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1 Introduction

The paradigm of unification provides a compelling and predictive framework for high en-
ergy physics. In the context of string theory, this might at first suggest that gauge and
gravitational degrees of freedom should also unify. Nevertheless, in constructions of gauge
theories within string theory, there is often a limit where gravity decouples. This is because
gauge theory degrees of freedom can localize on subspaces of the internal geometry. More-
over, the fact that MGUT/MPlanck � 1 suggests that the existence of a limit where gravity
decouples may also be relevant for the gauge theory defined by the Standard Model.

Flexibility in potential model building applications suggests branes with maximal di-
mension such that a consistent decoupling limit exists. Such considerations point to seven-
branes, and thus type IIB string theory. On the other hand, the requisite elements of
Grand Unified Theories (GUTs), such as the 5H × 10M × 10M interaction require E-type
gauge theory structures, which is incompatible with perturbative IIB string theory. Im-
portantly, however, the strong coupling limit of IIB strings, namely F-theory is flexible
enough to accommodate such elements. Recent work on F-theory GUTs in [1–9] (see
also [10–29]) has shown that many realistic features of particle phenomenology naturally
emerge, with potentially observable consequences for the LHC [4, 7] and upcoming neutrino
experiments [8].

Low energy constraints impose important conditions that the internal geometry must
satisfy, and point towards the especially important role of exceptional groups in F-theory
GUTs. For example, the existence of an order one top quark Yukawa requires a point where
the singularity type of the geometry enhances to E6 [1] (see also [30]). The existence of

– 1 –



J
H
E
P
0
8
(
2
0
1
0
)
0
4
0

SU(5) GUT

10
M

5 H
10

M

5
H 5

M 10
M

E6

E7 E8

SO(12)

CKM

CKM

PMNS

Figure 1. Starting from a GUT seven-brane with SU(5) symmetry, each additional phenomeno-
logical condition leads to a further jump in the rank at a point of the geometry. Including the
5H10M10M interaction requires an E6 point, and the 5H5M10M interaction requires an SO(12)
point. A hierarchical CKM matrix then suggests that these points should also unify to an E7 point
of enhancement. Incorporating leptonic mixing structure pushes this all the way up to E8.

higher unification structures is also important in the context of flavor physics. For example,
the CKM matrix exhibits a hierarchical structure provided the up and down type Yukawas
localize at points which are sufficiently close [5], which is suggestive of a single point of
at least E7 enhancement. As we show in this paper, incorporating a minimal neutrino
sector with a mildly hierarchical lepton mixing matrix (PMNS matrix) pushes this all the
way up to E8. It is in principle possible to construct models where a globally well-defined
E8 structure plays no special role, and in which flavor hierarchies are solved through fine
tuning. Even so, the most natural option, and the option which flavor hierarchies dictate is
the existence of a single E8 enhanced symmetry point in the internal geometry from which
all the interactions descend. In this paper we will assume this is indeed the case. In fact in
this paper we classify all the minimal F-theory GUT scenarios which descend from a single
E8 point, which turn out to be interestingly predictive. See figure 1 for a depiction of how
various enhancement points each demand a higher unification structure.

Cosmological considerations provide another window into the physics of F-theory
GUTs. The cosmology of such models neatly avoids many of the problems which sometimes
afflict supersymmetric models [6]. For example, assuming the supersymmetry breaking sce-
nario of [3], the mass of the gravitino is 10− 100 MeV.1 It is known that in other contexts
this typically leads to over-production of such particles. This issue is bypassed in F-theory
GUTs because the saxion comes to dominate the energy density of the Universe. The
subsequent decay of the saxion dilutes this relic abundance, leaving gravitinos instead as
a prominent component of dark matter. In a certain regime of parameters, axionic dark

1As in early work on local F-theory GUTs such as [3], we assume that the dominant contribution to

supersymmetry breaking originates from gauge mediated supersymmetry, and ingredients present in the

local model.
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matter is also possible. Both the gravitino and axion interact very weakly with the Stan-
dard Model, and are therefore unlikely to be detected. On the other hand, recent results
from experiments such as PAMELA [31, 32], ATIC [33], PPB-BETS [34], HESS [35] and
FERMI [36] can potentially be explained by weak to TeV scale dark matter which inter-
acts more strongly with the Standard Model. One of the aims of this paper is to address
whether there are any additional dark matter candidates in minimal F-theory GUT models
besides the gravitino and axion.

The matter content of F-theory GUTs roughly divides into the degrees of freedom
on the GUT seven-brane, nearby seven-branes which share a mutual intersection with the
GUT seven-brane, and branes which are far away in the sense that they do not directly
couple to the GUT sector. In addition, there are also degrees of freedom which do not
localize on a brane but instead propagate in the bulk of the geometry. Since the dynamics
of supersymmetry breaking takes place due to the dynamics of a seven-brane with Peccei-
Quinn (PQ) gauge symmetry, weak to TeV scale dark matter candidates must also be
relatively nearby. See figure 2 for a depiction of the possible ingredients which can in
principle participate in this construction.

Assuming a single E8 enhancement point in our local patch, we classify all visible and
dark matter which can descend from the adjoint of E8. Phenomenological requirements
then lead to a rich interplay between group theoretic and geometric conditions consid-
erations. In particular, having available suitable curves which accommodate the Higgs
and the matter fields severely restricts the possibilities. Moreover, even though E8 con-
tains the maximal subgroup SU(5)GUT×SU(5)⊥, the presence of non-trivial monodromies
in the seven-brane configuration required by phenomenology cuts down SU(5)⊥ to either
U(1)PQ × U(1)χ, as in Dirac neutrino scenarios, or U(1)PQ in Majorana scenarios. As the
notation suggests, in both cases, one of the U(1) factors can be identified with a Peccei-
Quinn symmetry. Here, U(1)χ of the Dirac scenario corresponds to a non-anomalous
symmetry and is a linear combination of U(1)Y and U(1)B−L. We find that only a few
possible monodromy groups lead to consistent flavor physics. The full list of possible mon-
odromy groups are Z2,Z2 × Z2,Z3, S3 and Dih4 (the symmetry group of the square). A
quite surprising outcome of the classification of visible matter fields is that all the fields
needed for a successful implementation of gauge mediated supersymmetry breaking auto-
matically follows from the existence of this E8 point. Moreover, we find that in all but one
Dirac neutrino scenario, the messenger fields of the minimal gauge mediated supersymme-
try breaking (mGMSB) sector are forced to transform as vector-like pairs in the 10 ⊕ 10
of SU(5). In fact, in two of the Majorana neutrino scenarios all the charged matter that
descends from the E8 point are necessary and sufficient for mGMSB and the interactions
of the MSSM! This rigid structure also extends to the list of available dark matter candi-
dates, providing only a few options with very specific U(1)PQ (as well as U(1)χ for Dirac
scenarios) charge assignments.

