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1 Introduction

It has been known since a long time that it is not possible to construct standard gravita-

tional interaction for massless higher spin s ≥ 5/2 particles in flat Minkowski space [1–3].

At the same time, it has been shown [4, 5] that this task indeed has a solution in (A)dS

space with non-zero cosmological term. The reason is that gauge invariance, that turns out

to be broken when one replaces ordinary partial derivatives by the gravitational covariant

ones, could be restored with the introduction of higher derivative corrections containing

gauge invariant Riemann tensor. These corrections have coefficients proportional to in-

verse powers of cosmological constant so that such theories do not have naive flat limit.

However it is perfectly possible, for cubic vertices, to have a limit where both cosmological

term and gravitational coupling constant simultaneously go to zero in such a way that

only interactions with highest number of derivatives survive [6, 7]. Besides all, it means

that the procedure can be reversed. Namely, one can start with the massless particle in

flat Minkowski space and search for non-trivial (i.e. with non-trivial corrections to gauge

transformations) higher derivatives cubic s − s − 2 vertex containing linearized Riemann

tensor. Then, considering smooth deformation into (A)dS space, one can try to reproduce

standard minimal gravitational interaction as a by product of such deformation. Recently

we have shown that such procedure is indeed possible on the example of massless spin 3

particle [6] using cubic four derivatives 3 − 3 − 2 vertex constructed in [7, 8].
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Besides gravitational interaction one more classical and important test for any higher

spin theory is electromagnetic interaction. The problem of switching on such interaction

for massless higher spin particles looks very similar to the problem with gravitational

interactions. Namely, if one replaces ordinary partial derivatives by the gauge covariant

ones the resulting Lagrangian loses its gauge invariance and this non-invariance (arising

due to non-commutativity of covariant derivatives) is proportional to field strength of

vector field. In this, for the massless fields with s ≥ 3/2 in flat Minkowski space there

is no possibility to restore gauge invariance by adding non-minimal terms to Lagrangian

and/or modifying gauge transformations. But such restoration becomes possible if one

goes to (A)dS space with non-zero cosmological constant. By the same reason, as in the

gravitational case, such theories do not have naive flat limit, but it is possible to consider a

limit where both cosmological constant and electric charge simultaneously go to zero so that

only highest derivative non-minimal terms survive. Again it should be possible to reproduce

standard minimal e/m interaction starting with some non-trivial cubic higher derivatives

s− s− 1 vertex containing e/m field strength and considering its smooth deformation into

(A)dS space. An example of such procedure for massless spin 2 particle has been given

recently in [9], while candidate for appropriate s − s − 1 vertex was given in [7].

It is natural to suggest that in any realistic higher spin theory (like in superstring) most

of higher spin particles must be massive and their gauge symmetries spontaneously broken.

As is well known, for massive higher spin particles any attempt to switch on standard

minimal gravitational or electromagnetic interactions spoils a consistency of the theory

leading first of all to appearance of non-physical degrees of freedom and/or non-causality.

But having in our disposal mass m as a dimensionfull parameter even in a flat Minkowski

space we can try to restore consistency of the theory by adding to Lagrangian non-minimal

terms containing the linearized Riemann tensor (e/m field strength). Naturally such terms

will have coefficients proportional to inverse powers of mass m so that the theory will not

have naive massless limit. However, it is natural to suggest that there exists a limit where

both mass and gravitational coupling constant (electric charge) simultaneously go to zero

so that only some interactions containing Riemann tensor (e/m field strength) survive.

Again it suggests that the procedure can be reversed. Namely, one can try to reproduce

minimal gravitational (e/m) interactions starting with appropriate higher derivative non-

minimal interactions for massless particle and performing smooth deformation into massive

case. The first step towards such construction of gravitational interactions for massive spin

3 particles was performed in [6], while electromagnetic interactions for massive spin 2

particles where considered in [10].

In both cases it is crucial to have non-minimal higher derivative cubic vertices for

massless particles in a flat Minkowski space (some recent reviews on higher spin interactions

see [11–14]). Last years there appeared a number of important and interesting results in this

direction both in a light cone [15, 16] and a Lorentz covariant [7, 8, 17–22] approaches as well

as in attempts to extract useful information from strings [23–26]. One of the important

general facts on these vertices is that the higher spins one tries to consider the more

derivatives one has to introduce. It seems that there is a general agreement [15, 16, 21, 22]

that the minimal number of derivatives necessary to construct non-trivial cubic vertex for
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massless particles with spins s1, s2 and s3 such that s1 ≥ s2 ≥ s3 is equal to:

n = s1 + s2 − s3

Till now most of the results on such vertices where obtained in a metric-like formalism where

for the description of massless spin s (s+ 1
2 ) particle one uses completely symmetric (spin-)

tensor of rank s. In this, the Lagrangians for these vertices turn out to be very complicated.

