ SU(3)z as,

27E6
= (3, 3̄,1) ⊕ (3̄,1,3) ⊕ (1,3, 3̄) . (3.10)

7This identity was extensively used in [16] to show that certain theories related by Seiberg duality have

equal superconformal indices [22]. In this context the authors of [23, 24] applied the elliptic hypergeometric

techniques to a large class of Seiberg dualities.
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Thus, the character of the E6 fundamental fields is,

χ27 =

3
∑

i,j=1

(

wi

yj
+
zi
wj

+
yi

zj

)

,

3
∏

i=1

yi =

3
∏

i=1

zi =

3
∏

i=1

wi = 1 . (3.11)

The index C(E6) is thus a function of w, y, and z. The S-duality picture suggests that

we should decompose SU(3)w as SU(2)e ⊗ U(1)r. This amounts to the change of variables

{w1, w2, w2} → {er, r
e ,

1
r2}, for which the character of the fundamental of E6 becomes

χ27 =

(

er +
r

e
+

1

r2

)(

1

y1
+

1

y2
+

1

y3

)

+

(

1

er
+
e

r
+ r2

)

(z1 + z2 + z3) +
3
∑

i,j=1

yi

zj
. (3.12)

Thus, the index of the E6 SCFT can be denoted as C(E6) ((e, r),y, z). In the above

notations the index of the additional hypermultiplet of the theory is

Cs, e = Γ

(

t2√
v
e±1 s±1

)

. (3.13)

Thus, one can write the superconformal index of the theory in the strongly-coupled

frame as

Î (s, r;y, z) = Cs
eC

(E6)
(e,r),y,z = (3.14)

= κΓ(t2v)

∮

T

de

2πi e

Γ(t2ve±2)

Γ(e±2)
Γ

(

t2√
v
e±1 s±1

)

C(E6) ((e, r),y, z) .

By Argyres-Seiberg duality we have to equate

Î (s, r;y, z) = Ia,z;b,y , (3.15)

where Ia,z;b,y is given in (3.4), and we appropriately identify the U(1) charges,

s = (a/b)3/2, r = (a b)−1/2 . (3.16)

It so happens that the integral of equation (3.14) has special properties which allow

us to invert it (see appendix B and [11] for the details). One can write the following

κ

∮

Cw

ds

2πi s

Γ
(

√
v

t2 w
±1 s±1

)

Γ
(

v
t4
, s±2

) Î (s, r;y, z) = Γ(t2v w±2) C(E6) ((w, r),y, z) , (3.17)

where the contour Cw is a deformation of the unit circle such that it encloses s =
√

v
t2
w±1

and excludes s = t2√
v
w±1 (for precise definition and details see appendix B and [11]). The

above expression for the index C(E6) does satisfy (3.14), but a priori does not uniquely

follow from it. However, as we will explicitly see below, (3.17) is consistent with what is

expected from E6 SCFT. We will comment on this issue in the end of this section. We can
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thus use the Argyres-Seiberg duality (3.15) to write a closed form expression for the E6

index

C(E6) ((w, r),y, z) =
2κ3Γ(t2v)2

3Γ(t2v w±2)

∮

Cw

ds

2πi s

Γ
(

√
v

t2
w±1 s±1

)

Γ
(

v
t4
, s±2

) ×

×
∮

T2

2
∏

i=1

dxi

2πi xi

3
∏

i=1

3
∏

j=1

Γ





t2√
v

(

s
1

3 zi
xj r

)±1


Γ





t2√
v

(

s−
1

3 yi xj

r

)±1




∏

i6=j

Γ

(

t2v
xi

xj

)

∏

i6=j

Γ

(

xi

xj

) .

One can rewrite the above expression without using the special integration contour. The

integration contour Cw can be split into five pieces: a contour around the unit circle T,

two contours encircling the simple poles of Γ
(

√
v

t2 w
±1 s±1

)

at s =
√

v
t2 w

±1, and two contours

encircling in the opposite direction the simple poles of Γ
(

√
v

t2
w±1 s±1

)

at t2√
v
w±1. Using the

fact that elliptic Gamma function satisfies (2.11) we have

C(E6) ((w, r),y, z) =
κ

Γ(t2vw±2)

∮

T

ds

2πi s

Γ
(

√
v

t2 w
±1 s±1

)

Γ
(

v
t4
, s±2

) Î (s, r;y, z) (3.18)

+
1

2

Γ(w−2)

Γ(t2vw−2)

[

Î
(

s =

√
vw

t2
, r;y, z

)

+ Î
(

s =
t2√
vw

, r;y, z

)]

+
1

2

Γ(w2)

Γ(t2vw2)

[

Î
(

s =

√
v

t2w
, r;y, z

)

+ Î
(

s =
t2w√
v
, r;y, z

)]

.