Having classified extra matter fields available from the E8 point, we next turn to
whether any of these can serve as dark matter candidates for the purpose of explaining
the PAMELA, ATIC and FERMI experiments. Many of these experiments require some
additional component of electrons and positrons generated by either dark matter physics

– 3 –



J
H
E
P
0
8
(
2
0
1
0
)
0
4
0

Near7

SUSY

3Far

Far7

SU(5) GUT

E 8

U(1)PQ

Gravitino

Figure 2. Depiction of the SU(5)GUT seven-brane, the U(1)PQ seven-brane, and other possible
branes and bulk modes which can in principle appear as “dark objects” in F-theory GUTs. Here,
the 7Near-branes share a mutual intersection with the SU(5)GUT seven-brane along the PQ seven-
brane. As in [3], supersymmetry breaking occurs due to dynamics localized on the PQ seven-brane.
In addition, we have also included the possibility of additional three-branes and seven-branes, 3Far

and 7Far, as well as bulk modes, such as the gravitino. These latter possibilities are less directly
connected to the supersymmetry breaking sector, and so typically do not contain weak to TeV scale
dark matter candidates.

or astrophysics, and our focus will be on whether the former possibility can be realized
in F-theory GUTs. In the context of dark matter scenarios there are two main types of
models based on either annihilating or decaying dark matter. In annihilating dark matter
scenarios, dark matter states annihilate and produce electrons and positrons. In the case of
decaying dark matter, GUT scale suppressed higher dimension operators trigger a decay of
the dark matter into electrons and positions. The decaying scenario is more in line with the
idea of F-theory GUTs, where unification plays a key role in low energy phenomenology due
to GUT scale suppressed operators. Nevertheless, we find that none of the available fields
provide a viable dark matter candidate for either decaying, or annihilating scenarios. There
are multiple obstacles (though fewer obstacles in the decaying scenario). The overarching
problem is that in both scenarios the available TeV scale dark matter candidates decay
too rapidly.
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There are also other issues, even if one imposes extra structures to avoid these decays.
For example, there is a cosmological issue: In scenarios where the dark matter relic abun-
dance is generated non-thermally from the decay of the saxion, the saxion mass needs to be
bigger than 1 TeV and this is in conflict with the fact that the saxion mass cannot be that
large without significant fine tuning to avoid the stau mass from becoming tachyonic.2

In addition, the saxion decay also overproduces dark matter candidates in non-thermal
scenarios. In scenarios where the dark matter is generated thermally, the decay of the
saxion overdilutes the relic abundance. This issue can be overcome in decaying scenarios
by a mild fine tuning, but is especially problematic in annihilating scenarios. Also in the
annihilating scenario one needs a light field to communicate between the visible and the
hidden sector. One can rule out a gauge boson playing this role, thanks to the classification
of allowed gauge factors. Light scalar mediators from inside the E8 do exist that can in
principle do the job, but even in this case one needs to assume many additional ingredients
for this to work.

One could ask if there are other possible charged matter which can communicate with
our sector by gauge interactions. For example if we consider matter which is charged under
our E8 as well as some other group G, this could in principle provide another class of dark
matter candidates. In this regard, E-type singularities resist the intuition derived from
quiver diagrams. Indeed, matter charged under E8 × G is not allowed in string theory!
There are two ways to state why this is not possible. One way of arguing for the absence of
such particle states is that matter on colliding branes can be explained by locally Higgsing
a higher singularity of a simple group [37], so that E8 places an upper cap on the allowed
singularity type. More directly, it is also known that the collision of E-type branes with one
another in higher dimensions lead to tensionless strings! The four-dimensional reflection of
such tensionless strings are conformal theories with E-type symmetry. If we are to avoid
a tower of nearly massless particles, we can consider a sector with badly broken conformal
symmetry. Even though this is logically allowed we find it to be somewhat exotic from the
perspective of F-theory GUT constructions. Of course one can also speculate about the
potential implications of having a nearly conformal sector with an E-type symmetry, and
we offer some speculations along this line later in the paper.

It is in principle possible to also consider dark matter candidates which originate
from bulk gravitational modes, or modes associated with other branes of the compactifi-
cation. In this case, the main issue is that generating a weak scale mass for the candidate
involves a non-trivial extension of the model, which appears quite ad hoc. All of this
reinforces the idea that if one takes seriously the notion of unifying geometric structures
in F-theory GUTs, the gravitino remains as the main candidate for dark matter. This
also points to an astrophysical origin for the signals observed in the PAMELA, ATIC and
FERMI experiments.

The rest of this paper is organized as follows. We first review the main building blocks
of F-theory GUTs in section 2, and in particular provide in crude terms a characterization

2This is especially problematic when the messengers must transform in the 10 ⊕ 10, as we have found

to be the generic case with a single E8 point of enhancement.
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of the expected mass scales for matter within, close to, and disjoint from the GUT seven-
brane. In section 3 we review the fact that in F-theory GUTs, gravitinos provide a natural
dark matter candidate. In section 4 we demonstrate that hierarchical structures in the
CKM and PMNS matrix require a single point of E8 enhancement. This is followed in
section 5 by a classification of F-theory GUTs which respect this property, as well as other
mild phenomenological conditions. In sections 6 and 7, we respectively consider matter
which intersects a part of E8, and matter disjoint from E8. Having catalogued potential
dark matter candidates, in section 8 we review the main features of current experiments
and their potential dark matter and astrophysical explanations. Section 9 contains our
analysis of annihilating and decaying scenarios, where we find obstructions in all cases to
realizing a viable interacting dark matter scenario. In section 10 we present our conclusions
and potential directions for future investigation. Appendix A contains the classification of
viable monodromy groups associated with a single E8 interaction point.

2 Building blocks and mass scales of F-theory GUTs

Before proceeding to a specific dark matter candidate, in this section we briefly review
the main ingredients and mass scales which enter into F-theory GUTs. The discussion
roughly separates into those objects which are part of the GUT seven-brane, those which
communicate directly with the supersymmetry breaking sector localized in the seven-brane
with Peccei-Quinn (PQ) gauge symmetry, and those degrees of freedom which are not
directly connected with the PQ seven-brane. We argue that weak to TeV scale matter
must either possess a non-trivial PQ charge, or interact closely with such a field. Fields
cutoff from the dynamics of the PQ seven-brane have far lower mass, on the order of the
gravitino mass m3/2 ∼ 10− 100 MeV.