Moreover, higher derivatives in the field equations and especially higher derivatives of gauge

parameters in gauge transformations make the consistency check in such theories to be

highly non-trivial. The aim of this paper is to show that such investigations can be greatly

simplified if one uses a frame-like formalism [27–29] (see also [30, 31]). In this, as it will

be shown, higher derivatives of physical fields are replaced by so called auxiliary and extra

fields, while higher derivatives of main gauge parameters are replaced by additional gauge

parameters that are present in a frame like-formalism. As an illustration we choose massless

spin 3 particle and try to reconstruct a number of cubic vertices describing interactions of

this particle with lower spins 2, 1 and 0 ones.

The plan of the paper is simple. In section 2 we give all necessary information on the

frame-like description of massless spin 3 particle, including Lagrangian, gauge transforma-

tions, expressions for auxiliary and extra fields in terms of derivatives of physical ones and

a number of identities that will be heavily used in what follows. For completeness and to

fix notations we also give relevant formulas for lower spins 2, 1 and 0 as well.

In section 3 we systematically reproduce a number of cubic vertices for the spin 3

particles interacting with the lower spin ones in such frame-like formalism. Almost all

these vertices (except the 3 − 2 − 1 one as far as we know) where known previously in

a metric-like formalism. Note also that all vertices have minimal number of derivatives

possible in agreement with the formula given above. In all cases we give Lagrangian and

gauge transformations as well as check the closure of the algebra of gauge transformations.

Notations and conventions. We work in a flat Minkowski space with d ≥ 4 dimensions.

We use Greek letters for world indices and Latin letters for local ones. Surely, in a flat

space one can freely convert world indices into local ones and vice-versa and we indeed

will use such conversion whenever convenient. But separation of world and local indices

plays very important role in a frame-like formalism. In particular, for all vertices we

consider the Lagrangians can be written as a product of forms, i.e. as expressions completely

antisymmetric on world indices and this property greatly simplifies all calculations.

2 Kinematics

In a frame-like formalism free Lagrangian for massless particle contains two main ob-

jects [27–29]: physical field (analogue of frame eµ
a) and auxiliary field (analogue of Lorentz

connection ωµ
ab). In this, equations for auxiliary field turn out to be algebraic and their

solution allows one to express this field in terms of first derivatives of physical one. Besides,

frame-like formalism contains a number of so called extra fields which do not enter free

Lagrangian but play an important role for the description of interactions (as it will be seen
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in particular from the results of this paper). These extra fields also can be expressed in

terms of higher derivatives of physical field. As it will be explained in the next section a

modified 1 and 1
2 order formalism we will use requires such explicit solutions for auxiliary

and extra fields. Moreover, a number of identities that holds on the solutions only will be

heavily used in what follows.

In this section we will give all necessary information on kinematics of massless spin 3

particle in flat Minkowski space including expressions for auxiliary and extra fields and cor-

responding identities. For completeness and to fix notations we also give relevant formulas

for lower spin fields 2, 1 and 0.

2.1 Spin 3

Frame-like description of massless spin 3 particle in flat Minkowski space requires two main

objects [27–29]: physical one form Φµ
ab which is symmetric and traceless on local indices

and auxiliary one form Ωµ
ab,c which is symmetric on first two indices, completely traceless

on all local indices and satisfies a condition Ωµ
(ab,c) = 0, where round brackets denote

symmetrization. Corresponding free Lagrangian can be written as follows:

L0 = −
1

6

{ µν
ab

}

[2Ωµ
ac,dΩν

bc,d + Ωµ
cd,aΩν

cd,b] −
2

3

{ µνα
abc

}

Ωµ
ad,b∂νΦα

cd (2.1)

where
{ µν

ab

}

= eµ
ae

ν
b − eν

ae
µ

b and so on. This Lagrangian is invariant under the following

gauge transformations:

δΦµ
ab = ∂µξab + ηab

µ, δΩµ
ab,c = ∂µηab,c + ζab,c

µ (2.2)

where parameter ξab is symmetric and traceless, ηab,c has the same properties on its local

indices as Ωµ
ab,c, while parameter ζab,cd is symmetric on first as well as second pair of

indices, completely traceless and satisfies a condition ζ(ab,c)d = 0.

As can be easily seen from the Lagrangian, the equation for Ω field is algebraic and

allows one to express this field in terms of first derivatives of physical field Φ. To obtain

explicit expression let us first of all introduce a ”torsion” two form Tµν
ab which is invariant

under ξab transformations (but not under the ηab,c ones):

Tµν
ab = ∂µΦν

ab − ∂νΦµ
ab = ∂[µΦν]

ab, Tµ
a = Tµν

aν , Tµ
µ = 0

By construction this two form satisfies the following identities:

∂[µTνα]
ab = 0, ∂µTνα

µb = ∂[νTα]
b ∂νTµ

ν = 0

Using this two form the explicit expression for Ω field can be written as follows:

Ωµ,αβ,ν =
1

4
[2Tµν,αβ − Tµα,νβ − Tµβ,να − Tνα,µβ − Tνβ,µα] −

−
1

4(d − 2)
[gναT(µβ) + gνβT(µα) + gµαT(νβ) + gµβT(να) −

−2gαβT(µν) − 2gµνT(αβ)] (2.3)
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By straightforward calculations one can check that under δΦµ
ab = ηab

µ such Ωµ
ab,c indeed

transforms as δΩµ
ab,c = ∂µηab,c + ζab,c

µ where

ζµν,αβ =
1

4
[∂µηαβ,ν + ∂νηαβ,µ + ∂αηµν,β + ∂βηµν,α] +

+
1

4(d − 2)
[gνα(∂η)µβ + gνβ(∂η)µα + gµα(∂η)νβ + gµβ(∂η)να −

−2gαβ(∂η)µν − 2gµν(∂η)αβ ]

Here (∂η)αβ = ∂µηαβ,µ. Moreover, the following useful identity holds:

Ω[µ
ab

ν] = Tµν
ab (2.4)

Now we introduce a curvature tensor for Ω field:

Rµν
ab,c = ∂[µΩν]

ab,c, Rµ
a,b = Rµν

aν,b, Ra = Rµν
aµ,ν = −Rµ

a,µ, Rµ
µ,a = 0 (2.5)

By construction it satisfies usual differential identities:

∂[µRνα]
ab,c = 0 =⇒ ∂µRνα

µb,c = −∂[νRα]
b,c, 2∂µRν

a,µ + ∂µRν
µ,a = −∂νRa (2.6)

Also, as a consequence of Ω[µ
ab

ν] = Tµν
ab, we obtain:

R[µν
ab

α] = ∂[µΩν
ab

α] = ∂[µTνα]
ab = 0 =⇒ R[µ

a
ν] = 0 (2.7)

As can be easily seen from the Lagrangian, dynamical equations (i.e. equations for physical

field Φµ
ab) can be written in terms of this curvature tensor. Direct calculations give us:

Eµ,ab =
δL0

δΦµ
ab

= −
2

3
[Ra,b,µ + Rb,a,µ + Ra,µ,b] −

1

3
[gµaRb + gµbRa] (2.8)

The invariance of these equations under the δΦµ
ab = ∂µξab + ηab

µ gauge transformations

is related with appropriate identities:

∂µEµ
ab = 0, 2Ea,bc − E(b,c)a +

1

(d − 1)
[2gbcEa − ga(bEc)] = 0 (2.9)

where Ea = Eµ
µa.

Curvature Rµν
ab,c is invariant under ξab and ηab,c transformations, but not under the

ζab,cd ones. So we proceed by introducing a so called extra field Σµ
ab,cd which has the same

properties on local indices as parameter ζab,cd and will play a role of gauge field for this

transformations:

δΣµ
ab,cd = ∂µζab,cd (2.10)

Besides, we will require that the following identity holds:

Σ[µ
ab,c

ν] ≈ Rµν
ab,c

– 5 –
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where ”≈” means ”on-shell”. This requirement together with symmetry properties and the

form of gauge transformations completely and unambiguously fix the solution for Σµ
ab,cd

in terms of Rµν
ab,c. By straightforward but rather lengthy calculations we obtain:

Σρ
ab,cd =

1

4
[Rρ

a,cd,b + Rρ
b,cd,a + Rρ

c,ab,d + Rρ
d,ab,c] +

+
1

12
[Rac

ρ
[b,d] + Rbc

ρ
[a,d] + Rad

ρ
[b,c] + Rbd

ρ
[a,c]] +

−
1

2(d − 2)
[2gabEρ

cd + 2gcdEρ
ab − gacEρ

bd − gadEρ
bc − gbcEρ

ad − gbdEρ
ac] −

−
1

(d − 1)2(d − 2)
[2gabgcd − gacgbd − gadgbc]Eρ +

+
1

2(d − 1)(d − 2)
[(2gabeρ

(c − eρ
bga(c − eρ

agb(c)Ed) + (ab ↔ cd)] (2.11)

In this, the exact form of algebraic identity (that will be heavily used in what follows) looks

as follows:

Σ[µ
ab,c

ν] = Rµν
ab,c +

1

2(d − 2)

[

2e[µ
cEν]

ab − e[µ
(aEν]

b)c+ (2.12)

+
2

(d − 1)2
[2gabe[µ

cEν] − e[µ
(agb)cEν]] −

3

(d − 1)
e[µ

ceν]
(aEb)

]

At last we introduce a truly gauge invariant tensor — curvature for the Σ field:

Rµν
ab,cd = ∂[µΣν]

ab,cd (2.13)

Apart from being invariant under all ξab, ηab,c and ζab,cd gauge transformations, this tensor

has one more very important property. Namely, its contraction vanish on-shell and can

be expressed through the first derivatives of dynamical equations. By straightforward

calculations (where all identities given above were heavily used) we obtain:

Rµν
ab,cν = −

(d − 3)

2(d − 2)

[

2∂cEµ
ab − ∂(aEµ

b)c +
1

(d − 1)
(2gab(∂E)µ

c − gc(a(∂E)µ
b))−

−
1

(d − 1)2
(2gab∂µEc − gc(a∂µEb)) +

2

(d − 1)2
(2gab∂cEµ − gc(a∂b)Eµ) +

+
1

(d − 1)
(eµ

c∂(aEb) − 2eµ
(a∂cEb) + eµ

(a∂b)Ec) −

−
1

(d − 1)2
(2eµ

cgab − eµ
(agb)c)(∂E)

]

(2.14)

where (∂E)µ
a = ∂bEµ

ab.

2.2 Spin 2

Frame-like description of massless spin 2 particle is very well known. We need main physical

one form hµ
a as well as auxiliary one form ωµ

ab antisymmetric on its local indices. In a

flat Minkowski space the free Lagrangian can be written as follows:

L0 =
1

2

{ µν
ab

}

ωµ
acων

bc −
1

2

{ µνα
abc

}

ωµ
ab∂νhα

c (2.15)
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This Lagrangian is invariant under the following gauge transformations:

δhµ
a = ∂µξa + ηµ

a, δωµ
ab = ∂µηab (2.16)

In what follows we will need a solution for the algebraic equation for the ω field. It can be

easily found to be:

ωa,bc =
1

2
[Tab,c − Tac,b − Tbc,a] =⇒ ω[µ,ν]

a = Tµν
a (2.17)

where we have introduced torsion two form Tµν
a = ∂µhν

a−∂νhµ
a, which is invariant under

the ξa transformations (but not under the ηab ones).

Then we introduce curvature tensor for the ω field

Rµν
ab = ∂µων

ab − ∂νωµ
ab, Ra,b = Rac,b

c (2.18)

which is invariant both under ξa and ηab transformations. By construction it satisfies usual

differential identity:

∂[µRνα]
ab = 0 =⇒ ∂αRµν

αa = ∂[µRν]
a (2.19)

Besides, as a consequence of ω[µ,ν]
a = Tµν

a we have algebraic identity:

R[µν,α]
a = ∂[µων,α]

a = ∂[µTνα]
a = 0 =⇒ R[µ,ν] = 0 (2.20)

2.3 Spin 1

For the description of spin 1 particle we will also use frame-like (i.e. first order) formalism.

We introduce main physical one form Aµ and auxiliary antisymmetric second rank tensor

F ab. The free Lagrangian then has the form:

L0 =
1

8
Fab

2 −
1

4

{ µν
ab

}

F ab∂µAν (2.21)

Solution of algebraic equations for F ab field gives us:

Fµν = ∂µAν − ∂νAµ =⇒ ∂[µFνα] = 0 (2.22)

2.4 Spin 0

Similarly, for the description of spin 0 particle we introduce physical scalar ϕ and auxiliary

vector πa. The free Lagrangian looks like:

L0 = −
1

2
πa

2 + { µ
a}πa∂µϕ (2.23)

and by solving algebraic equations for the πa we obtain:

πµ = ∂µϕ =⇒ ∂[µπν] = 0 (2.24)

– 7 –
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3 Cubic vertices

In all investigations of massless particles interactions gauge invariance plays a crucial role.

Not only it determines a kinematic structure of free theory and guarantees a right number

of physical degrees of freedom, but also to a large extent it fixes all possible interactions of

such particles. This leads, in particular, to formulation of so-called constructive approach to

investigation of massless particles models [3, 7, 32–40]. In this approach one starts with free

Lagrangian for the collection of massless fields with appropriate gauge transformations and

tries to construct interacting Lagrangian and modified gauge transformations iteratively

by the number of fields so that:

L ∼ L0 + L1 + L2 + . . . , δ ∼ δ0 + δ1 + δ2 + . . .

where L1 — cubic vertex, L2 — quartic one and so on, while δ1 — corrections to gauge

transformations linear in fields, δ2 — quadratic in fields and so on.

In a frame-like formalism it means that one starts with the free Lagrangian L0 con-

taining physical Φ and auxiliary Ω fields and their initial gauge transformations δ0Φ and

δ0Ω such that:
δL0

δΦ
δ0Φ +

δL0

δΩ
δ0Ω = 0

Then in the first non-trivial approximation one has to achieve:

δL1

δΦ
δ0Φ +

δL1

δΩ
δ0Ω +

δL0

δΦ
δ1Φ +

δL0

δΩ
δ1Ω = 0

From one hand one can use honest first order formalism here treating both Φ and Ω as

independent fields. But this requires a lot of calculations including corrections to gauge

transformations of auxiliary field Ω which often turn out to be the most complicated ones.