The index (3.18) encodes some information about the matter content of the E6 theory.

To extract this information it is useful to expand the index (3.18) in the chemical potentials.

We define an expansion in t as

C(E6) ≡
∞
∑

k=0

ak t
k . (3.19)

– 11 –



J
H
E
P
0
8
(
2
0
1
0
)
1
0
7

The first several orders in this expansion have the following form

a0 =1

a1t =a2t
2 = a3t

3 = 0

a4t
4 =

t4

v
χE6

78

a5t
5 =0

a6t
6 = − t6χE6

78 − t6 + t6v3

a7t
7 =

t7

v

(

y +
1

y

)

χE6

78 +
t7

v

(

y +
1

y

)

− t7v2

(

y +
1

y

)

a8t
8 =

t8

v2

(

χE6

sym2(78)
− χE6

650 − 1
)

+ t8v + t8v

a9t
9 = − t9

(

y +
1

y

)

χE6

78 − 2t9
(

y +
1

y

)

+ t9v3

(

y +
1

y

)

a10t
10 = − t10

v
(χE6

78 χ
E6

78 − χE6

650 − 1) +
t10

v

(

y2 + 1 +
1

y2

)

χE6

78+

+
t10

v

(

y +
1

y

)2

− t10v2

(

y +
1

y

)2

a11t
11 =

t11

v2

(

y +
1

y

)

(χE6

78 χ
E6

78 − χE6

650 − 1) + t11v

(

y +
1

y

)

+ t11v

(

y +
1

y

)

.

(3.20)

The adjoint representation of E6 , 78, decomposes in the following way in terms of its

maximal SU(3)3 subgroup

78 = (3,3,3) + (3̄, 3̄, 3̄) + (8,1,1) + (1,8,1) + (1,1,8) , (3.21)

and 650 of E6 is composed as

650 = 27 × 27 − 78− 1 . (3.22)

The Higgs branch operators X of E6 theory are in the adjoint (78) representation of E6

flavor algebra. The terms of the index proportional to χE6

78 are forming the following series,

[

t4

v
− t6 +

t7

v

(

y +
1

y

)

− t9
(

y +
1

y

)

+ · · ·
]

χE6

78 , (3.23)

which is the index of a multiplet with E = 2, j1 = j2 = 0 and r = 0 and of its derivatives

(see appendix C.2 of [25]). Taken as a “letter” this multiplet has the following “single

letter” partition function
t4/v − t6

(1 − t3y)(1 − t3/y)
, (3.24)

which matches the quantum numbers of the Higgs branch operators on the weakly-coupled

side of the Argyres-Seiberg duality if we follow the identifications listed in [13].

The E6 singlet part of the index contains yet another series,

t6v3 − t7v2

(

y +
1

y

)

+ t8v + t9v3

(

y +
1

y

)

+ · · · . (3.25)
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This series forms the index of a chiral multiplet with E = 3, j1 = j2 = 0 and r = −3

together with its derivatives (appendix C.1 of [25])

t6v3 − t7v2
(

y + 1
y

)

+ t8v

(1 − t3y)(1 − t3/y)
. (3.26)

Since the Coulomb branch operator, u, of E6 theory (which is identified as Trφ3 of the dual

SU(3) theory) has exactly the same quantum numbers, this multiplet is identified as the

Coulomb branch operator.

The remaining singlet part of the index,

− t6 +
t7

v

(

y +
1

y

)

+ t8v − 2t9
(

y +
1

y

)

+ · · · , (3.27)

is just the index of the stress tensor multiplet and its derivatives (appendix C.3 of [25])

−t6 + t7

v

(

y + 1
y

)

+ t8v − t9
(

y + 1
y

)

(1 − t3y)(1 − t3/y)
. (3.28)

Besides the matter content, the index also provides possible constraints among oper-

ators. For example, it was argued [13] that the Higgs branch operators of the E6 theory

should obey the Joseph relations,

(X ⊗ X)|I2
= 0 , (3.29)

where the representation I2 is defined as

sym2(V (adj)) = V (2adj) ⊕ I2 . (3.30)

For E6, adj = 78, 2adj = 2430 and then sym2(78) = 2430 ⊕ 650⊕ 1. Thus, in our case

I2 = 650 ⊕ 1 . (3.31)

The Joseph relation in E6 theory reads,

(X ⊗ X)|650⊕1 = 0 , (3.32)

which means that these operators should not appear in the index. The index of X is t4/v,

then the index of X⊗X is t8/v2. (3.20) shows that our index is consistent with the Joseph

relation.