In F-theory GUTs, the relevant degrees of freedom of the GUT model localize on
matter curves or propagate in the complex surface wrapped by the GUT seven-brane. All
of the matter content of F-theory GUTs is controlled by the local enhancement in the
singularity type of the geometry. For example, the bulk seven-brane corresponds to a locus
where an SU(5) singularity is present. Matter trapped on Riemann surfaces or “curves”
corresponds to places where the local singularity type of the geometry enhances further.
This matter can then be described in terms of a local Higgsing operation. At points of the
geometry, a further enhancement is possible, and this is where matter curves meet, and
Yukawa couplings localize.

Many of the necessary ingredients localize within the GUT seven-brane. On the other
hand, the existence of matter curves indicates the presence of other seven-branes which in-
tersect the GUT brane. The gauge symmetries of these additional branes provide additional
nearly exact global symmetries for the low energy theory. In principle, extra matter fields
which are GUT singlets can also localize on curves inside of such “7⊥-branes”. Such matter
fields will typically interact with the charged matter of the GUT model. For example, the
field responsible for supersymmetry breaking, X is neutral under the GUT seven-brane,
but is nevertheless charged under a U(1) Peccei-Quinn seven-brane. This field develops a
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vev of the form:
〈X〉 = x+ θ2FX , (2.1)

where:

x ∼ 1012 GeV, (2.2)

FX ∼ 1017 GeV2. (2.3)

Within this framework, it is possible to accommodate a µ term correlated with supersym-
metry breaking through the higher-dimension operator X†HuHd/ΛUV, as well as a minimal
gauge mediated supersymmetry breaking sector through the F-term XY Y ′, where the Y ’s
denote messenger fields [3]. See [1–9] for other recent work on the phenomenology of
F-theory GUTs. In principle, there can be additional contributions to supersymmetry
breaking effects in passing from local to global compactifications. In this paper we assume
that the dominant source of supersymmetry breaking effects in the visible sector descends
from a gauge mediation scenario, with degrees of freedom present in the local model.

So far, our discussion has been purely local in the sense that we have decoupled the
effects of gravity, and have focussed on degrees of freedom which are geometrically nearby
the GUT seven-brane. In a globally consistent model, additional degrees of freedom will
necessarily be present. Tadpole cancellation conditions will likely require the presence
of additional seven-branes and three-branes. Moreover, bulk gravitational modes which
propagate in the threefold base could also be present.

In this paper we shall assume that the masses of all degrees of freedom are either
specified by high scale supersymmetric dynamics, or are instead correlated with the effects
of supersymmetry breaking. Since supersymmetry breaking originates from the X field,
it follows that proximity to the PQ seven-brane strongly influences the mass scale for the
corresponding degree of freedom. Very massive modes can always be integrated out, so we
shall focus on the mass scales of objects with mass correlated with either the Higgs or X
field vev. Generating masses for scalars is typically more straightforward than for fermions,
and so we shall focus on the ways in which fermions can develop mass.

First consider objects which are charged under the GUT seven-brane. Such matter
fields can develop a mass by coupling to the Higgs fields. Once the Higgs develops a suitable
vacuum expectation value, this induces a weak scale mass for the corresponding particles.
Here, we are using a loose notion of “weak scale” so that for example the mass of the
electron is effectively controlled by the same dynamics. In gauge mediation scenarios, the
soft scalars and gauginos all develop mass through loop suppressed interactions with the
messenger fields. Communicating supersymmetry breaking to the MSSM then leads to a
sparticle spectrum with masses in the range of ∼ 100− 1000 GeV.

The situation is far different for matter fields which are not charged under the GUT
group. Such matter fields subdivide into those which are charged under U(1)PQ, and
those which are uncharged. Assuming that the relevant degrees of freedom are relatively
“nearby” the GUT seven-brane, the suppression scale ΛUV for the relevant higher dimension
operators will be close to the GUT scale. In this case, the relevant F-terms and D-terms
which can generate masses for all components of chiral superfields Φ1 and Φ2 with bosonic
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and fermionic components φ1, φ2 and ψ1, ψ2 are:3∫
d4θ

X†Φ1Φ2

ΛUV
→ µ

∫
d2θΦ1Φ2 (2.4)∫

d4θ
X†XΦ1Φ2

Λ2
UV

→ |µ|2 φ1φ2 +
µ · x
ΛUV

ψ1ψ2 + · · · (2.5)∫
d2θXΦ1Φ2 → FXφ1φ2 − |x|2|φi|2 + xψ1ψ2, (2.6)

where in the first two lines we have used the rough relation [3]:

µ ∼ FX
ΛUV

. (2.7)

Note that the first and third lines both require non-trivial PQ charge for at least one of
the chiral superfields Φi. In particular, we conclude that PQ charged objects, or direct
interactions with PQ objects lead to weak scale masses, while uncharged chiral multiples
have lower fermionic masses.

Integrating out the heavy PQ gauge boson generates operators of the form:

4παPQeXeΦ

∫
d4θ

X†XΦ†Φ
M2

U(1)PQ

→ 4παPQeXeΦ

∣∣∣∣∣ FX
MU(1)PQ

∣∣∣∣∣
2

|φ|2 , (2.8)

where αPQ denotes the fine structure constant of the PQ gauge theory, and eX and eΦ

denote the charges of X and Φ under U(1)PQ. This term generates a contribution to
the mass squared of the scalar component, but does not produce a fermionic mass. An
interesting feature of this “PQ deformation”:

∆PQ ∝

∣∣∣∣∣ FX
MU(1)PQ

∣∣∣∣∣ (2.9)

is that depending on the relative charges of X and Φ, this can either produce a positive or
tachyonic contribution to the overall mass squared.

The presence of the PQ deformation actually provides another potential means by
which fields could develop weak scale masses. For appropriate PQ charges, the PQ defor-
mation induces a tachyonic mass squared, so that the corresponding field can develop a
non-zero vev on the order of the size of the PQ deformation. Couplings between this singlet
and other fields can then generate weak scale masses, either through cubic superpotential
terms, or through couplings to vector multiplets.

The fermions of vector multiplets can also develop mass through couplings to X:∫
d2θ logX · Tr (WαWα)→ FX

x
λαλα (2.10)∫

d4θ
X†X

Λ2
UV

· Tr (WαWα)→ µ · x
ΛUV

· λαλα. (2.11)

3While it is tempting to include contributions of the form
R
d4θ log |X|2 Φ†Φ, as would be present in gauge

mediated supersymmetry breaking, note that this generates mass for the scalars of the chiral multiplet, but

not the fermions.
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Let us comment on the two mass scales present in lines (2.10) and (2.11). The first case is
the characteristic value expected in gauge mediated supersymmetry breaking, and is due
to integrating out heavy messenger fields. This type of coupling requires, however, that the
corresponding vector multiplet couple to fields which are charged under U(1)PQ. Indeed,
in the absence of such fields, line (2.11) establishes a far lower mass for the corresponding
gaugino, which is in line (up to factors of the gauge coupling) with the estimate of line (2.5).