At the other hand in frame-like formulation of gravity and supergravity there is a well

known 1 and 1
2 order formalism. Here one takes into account variations of physical field

Φ only but all calculations are made on the solutions of complete algebraic equations for

auxiliary field Ω:
[

δL1

δΦ
δ0Φ +

δL0

δΦ
δ1Φ

]

δ(L0+L1)
δΩ

=0

= 0

Thus there is no need to consider corrections to Ω field gauge transformations but one has

to solve non-linear equations for this field and this can be a non-trivial task. In this paper

we will use modified 1 and 1
2 order formalism very well suited namely for investigations of

cubic vertices:
[

δL1

δΦ
δ0Φ +

δL1

δΩ
δ0Ω +

δL0

δΦ
δ1Φ

]

δL0
δΩ

=0

= 0

Here also there is no need to consider corrections to Ω field gauge transformations but

we have to make all calculations on the solutions of free Ω field equations only. And the

very same solutions of free Ω field equations will be used in investigations of different cubic

vertices. Note at last that we will use the same strategy for the extra field Σ as well.
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3.1 Vertex 3-0-0

One of the simplest examples of cubic vertices for spin 3 particle is a three derivatives 3-0-0

vertex [41] (see also [14, 18, 40, 42, 43]). As is known, to construct such a vertex one needs

at least two different spin 0 fields, the vertex being antisymmetric on them.

Let us first consider this vertex in a metric-like formalism. We introduce completely

symmetric third rank tensor Φµνα with gauge transformations:

δΦµνα = ∂(µξνα), ξµν = ξνµ, ξµµ = 0

and a pair of scalars ϕi, i = 1, 2. Then the most general ansatz for the vertex can be

written as follows:

L1 = εijΦµνα[a1∂µναϕiϕj + a2∂µνϕi∂αϕj ] +

+εijΦ̃µ[a3∂
2∂µϕiϕj + a4∂

2ϕi∂µϕj + a5∂µβϕi∂βϕj ] (3.1)

where Φ̃µ = Φµν
ν , ∂µν = ∂µ∂ν and so on. To compensate a non-invariance of this vertex

under the ξµν gauge transformations we have to consider all possible transformations for

scalar fields with two derivatives. The most general ansatz looks like:

δϕi = εij [α1ξ
µν∂µνϕj + α2(∂ξ)µ∂µϕj + α3(∂∂ξ)ϕj ] (3.2)

Recall that in any case where the number of derivatives in the interaction Lagrangian

is greater or equal to that in a free Lagrangian one always has a possibility to make

field redefinitions. In this, all interacting Lagrangians related by such redefinitions are

physically equivalent, so one can freely use this freedom to simplify Lagrangian and/or

gauge transformations. In the case at hands such redefinitions have the following form:

Φµνα =⇒ Φµνα + κ1ε
ijg(µνϕi∂α)ϕ

j , ϕi =⇒ ϕi + εij [κ2Φ̃
µ∂µϕj + κ3(∂Φ̃)ϕj ]

We use this redefinitions to set a1 = 0, α2 = α3 = 0. Then the requirement that the

Lagrangian be invariant under the gauge transformations (in the linear approximation)

gives us:

L1 =
α0

6
εij [−2Φµνα∂µνϕi∂αϕj + Φ̃µ(2∂2ϕi∂µϕj + ∂µαϕi∂αϕj)]

δϕi = α0ε
ijξµν∂µνϕ

j (3.3)

Now let us reconstruct this vertex in a frame-like formalism. In this case the ansatz

for interacting Lagrangian can be written as follows:

L1 = εij
{ µν

ab

}

Φµ
ac(a1∂νπb,iπc,j + a2∂νπc,iπb,j) (3.4)

But now we have to take care on two gauge transformations δΦµ
ab = ∂µξab + ηab

µ. It

is easy to check that this Lagrangian is invariant under ηab,c transformations provided

a1 = 2a2. Then the non-invariance of the Lagrangian under the ξab transformations can

be compensated by appropriate transformations of scalar fields:

δϕi = −3a2ε
ijξab∂aπb

j (3.5)
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3.2 Vertex 3-1-1

Similarly to the previous case to construct such vertex [14, 41] we need three derivatives

and at least two different spin 1 particles, the vertex being antisymmetric on them.

Let us consider metric-like formalism first. In this case the most general ansatz for

the Lagrangian and gauge transformations turns out to be rather complicated. At the

same time there exists a lot of possible field redefinitions. We have explicitly checked that

by using these redefinitions one can bring the Lagrangian into the form which is trivially

invariant under the vector field gauge transformations δAµ
i = ∂µλi, so that vector fields

enter the Lagrangian and gauge transformations through gauge invariant field strengths

Aµν
i = ∂[µAν]

i only. In this case the most general such Lagrangian and gauge transforma-

tions can be written in the following form:

L1 = εij [a1Φ
µνα∂µAνβ

iAαβ
j + a2Φ̃

µ∂µAαβ
iAαβ

j + a3Φ̃
µ(∂A)β

iAµβ
j ] (3.6)