Further constraints can also be derived from the higher order terms in (3.20). Let

us consider the index at order t10. The meaning of each term is clear. The first term

corresponds to operators X ⊗ (QX) with the constraint Q(X ⊗ X)650+1 = 0 which is a

descendant of Joseph relation above (3.32). The last three terms are derivative descendants

of t4

v χ
E6

78 , t7

v

(

y + 1
y

)

and −t7v2
(

y + 1
y

)

respectively. However, terms of the form

t10v2χE6

78 , (3.33)
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which would be corresponding to the Higgs ⊗ Coulomb operators are absent. This fact

implies the constraint

X ⊗ u = 0 . (3.34)

This is consistent with the fact that the E6 theory has rank 1. The absence of − t10

v χ
E6

78

also implies the constraint

X ⊗ T = 0 , (3.35)

where T is the stress tensor. The structure of the index at order t11 is consistent with these

two constraints.

Finally, let us comment on the uniqueness of our proposal. In principle, the index (3.18)

produced by the construction of this section might differ from the true index of the E6

SCFT: C
(E6)
true ((e, r),y, z) = C(E6)((e, r),y, z) + δC((e, r),y, z), with δC satisfying

∮

T

de

2πi e

Γ
(

t2√
v
e±1s±1

)

Γ(t2v e±2)

Γ(e±2)
δC((e, r),y, z) = 0 . (3.36)

At this stage we are not able to rigorously rule out such a possibility. However, the

E6 covariance of our proposal, its consistency with physical expectations about protected

operators and the further S-duality checks performed in the following section, make us

confident that we have identified the correct index of the E6 SCFT.

Note that the expression for the index (3.18) is not explicitly given in terms of E6

characters. However, as one learns from the perturbative expansion (3.20), the characters

of SU(3)y ⊗ SU(3)z ⊗ SU(2)w ⊗ U(1)r always combine into E6 characters. Essentially,

since the weakly-coupled frame has really SU(6) ⊗ U(1) flavor symmetry we can write an

expression for the E6 index which has a manifest SU(6) ⊗ SU(2) symmetry,8 but not the

full E6. The fact that just by assuming Argyres-Seiberg duality we obtain an index for

a theory with an E6 flavor symmetry and with a consistent spectrum of operators is a

non-trivial check of Argyres-Seiberg duality.

4 S-duality checks of the E6 index

In the previous section we have discussed the superconformal index of the Nf = 6 SU(3)

theory and of its strongly-coupled dual. One can obtain this theory by compactifying

a (2, 0) 6d theory on a sphere with four punctures, two U(1) punctures and two SU(3)

punctures. The different S-duality frames are then given by the different degeneration limits

of this Riemann surface. The weakly-coupled frames are obtained by bringing together one

of the U(1) punctures and one of the SU(3) punctures, and the strongly-coupled frame is

obtained by colliding the two SU(3) (U(1)) punctures. The coupling constant of the theory

is related to the cross ratio of the four punctured sphere.

In [1] Gaiotto suggested to generalize this picture by considering general Riemann

surfaces with an arbitrary numbers of punctures of different types (two types in case of the

8This is somewhat reminiscent of the construction of the E6 symmetry using multi-pronged strings

in [26]. It would be interesting to make an explicit connection between our expression of the index and the

multi-pronged string language.
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SU(3) theories). The claim is that all theories with the same number and type of punctures

and same topology of the Riemann surface are related by S-dualities. The immediate

consequence of this claim for the superconformal index is that all such theories have to

have the same index as it is independent of the values of the coupling, i.e. the moduli of

the Riemann surface. This implies that the superconformal index is a topological invariant

of the punctured Riemann surface. It was claimed in [5] that the superconformal index

can be actually interpreted as a correlator in a two dimensional topological quantum field

theory. The structure constants of this TQFT are given by the index of the three punctured

sphere and the contraction of indices (i.e. metric) is gauging of the flavor symmetries.

The associativity of the algebra generated by the structure constants is equivalent to the

invariance of the index of four punctured spheres under pair-of-pants decomposition into

two three punctured spheres. The structure constants and the metric were constructed and

the associativity was explicitly verified for the SU(2) case.