Returning to the explicit values of x and FX given in equations (2.2) and (2.3), it
follows that the F-term coupling of line (2.6) produces masses for the scalars and bosons
far above the weak scale. On the other hand, we see that generic couplings to the X

field always generate weak scale to TeV scale masses for the bosons. Note, however, that
while the operators X†Φ1Φ2/ΛUV and logX · Tr (WαWα) leads to fermion masses in the
same range, in the case of the operators X†XΦ1Φ2/Λ2

UV and X†XTr (WαWα) /Λ2
UV, the

corresponding operators have far lower mass. Indeed, in this case, the fermion masses are:

∣∣∣m(ΛUV)
fermion

∣∣∣ ∼ ∣∣∣∣µ · xΛUV

∣∣∣∣ ∼ |µ| · 10−3 ∼ 100− 1000 MeV. (2.12)

In all cases, the essential point is that generating a weak or TeV scale mass for the fermions
requires the degree of freedom to closely interact with PQ charged fields.

Next consider degrees of freedom which propagate in the bulk of the threefold base,
or which are completely sequestered from the PQ seven-brane. In such cases, the relevant
suppression scale for all higher dimension operators is more on the order of the reduced
Planck scale MPL ∼ 2.4 × 1018 GeV rather than the GUT scale. The absence of PQ
charged objects significantly limits the available couplings of X between vector and chiral
multiplets. Here, the expected mass scales are:∫

d4θ
X†XΦ1Φ2

M2
PL

→
|µ|2 Λ2

UV

M2
PL

φ1φ2 +
µ · x
ΛUV

ΛUV

MPL
ψ1ψ2 (2.13)∫

d4θ
X†X

Λ2
UV

· Tr (WαWα)→ ΛUV

MPL

µ · x
ΛUV

· λαλα. (2.14)

In all cases then, the relevant mass scale is related to that of equation (2.12) as:∣∣∣m(Mpl)
fermion

∣∣∣ ∼ ΛUV

MPL

∣∣∣m(ΛUV)
fermion

∣∣∣ ∼ 1− 100 keV. (2.15)

Bulk gravitational degrees of freedom have similar mass to that of the gravitino. In the
context of F-theory GUTs, the mass of the gravitino is:

m3/2 ∼
FX
MPL

∼ 10− 100 MeV. (2.16)

To summarize, weak to TeV scale degrees of freedom must interact with the PQ seven-
brane. This implies that the most natural TeV scale dark matter candidates are effectively
“nearby” the other ingredients of the local F-theory GUT.
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3 Gravitino dark matter and the cosmology of F-theory GUTs

In this section we review some of the main features of the cosmology of F-theory GUTs,
and in particular, the fact that the gravitino already provides a very natural dark matter
candidate [6]. In certain scenarios, the axion can also contribute towards the dark matter
relic abundance. As shown in [6], this is due to a rich interplay between the cosmology of
various components of the axion supermultiplet in F-theory GUTs.4 We now review the
primary features of the analysis in [6] which naturally evades some of the typical problems
present in the cosmology of gauge mediated supersymmetry breaking scenarios. As in [6],
we shall focus on the cosmology of F-theory GUTs, treated as a model of particle physics
at temperatures T < T 0

RH, where T 0
RH denotes the “initial reheating temperature” of the

Universe, which corresponds to the temperature at which the Universe transitions to an
era of radiation domination.

Since F-theory GUTs correspond to a deformation away from the minimal gauge medi-
ation scenario, the gravitino corresponds to the lightest supersymmetric partner with mass:

m3/2 ∼
FX
MPL

∼ 10− 100 MeV (3.1)

where
√
FX denotes the scale of supersymmetry breaking. In the context of supersymmetric

models with a stable gravitino in this mass range, there is a strong tendency to over-
produce gravitinos because the gravitino decouples from the thermal bath quite early on in
the thermal history of the Universe. Indeed, in the context of F-theory GUTs, the freeze
out temperature for gravitinos is:

T f3/2 ∼ 1010 GeV. (3.2)

One common way to solve the “gravitino problem” is to lower the reheating temperature
T 0

RH to the point where the relic abundance of gravitinos is truncated to a sufficiently low
level. For example, in the parameter range preferred by a 10−100 MeV mass gravitino, this
translates into the upper bound T 0

RH < 106 GeV [40]. This is problematic for generating a
suitable baryon asymmetry because aside from the Affleck-Dine mechanism, mechanisms
such as leptogenesis and GUT scale baryogenesis typically require thermal processes at
much higher temperatures between 1012−1016 GeV to be available. As we now explain, the
cosmology of the saxion in F-theory GUTs plays a crucial role in bypassing this constraint.

The scalar part of the axion supermultiplet corresponds to two real degrees of freedom,
given by the axion, and the saxion. The mass of the saxion is sensitive to a stringy effect
which also shifts the soft scalar masses of the MSSM. With respect to this parameter ∆PQ,
the corresponding mass of the saxion is:

msax ∝ ∆PQ, (3.3)

where the actual constant of proportionality depends on details of the saxion potential,
and how SU(5)×U(1)PQ embeds in E8 [3, 8].

4Although ultimately different, see also [38, 39] for features of gravitino dark matter in the context of

the “sweet spot” model of supersymmetry breaking.
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The cosmological history of the saxion leads to a significant shift in the expected relic
abundance of the gravitino. Below the initial reheating temperature T 0

RH, the saxion field
will typically be displaced from its origin by some initial amplitude. At a temperature T sax

osc ,
this field begins to oscillate. An interesting numerical coincidence is that in F-theory GUTs:

T sax
osc ∼ T

f
3/2 ∼ 1010 GeV. (3.4)

At somewhat lower temperatures, the energy stored in the oscillation of the saxion comes
to dominate the energy density of the Universe.

The era of saxion domination terminates when the saxion decays. This typically occurs
above the starting temperature for BBN, TBBN ∼ 1 − 10 MeV. Efficient reheating of the
Universe from saxion decay further requires that the saxion decay primarily to Higgs fields,
which imposes a lower bound on its mass. Remarkably, this translates into a lower bound
on the size of the PQ deformation parameter on the order of 50 GeV.

