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1 Introduction and summary

Supersymmetric black hole solutions of various four and five-dimensional supergravity the-
ories are fairly well understood, so much so that in some cases a complete classification
is available. More recently the focus of investigation has shifted to extremal but not
necessarily supersymmetric black holes. There exists a large body of literature exploring
extremal black holes in various supergravity theories starting with the observation that not
only BPS black holes [1, 2] but also certain non-BPS extremal black holes show attractor
behavior [3–5].

The attractor behavior of extremal but not supersymmetric solutions was further de-
veloped in [6–9], where it was observed that the second order flow equations underlying
extremal solutions can be factorized into first order equations using a ‘fake superpotential’.
Using the approach of the fake superpotential a large class of extremal solutions has been
constructed and analyzed in [10–13]. A systematic construction of fake superpotentials for
non-BPS extremal solutions was given in [14] using group theoretical techniques developed
in [15, 16]. The considerations of [14–16] are sufficiently general and powerful for providing
a complete classification of extremal solutions in all supergravity theories in which scalars
parameterize a symmetric moduli space.

In this paper we use the techniques of [14–16] to study extremal solutions of minimal
N = 2, D = 4 supergravity coupled to one vector multiplet with cubic prepotential. This
theory is rich enough to harbor many extremal solutions of interest and simple enough to
lend to a completely explicit and systematic analysis in the approach of [14–16]. Perhaps
the simplest way to obtain this theory is via circle reduction of minimal five-dimensional
supergravity. The theory is known as the S3 model as its prepotential is cubic in the
modulus of the theory. It can also be obtained by setting the three moduli equal in the
STU model.

The approach of [14–16] does not rely on supersymmetry and treats all extremal solu-
tions on the same footing. It is based on the pseudo-Riemannian non-linear sigma models
obtained by reducing a theory to three spatial dimensions. It captures all static spherically
symmetric solutions of all gravity theories that upon dimensional reduction give rise to
pseudo-Riemannian non-linear sigma models based on a coset G/K̃, where the group K̃ is
in general non-compact. In particular the approach of [14–16] is applicable to our theory
as upon dimensional reduction over time the S3 model gives rise to a G2(2)/SO0(2, 2) sigma
model. This sigma model is pseudo-Riemannian because SO0(2, 2) is not the maximal
compact subgroup of G2(2).

The key point of [14–16] is to identify the charge matrix of an extremal solution as
an element of a nilpotent orbit of the three-dimensional duality group. The observation of
nilpotency of charge matrices goes back to [17], where it was first observed that the charge
matrix of four-dimensional supersymmetric black holes must be nilpotent. These ideas
were further developed in [15, 16, 18]. In particular, in [15] it was argued that nilpotency
of the charge matrix holds in general for an extremal solution that can be obtained as
a limit of a non-extremal solution. It was concluded that by studying certain nilpotent
K̃-orbits of the Lie algebra of G, one can completely classify extremal solutions of a theory.

– 2 –



J
H
E
P
0
8
(
2
0
1
0
)
0
7
2

The aim of this paper is to carry out a detailed and explicit analysis of nilpotent
orbits for the S3 model. A study of nilpotent charge matrices for this theory was also
done in [18–20]. In [19] it was noted that nilpotent charge matrices are directly related
to the attractor behavior. Two distinct attractor flows were constructed, one BPS and
one non-BPS. In [18] nilpotency of the charge matrices was checked for certain solutions
of five-dimensional minimal supergravity. We revisit the analysis of [18, 19] using recently
developed group theoretic techniques [14–16]. Our main results are summarized as follows:

• We study nilpotent K̃-orbits of p̃ for the S3 model, where p̃ is the complement of
the Lie algebra of K̃ in g2(2) with respect to the Killing form. We find six orbits of
extremal black holes that can be obtained as a limit of non-extremal black holes. We
write explicit expressions for scalar and electromagnetic charges for each orbit.

• We show that two of six orbits are unphysical. Among the rest, three are super-
symmetric, and one is non-supersymmetric. Out of the three supersymmetric orbits
only one orbit corresponds to extremal black holes with non-zero horizon area. This
supersymmetric orbit and the non-supersymmetric orbit precisely correspond to the
BPS and non-BPS attractor flows of [19]. We discuss new and known examples of
extremal black holes in all four physical orbits.

• We connect the classification of supersymmetric black holes in terms of the K̃-orbits
with the analysis of [21]. In particular, we show that solutions corresponding to all
three supersymmetric orbits, when uplifted to five-dimensional minimal supergrav-
ity, have single-center Gibbons-Hawking space as their four-dimensional Euclidean
hyper-Kähler base space. We also show the converse, namely, all static extremal
asymptotically flat black holes that can be obtained via dimensional reduction of
the single-center supersymmetric Gibbons-Hawking form are supersymmetric and
belong to one of the supersymmetric orbits. Our analysis hence provides a partial
proof of the conjecture [21] that dimensional reduction of solutions of five-dimensional
minimal supergravity with Gibbons-Hawking base gives the entire timelike class of
supersymmetric solutions of the S3 model.

• We construct a three-parameter family of supersymmetric black strings with inde-
pendent M23 −M53 − P charges. Its macroscopic entropy can be reproduced [22]
from the Maldacena-Strominger-Witten CFT [23]. This family contains two distinct
two parameter sub-families of pressureless black strings. One of these sub-families is
well known [24] and describes the infinite radius limit of the supersymmetric black
ring [25]. The second two parameter sub-family has not been previously discussed in
the literature. We discuss its relation to black rings.

• We also construct a three parameter family of non-supersymmetric black strings
with independent M23 −M53 − P charges. This family contains a two parameter
sub-family of pressureless black strings.

The motivation behind studying pressureless black strings comes from the fact that
all known smooth black rings with charges [25, 26] and dipoles [27] become pressureless
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strings in the infinite radius limit. The connection between pressureless black strings and
black rings was first made explicit in [28]. In the blackfold approach [29] it appears that
all pressureless black strings describe the infinite radius limit of some black ring.

The rest of the paper is organized as follows. In section 2, we start with an overview
of the approach of nilpotent orbits that underlies our study. To set notation we give a
brief review of the S3 model in section 3.1. The Lagrangian description of the S3 model
is presented as the circle reduction of five-dimensional minimal supergravity and is re-
lated to its N = 2 prepotential description. The dimensional reduction over time from
four to three dimensions is performed in section 3.2. The five-dimensional uplift to mini-
mal supergravity and some basic facts about supersymmetric solutions of five-dimensional
minimal supergravity are collected in section 3.3. In the next section nilpotent orbits of
G2(2) are studied. After reviewing generalities of G2(2) (section 4.1), nilpotent orbits of
the complex G2, nilpotent orbits of the split real form G2(2), and finally nilpotent K̃-orbits
of G2(2) are analyzed in sections 4.2, 4.3, 4.4, respectively. Supersymmetric orbits are
discussed in more detail in section 5 and the non-supersymmetric orbit is discussed in sec-
tion 6. For each orbit we present general expressions for charges and discuss examples. The
three-parameter families of supersymmetric and non-supersymmetric black strings with in-
dependent M23 −M53 − P charges are given in sections 5.3.3 and 6.1.3, respectively. In
section 7 we discuss how our analysis fits in with the approach of [21]. Details of the coset
model construction are relegated to the appendix.

2 Nilpotent orbits

Since the work of Breitenlohner, Maison, and Gibbons [30] it is known that spherically
symmetric black holes for a wide class of four-dimensional gravity theories correspond to
geodesic segments on coset manifolds G/K̃. The coset manifold is the target space of
a three-dimensional sigma model constructed from the four-dimensional gravity theory
by performing a dimensional reduction over time and dualizing the resulting vectors into
scalars. The group G is the duality group of the scalars in three dimensions and K̃ a certain
non-compact subgroup of G. A geodesic on the coset manifold is completely specified by its
starting point p ∈ G/K̃ and its velocity at p. The velocity at the point p is the conserved
Noether charge Q ∈ g taking values in the Lie algebra g of G. From the four-dimensional
spacetime point of view the starting position p of the geodesic is associated with the values
of the moduli at spatial infinity and the velocity Q at the point p is associated with the
four-dimensional conserved charges.

The action of G on a given solution is such that it acts both on the position and the
velocity of the corresponding geodesic. The subgroup of G that keeps the starting point p
fixed is K̃. The subgroup K̃ thus generates the full set of transformations of the conserved
charge Q. It was shown in [30] that using K̃ one can generate the full class of single-
center non-extremal spherically symmetric black holes of a given theory starting from
the Schwarzschild black hole. In other words, all single-center non-extremal spherically
symmetric black holes lie in a single K̃-orbit containing the Schwarzschild black hole. It
was also shown in [30] that the extremality parameter c of a black hole corresponds to
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the ‘speed’ of the geodesic, i.e., c2 = 1
4tr(Q2). Since the reduction to three dimensions is

performed over time, the resulting coset G/K̃ is pseudo-Riemannian. Thus, there are also
null geodesics on the coset manifold. When the extremality parameter goes to zero, the
geodesic becomes null and the corresponding black hole becomes extremal.

The fact that K̃ preserves the point p induces an action of K̃ on the tangent space
Tp(G/K̃), and this in turn induces the reductive decomposition

g = k̃⊕ p̃, (2.1)

where k̃ is the Lie algebra of K̃ and p̃ is isomorphic to Tp(G/K̃) via the standard isomor-
phism TpG ∼= g. These vector spaces hence obey the relation

[̃k, p̃] ⊂ p̃. (2.2)

If we assume asymptotic flatness and that the geodesic corresponding to a given black hole
starts at the identity coset, then the geodesics is given by

M = exp
(
−1
r
Q
)
, (2.3)

where Q ∈ p̃ and r is a radial coordinate. However, not all geodesics on the coset man-
ifold lead to regular bona-fide black holes. Already in their investigation of vacuum five-
dimensional gravity, for which G = SL(3,R) and K̃ = SO(2, 1), Maison and Dobiasch [31]
observed that one could impose the condition that the charge matrix Q ∈ sl(3,R) should
have vanishing determinant,

detQ = 0, (2.4)

for the black hole to be regular outside the horizon. If we further restrict ourselves to
extremal black holes, i.e., c = 0, the conserved charge Q becomes nilpotent,

Q3 = 0, (2.5)

because the two invariant polynomials of sl(3,R), detQ and tr(Q2), now vanish.
In fact, nilpotency of the charge matrix seems to be a generic requirement for extremal

black holes of all theories discussed in [30]. For supersymmetric black holes of N ≥ 2
supergravity theories it was shown in [17] that supersymmetry requires the charge matrix
Q to be nilpotent. In [15] it was observed that the charge matrix Q for any asymptotically
flat non-extremal axisymmetric solution satisfies1

Q3 − 1
4

tr(Q2)Q = 0. (2.6)

Therefore, it follows that a non-rotating extremal solution that can be obtained as an
extremal limit of a non-extremal solution is characterized by a nilpotent charge matrix Q.
Equivalently, by classifying nilpotent K̃-orbits of p̃, one obtains a complete classification of
single center extremal black holes [14–16]. Note anyhow that nilpotency is not a sufficient
condition for a black hole to be regular everywhere outside the horizon.

1This is true for all cases in the classification of [30] except for the two cases involving real forms of E8.
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3 Single modulus S3 N = 2, D = 4 supergravity

In this section we start by describing the N = 2, D = 4 single modulus S3 model. We
define the electromagnetic charges in this model and discuss the uplift to minimal five-
dimensional supergravity.