δAµ
i = εij [α1ξ

αβ∂αAβµ
j + α2ξµα(∂A)α

j + α3∂αξβµAαβ
j + α4(∂ξ)αAαµ

j ] (3.7)

Note that the transformation with parameter α2 is a so called trivial symmetry, i.e. just a

symmetry of free Lagrangian not related with any non-trivial interactions. Note also that

we still have one possible field redefinition of the form:

Aµ
i =⇒ Aµ

i + κεijΦ̃αAαµ
j

We use this freedom to set α4 = 0. Then the requirement that the Lagrangian be invariant

under the gauge transformations (in linear approximation) leads to the following result:

L1 =
a0

4
εij [−2Φµνα∂µAνβ

iAαβ
j + Φ̃µ∂µAαβ

iAαβ
j + 4Φ̃µ(∂A)β

iAµβ
j ]

δAµ
i = a0ε

ij [3ξαβ∂αAβµ
j + ∂αξβµAαβ

j ] (3.8)

Now let us reconstruct this vertex in a frame-like formalism. In this case the most

general ansatz has the form:

L1 = εij
{ µν

ab

}

[a1Φµ
cd∂νF

ac,iF bd,j + a2Φµ
ac∂νF bd,iF cd,j + a3Φµ

ac∂νF cd,iF bd,j ] (3.9)

Again we have to take care on two transformations with parameters ξab and ηab,c. By

straightforward calculations it easy to check that if we set a2 = 2a1 and a3 = a1 then the

non-invariance of the Lagrangian can be compensated by the following transformations for

vector fields:

δAµ
i = a1ε

ij [3ξab∂aFbµ
j − ηµa,bF

ab,j] (3.10)

3.3 Vertex 3-2-2

In a metric-like formalism such cubic 3-2-2 vertex with three derivatives has been con-

structed in [8]. As in both previous cases its construction requires at least two different

spin 2 particles. In metric-like formalism such vertex turns out to be very complicated, so

we will not reproduce these results here.
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Let us try to reconstruct this vertex in a frame-like formalism. Results of met-

ric like formalism, obtained in [8], suggests the following form of the Lagrangian and

gauge transformations:

L1 ∼ ΦRω ⊕ Ωωω, δh ∼ Rξ ⊕ ωη3 ⊕ Ωη2, δΦ ∼ ωη2

Here Φ and Ω — physical and auxiliary fields for spin 3 particle, ω and R — Lorentz

connection and curvatute tensor for spin 2 particle, while η3 and η2 — ηab,c and ηab corre-

spondingly.

Let us consider ΦRω terms. The most general ansatz appears to be very simple:

L1 = εij
{

µναβ
abcd

}

Φµ
ae[a1Rνα

be,iωβ
cd,j + a2Rνα

bc,iωβ
de,j] (3.11)

Due to well known identity ∂[µRνα]
ab = 0 variation of this Lagrangian under δΦµ

ab = ∂µξab

gauge transformations gives us terms of the form ξRR only:

δξL1 = (a2 − a1)ε
ij

{

µναβ
abcd

}

ξaeRµν
be,iRαβ

cd,j = 8(a1 − a2)ε
ij [Rab

i −
1

2
gabR

i]Rac,bd
jξcd

where the last form was obtained using R[µν,α]
a = 0 and such terms can be compensated

by δh ∼ Rξ transformations (see below).

Now we introduce all possible terms of the form Ωωω:

L2 = εij
{ µνα

abc

}

[b1Ωµ
ad,bων

ce,iωα
de,j + b2Ωµ

ad,eων
bc,iωα

de,j + b3Ωµ
ad,eων

bd,iωα
ce,j] (3.12)

First of all it is easy to check that at b3 = −2b2 such Lagrangian is invariant under the

δΩµ
ab,c = ζab,c

µ transformations. So we proceed and consider δΦµ
ab = ηab

µ, δΩµ
ab,c =

∂µηab,c transformations. Both Lagrangians give contributions of the form η3Rω. Moreover,

if we set

b1 = 2a2, b2 = −a2, a1 = −2a2

then these variations are reduced to the form:

δη3(L1 + L2) = −8a2ε
ij [Rab

i −
1

2
gabR

i]ωa
cd,jηbc,d

and can be compensated by δh ∼ ωη3 transformations.