In this section we will make the same analysis for the SU(3) case. We have two types

of punctures, associated to U(1) and SU(3) flavor symmetries. There are thus different

three point functions one can construct (see figure 4). The index of the theory on a sphere

with three SU(3) punctures, i.e. the index of the E6 theory, is a structure constant which

we will denote by C
(333)
x,y,z and it is just given by (3.18),

C
(333)
x,y,z = C(E6)

((√

x1

x2
,
√
x1x2

)

,y, z

)

. (4.1)

This vertex corresponds to the E6 theory which has rank one, and thus we will refer to

it as a rank 1 vertex. We will denote by C
(133)
x,y,a the index of the sphere with two SU(3)

punctures and one U(1) puncture. This is a free theory consisting of a hypermultiplet in

fundamental of two SU(3) flavor groups and its value is given by (3.3),

C
(133)
a,x,y =

3
∏

i,j=1

Γ

(

t2√
v

(axiyj)
±
)

. (4.2)

This vertex corresponds to a free, rank 0, theory and we will refer to it as rank zero

structure constant. Later on we will define yet another three point function, formally

associated to a sphere with two U(1) punctures and one SU(3) puncture. This vertex will

have effective rank −1. The metric of the model, ηx,y, is defined as

ηx,y =
2

3
κ2 Γ2(t2v)

∏

16i<j63

Γ

(

t2v
(

xi

xj

)±
)

Γ

(

(

xi

xj

)±
) ∆̂(x−1,y) , (4.3)

where ∆̂(x−1,y) is a δ-function kernel defined by

∮

T2

2
∏

i=1

dxi

2πi xi
∆̂(x,w) f(x) = f(w) , w ∈ T

2 . (4.4)
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x y

z

x y

a

x a

b

C
(333)
x,y,z C

(133)
a,x,y C

(113)
a,b,x

Figure 4. The three structure constants of the TQFT. The dots represent U(1) punctures and the

circled dots SU(3) punctures.

x

a b

y

z w

x y x y

z a c

x

b

a

(a) (b) (c) (d)

Figure 5. The relevant four-punctured spheres for A2 theories. The three different degeneration

limits of a four-punctured sphere correspond to different S-duality frames. For example, in (a) two

of the degeneration limits (when a U(1) puncture collides with an SU(3) puncture) correspond to the

weakly-coupled Nf = 6 SU(3) theory, the third limit (when two like punctures collide) corresponds

to the Argyres-Seiberg theory. In (d) the degeneration limits correspond to the different duality

frames of SU(2) SYM with Nf = 4 theory plus a decoupled hypermultiplet.

The indices are contracted as follows

A...u...B...u... ≡
∮

T2

2
∏

i=1

dui

2πiui
A...u...B...u...

∣

∣

∣

∣

∣

Q

3
i=1

ui=1

. (4.5)

Following these definitions the superconformal indices of all the SU(3) generalized quivers

are obtained by contracting the structure constants in different ways.

For the S-duality to hold, and subsequently for the structure constants to have a TQFT

interpretation, the algebra generated by these objects has to be associative (see figure 5).

We proceed to verify this fact.

(333)−(333) associativity. Let us consider the generalized quiver with genus zero and

four SU(3) punctures. The index should be invariant under the permutation of the four

SU(3) characters,

I3333(x,y;w, z) = C
(333)
x,y,uη

u,vC
(333)
v,z,w = C

(333)
x,z,uη

u,vC
(333)
v,y,w . (4.6)
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At order O(t4) we find,

I3333 ∼ t4
[

1

v
(χ8(x) + χ8(y) + χ8(z) + χ8(w)) + v2

]

, (4.7)

and at order O(t6),

I3333 ∼ t6
[

−(χ8(x) + χ8(y) + χ8(z) + χ8(w)) + 3v3
]

. (4.8)

These expressions are symmetric under the exchange x ↔ y ↔ z ↔ w. The associativity

can be checked to hold to higher orders as well.

(333) − (331) associativity. Let us consider the generalized quiver with genus zero,

three SU(3) punctures and one U(1) puncture. The index should be invariant under per-

mutations of the three SU(3) characters

I3331(a,x;y, z) = C
(133)
a,x,uη

uvC
(333)
v,y,z = C

(133)
a,y,uη

uvC
(333)
v,x,z . (4.9)

We also expand the integrand in t around t = 0. The first non-trivial check is for the

coefficient of I3331 at order O(t4),

I3331 ∼ t4
[

1

v
(χ8(x) + χ8(y) + χ8(z) + 1) + v2

]

, (4.10)

which is indeed symmetric under x ↔ y ↔ z. At order O(t6),

I3331 ∼ t6

v3/2

(

a−3 + a−1χ3(x)χ3(y)χ3(z) + aχ3(x)χ3(y)χ3(z) + a3
)

(4.11)

−t6 (χ8(x) + χ8(y) + χ8(z) + 1) + 2t6v3 ,

which is also symmetric under x ↔ y ↔ z. Again, we can perform systematic checks to

arbitrary high order in t.