3.1 The theory

The single modulus S3 model in four dimensions consists of the N = 2 gravity multiplet
coupled to a vector multiplet. It is the consistent truncation of the STU model [32] where
the (S, T, U) moduli are identified with each other. The S3 model can also be obtained
from the circle reduction of five-dimensional minimal supergravity to four dimensions. In
this section we first present the Lagrangian description of the model obtained directly
from the circle reduction of five-dimensional minimal supergravity. This is the description
that we mostly use in this paper. For completeness we also present the N = 2 prepoten-
tial construction and show that it is equivalent to the circle reduction of five-dimensional
minimal supergravity.

The bosonic sector of five-dimensional minimal supergravity contains a metric g5 and
a Maxwell potential A whose field strength is F = dA. The bosonic part of the Lagrangian
takes the form of the Einstein-Maxwell theory with a Chern-Simons term,

L5 = R5 ?5 1− 1
2
?5 F ∧ F +

1
3
√

3
F ∧ F ∧A. (3.1)

To perform the dimensional reduction to four dimensions, we assume that the extra spatial
direction (denoted by z) is compact and a Killing direction in the five-dimensional space-
time. Using the standard Kaluza-Klein ansatz to yield a four-dimensional Lagrangian in
the Einstein frame we write the five-dimensional metric as

ds2
5 = e

1√
3
φ1ds2

4 + e
− 2√

3
φ1(dz +A1)2, (3.2)

A = A2 + χ2dz. (3.3)

From this ansatz one finds (see for example [33]) that the resulting four-dimensional La-
grangian takes the form

L4 = R4 ?4 1− 1
2
?4 dφ1 ∧ dφ1 −

1
2
e

2√
3
φ1 ?4 dχ2 ∧ dχ2 −

1
2
e−
√

3φ1 ?4 F1 ∧ F1

− 1
2
e
− 1√

3
φ1 ?4 F2 ∧ F2 +

1√
3
χ2 dA2 ∧ dA2, (3.4)

where

F1 = dA1, F2 = dA2 − dχ2 ∧A1. (3.5)

The scalars φ1 and χ2 parameterize an SL(2,R)/U(1) coset.
One can easily reproduce the Lagrangian (3.4) from the N = 2 prepotential formalism.

To this end we start by recalling some basic facts about N = 2 supergravity. The action of
N = 2 supergravity coupled to nv vector-multiplets is governed by a prepotential function
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F depending on (nv + 1) complex scalars XI (I = 0, . . . , nv). The bosonic degrees of
freedom of N = 2 supergravity are the metric gµν , the complex scalars XI and a set of
(nv + 1) gauge fields ǍIµ. The bosonic part of the action is given as [34]

L4 = R ?4 1− 2gij̄ ?4 dX
i ∧ dX̄ j̄ +

1
2
F̌ I ∧ ǦI , (3.6)

where F̌ I = dǍI . The ranges of the indices are i, j = 1, . . . , nv, and gij̄ = ∂i∂j̄K is the
Kähler metric with the Kähler potential

K = − log
[
−i(X̄IFI − F̄IXI)

]
. (3.7)

The two-forms ǦI are defined as

ǦI = (ReN)IJ F̌ J + (ImN)IJ ?4 F̌
J , (3.8)

where the complex symmetric matrix NIJ is constructed from the prepotential F (X) as

NIJ = F̄IJ + 2i
(ImF ·X)I(ImF ·X)J

X · ImF ·X
, (3.9)

and FI = ∂IF and FIJ = ∂I∂JF. For the system we are interested in, the prepotential is

F (X) = −(X1)3

X0
. (3.10)

We fix the gauge X0 = 1. With the parameterization

X1 = − 1√
3
χ2 + ie

− φ1√
3 , (3.11)

the Lagrangian (3.6) takes the form

L4 = R4 ?4 1− 1
2
?4 dφ1 ∧ dφ1 −

1
2
e

2√
3
φ1
?4 dχ2 ∧ dχ2

− 1
2

(
e−
√

3φ1 + e
− φ1√

3χ2
2

)
F̌ 0 ∧ ?4F̌

0

− 3
2
e
− φ1√

3 F̌ 1 ∧ ?4F̌
1 −
√

3 e−
φ1√

3 χ2 F̌
0 ∧ ?4F̌

1

+
√

3 χ2 F̌
1 ∧ F̌ 1 + χ2

2 F̌
0 ∧ F̌ 1 +

1
3
√

3
χ3

2 F̌
0 ∧ F̌ 0. (3.12)

With the field redefinition

Ǎ0 = A1, Ǎ1 =
1√
3

(A2 − χ2A1) , (3.13)

the Lagrangian (3.12) becomes identical to (3.4).
As noted above, the S3 model has two dynamical vectors and two scalars. We now

derive expressions for the four electromagnetic charges corresponding to the two vectors.
The equations of motion for the potentials A1 and A2 are

d
(
e−
√

3φ1 ?4 F1) + e
− 1√

3
φ1 ?4 F2 ∧ dχ2 = 0, (3.14)
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and

dβ2 ≡ d
(
e
− 1√

3
φ1 ?4 F2 −

2√
3
χ2dA2

)
= 0. (3.15)

Using (3.15), one can rewrite (3.14) as the closure of a form β1,

dβ1 ≡ d
(
e−
√

3φ1 ?4 F1 + e
− 1√

3
φ1 ?4 F2χ2 −

1√
3
dA2χ

2
2

)
= 0. (3.16)

We then use the closed forms β1 and β2 given by (3.16) and (3.15) to define conserved
electric charges in asymptotically flat four-dimensional spacetimes as integrals over a two-
sphere at spatial infinity S2

∞,

Q1 =
1

4π

∫
S2
∞

β1, Q2 =
1

4π
√

3

∫
S2
∞

β2. (3.17)

In a similar fashion, from the Bianchi identities

dF1 = 0, d(F2 + dχ2 ∧A1) = 0, (3.18)

for A1 and A2 we define the magnetic charges

P1 = − 1
4π

∫
S2
∞

F1, P2 =
1

4π
√

3

∫
S2
∞

F2 + dχ2 ∧A1. (3.19)

Note the minus sign in the definition of P1. We work with sign conventions in which the
static extremal black hole carrying positive P1 and Q2 charges is BPS. From the M-theory
point of view the electromagnetic charges correspond to the following brane charges:2

• Q1 for Kaluza-Klein momentum (P) along the M-theory circle,

• P2 for Kaluza-Klein monopole charge (KKM) along the M-theory circle,

• Q2 for three equal M2 charges (M23),

• P2 for three equal M5 charges (M53).

Thus, the (P1, Q2) system with P1, Q2 > 0 corresponds to KKM — M23, which is BPS.
Similarly, the sign conventions for Q1 and P2 are chosen so that the extremal black hole
carrying positive Q1 and P2 charges is also BPS. The (Q1, P2) system with Q1, P2 > 0
corresponds to M53 — P.

We now define two scalar charges for φ1 and χ2 as the radial derivatives of these fields
at spatial infinity. As noted in section 2, in order to make sure that charge matrices are
in p̃ we must impose the condition that all scalars vanish at infinity. With this condition
imposed, the scalar charges can simply be defined as

Σ = lim
r→∞

r φ1(r)√
3

, Ξ = lim
r→∞

r χ2(r)√
3

. (3.20)

2For more details on the brane interpretation see the brane intersection tables in [35].
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A consistent truncation of the S3 model is obtained by setting

φ1 = χ2 = 0, ?4F1 =
1√
3
dA2, (3.21)

which reduces (3.4) to minimal N = 2, D = 4 supergravity, i.e., the pure Einstein-Maxwell
theory. In section 5.3.5, we discuss this consistent truncation from the coset model point
of view.

3.2 Reduction on time

In this paper we exclusively work with stationary-axisymmetric spacetimes. Therefore,
we also assume the existence of a timelike Killing vector ∂t commuting with ∂z. Now we
can reduce the theory to three dimensions over this timelike Killing vector. The standard
Kaluza-Klein ansatz for this reduction is

ds2
4 = eφ2ds2

3 − e−φ2(dt+ ω3)2, (3.22)

A1 = B1 + χ1dt, (3.23)

A2 = B2 + χ3dt. (3.24)

From this reduction we end up with three-dimensional Euclidean gravity coupled to five
scalars and three one-forms. The one-forms B1, B2, and ω3 can be dualized into the scalars
χ5, χ4, and χ6, respectively, in the notation of [35]. Upon dualization the Lagrangian in
three dimensions becomes Euclidean gravity coupled to eight scalars. The scalars param-
eterize the pseudo-Riemannian coset G2(2)/K̃, with

K̃ = SO0(2, 2) ∼= (SL(2,R)× SL(2,R))/Z2. (3.25)

For the derivation of the sigma model we follow the conventions of [35]. Relevant details
are also presented in appendix A.

Using the reduction ansatz (3.22) we can calculate the mass and NUT charge explicitly
in terms of the three-dimensional fields. Following [36], we define the Komar mass and NUT
charge as

M =
1

8πG4

∫
S2
∞

?4K, N =
1

8πG4

∫
S2
∞

K, (3.26)

where K = dg, g = gµνκ
µdxν , and κ = ∂t. From now on we restrict ourselves to flat

three-dimensional base space with coordinates

ds2
3 = dr2 + r2(dθ2 + sin2 θdφ2). (3.27)

From the metric ansatz (3.22) and (3.27) we find

K = ∂νgtµdx
ν ∧ dxµ, (3.28)

which yields

M = − 1
8πG4

∫
S2
∞

∂re
−φ2 ?4 (dr ∧ dt), (3.29)
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where, in our conventions, ?4(dr ∧ dt) = −eφ2r2 sin(θ)dθ ∧ dφ. From asymptotic flatness
we have

φ2(r) =
2G4M

r
+O

(
1
r2

)
. (3.30)

(For a detailed discussion of boundary conditions we refer the reader to [36].) From here
on we simply set 2G4 = 1, and thus,

M = lim
r→∞

rφ2(r). (3.31)

Calculation of the NUT charge proceeds in almost the same fashion. Working out N using
the ansatz (3.22) one finds [36]

N = − 1
4π

∫
S2
∞

∂θ(ω3)φ dθ ∧ dφ, (3.32)

where (ω3)φ is the φ-component of ω3. Demanding N = 0, one sees that ∂θ(ω3)φ ∼ O(1/r)
at infinity.

To summarize, the ansatz

ds2
5 = e

1√
3
φ1+φ2ds2

3 − e
1√
3
φ1−φ2(dt+ ω3)2 + e

− 2√
3
φ1(dz +B1 + χ1dt)2, (3.33)

A = B2 + χ3dt+ χ2dz, (3.34)

describes stationary solutions of the S3 model uplifted to five dimensions. It follows from
four-dimensional asymptotic flatness that the electric and magnetic charges defined above
can also be expressed in terms of asymptotic values of the scalars. We find

Q1 = lim
r→∞

rχ1(r), Q2 = lim
r→∞

rχ3(r)√
3

,

P1 = lim
r→∞

r χ5(r), P2 = − lim
r→∞

r χ4(r)√
3

. (3.35)

Similarly, the NUT charge can also be expressed as

N = − lim
r→∞

rχ6(r). (3.36)

3.3 Five-dimensional lift and hyper-Kähler base space

As reviewed above, the N = 2, D = 4 single modulus S3 model arises as dimensional
reduction of five-dimensional minimal supergravity. Equivalently all solutions of the S3

model can be uplifted to five-dimensional minimal supergravity. Supersymmetric solutions
of minimal five-dimensional supergravity have been completely classified [21]. In the later
sections we will discuss our findings in relation to the analysis of [21]. To this end, we now
take a small detour from the S3 model and discuss supersymmetric solutions of minimal
five-dimensional supergravity. This section is a short summary of the results of [21]. We
refer the reader to this paper for more details.