We have no free parameters left but we still have to take care on δωµ
ab = ∂µηab trans-

formations which give us terms of two types. The first ones — RΩη2 happily combine into:

8a2ε
ij [Rab

i −
1

2
gabR

i]Ωa
bc,dηcd,j

and can be compensated by δh ∼ Ωη2 transformations. At the same time variations of

the second type ∂Ωωη2 can be compensated by corrections to Φµ
ab transformations (recall

that dynamical equations for Φ field are related with curvature tensor for Ω field):

δΦµ
ab = 6a2ε

ij [ωµ
c(a,iηb)c,j − Tr]

– 11 –
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Collecting all pieces together we obtain finally the Lagrangian:

L = a0ε
ij

{

µναβ
abcd

}

Φµ
ae[−2Rνα

be,iωβ
cd,j + Rνα

bc,iωβ
de,j] + (3.13)

+a0ε
ij

{ µνα
abc

}

[2Ωµ
ad,bων

ce,iωα
de,j − Ωµ

ad,eων
bc,iωα

de,j + 2Ωµ
ad,eων

bd,iωα
ce,j]

as well as corresponding corrections to gauge transformations:

δhµb
i = 8a0ε

ij [3Rµc,bd
jξcd + ωµ

cd,jηbc,d − Ωµ
bc,dηcd,j]

δΦµ
ab = 6a0ε

ij [ωµ
c(a,iηb)c,j − Tr] (3.14)

One more important requirement for the consistency of this vertex is that the algebra

of gauge transformations has to be closed. Due to simple structure of results obtained it

is an easy task to check that in this case algebra is indeed closed (in the lowest order):

[δ1, δ2]hµ
a,i = ∂µξ̃a,i + η̃µ

a,i, ξ̃a,i = 8a0ε
ijηbc,jηab,c, η̃ab,i = −8a0ε

ijζac,bdηcd,j

[δ1, δ2]Φµ
ab = ∂µξ̃ab, ξ̃ab = 6a0ε

ijη1
ac,iη2

bc,j − Tr − (1 ↔ 2)

3.4 Vertex 3-3-2

In a metric-like formalism a cubic vertex 3-3-2 with four derivatives has been constructed

in [8] (see also [6, 7]). Again the results in a metric like formalism appear to be very

complicated so we will not reproduce them here.

Let us try to reconstruct this vertex in a frame-like formalism. The structure of

results obtained suggests the following general structure for the Lagrangian and gauge

transformations:

L ∼ ΩΩR, δh ∼ Ση ⊕ Ωζ, δΦ ∼ Rη

Note that the spin 2 field enter through the curvature tensor only so the Lagrangian is

trivially invariant under its gauge transformations. The most general ansatz for such

vertex has the following form:

L1 =
{

µναβ
abcd

}

[a1Ωµ
ae,fΩν

be,fRαβ
cd + a2Ωµ

ef,aΩν
ef,bRαβ

cd + a3Ωµ
ae,bΩν

cf,dRαβ
ef +

+a4Ωµ
ae,bΩν

ce,fRαβ
df + a5Ωµ

ae,bΩν
ef,cRαβ

df ] (3.15)

By construction this Lagrangian is invariant under the ξab transformations so we have to

take care on ηab,c and ζab,cd transformations only. Let us begin with the δΩµ
ab,c = ζab,c

µ

transformations. By straightforward calculations one can show that at:

a1 = 2a0, a2 = −5a0, a3 = −4a0, a4 = 16a0, a5 = 8a0

corresponding variations of the Lagrangian are reduced to a simple form:

δζL1 = −48a0

[

Rab −
1

2
gabR

]

Ωa
cd,eζcd,eb

and can be compensated by δh ∼ Ωζ transformations (see below).
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Let us turn to the δΩµ
ab,c = ∂µηab,c transformations. We have no free parameters left,

nevertheless by rather lengthy calculations we can show that all such variations can be

compensated by δΦ ∼ Rη and δh ∼ Ση transformations. Thus we obtain:

δΦµ
ab = −72a0

[

Rµν
acηνc,b +

1

6(d − 1)
eµ

(aRb)c,deηcd,e +

+
1

(d − 2)
Rµ

cηab,c +
1

2(d − 2)2
Rcdη

cd,(aeµ
b)

]

(3.16)

δhµ
a = 48a0[Ωµ

cd,bζab,cd − Σµ
ab,cdηcd,b]

Again due to a simple structure of gauge transformations it is an easy task to see that

the algebra of gauge transformations is closed:

[δ1, δ2]hµ
a = ∂µξ̃a + η̃µ

a, ξ̃a = 48a0ζ
ab,cdηcd,b, η̃ab = 48a0ζ

ac,de
1 ζbc,de

2 − (1 ↔ 2)

3.5 Vertex 3-2-1

As far as we know cubic vertex 3-2-1 with four derivatives has not been considered earlier.1

Our analysis of this vertex in a metric-like formalism (which we will not reproduce here

due to its complexity) showed that by using possible field redefinitions one can always

bring this vertex into the form that is trivially invariant under the spin 2 and spin 1

gauge transformations so that these fields enter the Lagrangian and gauge transformations

through curvature tensor and field strength correspondingly. This in turn suggests the

following general structure for the Lagrangian and gauge transformations in a frame like

formalism:

L ∼ ΩRF, δh ∼ ∂Fη, δA ∼ Rη

The most general ansatz for this vertex can be written as follows:

L =
{ µνα

abc

}

[a1Ωµ
da,bRνα

ceF de + a2Ωµ
da,bRνα

deF ce + a3Ωµ
ad,eRνα

bcF de +

+a4Ωµ
ad,eRνα

deF bc + a5Ωµ
ad,eRνα

bdF ce + a6Ωµ
ae,dRνα

bdF ce

(3.17)

But due to identity R[µν,α]
a = 0 (which holds on the solutions of algebraic equation for

the ωµ
ab field) not all these terms are independent. Namely, there exist combinations of

parameters a1, a5, a6 and a2, a4 which turn out to be proportional to this identity. In what

follows we choose a1 = 0, a2 = 0. Moreover, there exists one possible field redefinition:

hµ
a =⇒ hµ

a + κΩµ
ab,cF bc

and we use this freedom to set a3 = −a4/2.

By construction such vertex is invariant under the δΦµ
ab = ∂µξab transformations, so

we have to take care on ηab,c and ζab,cd transformations only. Direct calculations show that

1Partial results on this vertex were obtained and used in [6] where gravitational interactions for massive

spin 3 particle were investigated.
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the vertex will be invariant under the δΩµ
ab,c = ζab,c

µ transformations provided a5 = −2a4.

At the same time, if we set a6 = 2a5 then variations of the vertex under the δΩµ
ab,c = ∂µηab,c

transformations can be compensated by appropriate corrections for hµ
a and Aµ fields.

We obtain:

L =
a0

2

{ µνα
abc

}

[−Ωµ
ad,eRνα

bcF de + 2Ωµ
ad,eRνα

deF bc

−4Ωµ
ad,eRνα

bdF ce − 8Ωµ
ae,dRνα

bdF ce] (3.18)

δAµ = 4a0Rµa,bcη
ab,c,

δhµ
a = 6a0

[

∂bFcµηbc,a −
2

3(d − 2)
eµ

a∂bFcdη
bc,d

]

(3.19)

3.6 Vertex 3-3-1

In a metric-like formalism cubic vertex 2-2-1 with three derivatives of the form ∂h∂hF as

well as its generalization on arbitrary integer spin of the form ∂s−1Φ∂s−1ΦF have been

constructed in [7]. In [9, 10] frame-like version of 2-2-1 vertex has been constructed and

used in the investigations of electromagnetic interactions for massless and massive spin 2

particles. This vertex has the form:

L = −
a0

4
εij

{ µν
ab

}

[ωµ
i,cdων

j,cdF ab − 2ωµ
i,abων

j,cdF cd + 4ωµ
i,acων

j,bdF cd] (3.20)

By construction its invariant under the δhµ
a = ∂µξa transformations, while invariance

under the ηab transformations requires appropriate corrections to gauge transformations:

δAµ = a0ε
ijωµ

i,abηj,ab

δhµ
i,a = 2a0ε

ij

[

2Fµ
bηj,ab −

1

(d − 2)
eµ

a(Fη)j
]

(3.21)

Results obtained in a metric-like formalism [7] suggest the following general structure

of the Lagrangian and gauge transformations in a frame-like version for the case of spin

3 particle:

L ∼ ΣΣF, δA ∼ Σζ, δΦ ∼ ∂(Fζ)

Moreover, if we introduce a notation:

Σ̂µ
ab,cd = Σµ

ab,cd − Σµ
cb,ad

then corresponding cubic vertex with five derivatives can be written exactly in the same

form as in the case of spin 2:

L = −
a0

4
εij

{ µν
ab

}

[Σ̂µ
i,ce,df Σ̂ν

j,ce,dfF ab − 2Σ̂µ
i,ae,bf Σ̂ν

j,ce,dfF cd + 4Σ̂µ
i,ae,cf Σ̂ν

j,be,dfF cd]

(3.22)

By construction such Lagrangian is invariant both under ξab and ηab,c transfor-

mations, while invariance under the δΣµ
ab,cd = ∂µζab,cd transformations requires

corresponding corrections:

δAµ = 3a0ε
ijΣµ

i,ab,cdζj,ab,cd

δΦµ
i,ab = 18a0ε

ij∂c[Fµ
dζj,ab,cd − Tr] (3.23)
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Again it is trivial to see that the algebra of gauge transformations is closed:

[δ1, δ2]Aµ = ∂µλ, λ = 3a0ε
ijζ1

i,ab,cdζ2
j,ab,cd − (1 ↔ 2)

4 Conclusion

Thus, we have seen that in a frame-like formalism the Lagrangians for higher derivative non-

minimal vertices indeed become much simpler. In this, an important role here plays the fact

that such Lagrangians can be written as a product of forms. It is this (almost) coordinate

independence that greatly simplifies calculations and, in principle, allows straightforward

deformation into (A)dS spaces. Also the structure of gauge transformations turns out to be

rather simple and it is almost trivial task to check that the algebra of gauge transformations

is closed. At last but not least, in many cases the very structure of the vertex suggests

natural generalization on arbitrary spins.
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