The (311) three point function and (311) − (331) associativity. The index of the

Nf = 6 SU(3) theory in the strongly-coupled frame is given in terms of an integral over an

SU(2) character. Thus, we can not write it using the structure constants and the metric we

defined in the beginning of this section. The strongly-coupled frame is obtained when two

U(1) punctures collide and thus in what follows we will formally define a structure constant

with two U(1) characters and an SU(3) character such that when contracted with the E6

structure constant using the metric above it will produce the index of the strongly-coupled

frame.

Let us rewrite the index in the strongly-coupled frame,

Î (s, r;y, z) = κ Γ(t2v)

∮

T

de

2πi e

Γ
(

t2√
v
e± s±

)

Γ(e±2)
Γ(t2v e±2) C ((e, r),y, z) , (4.12)

as rank one (E6) (333) and rank −1 (113) vertices contracted

Î (a, b;y, z) =C
(113)
a,b,x η

x,x′

C
(333)
x′,y,z = (4.13)

=
2

3
κ2 Γ(t2v)2

∮

T2

2
∏

i=1

dxi

2πi xi

∏

i6=j

Γ(t2v xi/xj)

Γ(xi/xj)
C(113)

(

a, b,x−1
)

C(333) (x,y, z) .

– 17 –



J
H
E
P
0
8
(
2
0
1
0
)
1
0
7

For this we define

C(113)
(

a, b,x−1
)

=
3

2κΓ(t2v)

∮

T

de

2πi e

Γ
(

t2√
v
e±1 s±1

)

Γ(t2v e±2)

Γ(e±2)

∏

i6=j

Γ(xi/xj)

Γ(t2v xi/xj)
∆̂(x,w) .

(4.14)

Here, w = (e, r) with e an SU(2) character and r a U(1) character. The U(1) charges are

related as in (3.16), s = (a/b)3/2 and r = (a b)−1/2. ∆̂(x,w) is a δ-function kernel defined

in (4.4). The (113) vertex has effective rank −1. Using the above definition the TQFT

algebra is well defined with all the contractions being SU(3) integrals.

The associativity of (311) vertex contracted with a (333) vertex is achieved by con-

struction: remember that we obtained the index of E6 SCFT by requiring this property.

Let us check the associativity of (331) contracted with (113)

I(a, b; c,y) = C
(113)
a,b,x η

x,x′

C
(331)
x′,y,c = (4.15)

2

3
κ2 Γ(t2v)2

∮ 2
∏

i=1

dxi

2πi xi

∏

i6=j

Γ(t2v xi/xj)

Γ(xi/xj)
C(113)

(

a, b,x−1
)

∏

i,j

Γ

(

t2√
v

(c xi yj)
±1

)

.

=

3
∏

i=1

Γ

(

t2√
v

(c yi

r2

)±1
)

×

κΓ(t2v)

∮

de

2πi e

Γ(t2v e±2)

Γ(e±2)
Γ

(

t2√
v
s±1 e±1

)

Γ

(

t2√
v

(c r yi)
±1 e±1

)

.

This is exactly the index of SU(2) Nf = 4 (the fourth line in (4.15)) with a decoupled

hypermultiplet in the fundamental of an SU(3) flavor (the third line in (4.15)). Remem-

bering (3.16) and the results of [5, 7] it is easy to show that there is a permutation symmetry

between the three U(1) punctures a, b and c,

a ↔ b ↔ c . (4.16)

Using the definition (4.14) the index of a sphere with four U(1) punctures is singular.

However, we do not have a physical interpretation of this surface and it does not appear in

any decoupling limit of a physical theory. Thus, making sense of this surface is not essential.

We have shown that the structure constants define an associative algebra and thus

define a TQFT. In particular the superconformal index of theories with equal genus and

equal number/type of punctures is the same in agreement with S-duality.

5 Discussion

In this paper we have obtained an explicit expression for the superconformal index of

the strongly-coupled SCFT with an E6 flavor symmetry [10]. The strategy is to use the

Argyres-Seiberg duality, which relates a weakly-coupled theory, index of which can be easily

obtained through the Lagrangian description of the theory, and E6 SCFT with part of the

global symmetry gauged. The index of the two theories should be the same. Thus, one
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E7 SU(4) ⊃ SU(3)

SU(2)

SU(4)

SU(2)SU(4) SU(2) U(1)

SU(4)

SU(2)

Figure 6. An Argyres-Seiberg duality relating a Lagrangian theory (left quiver) with a theory

containing a strongly-coupled E7 piece (right quiver).

obtains the index of the E6 theory by “inverting” the gauging, see (3.18). Upon gauging a

flavor symmetry one looses information about the theory by projecting on gauge invariant

states. However, what allows us to “invert” the gauging in our case is the fact that

additional matter is coupled to the SU(2) gauge group along with the E6 SCFT, and thus

effectively preserves enough information to reconstruct the complete index of E6 SCFT.