The existence of a Killing spinor implies the existence of a timelike or null Killing vec-
tor. In the case of a timelike Killing vector, five-dimensional solutions are most conveniently
described as a timelike fibre over a four-dimensional Euclidean base space B,

ds2
5 = −f2(dt+ ω)2 + f−1ds2

4(B), (3.37)

– 10 –



J
H
E
P
0
8
(
2
0
1
0
)
0
7
2

where f and ω are a function and a one-form on the base space B, respectively. From
the existence of the Killing spinor one can also infer the existence of three covariantly
constant almost complex structures over the manifold B obeying the algebra of imaginary
unit quaternions. The base space B is therefore in general a hyper-Kähler manifold.

Defining G+ and G− as the self-dual and anti-self-dual parts of the form fdω with
respect to the Euclidean metric on B,

fdω = G+ +G−, (3.38)

the Maxwell field for supersymmetric spacetimes can be written as

F =
√

3 d
(
f(dt+ ω)

)
− 2√

3
G+. (3.39)

It was shown in [37] that if a four-dimensional hyper-Kähler manifold admits a Killing
vector that preserves the complex structures, then it must be a Gibbons-Hawking [38] metric

ds2
4(B) = H−1 (dz + χ)2 +Hds2

3. (3.40)

The isometry direction that preserves the complex structures is ∂z. The form of the metric
is a U(1) fibration over a three-dimensional Euclidean flat space ds2

3. Here χ is a one-form
on R3 and is determined from H via

?3 dH = dχ. (3.41)

This equation implies that H is a harmonic function in three-dimensional Euclidean space.
Assuming that the Killing vector ∂z is a Killing vector of the full five-dimensional spacetime,
the equations for f and ω can be solved explicitly in terms of harmonic functions on R3 [21].
From now on we assume that ∂z is a Killing vector of the full five-dimensional spacetime
and work exclusively with the Gibbons-Hawking form of the base space. Following [21] we
also write

ω = ω5(dz + χ) + ωidx
i, (3.42)

where ω5 and ωi are functions on R3.
The Gibbons-Hawking form thus naturally allows us to relate solutions of the four-

dimensional S3 model to five-dimensional minimal supergravity. It was conjectured in [21]
that the dimensional reduction of solutions of five-dimensional minimal supergravity with
Gibbons-Hawking base gives the entire class of supersymmetric solutions of the S3 model
with the Killing spinor squaring to a timelike Killing vector. To the best of our knowledge
this conjecture has not yet been proven. Our analysis provides an interesting perspective
on the conjecture — we show that all single center supersymmetric solutions of the S3

model can be written in the Gibbons-Hawking form.

3.4 Asymptotic frame

As is previously discussed in the literature (see e.g., [39]), solutions obtained in the formal-
ism of [21] generically turn out to have quite non-trivial asymptotic structure. In particular,
the following situation arises. The five-dimensional metric asymtotes to

ds2
asymp = −

(
dt+ vH(dz + P cos θdφ)

)2
+ (dz + P cos θdφ)2 + ds2

3. (3.43)
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(This happens e.g., for the solution of [39].) The cross term vH (dz + P cos θdφ) dt arises
from the fact that asymptotically ω5 → vH. The presence of this term implies that the
asymptotic frame is not at rest. In order to get the asymptotic frame at rest we need to
do a coordinate transformation — a shift followed by a rescaling [39]

t = γ−1t̄ , z = γ(z̄ + vHt̄) , γ =
1√

1− vH
2
. (3.44)

The asymptotic metric now takes the manifestly flat form

ds2
asymp =

(
dz̄ +

P

γ
cos θdφ

)2

− dt̄2 + ds2
3. (3.45)

While using group theoretical methods we always work with manifestly asymptoti-
cally flat metrics. The above example illustrates the fact that in order to rewrite solutions
obtained via the sigma-model in the Gibbons-Hawking form, certain coordinate transfor-
mations may be required. For solutions considered in this paper the linear shift

z → z + vt, (3.46)

turns out to be sufficient. For each supersymmetric orbit below we will perform a coordi-
nate transformation of the form (3.46) to display our solutions manifestly in the Gibbons-
Hawking form. This coordinate transformation has the effect of shifting χ1 by v,

χ1 → χ1 + v, (3.47)

in the metric. The t-component of the Maxwell field will be shifted with the z-component.
Comparing (3.33) to (3.37) after taking into account the shift we find

f2 = e
1√
3
φ1−φ2 − e−

2√
3
φ1(χ1 + v)2, (3.48)

H = fe
1√
3
φ1+φ2 , (3.49)

ω5 = −f−2e
− 2√

3
φ1(χ1 + v), (3.50)

χ = B1. (3.51)

To obtain these expression we have set ω3 = 0 to eliminate the NUT charge. The condi-
tion (3.41) yields

d
(
f e

1√
3
φ1+φ2

)
= ?3dB1. (3.52)

Comparing the Maxwell fields gives

dχ2 =
√

3 d(fω5)− 1√
3
f dω5 +

1√
3
f ω5H

−1 dH, (3.53)

dχ3 + vdχ2 =
√

3 df, (3.54)

dB2 = dχ2 ∧ χ+
2√
3
fω5dχ+

1√
3
fH ?3 dω5. (3.55)

Checking equations (3.53)–(3.55) for supersymmetric solutions provides a non-trivial test
on the consistency of our approach.
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4 Orbit structure of G2(2)

In this section we introduce g2(2), the Lie algebra of the hidden symmetry group G2(2). We
discuss the reductive decomposition following from the coset structure G2(2)/SO0(2, 2) in
section 4.1 and the associated nilpotent orbits in sections 4.2, 4.3, and 4.4.

4.1 Generalities on G2(2)

The Lie algebra g2(2) is the split real form of the complex Lie algebra g2. With rank 2
and dimension 14 it is the smallest of the exceptional Lie algebras. It is generated by two
triples of Chevalley generators,

(h1, e1, f1), (h2, e2, f2), (4.1)

satisfying the Chevalley relations

[h1, e1] = 2e1, [h2, e1] = −3e1, [h1, f1] = −2f1, [h2, f1] = 3f1,

[h1, e2] = −e2, [h2, e2] = 2e2, [h1, f2] = f2, [h2, f2] = −2f2,

[e1, f1] = h1, [e1, f2] = 0, [e2, f2] = h2, [e2, f1] = 0. (4.2)

The elements h1 and h2 span the Cartan subalgebra h ⊂ g2. We define the additional basis
elements by

e3 = [e1, e2], e4 = [e3, e2], e5 = [e4, e2], e6 = [e1, e5],

f3 = [f2, f1], f4 = [f2, f3], f5 = [f2, f4], f6 = [f5, f1]. (4.3)

The elements e1, . . . , e6 (f1, . . . , f6) are the root vectors associated to the positive (neg-
ative) roots ±α1, . . . , ±α6. The complex span of the 14 basis elements gives the complex
Lie algebra g2, whereas the real span gives the split real form g2(2). We thus have the
triangular decomposition

g2(2) = m⊕ h⊕ n, (4.4)

as a direct sum of subspaces (but not a direct sum of subalgebras), where m and n are
spanned by root vectors associated to positive and negative roots, respectively. All the
commutation relations for g2(2) can be derived from the Chevalley relations (4.2), the
definitions (4.3), and the Serre relations

[e1, e3] = [e5, e2] = [f1, f3] = [f5, f2] = 0. (4.5)

Since we are interested in compactifying five-dimensional minimal supergravity to three
dimensions over one spacelike and one timelike Killing direction, we consider the involution
τ of g2(2) given by

τ(e1) = f1, τ(e2) = −f2,

τ(h1) = −h1, τ(h2) = −h2. (4.6)
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When this involution is integrated to the group, it has the subgroup SO0(2, 2) as the fixed
point set. Accordingly, the involution τ defines the coset G2(2)/SO0(2, 2). It follows that

τ(e3) = f3, τ(e4) = f4, τ(e5) = f5, τ(e6) = −f6, (4.7)

and thus the involution τ differs from the Chevalley involution (which would be relevant
for compactifying over two spacelike directions) by the signs of f1, f3, f4, f5. The action
of τ on the negative root vectors follows from the property that an involution squares to
the identity map.

Let k̃ denote the subalgebra of g2(2) pointwise fixed by the involution τ , which is
the Lie algebra of K̃, and thus k̃ = sl(2,R) ⊕ sl(2,R). As a basis of k̃, we define the
linear combinations

k1 = e1 + f1, k2 = e2 − f2, k3 = e3 + f3,

k4 = e4 + f4, k5 = e5 + f5, k6 = e6 − f6. (4.8)

The orthogonal complement p̃ of k̃ in g2(2) with respect to the Killing form is defined as the
eigenspace of τ with eigenvalue −1. It is spanned by h1, h2 and the linear combinations

p1 = e1 − f1, p2 = e2 + f2, p3 = e3 − f3,

p4 = e4 − f4, p5 = e5 − f5, p6 = e6 + f6. (4.9)

Beside the triangular decomposition (4.4) we thus also have the reductive decomposition

g2(2) = k̃⊕ p̃. (4.10)

As in (4.4), this is not a direct sum of subalgebras, but of subspaces that do not commute
with each other. We have

[̃k, k̃] = k̃, [̃k, p̃] = p̃, [p̃, p̃] = k̃. (4.11)

When we say that an element x ∈ g2(2) is nilpotent we always refer to the adjoint
action of x on the whole of g2(2). Thus it means that there is an integer n such that

(ad x)n(y) = 0 (4.12)

for all y ∈ g2(2). It follows from (4.3) and (4.5) that any element in m or n is nilpotent,
which makes the triangular decomposition (4.4) useful for studying nilpotent elements. On
the other hand, we are interested in nilpotent elements in the subspace p̃, which is given
by the reductive decomposition (4.10). Therefore we introduce the automorphism

ϕ = Ad
(

π

8
√

2
(−6p1 + 2p3 − p4 + p5) +

π

16
(6k2 + k6)

)
, (4.13)

– 14 –



J
H
E
P
0
8
(
2
0
1
0
)
0
7
2

of g2(2) that partially maps m and n into p̃, and also the Cartan subalgebra h into k̃. It
acts as

h1 7→ H1 ≡
1
6
k5, h2 7→ H2 ≡ −

1
2
k3 −

1
4
k5,

e1 7→ E1 ≡ −
1
12
p5 +

1
2
h1 +

1
2
h2, f1 7→ F1 ≡

1
12
p5 +

1
2
h1 +

1
2
h2,

e2 7→ E2 ≡
3
4
k1 +

1
4
k2 +

1
8
k4 +

1
8
k6, f2 7→ F2 ≡

3
4
k1 −

1
4
k2 +

1
8
k4 −

1
8
k6,

e3 7→ E3 ≡ −
3
4
p1 +

1
4
p2 +

1
8
p4 +

1
8
p6, f3 7→ F3 ≡

3
4
p1 +

1
4
p2 −

1
8
p4 +

1
8
p6,

e4 7→ E4 ≡ −p3 − 3h1 − h2, f4 7→ F4 ≡ p3 − 3h1 − h2,

e5 7→ E5 ≡ −
3
2
p1 +

3
2
p2 −

3
4
p4 −

1
4
p6, f5 7→ F5 ≡

3
2
p1 +

3
2
p2 +

3
4
p4 −

1
4
p6,

e6 7→ E6 ≡
3
2
k1 +

3
2
k2 −

3
4
k4 −

1
4
k6, f6 7→ F6 ≡

3
2
k1 −

3
2
k2 −

3
4
k4 +

1
4
k6. (4.14)

Beside the Cartan subalgebra h, also the root vectors e2, f2, e6, f6 are mapped into k̃. The
corresponding roots ±α2 and ±α6 are vectors along the horizontal and vertical axes in
the root diagram in figure 1. Since ±α2 are orthogonal to ±α6, the sl(2, R) subalgebras
spanned by (e2, f2, h2) and (e6, f6, h6) commute with each other.