The decay of the saxion significantly dilutes the relic abundance of all thermally pro-
duced relics. The relation between the relic abundances before and after the decay of the
saxion are:

Ωafter = DsaxΩbefore, (3.5)

where in the context of F-theory GUTs the saxion dilution factor is roughly:

Dsax ∼
M2

PL

s2
0

T sax
RH

min(T sax
osc , T

0
RH)

, (3.6)

with T sax
osc the temperature of saxion oscillation, and T sax

RH is the temperature at which the
saxion reheats the Universe. The initial amplitude s0 is naturally in the range:

s0 ∼ ΛUV ∼ 1015.5 GeV, (3.7)

while the saxion reheating temperature is set by the total saxion decay rate:

T sax
RH ∼ 0.5

√
MPLΓsax ∼ 0.1− 10 GeV. (3.8)

The typical size of the dilution factor is roughly [6]:

Dsax ∼ 10−4 (3.9)

in the range of maximal interest when T 0
RH > T sax

osc .
The decay of the saxion dilutes the thermally produced gravitinos, while introducing

additional gravitinos as decay products. The confluence of temperatures in equation (3.4)
actually causes the resulting relic abundance of thermally produced gravitinos to remain
independent of T 0

RH, provided there is still an era where the oscillations of the saxion
dominates the energy density of the Universe. As shown in [6], the resulting relic abundance
for thermally produced gravitinos is roughly given as:

ΩTP
3/2h

2 ∼ 0.01− 0.1, (3.10)

– 11 –



J
H
E
P
0
8
(
2
0
1
0
)
0
4
0

which is in the required range for gravitinos to constitute a substantial component of dark
matter. In addition, gravitinos produced through the decay of the saxion can, in certain
parameter regimes can account for at most 10% of the gravitino relic abundance. In this
regime, the gravitino relic abundance is independent of the reheating temperature T 0

RH.
This reintroduces possible high temperature mechanisms for generating a suitable baryon
asymmetry, such as leptogenesis, or GUT scale baryogenesis.

At lower temperature scales where the reheating temperature T 0
RH is below the required

temperature for saxion domination, it is also in principle possible for oscillations of the
axion to constitute a component of the dark matter relic abundance. In F-theory GUTs,
the axion decay constant is roughly fa ∼ 1012 GeV, which is the requisite range for the
axion to play a prominent role. Here it is important to note that the oscillations of the
saxion can sometimes disrupt coherent oscillations of the axion.

As we have already mentioned, the confluence of various temperature scales suggests
gravitinos as a natural dark matter component which can in suitable circumstances be
supplemented by an axionic dark matter component. On the other hand, both the gravitino
and axion only interact with the matter content of the Standard Model through higher
derivative terms. This in particular means that such candidates are unlikely to be observed
either by direct, or indirect dark matter detection experiments. Given the recent influx of
tantalizing hints at dark matter detection, in this paper we focus on whether there are any
TeV scale dark matter candidates available in minimal F-theory GUT models which could
potentially interact more directly with the Standard Model.

4 Flavor implies E8

Up to this point, we have simply reviewed many of the ingredients which have figured in
previous F-theory GUT constructions. This leaves open the question, however, as to how
many of these ingredients are required, and how many are additional inputs necessary to
solve a particular phenomenological problem. Here we show that assuming only that there
is a flavor hierarchy in the CKM and PMNS matrix requires an E8 point of enhancement!
In fact, many of the extra fields left over can then play a specific role in the phenomonology
of F-theory GUT scenarios, and in section 5 we classify these options.

The only assumptions we shall make in this section are that the following interac-
tion terms: ∫

d2θ 5H × 10M × 10M +
∫
d2θ 5H × 5M × 10M + Neutrinos (4.1)

be present, where we shall assume that the neutrino sector can correspond to either a
Dirac [8], or Majorana scenario of the form:

Dirac:
∫
d4θ

H†dLNR

ΛUV
(4.2)

Majorana:
∫
d2θ HuLNR +MmajNRNR. (4.3)
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In addition, we assume that all of the matter fields 5H , 5H , 10M and NR localize on curves
of the geometry. We will not even assume the mechanism of doublet triplet splitting via
fluxes proposed in [2], but will instead simply require a much milder genericity statement
from index theory that if a four-dimensional zero mode localizes on a curve, then the
conjugate representation cannot have any zero modes localized on the same curve.5

Flavor hierarchy imposes a number of significant restrictions on the available enhance-
ments in the singularity type. First, the presence of the interaction term 5H × 10M × 10M
requires a point where SU(5) enhances to at least E6. Moreover, the presence of the inter-
action term 5H × 5M × 10M requires an enhancement to at least SO(12). As found in [5],
the CKM matrix will exhibit a hierarchical structure provided these points of enhancement
are close together, so that there is at least an E7 point of enhancement.

In this section we show that generating a mildly hierarchical PMNS matrix forces this
enhancement up to E8. Our strategy for obtaining this result will be to ask whether an E7

point of enhancement is sufficient for realizing all of the required interaction terms. The
obstructions we encounter will imply that only E8 is available. Since E7 is a subgroup of
E8, we can phrase our analysis in terms of interaction terms inside of E8. What we will
effectively show is that enough of E8 is used that it cannot all be fit inside of E7.

The maximal subgroup of E8 which contains the GUT group SU(5) is SU(5)GUT ×
SU(5)⊥. The adjoint representation of E8 decomposes into irreducible representations of
SU(5)GUT × SU(5)⊥ as:

E8 ⊃ SU(5)GUT × SU(5)⊥ (4.4)

248→ (1, 24) + (24, 1) + (5, 10) + (5, 10) + (10, 5) + (10, 5). (4.5)

Although this would appear to provide a large number of additional ingredients for model
building, consistency with qualitative phenomenological features imposes a number of iden-
tifications in the low energy effective field theory. For example, the interaction term
5H × 10(1)

M × 10(2)
M would at first appear to involve three matter curves. This is prob-

lematic, because if the 10M ’s localize on distinct curves, then the resulting mass matrix
will without fine tuning lead to at least two massive generations [2]. At the level of the
effective field theory, achieving one heavy generation then requires the existence of an
interchange symmetry:

10(1)
M ↔ 10(2)

M . (4.6)

The presence of such symmetries may appear as an extra level of fine tuning. In fact, as
noted in [20], such identifications will generically occur. This is essentially because the
positions of the seven-branes are dictated by the locations of singularities in the fibration
structure of the geometry, which are in turn controlled by polynomial equations in several

5After this paper appeared, there have been various claims made in the literature, starting with [41] that

activating GUT breaking by a hyperflux is incompatible with doublet triplet splitting, in the sense that it

induces exotics in the low energy spectrum. This analysis applies to a very limited class of local models

which can be treated using the spectral cover description. It is still an open problem to realize a consistent

local model with no charged exotics, but we stress that the obstruction [41] only rules out a small fraction

of possible ways of building a local model. See section 5 for further discussion on this point.
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variables. For example, polynomials with rational numbers for coefficients will often contain
non-trivial symmetry groups which interchange the various roots. A similar phenomenon
is present in the factorization of polynomials of more than one variable. This means in
particular that rather than being a special feature of the geometry, it is to be expected on
quite general grounds that such identifications will occur.