We do not have a physical interpretation of the expression for the index (3.18) and it would

be very interesting to find one.

In principle one can try to use the same techniques to obtain the superconformal index

for other strongly-coupled SCFTs of [1]. However, the generalization is not completely

straightforward. Let us discuss the case of the E7 theory [8, 27, 28] as an example. To

obtain the E7 SCFT we can apply Argyres-Seiberg duality to a Lagrangian theory with

SU(4) ⊗ SU(2) gauge group, with a single hypermultiplet in the bi-fundamental represen-

tation and six hypermultiplets in the fundamental representation of SU(4). The Argyres-

Seiberg dual of this theory involves an E7 strongly-coupled piece, with an SU(3) subgroup

of E7 gauged. The theory has a second gauge group factor SU(2) and two hypermultiplets:

one in the fundamental of SU(2) and the in bi-fundamental of the two gauge groups. See

figure 6. The index of the weakly-coupled theory can be easily written down,

Iweak = κΓ(t2v)

∮

T

de

2πi e

Γ(t2ve±2)

Γ(e±2)
× (5.1)

1

3
κ3 Γ(t2v)3

∮

T3

3
∏

i=1

dui

2πi ui

∏

i6=j

Γ
(

t2v ui

uj

)

Γ
(

ui

uj

) Γ

(

t2√
v
(e±1 ui a)

±1

)

×

4
∏

i=1

4
∏

j=1

Γ

(

t2√
v
(yj ui b)

±1

) 4
∏

i=1

2
∏

j=1

Γ

(

t2√
v
(zj ui c)

±1

)

.
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The index of the dual theory is given by

Istrong = κΓ(t2v)

∮

T

de

2πi e

Γ(t2ve±2)

Γ(e±2)
Γ

(

t2√
v
e±1 s±1

)

× (5.2)

2

3
κ2 Γ(t2v)2

∮

T2

2
∏

i=1

dui

2πi ui

∏

i6=j

Γ
(

t2v ui

uj

)

Γ
(

ui

uj

)

3
∏

i=1

Γ

(

t2√
v
(e±1 uim)±1

)

×

C(E7)
(

(ui, r)SU(4),ySU(4), zSU(2)

)

.

One can invert the SU(2) integral by the same techniques we used for the E6 index, but

there is no simple inversion formula known to us for the SU(3) integral. To obtain a closed

form for the index of the strongly-coupled CFTs appearing in higher rank theories one has

to learn how to “invert the superconformal tails”.

The superconformal index of the generalized quiver theories can be built from a small

number of building blocks, the structure constants and the metric of section 4. We have

explicitly shown, at least in perturbation theory in the chemical potential t, that the super-

conformal index of these theories is consistent with S-duality. These structure constants

and metric can be interpreted as defining a 2d topological quantum field theory, general-

izing to A2 the construction given in [5] for A1. It would be very interesting to obtain a

Lagrangian description for these TQFTs, perhaps by direct dimensional reduction of the

twisted (2, 0) theory on S3 × S1.

Finally, from a pure mathematics viewpoint, we have seen that S-duality implies a

number of identities that must be obeyed by integrals of elliptic Gamma functions and

that we have checked perturbatively. We collect these identities in appendix D. It would

be nice to find analytic proofs.
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A t expansion in the weakly-coupled frame

We expand the index (3.4) in t as

Ia,z;b,y =

∞
∑

k=0

bk t
k. (A.1)

– 20 –



J
H
E
P
0
8
(
2
0
1
0
)
1
0
7

The first few orders are

b0 = 1,

b1 = b2 = b3 = 0,

b4 =
1

v
χ

SU(6)
35,adj +

1

v
+ v2,

b5 = −v
(

y +
1

y

)

, (A.2)

b6 =
1

v3/2
χ

SU(6)
20

(

(a

b

)3/2
+

(

b

a

)3/2
)

− χ
SU(6)
35,adj + v3 − 1,

b7 =
1

v

(

y +
1

y

)

χ
SU(6)
35,adj +

2

v

(

y +
1

y

)

,

b8 =
1

v2
χ

SU(6)
sym235

+ vχ
SU(6)
35,adj −

1√
v
χ

SU(6)
20

(

(a

b

)3/2
+

(

b

a

)3/2
)

+ v4 − v

(

y +
1

y

)2

+ 2v,

b9 = −2

(

y +
1

y

)

χ
SU(6)
35,adj +

1

v3/2

(

y +
1

y

)

χ
SU(6)
20

(

(a

b

)3/2
+

(

b

a

)3/2
)

− 2

(

y +
1

y

)

.