It follows from (4.11) that the adjoint action of k̃ on p̃ is an irreducible representation
of k̃. Knowing that k̃ is isomorphic to sl(2,R)⊕sl(2,R), we may thus use the representation
theory of sl(2,R) to describe p̃ under the adjoint action of k̃. In fact, E5 is the highest
weight of k̃. By acting with F2 and F6 we generate the representation (4,2), indicated by
a rectangle in figure 1.

The complex Lie group G2 is the automorphism group of the Lie algebra g2. It is easy
to see that for any x ∈ g2 and any automorphism g ∈ G2 we have

ad g(x) = g ◦ (ad x) ◦ g−1. (4.15)

Thus, if we consider the automorphism g as an element in GL(14,C), and x as an element
in gl(14,C), we can write the action of g on x as

x 7→ gxg−1. (4.16)

We say that g acts on x by conjugation, and when g = exp a for some a ∈ g2 ⊂ gl(14,C),
we denote the map (4.16) by Ad a.

A nilpotent G2-orbit is defined as the set

O = {gxg−1 | g ∈ G2} (4.17)

for some nilpotent element x ∈ g2, which is then a representative of the orbit O. By
restricting g to G2(2) and x ∈ g2(2), the G2-orbit gives rise to at least one G2(2)-orbit,
and by further restricting g to K̃, each G2(2)-orbit may split into different K̃-orbits. We
describe this in more detail in the following subsections.
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E2F2

E6

E5E4E3E1

F1F3F4F5

F6

Figure 1: The roots of g2 given as vectors in the two-dimensional root space, dual to the Cartan
subalgebra h. The positive (negative) roots ±α1, . . . , ±α6 correspond to the root vectors e1, . . . , e6
(f1, . . . , f6), which under the automorphism ϕ are mapped into E1, . . . , E6 (F1, . . . , F6). Applying
this automorphism, we can associate the horizontal and vertical axes with the subalgebra k̃, and
the rectangle with the representation space p̃.

4.2 G2-orbits

Let g be an arbitrary complex semisimple Lie algebra with Cartan subalgebra h. For each
nilpotent orbit O there is a triple (e, f, h) of elements, where e ∈ O, such that

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h. (4.18)

Following [40] we call this a standard triple. We can always take h to be in the Cartan
subalgebra h. Then h is characterized by the eigenvalues αi(h) of the adjoint action of h
on the simple root vectors,

[h, ei] = αi(h)ei, i = 1, 2, . . . , rank g. (4.19)

Furthermore, we can always find a standard triple such that αi(h) ∈ {0, 1, 2}. The eigen-
values αi(h) then determines the nilpotent orbit uniquely. For g2 there are only two such
eigenvalues, and we will refer to the pair (α1(h), α2(h)) as the α-label of the nilpotent
G2-orbit.

There are four (nonzero) nilpotent G2-orbits, with α-labels (1, 0), (0, 1), (2, 0) and
(2, 2). From the α-labels (1, 0) and (0, 1) we can easily construct corresponding standard
triples (e, f, h) where e = me6 and e = me4, respectively, for an arbitrary nonzero complex
number m. To get representatives that are in p̃, we first note that (up to normalization)
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e6 is conjugate to e1 by a Weyl reflection,

Ad
(
−π

4
p5

)(1
6
e6

)
= e1. (4.20)

Thus we can choose me6 as well as me1 as representative of the orbit with α-label (1, 0).
Then applying the automorphism ϕ to me1 and me4 gives mE1 and mE4, which are
elements in p̃.

By applying Weyl reflections we can map any long root to any other long root and
any short root to any other short root. This means that the two orbits with α-labels (1, 0)
and (0, 1) already contain all root vectors in g2. To get representatives of the remaining
two orbits, we need to take linear combinations of root vectors associated with different
roots. It suffices to consider linear combinations of only two positive root vectors, with
arbitrary nonzero complex coefficients m and n. For the orbit with α-label (2, 2) we
then get me1 + ne2 as a representative, whereas for the orbit with α-label (2, 0) we get
three possibilities,

me1 + ne4, me3 + ne5, me1 + ne5. (4.21)

Since these three elements belong to the same orbit they must be conjugate to one another.
The first two are related by a Weyl reflection

Ad
(π

2
k2

)
(me3 + ne5) =

1
2
me4 + 6ne1. (4.22)

To relate the third expression in (4.21) to one of the first two, we can take for example

Ad
(
±3π

4
k2

)(
e3 +

1
6
e5

)
=
√

2
(
±e1 −

1
6
e5

)
. (4.23)

4.3 G2(2)-orbits

In the preceding subsection we discussed the complex Lie algebra g2. Now we turn to the
algebra we are interested in, g2(2), the split real form of g2. Given two nilpotent elements
x and y in g2(2), it may happen that gxg−1 = y for some g ∈ G2, but not for any g ∈ G2(2).
This does not happen for the G2-orbits with α-labels (1, 0), (0, 1), and (2, 2), so each of
them contains just one single G2(2)-orbit. We call them O1, O2, and O5, respectively. On
the other hand, the G2-orbit with α-label (2, 0) splits into two different G2(2)-orbits. As
we will see next, the two orbits are distinguished by relative signs of the coefficients m and
n in the expression me1 + ne4.

Consider the automorphism

χ = Ad
iπ

2
(2h1 + h2) (4.24)

of g2, which maps e1 to ie1 and f1 to −if1, leaving e2 and f2 invariant. It follows that

pn 7→ ikn, kn 7→ ipn, for n = 1, 3, 4, 5,

pn 7→ pn, kn 7→ kn, for n = 2, 6, (4.25)
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under this automorphism. Then k = χ(k̃) = su(2) ⊕ su(2) is the maximal compact subal-
gebra of g2(2), and p = χ(p̃) the orthogonal complement with respect to the Killing form.
Let kC = a1 ⊕ a1 and pC be the complexifications of these subspaces, and let KC be the
complexification of the maximal compact subgroup. Now the nilpotent G2(2)-orbits are
in one-to-one correspondence with the nilpotent KC-orbits in pC, by the so called Cayley
transform [40]. We will use this one-to-one correspondence to find representatives of the
two different G2(2)-orbits with α-label (2, 0).

To define the Cayley transform we need to consider standard triples (e, f, h) such that

θ(h) = −h, θ(e) = −f, θ(f) = −e, (4.26)

where θ is the Chevalley involution. Such standard triples are called Cayley triples.
The Cayley transform of a Cayley triple (e, f, h) is now defined as the standard triple
(e′, f ′, h′) where

e′ =
1
2

(e+ f + ih), h′ = i(e− f), f ′ =
1
2

(e+ f − ih). (4.27)

It follows that h′ ∈ kC and e′, f ′ ∈ pC.
We can define a Cartan subalgebra of kC as a subspace of (χ ◦ ϕ)(h) such that the

simple roots of kC = a1⊕ a1 correspond to the roots α6 and α2 of g2. Furthermore, we can
take h′ to be in this Cartan subalgebra of kC and conjugate the standard triple (e′, f ′, h′)
so that all eigenvalues α6(h′), α2(h′) belong to the set {0, 1, 2, 3, 4, 8} for all orbits. Then
the pair (α6(h′), α2(h′)) determines the KC-orbit uniquely, as well as the corresponding
G2(2)-orbit, and we will refer to this pair as the β-label of the G2(2)-orbit. The β-labels
for the nilpotent G2(2)-orbits have been computed in [41], and we present them in table 1.
As we have already mentioned, there are two different G2(2)-orbits with the same α-label
(2, 0). One of them, which we call O3, has β-label (0, 4) and the other one, which we call
O4, has β-label (2, 2). From the β-labels we can construct the corresponding standard
triples (e′, f ′, h′). For O3 we take the standard triple

e′ = −1
2
ik3 −

1
12
ik5 − h1, h′ = −ip3 +

1
6
ip5, f ′ =

1
2
ik3 +

1
12
ik5 − h1, (4.28)

with the inverse Cayley transform

e =
1
2

(e′ + f ′ − ih′) h = −i(e′ − f ′) f =
1
2

(e′ + f ′ + ih′)

= −1
2
p3 +

1
12
p5 − h1 = −k3 −

1
6
k5 =

1
2
p3 −

1
12
p5 − h1

= F1 +
1
2
E4, = 2H1 + 2H2, = E1 +

1
2
F4, (4.29)

and for O4 we take the standard triple

e′ = −1
2
ik3 +

1
12
ik5 − h1, h′ = −ip3 −

1
6
ip5, f ′ =

1
2
ik3 −

1
12
ik5 − h1, (4.30)
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G2(2)-orbit α-labels β-labels representative x dim(G2(2) · x) dim(K̃ · x)

O1 (1, 0) (1, 1) E1 6 3

O2 (0, 1) (1, 3) E4 8 4

O3 (2, 0) (2, 2) E4 − E1 10 5

O4 (2, 0) (0, 4) E4 + E1 10 5

O5 (2, 2) (4, 8) E1 + E2 12 6

Table 1: The five nonzero G2(2)-orbits.

with the inverse Cayley transform

e =
1
2

(e′ + f ′ − ih′) h = −i(e′ − f ′) f =
1
2

(e′ + f ′ + ih′)

= −1
2
p3 −

1
12
p5 − h1 = −k3 +

1
6
k5 =

1
2
p3 +

1
12
p5 − h1

= E1 +
1
2
E4, = 4H1 + 2H2, = F1 +

1
2
F4. (4.31)

Acting with Ad
(
π
2 (E1 − F1)

)
we get

Ad
(π

2
(E1 − F1)

)(
F1 +

1
2
E4

)
= −E1 +

1
2
E4, (4.32)

and we see that it is indeed the relative sign of the coefficients of E1 and E4 that distin-
guishes between these two G2(2)-orbits.

To summarize, there are five nonzero G2(2)-orbits, O1, . . . , O5. In table 1 we list for
each orbit the α-label, the β-label and a suitable representative in p̃. We also list the
dimensions of the G2(2)-orbits as well as of the corresponding K̃-orbits (which we will say
more about in the following subsection).

Regarding the fifth orbit O5, any element x in this orbit obeys

x7 = 0, (4.33)

and hence has a too high nilpotency degree to be generated as the extremal limit of some
non-extremal regular black hole. We henceforth ignore this orbit.3

One can impose a partial ordering on the different real nilpotent orbits. In [15] this
is formulated in terms of a stratification on the space of black hole solutions. Indeed, all
smaller orbits lie in the closure of a bigger orbit and for g2(2) this is illustrated in figure 2
in the form of a Hasse diagram. For example, the solutions in O1 can be constructed as
limits of the solutions in O2.