In the context of SU(5)⊥, this discrete symmetry group is maximally given by its Weyl
group S5, the symmetric group on five letters. The group S5 acts by identifying directions
in the 5 of SU(5)⊥. From the perspective of the effective field theory, this occurs because
inside of SU(5)⊥, there are additional discrete symmetries which act as identifications on
the representations of SU(5)⊥. Thus, there will generically be identifications of some of
the 5’s and 10’s. In the physical “quotient theory” where all identifications have taken
place, the actual number of distinct matter curves will be greatly reduced compared to
the “covering theory”. For example, there will be five distinct 10M curves in the covering
theory, since the 10M transforms as a 5 of SU(5)⊥. Acting with the discrete symmetry
group will then identify some of these fields.

As we show in section 5, this analysis leaves us with just a few additional ingredients
which can also interact at the same point of enhancement. Quite remarkably, these also
play a significant role: They are the fields of the supersymmetry breaking sector utilized
in [3]! Thus, simply achieving the correct flavor structure will automatically include the
necessary ingredients for supersymmetry breaking.

The rest of this section is organized as follows. Before proceeding to the main result
of this section, we first setup notation, and introduce the features of monodromy groups
which will be important for our analysis. Using some minimal facts about such monodromy
groups coupled with the existence of all interactions in line (4.1) will then allow us to deduce
that flavor implies E8.

4.1 Monodromy groups: generalities

Since the action of monodromy groups play such a crucial role in the analysis to follow,
here we explain in more precise terms how this group acts on the available matter curves.
Geometrically, matter fields localize along loci where elements in the Cartan of SU(5)⊥
combine with SU(5)GUT so that the singularity type enhances. The precise location of
each matter curve can be analyzed by introducing a weight space decomposition of the
various representations. The Cartan of SU(5)⊥ can be parameterized by the coordinates
t1, . . . , t5 subject to the constraint:

t1 + . . .+ t5 = 0. (4.7)

The weights of the 5⊥, 10⊥ and 24⊥ of SU(5)⊥ are then given as:

5⊥ : ti (4.8)

10⊥ : ti + tj (4.9)

24⊥ : ± (ti − tj) + 4× (0 weights) (4.10)
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for 1 ≤ i, j ≤ 5 such that i 6= j. Using the decomposition of the adjoint of E8 into irre-
ducible representations of SU(5)GUT×SU(5)⊥, the matter fields with appropriate SU(5)GUT

representation content localize along the following curves:

5GUT : −ti − tj = 0 (4.11)

10GUT : ti = 0 (4.12)

1GUT : ti − tj = 0, (4.13)

so that the vanishing loci then correspond to local enhancements in the singularity type of
the compactification. A matter field with a given weight will necessarily also be charged
under a U(1) subgroup of SU(5)⊥, dictated by its weight.

Geometric considerations and minimal requirements from phenomenology impose sig-
nificant constraints. For example, the deformation of a singularity will generically contain
monodromies in the seven-brane configuration whereby some of the matter curves will in
fact combine to form a single irreducible matter curve. Group theoretically, the deforma-
tions of a singularity are parameterized by the Cartan modulo the Weyl subgroup of the
singularity. In the present context, the Weyl group of SU(5)⊥ is S5, the symmetric group
on five letters. This discrete group acts as permutations on the five ti’s. The most generic
geometry will involve identifications by the full S5 monodromy group. In particular to have
any smaller monodromy we need to assume certain factorization properties of the unfolding
singularity. But this generic choice is already too restrictive: For example it will force the
5M ,Hd, Hu to all come from a single curve, which would be in conflict with the resolution
of the doublet-triplet splitting problem found in [2], and would also not allow a consistent
identification of matter parity. Thus to fit with phenomenological constraints we need to
assume a less generic monodromy group than S5. The bigger the monodromy group, the
more generic the geometry. In this sense, the most generic monodromies we find are for
two Majorana neutrino scenarios discussed in section 5, where the monodromy group is
the order 8 symmetry group of the square, Dih4. Quite remarkably in these cases, all the
available orbits which are charged under the standard model gauge group are utilized in
the minimal GUT model, including the messenger fields!

Note that the monodromy group cannot be trivial. Indeed, the appearance of mon-
odromies is quite important for achieving a single massive generation in the up-type quark
sector. For example, as found in [20], a rank one 5H × 10M × 10M is quite natural once
monodromies in the seven-brane configuration are taken into account. In the covering
theory, there are then at least two 10M curves, which are exchanged under monodromy.

Consistency with all necessary interaction terms then implies that the monodromy
group may act non-trivially on the other covering theory matter fields of F-theory GUTs.
Each matter field in the covering theory fills out an orbit under the monodromy group, G,
so that if w denotes the corresponding weight, then elements of the form:

Orb(w) = {σ(w)|σ ∈ G} (4.14)

are all identified under the action of the monodromy group. We shall often refer to the
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“length” of the orbit as the number of elements so that:

Length(Orb(w)) = #Orb(w). (4.15)

As a final piece of notation, we will often denote the action of a permutation group element
using cycle notation. For example, (123) acts on the weights t1, . . . , t5 as:

(t1, t2, t3, t4, t5)
(123)−→ (t2, t3, t1, t4, t5). (4.16)

The element (12)(34) instead acts on the weights as:

(t1, t2, t3, t4, t5)
(12)(34)−→ (t2, t1, t4, t3, t5). (4.17)

In our conventions, multiplication of two elements proceeds as in the composition of two
functions, so that (123) · (12) = (13).

The monodromy group will also sometimes identify continuous global symmetries.
The effect of this can lead to the presence of additional discrete symmetries in the low
energy theory.

Returning to the interaction term 5H × 10M × 10M , the weight assignments in SU(5)⊥
for the 5H and 10M ’s are of the form−ti−tj and tk, respectively. If these weight assignments
form an invariant interaction term, then they must satisfy the constraint:

(−ti − tj) + (tk) + (tl) = 0, (4.18)

where we have grouped the weight assignments for each field by parentheses. In this case,
it follows that the weights for the 10M ’s must correspond to ti and tj . The existence of
a single orbit for the 10M ’s implies that there must exist an element of the monodromy
group which sends ti to tj . Note, however, that a given element in the orbit of the 5H
need not form an interaction term with all of the weights in the orbit of the 10M ’s. Indeed,
the only condition is that there is some weight in the orbit of the 10M which can form an
appropriate interaction.