In the above equation we decomposed SU(6) ⊃ SU(3)z ⊗ SU(3)y−1 ⊗U(1). The branching

of 35 and 20 of SU(6) is given by (see [29]),

35 = (1,1)0 + (8,1)0 + (1,8)0 + (3̄,3)2 + (3, 3̄)−2 , (A.3)

20 = (1,1)3 + (1,1)−3 + (3̄,3)−1 + (3, 3̄)1 .

For example, the character of the adjoint is

χ
SU(6)
35,adj =

[

(a b)1/2 (z1 + z2 + z3) + (a b)−1/2

(

1

y1
+

1

y2
+

1

y3

)]

× (A.4)

×
[

(a b)−1/2

(

1

z1
+

1

z2
+

1

z3

)

+ (a b)1/2 (y1 + y2 + y3)

]

− 1 .

We conclude that the U(1) charge in SU(6) can be identified as (a b)−1/2.

B Inversion theorem

In this appendix we quote the inversion theorem [11], which we use in section 3.2 to obtain

the index of the E6 theory. Define

δ(z, w;T ) ≡ Γ(T z±1 w±1; p, q)

Γ(T 2, z±2; p, q)
. (B.1)

If T , p and q are such that

|max(p, q)| < |T | < 1 , (B.2)

then the following theorem holds true. For fixed w on the unit circle we define a contour

Cw (see figure 7) in the annulus A = {|T |−ǫ < |z| < |T |−1+ǫ} with small but finite ǫ ∈ R
+,
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t2w√
v

√
v

t2w

t2

w
√

v

w
√

v

t2

Figure 7. The integration contour Cw (green). The dashed (black) circle is the unit circle T.

Black dots are poles of Γ
(√

v

t2
w±1 z±1

)

. There are four sequences of poles: two sequences starting

at
√

v

t2
w±1 and converging to z = 0, and two sequences starting at t2√

v
w±1 and converging to z = ∞.

The contour encloses the two former sequences.

such that the points T−1w±1 are in its interior and Cw = C−1
w (i.e. an inverse of the point

in the interior of Cw is in the exterior of Cw). Let f(z) = f(z−1) be a holomorphic function

in A. Then for |T | < |x| < |T |−1,

f̂(w) = κ

∮

Cw

dz

2πi z
δ(z,w; , T−1) f(z) −→ f(x) = κ

∮

T

dw

2πiw
δ(w, x; , T ) f̂ (w) . (B.3)

Our expression for the index in the strongly-coupled frame (3.14) is of the form of the

right hand side of (B.3). Thus, to use the inversion theorem to obtain the index of E6

theory we assume that this index can be written as

Γ(t2v w±2) C(E6) ((w, r),y, z) = κ

∮

Cw

ds

2πi s

Γ
(

√
v

t2
w±1 s±1

)

Γ
(

v
t4
, s±2

) F (s, r;y, z) , (B.4)

for some function F . The theorem (B.3) then implies that F (s, r;y, z) = Î (s, r;y, z) with

I (s, r;y, z) given in (3.14).

C The Coulomb and Higgs branch operators of E6 SCFT

We collect here a few facts about the Coulomb and the Higgs branches of E6 SCFT, fol-

lowing the analysis of [13]. Argyres-Seiberg duality can be used to determine the quantum

numbers of protected operators of E6 theory if their dual operators in the dual SU(3)

theory are known. The Coulomb branch operator u of the E6 theory (the operator whose
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vev parametrized the Coulomb branch) is identified as Trφ3 in the SU(3) theory. Since

φ has quantum numbers (E, j1, j2, R, r) = (1, 0, 0, 0,−1), u should have quantum numbers

(3, 0, 0, 0,−3) and contribute to the superconformal index as t6v3.