3As discussed in [18], O5 contains the supersymmetric Gödel black hole solution of [21].
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O1

O2

O5

O4O3

Figure 2: Hasse diagram for the partial ordering of the nilpotent orbits in g2(2).

4.4 K̃-orbits

By restricting the G2(2) action to its subgroup K̃, the G2(2)-orbits O3 and O4 split into two
K̃-orbits each. The G2(2)-orbit O3 splits into two orbits that we call O3K and O′3K with
representatives E4 − E1 and F4 + E1, respectively. These must be in different K̃-orbits
since E4−E1 commutes with E6, whereas F4 +E1 commutes with F6−F2, and as we have
seen, E6 is in a different G2(2)-orbit than F6 − F2. Similarly, O4 splits into two different
K̃-orbits that we call O4K and O′4K with representatives E4 +E1 and F4−E1, respectively.
Again, one can find a standard triple (e, f, h) for each of these four K̃-orbits, such that e
is an element of the orbit. Within the G2(2)-orbit, each K̃-orbit is then characterized by
the pair of eigenvalues (α6(h), α2(h)), which we will refer to as the γ-label of the orbit. It
turns out that the γ-labels that distinguish between the two different K̃-orbits within each
of O3 and O4 are (0, 4) and (2, 2), the same as the β-labels that distinguish between O3

and O4. This is illustrated in table 2.

As we will see, physical solutions in O3 and O4 all belong to the O3K and O′4K orbits
for which the β-label and the γ-label coincide. This seems to be a generic property of
extremal black holes that was observed in [14].

We now discuss a more physical way of distinguishing the orbits. It is well known that
in N = 8 supergravity there exists an E7(7) invariant quartic polynomial ♦ of the charges
that is proportional to the square of the entropy [42] of the corresponding black hole. The
S3 model is a consistent truncation of N = 8 supergravity. Therefore, the E7(7) quartic
polynomial descends to a function of electromagnetic charges in the S3 model. The quartic
invariant of this theory is invariant under the global SL(2,R) symmetry of the theory. In
terms of the M23, M53, P, and KKM charges defined in section 3.1, the polynomial reads

♦(Q1, Q2, P1, P2) = 3(Q2P2)2 + 6Q1P1Q2P2 − (Q1P1)2 + 4Q3
2P1 + 4Q1P

3
2 . (4.34)

It turns out that ♦ vanishes in the case of O1 and O2 and in general is non-zero for the
remaining orbits. The particular relations are shown in table 2.

– 20 –



J
H
E
P
0
8
(
2
0
1
0
)
0
7
2

β-label
(0, 4)

β-label
(2, 2)

γ-label
(0, 4)

E4 − E1

♦ > 0
E4 + E1

♦ < 0
O ·K

γ-label
(2, 2)

F4 + E1

♦ ≥ 0
F4 − E1

♦ < 0
O′·K

O3 O4

Table 2: The four K̃-orbits O3K , O′3K , O4K , O′4K within the two G2(2)-orbits O3 and O4.
Our labeling of the orbits is indicated by the last row and the rightmost column.

4.5 Generating orbits in practice

To generate the full orbits, we start with a nilpotent representative of an orbit and act on
it with K̃ by conjugation. Each element of the orbit generated in this way corresponds to
an extremal solution. The coordinates on K̃ hence parameterize spacetime solutions. For
this reason it is instructive to discuss the manifold K̃ in some detail. Recall that using the
Iwasawa-decomposition we can write K̃ as

K̃ = KAN , (4.35)

where K = SO(2) × SO(2) is the maximal compact subgroup of K̃, A is an Abelian
non-compact subgroup generated by the two Cartan elements in h, and N is a nilpotent
subgroup generated by E2 and E6 in k̃ (or F2 and E6 as in the O1 case below). The Iwasawa
decomposition can also be written in the form

K̃ = KAN = K(ANA−1)A = KNA. (4.36)

It turns out that this form is more useful because we choose linear combinations of the root
vectors as representatives of various nilpotent orbits. Since root vectors are eigenvectors
of the Cartan subalgebra h, the action of A only changes the coefficients in the linear
combinations. Thus, by keeping these coefficients unspecified we can simply omit the
factor A in (4.36) and only act with KN . This is how we generate the K̃-orbits below.
In terms of the electromagnetic and scalar charges defined earlier, the most general charge
matrix for the S3 model is written as

Q = −2Mh1 + (−Σ−M)h2 −Q1p1 + Ξp2 −Q2p3 +
1
2
P2p4 +

1
6
P1p5 +

1
6
Np6. (4.37)

In order to obtain regular black holes, we require the NUT charge to vanish (N = 0)
when generating the orbits below. This implies that ω3 in (3.22) vanishes identically for
all solutions we consider.
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5 Supersymmetric orbits

In this section we discuss supersymmetric orbits in more detail. For each orbit we present
the most general solution and a few examples.

5.1 The O1 orbit

The O1 orbit is the smallest of the nilpotent orbits. It is characterized uniquely by charge
matrices that square to zero,

Q2 = 0. (5.1)

As explained in section 4.1 we can take the representative for this orbit to be E1, which
is an element in p̃ and (unlike E5) has vanishing p6 coefficient. Thus E1 corresponds to a
charge matrix without NUT charge. However, when we act on E1 with a general element
in K̃, the property that the NUT charge vanishes is not preserved and it must be imposed
by hand.

Since both F2 and E6 commute with E1, the action of the nilpotent subgroup N on E1

is trivial. (This is the reason why we chose F2 and E6 rather than E2 and E6 as generators
of N in this case.) Therefore, the full O1 orbit can simply be generated as

Q = Ad (ak2 + bk6) (4mE1) (5.2)

where a, b, and m are arbitrary real parameters. The general expression for the NUT
charge in this orbit is

N = −m sin 12b, (5.3)

and the no-NUT condition becomes

6b =
jπ

2
, j ∈ Z. (5.4)

Modulo redefinitions of a,

a→ a+
jπ

2
, (5.5)

the electromagnetic charges are given by

Q1 = 2m sin3 a, Q2 = 2m cos a sin2 a,

P1 = −2m cos3 a, P2 = −2m cos2 a sin a. (5.6)

For the mass and scalar charges, it matters if j is even or odd. The two cases differ in the
signs of these charges. For odd (even) j, we find

M = ±m, Ξ = ±m sin 2a, Σ = ±m cos 2a. (5.7)

It is clear from these expressions that the even and odd cases are related by m→ −m and
a → a + π. Thus it suffices to consider only one case. We choose j = 1 and restrict the
parameters to the range

m > 0, 0 ≤ a < 2π. (5.8)
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To obtain the general form of the metric we exponentiate the charge matrix and read
off the scalars from the resulting geodesic on the coset manifold. For example, the scalars
φ1, φ2 and χ1 are given by

e
φ1√

3
+φ2 = 1 +

2m cos2 a

r
, e2φ2 = 1 +

2m
r
, χ1 =

2m sin3 a

2m+ r
. (5.9)

In the parameter range (5.8) these exponentials are finite and positive definite. Since we
require vanishing NUT charge (ω3 = 0), the one-form B1 takes the form

B1 = P1 cos θdφ. (5.10)

It is then straightforward to write the full metric from (3.33).
We now show that the general solution of this orbit can be written manifestly in the

Gibbons-Hawking form. To this end we perform the coordinate transformation (3.46) with
the choice

v = sin 3a. (5.11)

One finds

f = −r cos 3a+ 2m cos3 a

r + 2m cos2 a
, (5.12)

and4

H = − cos 3a+
P1

r
. (5.13)

Note that for certain ranges of the parameter a and the coordinate r these functions become
negative or zero. However, this is not a problem: even though the base space becomes
‘unphysical’, the time fibration is such that the five-dimensional spacetime is well behaved.
This situation is reminiscent of several well known smooth solutions (e.g., [43–45]) where
the base space is singular but the time fibration is such that the total spacetime is smooth.

The one-form ω on the base space can be readily calculated,

ω = ω5(dz + P1 cos θdφ), ω5 =
1
H2

(
− sin 3a+

3P2

r

)
. (5.14)

It follows from (5.10) and (3.51) that the harmonic function H obeys the Gibbons-Hawking
condition (3.41). It is straightforward to verify (3.53)–(3.55), confirming that the field
strength is of the form (3.39). The quartic invariant for this orbit is identically zero.

The O1 orbit contains extremal Kaluza-Klein wave and Kaluza-Klein monopole among
other solutions. We now list how they can be obtained from the general expressions for
this orbit.

4When f < 0 everywhere we interpret the solution by taking f → −f, t → −t, ω → −ω and reversing

the orientation of the base manifold [21]. In certain examples discussed below we implicitly do this sign

flipping to present the solution.
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5.1.1 Extremal Kaluza-Klein wave

When a = π/2 and when a = 3π/2, the warp factor f vanishes and we end up in the
null-case, i.e., the case for which the Killing vector constructed from the Killing spinor is
a null vector. These cases correspond to the positively and negatively charged extremal
Kaluza-Klein waves, respectively. To see this explicitly we set m = Q/2, a = π/2 to obtain
the positively charged solution, and m = Q/2, a = 3π/2 to obtain the negatively charged
solution in the O1 orbit. The metric becomes

ds2
5 = ds2

3 − V −1dt2 + V

(
dz ± Q

V r
dt

)2

, V = 1 +
Q

r
, Q > 0, (5.15)

while the Maxwell field vanishes. The non-zero scalars are

φ1 = −1
2

√
3 log V, φ2 =

1
2

log V, χ1 = ± Q

Q+ r
. (5.16)

and the non-zero charges are

Q1 = ±Q, M =
Q

2
, Σ = −Q

2
. (5.17)

5.1.2 Extremal Kaluza-Klein monopole

The other special cases are when a = 0 and a = π. Then the coordinate transforma-
tion (3.46), with (5.11) inserted, does nothing. These are the negatively and positively
charged extremal Kaluza-Klein monopoles, respectively. By setting m = P/2, a = 0 we
obtain the negatively charged solution, and by setting m = P/2, a = π we obtain the
positively charged solution. We find that the metric is expressed as

ds2
5 = −dt2 +Hds2

3 +H−1(dz ∓ P cos θ dφ)2, H = 1 +
P

r
, P > 0, (5.18)

while the Maxwell field vanishes. It follows that the non-zero scalars are given as

φ1 =
1
2

√
3 logH, φ2 =

1
2

logH, χ5 = ∓ P

P + r
, (5.19)

and the non-zero charges as

P1 = ∓P, M =
P

2
, Σ =

P

2
. (5.20)

5.2 The O2 orbit

The second smallest orbit is the O2 orbit. We generate this orbit by acting with K̃ on
E4. Since E6 commutes with E4, the action of the nilpotent subgroup generated by E6 is
trivial. Therefore, the full O2 orbit can simply be generated by

Q = (Ad (ak2 + bk6) ◦Ad(cE2)) (mE4), (5.21)

where a, b, c, and m are arbitrary real parameters. The general expression for the NUT
charge in this orbit is

N =
3m
2

(c cos 12b+ sin 12b), (5.22)
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yielding that the no-NUT condition becomes

cos 12b 6= 0, c = − tan 12b. (5.23)

When cos 12b = 0 the no-NUT condition has no solution. With c given by (5.23) we find