4.2 E7 does not suffice

We now proceed to show that quark and lepton flavor hierarchies are incompatible with a
single point of E7 enhancement. To start our analysis, recall that we require the following
interaction terms:∫

d2θ 5H × 10M × 10M +
∫
d2θ 5H × 5M × 10M + Neutrinos. (4.19)

Suppose to the contrary that an E7 point of enhancement did suffice for all required
interaction terms. In this case, the resulting breaking pattern would fit as E8 ⊃ E7 ×
SU(2)⊥. In particular, of the five ti’s present in SU(5)⊥, the monodromy group inside of
E7 would have to leave the generators t4 and t5 invariant. Indeed, this SU(2)⊥ is one factor
in the “Standard Model subgroup” SU(3)⊥×SU(2)⊥×U(1)⊥ ⊂ SU(5)⊥. Our strategy will
be to show that the orbits non-trivially involve the weights from the SU(2)⊥ factor. Thus,
we will have established that the only available enhancement point must be E8.
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A necessary condition in this regard is that all available weights must be uncharged
under the Cartan generator of this SU(2)⊥ factor. Viewing this generator as an element in
the dual space, this direction can be written as:

t∗SU(2)⊥
≡ t∗4 − t∗5, (4.20)

so that:

t∗SU(2)⊥
(t4) = +1 (4.21)

t∗SU(2)⊥
(t5) = −1 (4.22)

and for i = 1, 2, 3,
t∗SU(2)⊥

(ti) = 0. (4.23)

The available monodromy groups which act on t1, t2 and t3 are given by permutations
on these letters. The subgroups of the symmetric group on three letters are isomorphic to
S3, Z3, Z2 and the trivial group. Since the 5H×10M×10M interaction requires at least two
weights in the orbit of the 10M , it follows that the monodromy group must be non-trivial.
We now show that in all cases, the available monodromy group orbits are inconsistent with
a neutrino sector.

4.2.1 Gmono ' Z3 or S3

First suppose that the monodromy group is either S3 or Z3. In this case, there exists an
order three element which acts on the weights, which without loss of generality we take as:

(123) ∈ Gmono (4.24)

Since the orbit for the 10M is non-trivial, it follows that this orbit must in fact involve t1, t2
and t3. In particular, compatibility with the interaction term 5H ×10M ×10M now implies
that the orbit for the 5H must involve −t1 − t2, −t2 − t3, −t1 − t3. Since index theory
considerations require the 5’s to localize on a curve distinct from 5H , there are precisely
three orbits available, which we label by subscripts:

Orb(5(1)) = t1 + t4, t2 + t4, t3 + t4 (4.25)

Orb(5(2)) = t1 + t5, t2 + t5, t3 + t5 (4.26)

Orb(5(3)) = t4 + t5. (4.27)

The last option given by Orb(5(3)) = t4 + t5 is incompatible with the interaction term
5H × 5M × 10M . Indeed, this interaction term requires the weights for the various fields
to satisfy:

(ti + tj) + (tk + tl) + tm = 0, (4.28)

Where tm = t1, t2 or t3. In all available cases where t4 + t5 appears as a weight, either t4
or t5 will appear twice, and the sum will not vanish.

We therefore conclude that the only candidate orbits for the 5H and 5M involve ti + t4
or ti + t5 for i = 1, 2, 3. Since nothing distinguishes t4 or t5 in our analysis so far, we can
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now fix the orbits of 5M to be ti + t4. Note that compatibility with the interaction term
5H × 5M × 10M now forces the orbit 5H to be ti + t5. Hence, the available orbits are:

Orb(10M ) = t1, t2, t3 (4.29)

Orb(5M ) = t1 + t4, t2 + t4, t3 + t4 (4.30)

Orb(5H) = t1 + t5, t2 + t5, t3 + t5 (4.31)

Orb(5H) = −t1 − t2,−t1 − t3,−t2 − t3. (4.32)

It is now straightforward to eliminate both neutrino scenarios. For example, in the
Dirac neutrino scenario, the interaction term H†dLNR/ΛUV requires the weight assignments
to obey the constraint:

(−ti − t5) + (tj + t4) + (tm − tn) = 0. (4.33)

In particular, this implies that the weight of NR is given by t4− t5. This, however, requires
a non-trivial participation from the roots of SU(2). In other words, the right-handed
neutrino will only touch the E7 point of enhancement provided it is actually an E8 point
of enhancement!

Next consider Majorana neutrino scenarios. In this case, the interaction term HuLNR

leads to the constraint on the weights:

(−ti − tj) + (tk + t4) + (tm − tn) = 0. (4.34)

By inspection of the 5H orbit, it now follows that t4 can only cancel out provided tn = t4.
On the other hand, the Majorana mass term NRNR requires tn − tm must also be

present. Thus, there exists another set of weights such that:

(−ti′ − tj′) + (tk′ + t4) + (tn − tm) = 0. (4.35)

But this implies that tm = t4. In other words, the right-handed neutrino is given by the
weight tn − tm = t4 − t4, which is a contradiction!

To summarize, in the case where the monodromy group is Z3 or S3, the Dirac scenario
is consistent with requirements from flavor, but requires an E8 enhancement point, and in
the case of Majorana neutrinos, we do not find a consistent scenario.

4.2.2 Gmono ' Z2

Next suppose that the monodromy group is given by Z2, so that it acts by interchanging
t1 and t2:

Gmono = 〈(12)〉 ' Z2 (4.36)

This last conclusion is a consequence of the fact that there are only three ti’s available
which can participate in the monodromy group action. In this case, the orbits for the 10M
and 5H are completely fixed to be:

Orb(10M ) = t1, t2 (4.37)

Orb(5H) = −t1 − t2. (4.38)
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In this case, the available orbits for the 5’s are:

Orb(5(1)) = t1 + t3, t2 + t3 (4.39)

Orb(5(2)) = t1 + t4, t2 + t4 (4.40)

Orb(5(3)) = t1 + t5, t2 + t5 (4.41)

Orb(5(4)) = t3 + t4 (4.42)

Orb(5(5)) = t3 + t5 (4.43)

Orb(5(6)) = t4 + t5. (4.44)

Fixing the weight of 10M as t1, this imposes the weight constraint:

(ti + tj) + (tk + tl) + t1 = 0. (4.45)

The available pairs of orbits which can satisfy this constraint are then:

Option 1: Orb(5(1)) = t1 + t3, t2 + t3 and Orb(5(6)) = t4 + t5 (4.46)

Option 2: Orb(5(2)) = t1 + t4, t2 + t4 and Orb(5(5)) = t3 + t5 (4.47)

Option 3: Orb(5(3)) = t1 + t5, t2 + t5 and Orb(5(4)) = t3 + t4. (4.48)

It is now immediate that all Dirac scenarios are ruled out. Indeed, the presence of the
operator H†dLNR/ΛUV requires the weight constraint:

Option 1: (−ti − t3) + (t4 + t5) + (tm − tn) = 0 (4.49)

Option 2: (−ti − t4) + (t3 + t5) + (tm − tn) = 0 (4.50)

Option 3: (−ti − t5) + (t3 + t4) + (tm − tn) = 0. (4.51)

Since ti = t1 or t2, it follows that there does not exist a solution for any tm and tn. Thus,
we conclude that in all Dirac scenarios, flavor considerations require E8.