The operator X whose vev parametrized the Higgs branch transforms in the adjoint

representation of E6. Under the SU(2) ⊗ SU(6) subgroup of E6 it decomposes as

Xi
j , Y [ijk]

α , Zαβ , (C.1)

where i, j, k = 1, . . . , 6 are the SU(6) indices, and α, β = 1, 2 are the SU(2) indices. At the

same time, the SU(2) gauge theory provides the quarks qα, q̃α and the F -term constraint

Zαβ + q(αq̃β) = 0 . (C.2)

Thus the gauge-invariant operators are

(qq̃), Xi
j , (Y ijkq), (Yijkq̃) . (C.3)

On the SU(3) side, the Higgs branch is parameterized by gauge invariant operators

M i
j = Qi

aQ̃
a
j , Bijk = ǫabcQi

aQ
j
bQ

k
c , B̃ijk = ǫabcQ̃

a
i Q̃

b
jQ̃

c
k , (C.4)

where Qi
a and Q̃a

i are the squark fields, i = 1, . . . , 6 are flavor indices, and a = 1, 2, 3 the

color indices.

The duality of the two sides suggests the following identification

TrM ↔ (qq̃), M̂ i
j ↔ Xi

j , (C.5)

Bijk ↔ (Y ijkq), B̃ijk ↔ (Yijk q̃) (C.6)

where M̂ i
j is the traceless part of M i

j . Since the quantum numbers of Q are (1, 0, 0, 1/2, 0),

the quantum numbers of X should be (2, 0, 0, 1, 0), and contribute to the index as t4/v.

D Identities from S-duality

In this appendix we summarize identities of integrals of elliptic Gamma functions implied

by S-duality of the SU(3) quiver theories.

Generalization of [7]. We define

I(n)
(

a , zSU(n); b ,ySU(n)

)

≡ 2n−1

n!
κn−1Γ(t2v)n−1 × (D.1)

∮

Tn−1

n−1
∏

i=1

dxi

2πi xi

∏n
i=1

∏n
j=1 Γ

(

t2√
v

(

azi

xj

)±1
)

Γ
(

t2√
v

(b yi xj)
±1
)

∏

i6=jΓ
(

t2v xi

xj

)

∏

i6=jΓ
(

xi

xj

)

∣

∣

∣

∣

∣

∣

∣

∣
Qn

j=1
xj=1

.

The claim is that

I(n)
(

a , zSU(n); b ,ySU(n)

)

= I(n)
(

b , zSU(n); a ,ySU(n)

)

. (D.2)

For SU(2) this identity was proven in [7], and for SU(3) we have performed perturbative

checks. The usual S-duality of Nf = 2n SU(n) theories implies that this identity should

be true for any n. Note that for t = v this is a special case of identities discussed in [21].
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E6 integral. We define

C(E6) ((w, r),y, z) ≡ 2κ3Γ(t2v)2

3Γ(t2v w±2)

∮

Cw

ds

2πi s

Γ
(

√
v

t2
w±1 s±1

)

Γ
(

v
t4 , s

±2
) × (D.3)

×
∮

T2

2
∏

i=1

dxi

2πi xi

3
∏

i=1

3
∏

j=1

Γ





t2√
v

(

s
1

3 zi
xj r

)±1


Γ





t2√
v

(

s−
1

3 yi xj

r

)±1




∏

i6=j

Γ

(

t2v
xi

xj

)

∏

i6=j

Γ

(

xi

xj

) .

This integral has manifest symmetry under SU(2)w ⊗ SU(6), where the SU(6) has been

decomposed as SU(3)z ⊗ SU(3)y−1 ⊗ U(1)r. The identification with the index of the E6

SCFT implies that there must be a symmetry enhancement SU(2)w ⊗ SU(6) → E6. Two

properties that are sufficient to guarantee E6 covariance are: first,

C(E6) ((w, r),y, z) = C(E6)

((

w1/2

r3/2
,

1

w1/2 r1/2

)

,y, z

)

, (D.4)

which is the statement that (w, r) combine into a character of SU(3) (which we shall denote

by w); second,

C(E6)(w,y, z) = C(E6)(y,w, z) . (D.5)

We presented perturbative evidence for the full E6 symmetry in the text.

S-dualities of SU(3) quivers. Define

I3333 (y, z,u, s) ≡
∮

T2

2
∏

i=1

dxi

2πixi

∏

i6=j

Γ
(

t2vxi/xj

)

Γ (xi/xj)
C(E6) (y, z,x)C(E6)

(

u, s,x−1
)

, (D.6)

I3331 (y, z,u, a) ≡
∮

T2

2
∏

i=1

dxi

2πixi

∏

i6=j

Γ
(

t2vxi/xj

)

Γ (xi/xj)
C(E6) (y, z,x)

3
∏

i,j=1

Γ

(

t2√
v

(

ax−1
i uj

)±
)

.

The S-dualities of the SU(3) quivers imply

I3333 (y, z,u, s) = I3333 (y,u, z, s) , (D.7)

I3331 (y, z,u, a) = I3331 (y,u, z, a) .
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