M =
3
2
n,

Q1 = 3n cos2 β sin(α+ β),

P1 = −3n sin2 β cos(α+ β),

Q2 =
1
4
n [3 cos(−3β − α) + 2 cos(α+ β)− cos(β − α)] ,

P2 = −1
4
n [3 sin(−3β − α) + 2 sin(α+ β)− sin(β − α)] , (5.24)

and

Σ =
1
2
n (cos 2(α+ β)− 2 cos 2β) ,

Ξ =
1
2
n (sin 2(α+ β)− 2 sin 2β) , (5.25)

where α = 12b, β = a − 6b and n = m/cosα. The expressions (5.24) and (5.25) are
invariant under

m→ −m, α→ α+ π, β → β + π. (5.26)

We now restrict the parameters to the range

m > 0, −π
2
< α <

π

2
, 0 ≤ β < 2π, (5.27)

to ensure that the mass is finite and positive definite. To obtain the general form of
the metric, we exponentiate the charge matrix and read off the scalars from the resulting
geodesic on the coset manifold. We find

e
φ1√

3
+φ2 = 1 +

Σ +M

r
+
m2 sin2 β

r2
, (5.28)

and

e2φ2 = 1 +
2M
r

+
3m2

r2
+
m3 cosα

r3
. (5.29)

Note that in the parameter range (5.27) these exponentials are finite and positive definite.
The scalar field χ1 takes the form

χ1 = e−2φ2

(
Q1

r
+

3m2 cosβ sin(α+ 2β)
r2

+
m3(3 sinβ + sin 3β + 2 sin(2α+ 3β))

4r3

)
. (5.30)
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The full metric (3.33) is then easily obtained by requiring the no-NUT charge condition
(ω3 = 0) which leads to the one-form B1,

B1 = P1 cos θdφ. (5.31)

This orbit contains in particular the M23 and the M53 solutions, which we will discuss
below. Now we show that the general solution in this orbit can also be written in the
Gibbons-Hawking form. With the coordinate transformation (3.46)

v = − sin(α+ 3β), (5.32)

one finds

f = He
− φ1√

3
−φ2 , (5.33)

and

H = cos(α+ 3β) +
P1

r
, (5.34)

together with

ω5 =
1
H2

(
sin(α+ 3β) +

3P2

r
+

3m2 cos(α+ 2β) sinβ
r2

− m3 sin3 β

r3

)
. (5.35)

The Maxwell field is again of the form (3.39). Observe that the null case is obtained when
H = 0, i.e., when cos(α + 3β) = 0 and P1 = 0. This implies (i) α = 0, β = 3π/2 or
(ii) α = 0, β = π/2. These cases precisely correspond to the positively and negatively
charged M53 solutions respectively. As in the O1 case, the quartic invariant for this orbit
is identically zero.

5.2.1 Extremal M23

The positively (negatively) charged extremal M23 solution is obtained by taking m = Q,
α = 0, β = 0 (m = Q,α = 0, β = π) in the O2 orbit. These solutions are

ds2
5 = −f2dt2 + f−1(dz2 + ds2

3), f−1 = 1 +
Q

r
, Q > 0,

A = ±
√

3 (1− f) dt. (5.36)

The non-zero scalars are

φ1 =
√

3
2

log f, φ2 = −3
2

log f, χ3 = ±
√

3 (1− f) . (5.37)

and the non-zero charges are

Q2 = ±Q, M =
3Q
2
, Σ = −Q

2
. (5.38)
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5.2.2 Extremal M53

The positively (negatively) charged extremal M53 solution is obtained by taking m = P ,
α = 0, β = 3π/2 (m = P, α = 0, β = π/2) in the O2 orbit. These solutions are

ds2
5 = V −1

(
−dt2 + dz2

)
+ V 2ds2

3, V = 1 +
P

r
, P > 0,

A = ∓
√

3P cos θdφ. (5.39)

The non-zero scalars are

φ1 =
√

3
2

log V, φ2 =
3
2

log V, χ4 = ∓
√

3
(
1− V −1

)
, (5.40)

and the non-zero charges are

P2 = ±P, M =
3P
2
, Σ =

P

2
. (5.41)

5.3 The O3K orbit

The first of the bigger orbits is a four parameter family of supersymmetric black holes.
This orbit corresponds to the BPS attractor of [19]. It is characterized by positive values
of the quartic invariant ♦. One may generate the full orbit by acting with K̃ on E4 − E1.
However, it is more convenient to be a little more general and start with the arbitrary
combination nE1 +mE4 (n < 0, m > 0). The full O3K orbit is then generated by

Q = (Ad (ak2 + bk6) ◦Ad(cF2)) (nE1 +mE4) . (5.42)

The NUT charge in this orbit is given by

N =
1
4
[
−12cm cos 12b−

(
n+ 6

(
c2 − 1

)
m
)

sin 12b
]
, (5.43)

and thus the no-NUT condition is

n = −6m
(
c2 + 2c cot 12b− 1

)
, when sin 12b 6= 0, (5.44)

c = 0, when sin 12b = 0. (5.45)

Taking into account the no-NUT condition and using the parameterization α = 12b and
β = a− 6b we get the mass and the electromagnetic charges to be

M = 3md,

Q1 = −3m sinβ [2d sinβ sin(β + α)− 1] ,

P1 = 3m cosβ [2d cosβ cos(β + α)− 1] ,

Q2 = −1
2
m [d cos(β − α)− 2 cosβ + 2d cos(α+ β)− 3d cos(−α− 3β)] ,

P2 =
1
2
m [d sin(β − α)− 2 sinβ + 2d sin(α+ β)− 3d sin(−α− 3β)] , (5.46)
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and the scalar charges to be

Σ = m [2d cos 2β + d cos(2(α+ β))− 2 cos(α+ 2β)] ,

Ξ = m [2d sin 2β + d sin(2(α+ β))− 2 sin(α+ 2β)] , (5.47)

where d is chosen such that

d =
c

sinα
when sinα 6= 0, (5.48)

d =
1
2

(
1− n

6m

)
when sinα = 0. (5.49)

In terms of these parameters m,α, and d, the quartic invariant in this orbit is given by

♦ = 12m4
(
d2 sin2 α+ 2d cosα− 1

)
. (5.50)

It follows from (5.44) and (5.45) that ♦ > 0 as long as n < 0 and m > 0. The expres-
sions (5.46) and (5.47) are invariant under

m→ −m, d→ −d, α→ α+ π, β → β + π, (5.51)

We now restrict the parameters to the range

m > 0, d > 0, 0 ≤ α, β < 2π. (5.52)

to ensure that the mass is positive definite. As explained for theO1 andO2 orbits, obtaining
the general form for the metric is straightforward: it can be read off from the resulting
geodesic on the coset manifold by exponentiating the charge matrix. The spacetime solution
is parameterized in an unilluminating form. To give an idea to the reader how these
expressions look like we write out the dilatons:

e
φ1√

3
+φ2 = 1 +

Σ +M

r
+
k

r2
, (5.53)

e2φ2 =
1
r4

(
♦
4

+ c1r + c2r
2 + 2Mr3 + r4

)
, (5.54)

where

k =m2
(
6d cosα cos2 β + 2d2 sin2 α+ 2 cos 2β(d2 sin2 α− 1) + d sinα sin 2β − 1

)
,

c1 = 2m3
(
4d3 sin4 α+ 12d(d cosα− 1) sin2 α+ 9d− 4 cosα

)
,

c2 = 6m2
(
2d2 sin2 α+ 3d cosα− 1

)
. (5.55)

The one-form B1 takes the form

B1 = P1 cos θdφ. (5.56)

Since we have set the NUT charge to zero we have ω3 = 0 in (3.33).
This orbit contains in particular the M23−KKM and the M23−M53−P solutions, which

we will discuss below. We now show that the general solution in this orbit can be written in
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the Gibbons-Hawking form. To this end we perform the coordinate transformation (3.46)
with the choice

v = − sin(α+ 3β). (5.57)

One finds
f = He

− φ1√
3
−φ2 , (5.58)

with
H = cos(α+ 3β) +

P1

r
. (5.59)

Finally, we have

ω5 =
1
H2

(
sin(α+ 3β) +

3P2

r
+
b2
r2

+
b3
r3

)
, (5.60)

where b2 and b3 are complicated trigonometric functions which are not particularly enlight-
ening and so we omit them. The Maxwell field is again of the form (3.39).

Since the above analysis is also valid for n > 0, we have now in fact shown that the full
O4K orbit can also be written in the Gibbons-Hawking form. However, it is easy to see that
the O4K orbit is unphysical — a generic solution in this orbit contains singularities outside
of the horizon. To see this we look at the four-dimensional warp factor (5.54). For the
O4K orbit ♦ < 0, therefore the warp factor approaches negative infinity as r goes to zero.
For both the O3K and O4K orbits the warp factor (5.54) is unity at spatial infinity. This
implies that the warp factor becomes zero for the O4K orbit at least at one point outside
of the horizon. At this point the spacetime is singular. The singularity is not a coordinate
singularity but a genuine curvature singularity. This can be most easily seen by looking at
curvature invariants, e.g., RµνρσRµνρσ, for the four-dimensional metric (3.22)–(3.27) with
ω3 = 0. We see that RµνρσRµνρσ diverges as φ2 tends to minus infinity. Thus, we conclude
that the O4K orbit is unphysical.

5.3.1 Two parameter M23 −KKM family

Now we discuss examples in the O3K orbit. The first example is a supersymmetric static
electrically charged black hole sitting at the center of the Taub-NUT. The solution takes
the form

ds2
5 = −f2dt2 + f−1H−1(dz + P cos θdφ)2 + f−1Hds2

3, (5.61)

A =
√

3 (1− f) dt, (5.62)

where

f−1 = 1 +
Q

r
, H = 1 +

P

r
, P > 0, Q > 0. (5.63)

We use Q to denote the M23 charge and P to denote the KKM charge. There are several
ways to obtain this solution. It can be obtained by setting J = 0 in the solution discussed
in the appendix of [46], or by setting R = 0, q = 0 in the black ring solution discussed
in [39], or by setting three charges equal in the familiar four charge black hole in four
dimensions. An important property of this solution is that upon setting P = Q it reduces
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to an extremal four-dimensional Reissner-Nordström solution. The non-zero scalars for
this solution are

φ1 =
√

3
2

log (fH) , φ2 =
1
2

log
(
Hf−3

)
,

χ3 =
√

3 (1− f) , χ5 = 1−H−1. (5.64)

The non-zero charges are

Σ =
P −Q

2
, M =

P + 3Q
2

,

Q2 = Q, P1 = P. (5.65)

The quartic invariant for the solution is ♦ = 4PQ3. In the above parameterization of the
O3K orbit, this solution can be obtained by setting

m = Q, d =
1
2

(
1 +

P

3Q

)
, α = β = 0. (5.66)

5.3.2 Two parameter M23 −M53 − P family

The second example we discuss is the black string of [24]. It is a bound state of M53 with
M23 and a critical amount of KK momentum along the string so that it corresponds to the
infinite radius limit of the supersymmetric black ring [25] of minimal supergravity. The
solution is

ds2
5 = −f2(dt+ ωzdz)2 + f−1(dz2 + ds2

3), (5.67)

A = −
√

3
2
q (1 + cos θ) dφ+

√
3 (1− f) dt−

√
3
(
ωzf −

q

2r

)
dz, (5.68)

where

ωz =
3q
2r

+
3Qq
4r2

+
q3

8r3
, f−1 = 1 +

Q

r
+

q2

4r2
, q > 0, Q > 0. (5.69)

The non-zero charges are

Q2 = Q, P2 =
q

2
, Q1 = −3q

2
,

M =
3Q
2
, Σ = −Q

2
, Ξ = −q, (5.70)

and the quartic invariant is given by

♦ =
3
4
q2(Q2 − q2). (5.71)

Thus, the solution is smooth and supersymmetric for Q > q. It can be obtained by setting

m =
q

2
, d =

Q

q
, α = β =

3π
2
, (5.72)

in the general expressions of the O3K orbit given above.
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5.3.3 Three parameter M23 −M53 − P family

A three parameter family of supersymmetric black strings of minimal supergravity with
three independent M23 −M53 − P charges is also contained in the O3K orbit. In the four-
dimensional language this solution is previously known in the literature [47]. It is most
conveniently parameterized by setting

m =
q

2
, d =

√
Q2 + ∆2

q
, α = − arccos

∆√
Q2 + ∆2

, β =
3π
2
, (5.73)

with q > 0 and Q > 0 in the general expressions for this orbit. The metric and the gauge
field (after an appropriate rescaling of the t- and z-coordinates in the Gibbons-Hawking
form of the O3K orbit) are:

ds2
5 = −f2(dt+ ωzdz)2 + f−1(dz2 + ds2

3), (5.74)

A = −
√

3
2
q(1 + cos θ)dφ+

√
3 (1− f) dt

−
√

3
(
f

(
ωz −

∆
S
− ∆(Q2 + q∆)

S2r
− q2∆

4Sr2

)
− q

2r

)
dz, (5.75)

with

f−1 = 1 +
Q2 + q∆

Sr
+

q2

4r2
, (5.76)

ωz =
∆
S

+
3q
2r

+
3
(
∆q2 +Q2q

)
4r2S

+
q3

8r3
, (5.77)

and S =
√
Q2 + ∆2. The non-zero charges for this family are

Q2 = Q, P2 =
q

2
, Q1 = 3∆− 3q

2
,

M =
3
2
S, Σ = −S

2 + 2∆(∆− q)
2S

, Ξ =
Q(∆− q)

S
. (5.78)

The quartic invariant is

♦ =
3
4
q2
(
Q2 − q2 + 2∆q

)
. (5.79)

It is positive for 2∆ ≥ q or for Q >
√
q2 − 2q∆ when 2∆ < q. This expression for the quar-

tic invariant can also be obtained [22] from the Maldacena-Strominger-Witten CFT [23]. A
construction of the non-extremal solution describing thermal excitations above this three
parameter family was outlined in [35]. Roughly speaking, the three parameter family can
be regarded as the boosted generalization of the two parameter family of section 5.3.2. The
pressure density of the string (5.74) — the Tzz component of the ADM stress tensor (see
e.g. section 2.1 of [48]) — is

Tzz = M + 3Σ =
3(q −∆)∆√
Q2 + ∆2

. (5.80)

When ∆ = 0 or ∆ = q the string becomes pressureless. Setting ∆ = 0 the solution (5.74)–
(5.75) reduces to the pressureless two parameter M23 −M53 − P family of section 5.3.2.

– 31 –



J
H
E
P
0
8
(
2
0
1
0
)
0
7
2

Setting ∆ = q one obtains another two parameter family of supersymmetric pressureless
black strings. In this family one can set Q = 0 while keeping q 6= 0. This cannot be
done in the two parameter ∆ = 0 family. Upon setting Q = 0 in the ∆ = q family
one recovers the supersymmetric black string that describes the infinite radius limit of
the extremal singly spinning dipole ring of [27]. To the best of our knowledge the two
parameter ∆ = q family has not been previously discussed in the literature.5 Perhaps
it describes a novel supersymmetric limit of the infinite radius limit of the conjectured
five parameter non-extremal black ring [49] in this theory. This point certainly deserves
further investigation. It is expected that the ∆ = 0 and ∆ = q families are connected by
a pressureless non-extremal black string [50].

5.3.4 Other examples

One may obtain numerous other examples from the general expressions for the O3K orbit
presented above. In cases of sufficient complexity it is difficult to find parameter redefini-
tions that make the meaning of the parameters transparent from the spacetime point of
view. However, it is relatively straightforward to check if a given extremal solution belongs
to the O3K orbit. This simply amounts to confirming that the charge matrix for the given
solution is nilpotent and the quartic invariant is positive definite. We checked the nilpo-
tency of the charge matrix and the positivity of the quartic invariant for the J 6= 0 solution
of [46]6 as well as for the R = 0 solution of [39]. Hence both of these configurations belong
to the O3K orbit. It would be interesting to find appropriate parameter redefinitions (and
restrictions) in the O3K orbit that precisely match with the parameterizations of the J 6= 0
solution as given in [46] and the R = 0 solution as given in [39].

5.3.5 Truncation to the Einstein-Maxwell theory

As mentioned in section 3.1, the S3 model admits a consistent truncation to minimal
N = 2 supergravity, i.e., to the Einstein-Maxwell theory. When reduced to three dimen-
sions over a timelike Killing vector, the Einstein-Maxwell theory gives rise to the coset
SU(2, 1)/(SL(2,R)× U(1)). From the point of view of the three-dimensional hidden sym-
metry groups, the consistent truncation is equivalent to choosing the appropriate SU(2, 1)
subgroup of G2(2). This can be done as follows. The coset structure of minimal N = 2
supergravity gives the reductive decomposition

su(2, 1) = sl(2,R)⊕ Ru⊕ p̃′, (5.81)

where u generates a (compact) U(1) subgroup and p̃′ is the 2+ + 2− representation of
sl(2,R) ⊕ Ru. If we denote the generators of sl(2,R) by e′, f ′, and h′, then the compact
subgroup generated by e′ − f ′ − u rotates the mass and NUT charge [51]. The subgroup
generated by e′ − f ′ + u rotates the electric and magnetic Maxwell charges [51]. Finding
generators for k̃ that act in this way on p̃ uniquely fixes an SU(2, 1) subgroup inside G2(2).

5Incorporating the no-NUT condition in the extremal limit of the black string discussed in appendix D

of [49], one obtains a one parameter family in minimal supergravity. It corresponds to Q = 0 in our ∆ = q

family.
6This calculation was also performed in [18].
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This embedding also relates electromagnetic charges of the Einstein-Maxwell theory to
those of the S3 model.

More explicitly, we take the sl(2,R) subalgebra to be spanned by E6, F6 and H6, and
let K2 = E2 − F2 span the u(1) subalgebra which commutes with the sl(2,R) subalgebra.
It follows that the space p̃′ is spanned by

E1 −
1
2
E4, E3 −

1
6
E5, F1 −

1
2
F4, F3 −

1
6
F5. (5.82)

Looking at the most general charge matrix spanned by these generators and comparing
it with (4.37) we immediately see that the generators corresponding to the scalar charges
do not belong to su(2, 1). This is simply explained by the fact that the Einstein-Maxwell
theory contains no scalar fields. Furthermore, we find that the embedding of Einstein-
Maxwell theory in the S3 model is given by

Q2 = P1, Q1 = P2, Σ = 0, Ξ = 0. (5.83)

This is indeed consistent with (3.21). It follows that

♦EM = (P 2
1 +Q2

1)2. (5.84)

Hence, the Reissner-Nordström solution of the Einstein-Maxwell theory is naturally em-
bedded into the O3K orbit. It was shown in [51] that the Einstein-Maxwell theory has only
one orbit of BPS solutions.

6 Non-supersymmetric orbit

Having discussed the supersymmetric orbits, we now turn to the remaining two orbits, O′3K
and O′4K . We will argue below that like O4K the O′3K orbit is also unphysical. The fact that
for O3K and O′4K the β-labels and γ-labels are the same is consistent with the observation
of [14] that for physical orbits these labels should coincide. In the rest of the section we
present general expressions for all charges and discuss examples in the O′4K orbit.

6.1 The O′4K orbit

The O′4K orbit is a four parameter family of non-supersymmetric black holes. This orbit
corresponds to the non-BPS attractor of [19]. It is characterized by negative values of the
quartic invariant ♦. One may generate the full orbit by acting with K̃ on nE1 + mF4

(n < 0, m > 0),
Q = (Ad (ak2 + bk6) ◦Ad(cF2)) [nE1 +mF4] . (6.1)

The general expression for the NUT charge of this orbit is

N =
1
4

(
(6m− n) sin 12b − 6mc cos 12b

)
(6.2)

and the no-NUT condition becomes

n = 6m(1− c cot 12b) when sin 12b 6= 0, (6.3)

c = 0 when sin 12b = 0. (6.4)
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Taking into account the no-NUT condition and using the parameterization α = 12b and
β = a− 6b, we get the mass and electromagnetic charges to be

M =
3
2
md,

Q1 = −3m sin(α+ β)
[
cos(α+ β) cosβ − sin(α+ β) sinβ + d sin2(α+ β)

]
,

P1 = 3m cos(α+ β)
[
sin(α+ β) sinβ − cos(α+ β) cosβ + d cos2(α+ β)

]
,

Q2 =
1
2
m
[
cosβ − 6d cos(α+ β) sin2(α+ β)− 3 cos(−2α− 3β)

]
,

P2 = −1
2
m
[
sinβ − 6d sin(α+ β) cos2(α+ β)− 3 sin(−2α− 3β)

]
, (6.5)

and the scalar charges to be

Σ =
3
2
md cos 2(α+ β)− 2m cos(α+ 2β),

Ξ =
3
2
md sin 2(α+ β)− 2m sin(α+ 2β), (6.6)

where d is given by

d =
c

sinα
when sinα 6= 0, (6.7)

d =
1
2

(
1− n

6m

)
when sinα = 0. (6.8)

The quartic invariant for these charges is

♦ = −12m4 cos2 α(d cosα− 1), (6.9)

and is strictly negative provided cosα 6= 0 and n < 0. When cosα = 0, then n = 6m and
we are no longer in the O′4K orbit. Thus, for the O′4K orbit the quartic invariant is strictly
negative. The expressions (6.5) and (6.6) are invariant under

m→ −m, d→ −d, α→ α+ π, β → β + π. (6.10)

We now restrict the parameters to the range

m > 0, d > 0, 0 ≤ α, β < 2π. (6.11)

In this range the mass is positive definite. From (6.5) and (6.6) the general charge matrix
for the O′4K orbit can be readily constructed. To obtain the general form of the metric
we exponentiate the charge matrix and read off the scalars from the resulting geodesic on
the coset manifold. Again, the spacetime solution is parameterized in an unilluminating
manner. To give an idea to the reader how these expressions look like we write out the
four-dimensional warp factor:

e2φ2 =
1
r4

(
−♦

4
+ 2Mr3 + c1r + c2r

2 + r4

)
, (6.12)
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where

c1 = m3 cosα(9d cosα− 8), c2 = 3m2(3d cosα− 2). (6.13)

The rest of the scalars and one-forms can be expressed in a similar fashion.
We note that the general solution in this orbit cannot be written in the Gibbons-

Hawking form. For example, this orbit contains the extremal non-rotating Rasheed-Larsen
solution [52, 53], whose five-dimensional lift cannot be written as a time fibration over a
hyper-Kähler base. Though, the five-dimensional lift of some members of this orbit can be
written as a time fibration over a hyper-Kähler base. These geometries have been dubbed
‘almost BPS black holes’ [54]. An important open problem is to find the ‘almost BPS’
subsector of the O′4K orbit.

Since the analysis in this section is also valid for n > 0, the discussion above also hold
for the O′3K orbit. However, it is easy to see that this orbit is unphysical — a generic
solution in this orbit contains singularities outside or on the horizon. Since ♦ ≥ 0 for the
O′3K orbit, the warp factor (6.12) approaches negative infinity as r goes to zero when the
quartic invariant is strictly positive. (It becomes zero at r = 0 when ♦ = 0.) This implies
that the warp factor becomes zero at least at one point on or outside the horizon. At
this point the spacetime is singular. The singularity is not a coordinate singularity but
a genuine curvature singularity. As discussed in section 5.3, this can be most easily seen
by looking at curvature invariants. For example, the four-dimensional curvature invariant
RµνρσR

µνρσ diverges as φ2 tends to minus infinity. Thus, we conclude that the O′3K orbit
is unphysical.

6.1.1 Two parameter KKM−M23

The first example we discuss is a static non-BPS electrically charged black hole sitting at
the center of the Taub-NUT. The solution takes the ‘almost BPS’ form

ds2 = −f2dt2 + f−1
[
H−1(dz + P cos θdφ)2 +Hds2

3

]
, (6.14)

A = −
√

3 (1− f) dt, (6.15)

where

f−1 = 1 +
Q

r
, H = 1 +

P

r
, P > 0, Q > 0. (6.16)

We use P to denote the KKM charge. This solution is simply obtained by flipping the
sign of the Maxwell potential as compared to the supersymmetric M23 −KKM solution
discussed in section 5.3.1. The non-zero scalars for this solution are

φ1 =
√

3
2

log (fH) , φ2 =
1
2

log
(
Hf−3

)
,

χ3 = −
√

3 (1− f) , χ5 =
(
1−H−1

)
. (6.17)

The charges are

Σ =
P −Q

2
, M =

P + 3Q
2

,

Q2 = −Q, P1 = P. (6.18)

– 35 –



J
H
E
P
0
8
(
2
0
1
0
)
0
7
2

Note the minus sign in Q2, which yields that the quartic invariant for the solution is
negative, ♦ = −4PQ3, and therefore the solution is not supersymmetric. One obtains this
solution by setting

m = Q, d =
1
3

(
3 +

P

Q

)
, α = β = 0, (6.19)

in the parameterization (6.5)–(6.6) of the O′4K orbit.

6.1.2 Extremal non-rotating Rasheed-Larsen solution

The O′4K orbit also contains the pure gravity extremal non-rotating Rasheed-Larsen solu-
tion [52, 53]. The solution takes the form

ds2 =
H2

H1
(dz +A)2 − r2

H2
dt2 +

H1

r2

(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
, (6.20)

where

H1 = r2 + rp+
p

p+ q

pq

2
, H2 = r2 + rq +

q

p+ q

pq

2
,

At =
q

H2

√
q

p+ q

(
r +

p

2

)
, Aφ = p

√
p

p+ q
cos θ, (6.21)

with p, q > 0. The non-zero scalars for this solution are

φ1 =
1
2

√
3 log

H1

H2
, φ2 =

1
2

log
H1H2

r4
,

χ1 =
1
2
q

√
q

p+ q

p+ 2r
H2

, χ5 =
1
2
p

√
p

p+ q

q + 2r
H1

, (6.22)

and

χ6 =
(pq)3/2

2(p+ q)H1
. (6.23)

The non-zero charges are

Σ =
p− q

2
, M =

p+ q

2
, Q1 = q

√
q

p+ q
, P1 = p

√
p

p+ q
. (6.24)

The quartic invariant for this solution evaluates to

♦ = − p3q3

(p+ q)3
, (6.25)

exhibiting that this solution is not supersymmetric. The solution can be obtained by setting

m =
√
pq

2
, d =

2
3

(
p+ q
√
pq

)
, α = arcsin

p− q
p+ q

, β = − arcsin
√

p

p+ q
, (6.26)

in the parameterization (6.5)–(6.6) of the O′4K orbit.
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6.1.3 Three parameter M23 −M53 − P non-supersymmetric family

A three parameter family of non-supersymmetric black strings in minimal supergravity
with all three independent M23 −M53 − P charges is also contained in O′4K orbit. The
solution is most conveniently parameterized by setting

m =
1
2

√
q2 +Q2, d =

2∆√
q2 +Q2

, α =
π

2
− β, β = arccos

Q√
q2 +Q2

, (6.27)

in the general expressions for the O′4K orbit. The metric and Maxwell potential after the
coordinate transformation z → z + t in the general form of the O′4K orbit are given by

ds2 = V 2ds2
3 + 2V −1dtdz + V −4gdz2, (6.28)

A = −
√

3
2
q cos θdφ−

√
3Q
r

(
1 +

q

4r

)
V −2dz, (6.29)

where

V = 1 +
q

2r
, (6.30)

g = 1 +
3∆
r
−

3
(
q2 − 3∆q +Q2

)
2r2

+
9q2∆− 4q

(
q2 +Q2

)
4r3

− ♦
4r4

. (6.31)

The quartic invariant for this solution is

♦ = −3
4
q2
(
2∆q − q2 −Q2

)
. (6.32)

We restrict ourselves to the parameter range Q ≥ 0, q > 0 and ∆ > q2+Q2

2q . In this range
the quartic invariant is negative definite. The non-zero charges are

Q2 = Q, P2 =
q

2
, Q1 =

3
2

(q − 2∆),

M =
3∆
2
, Σ = q − 3∆

2
, Ξ = −Q. (6.33)

Calculating the pressure density of the string (6.28)—the Tzz component of the ADM stress
tensor (see e.g. section 2.1 of [48])—we find

Tzz = M + 3Σ = 3(q −∆). (6.34)

When ∆ = q the string becomes pressureless. The blackfold approach [29] strongly suggests
that the ∆ = q string describes the infinite radius limit of a smooth black ring with these
charges. This black ring might be contained in the conjectured five parameter non-extremal
black ring [49] in this theory. This point deserves further investigation.

7 Nilpotency and the Gibbons-Hawking form

We now briefly discuss how our analysis fits in with the approach of [21]. It was shown in [21]
that the most general supersymmetric solution of five-dimensional minimal supergravity
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with Gibbons-Hawking base space can be written in terms of four harmonic functions,
H,K,L and M on R3. The functions f and ω5 appearing in the solution take the form

f−1 = K2H−1 + L (7.1)

and
ω5 = H−2K3 +

3
2
H−1KL+M. (7.2)

Solutions with non-vanishing ω5 generically describe rotating, or boosted, five-
dimensional spacetimes.

Using (3.48)–(3.55) one can easily calculate the sigma model fields in terms of theses
harmonic functions, and from the asymptotic expansion of these fields the general charge
matrix can be obtained. In order to make connection with our approach we restrict the
harmonic functions so that the five-dimensional solutions correspond to static spherically
symmetric asymptotically flat black holes in four dimensions after dimensional reduction
over z. In particular, this requires that not only φ1, φ2, χ1, . . . , χ6 vanish as r → ∞ but
also ω3 vanish identically. This imposes certain non-trivial restrictions on the general form
of the harmonic functions. After taking these restrictions into account one sees that the
general charge matrix is indeed nilpotent.

In addition, one finds that the resulting general charge matrix Q commutes with a
nilpotent element that belongs to the G2(2)-orbit O1. This implies that Q is either in O1,
O2, O3K or O4K . As noted in section 5.3, solutions in the O4K orbit are unphysical since
they are not regular outside the horizon in four dimensions. Discarding these unphysical
solutions, we conclude that all static extremal asymptotically flat black holes that can
be obtained via dimensional reduction of solutions in the Gibbons-Hawking form of five-
dimensional minimal supergravity are supersymmetric and belong to one of the K̃-orbits
O1, O2 and O3K .

Acknowledgments

We would like to thank Iosif Bena, Guillaume Bossard, Borun D. Chowdhury, Gianguido
Dall’Agata, Roberto Emparan, Axel Kleinschmidt, Hermann Nicolai, and Clement Ruef
for discussions. Our work is partially supported by IISN - Belgium (conventions 4.4511.06
and 4.4514.08) and by the Belgian Federal Science Policy Office through the Interuniversity
Attraction Pole P6/11.

A Non-linear sigma model for G2(2)/K̃

Here we give a brief outline of the sigma model construction following [35]. A more detailed
discussion can be found in [35, 55]. Denoting the field strengths associated with B1 and
B2 by H̃1 and H̃2, respectively, we define

H̃1 = dB1 + ω3 ∧ dχ1, (A.1)
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and

H̃2 = dB2 − dχ2 ∧ (B1 − χ1ω3)− dχ3 ∧ ω3. (A.2)

In order to see the full hidden symmetry, the next step is to define the three axions χ4, χ5,
and χ6 dual to the one-forms B1, B2, and ω3, respectively. This is most conveniently done
by introducing one-form field strengths G4, G5 and G6 for the three axions:

G4 ≡ e−~α4·~φ ?3 H̃2 = dχ4 +
1√
3

(χ2dχ3 − χ3dχ2),

G5 ≡ e−~α5·~φ ?3 H̃1 = dχ5 − χ2dχ4 +
1

3
√

3
χ2(χ3dχ2 − χ2dχ3),

G6 ≡ −e−~α6·~φ ?3 dω3 = dχ6 − χ1dχ5 + (χ1χ2 − χ3)dχ4

+
1

3
√

3
(−χ1χ2 + χ3)(χ3dχ2 − χ2dχ3). (A.3)

The three-dimensional Lagrangian then can be written in terms of these scalars, φ1, φ2,
χ1, . . . , χ6 as

L3 = R ?3 1− 1
2
?3 d~φ ∧ d~φ+

1
2
e~α1·~φ ?3 dχ1 ∧ dχ1 −

1
2
e~α2·~φ ?3 dχ2 ∧ dχ2

+
1
2
e~α3·~φ ?3 (dχ3 − χ1dχ2) ∧ (dχ3 − χ1dχ2) +

1
2
e~α4·~φ ?3 G4 ∧G4

+
1
2
e~α5·~φ ?3 G5 ∧G5 −

1
2
e~α6·~φ ?3 G6 ∧G6, (A.4)

where the six doublets ~α1, . . . , ~α6 are the six positive roots associated with the root vectors
e1, . . . , e6 of g2(2).

The Lagrangian (A.4) can also be written as

L3 = R ?3 1 + Lscalar , (A.5)

where Lscalar is the Lagrangian of a non-linear sigma model for the coset G2(2)/K̃, with
K̃ = SO0(2, 2). We can write a coset representative V for the coset G2(2)/K̃ in the Borel
gauge by exponentiating the Cartan elements and positive root vectors of g2(2) with the
dilatons and axions as their coefficients. The representative

V = e
1

2
√

3
φ1h2+ 1

2
φ2(h2+2h1)

eχ1e1e
−χ2

e2√
3

+χ3
e3√

3 eχ6
e6
6 e

χ4
e4√
12
−χ5

e5
6 , (A.6)

reproduces the Lagrangian (A.4) [35]. The matrix M (2.3) is then given by

M = (V])V, (A.7)

where ] stands for the generalized transposition

x] ≡ −τ(x), (A.8)

for all x ∈ g2(2), with the involution τ given in (4.6) and (4.7). One uses (A.7) to derive
the space-time fields from a geodesic.
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