Next consider Majorana scenarios. In this case, the presence of the operator HuLNR

imposes the weight constraint:

(−t1 − t2) + (tj + tk) + (tm − tn) = 0. (4.52)

We therefore conclude that tm = t1 or t2. In fact, since both tm − tn and tn − tm must be
present in the same orbit, it now follows that the orbit for NR is precisely given as:

Orb(NR) = t1 − t2, t2 − t1. (4.53)

Returning to equation (4.52), it now follows that the weight tj + tk must satisfy
the constraint:

(−t1 − t2) + (tj + tk) + (t1 − t2) = 0, (4.54)

which is not possible, because t2 appears twice in the constraint. Hence, in all cases
we find that an E7 point of enhancement cannot accommodate either a Dirac, or a
Majorana scenario.

It is quite remarkable that flavor considerations from quarks and leptons push the en-
hancment point all the way up to E8. We now turn to a classification of possible mondromy
group orbits compatible with the other elements of F-theory GUTs.
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5 Matter and monodromy in E8

Taking seriously the idea of unification naturally suggests combining the various ingredients
of F-theory GUTs in the minimal number of geometric ingredients necessary. Indeed, as we
have seen in section 4, the presence of an E8 point is not so much an aesthetic criterion, as a
necessary one in order to generate hierarchical CKM and PMNS matrices. The aim of this
section is to classify F-theory GUT models consistent with this E8 point of enhancement.
The only assumptions we shall make are that the following interaction terms be present in
the low energy theory:∫

d2θ 5H × 10M × 10M +
∫
d2θ 5H × 5M × 10M + Neutrinos +

∫
d4θ

X†HuHd

ΛUV
, (5.1)

where here, X is a GUT singlet localized on a curve. In fact, the result we obtain will not
strictly require X†HuHd/ΛUV, but will also apply to µ-terms generated through the vev
of a GUT singlet S through the F-term:6∫

d2θ SHuHd. (5.2)

In order for a GUT scale µ-term to not be present, we shall also require the presence of
a continuous global Peccei-Quinn symmetry. In the context of Majorana neutrino scenarios,
there is a unique PQ symmetry available, with charge assignments [8]:

5M 10M 5H 5H X† NR

Majorana U(1)PQ +2 +1 −2 −3 +5 0
. (5.3)

In the case of Dirac neutrino scenarios, there is a certain degree of flexibility. For simplicity,
we shall take the same convention for PQ charge assignments used in [3, 8]:

5M 10M 5H 5H X† NR

Dirac U(1)PQ +1 +1 −2 −2 +4 −3
. (5.4)

Summarizing, we shall classify all available monodromy group actions in F-theory GUTs
consistent with the assumptions:

• Hierarchical CKM and PMNS matrices

• µ-term from the vev of a GUT singlet

• A PQ symmetry of the type given by line (5.3) for Majorana scenarios and (5.4) for
Dirac scenarios

A remarkable byproduct of this analysis is that after performing this classification,
there is typically just enough room for a messenger sector of a minimal gauge mediated su-
persymmetry breaking scenario where the field X couples to a vector-like pair of messengers
Y and Y ′ through the F-term:

L ⊃
∫
d2θ XY Y ′. (5.5)

6Note that the field S whose vev gives rise to the µ-term is related to our field X by S = D
2
X†/ΛUV.
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In fact, one of the messengers localizes on the same curve as a matter field. More surpris-
ingly, in all but one Dirac scenario, the actual representation content of the messengers
will uniquely be fixed to transform in the 10⊕ 10 of SU(5)GUT! This has distinctive conse-
quences for phenomenology, which we shall comment on later in this section. See figure 3
for a depiction of the relevant geometry.

Quotienting by a discrete subgroup of S5 can also generate highly non-trivial symme-
tries in the effective field theory. For example, the identification of two U(1) factors in
U(1)×U(1) can lead to discrete Z2 subgroup factors.

The action of the mondromy group in Majorana scenario eliminates essentially all other
gauge degrees of freedom other than U(1)PQ. In the case of the Dirac scenarios, we find
that there is one additional gauge boson U(1)χ which is a linear combination of U(1)Y and
U(1)B−L. In addition, we also classify the available chiral multiplets which can localize on
matter curves normal to the GUT seven-brane. These can then constitute potential dark
matter candidates, although we shall return to issues connected with dark matter later in
section 9.

The rest of this section is organized as follows. We first explain in greater detail the
main conditions which we shall demand of the monodromy group action at the E8 en-
hancement point. Next, we proceed to review the available monodromy groups in Dirac
and Majorana neutrino scenarios. See appendix A for further details of this classification.
A remarkable feature of the classification is that in all but one scenario, it forces the messen-
gers to transform in the 10⊕10 of SU(5)GUT. After commenting on some of the implications
of this for phenomenology, we next discuss potential “semi-visible” dark matter candidates
corresponding to electrically neutral components of non-trivial SU(5)GUT multiplets.

5.1 Flux and monodromy

Before reviewing the main elements of the classification, we first discuss some of the nec-
essary conditions on matter curves and fluxes which a monodromy group action must
respect in order to remain consistent with the assumptions spelled out at the beginning of
this section.

Recall that the chiral matter is determined by the choice of background fluxes through
the matter curves of the geometry. In particular, we must require that if a zero mode in
a representation localizes on a curve, then the conjugate representation cannot appear. In
this context, keeping the 5H , 5H and 5M localized on distinct curves imposes the following
condition on the orbits of these fields:

Orb(5M ), Orb(5H), Orb(5H) all distinct. (5.6)

It is important to note that the flux passing through a matter curve need not give
precisely three generations. For example, a 10M curve could in principle contain another
GUT multiplet, and another curve could contain an extra 10M . Indeed, as noted in [8],
because both sets of fields fill out full GUT multiplets, it is in principle possible to allow
some of the messengers and matter fields to localize on the same curve. This will prove
quite important when we discuss conditions necessary for unifying a messenger sector with
the other matter content of F-theory GUTs.
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Figure 3. Depiction of an F-theory GUT in which all of the necessary interaction terms descend
from a single point of E8 enhancement. In all but one Dirac neutrino scenario, accommodating mes-
senger fields in the gauge mediated supersymmetry breaking sector turns out to force the messengers
(Y10 and Y ′

10
) to transform in the 10 ⊕ 10 of SU(5)GUT. GUT singlets such as the right-handed

neutrinos NR and X field localize on curves normal to the GUT seven-brane. Here we have also
included a dark matter candidate D which is localized on a curve.

Before closing this subsection, let us also comment on the sense in which we demand
an E8 structure. The primary condition we consider in this paper is that in a sufficiently
small patch of the Kähler surface wrapped by the GUT seven-brane, there is a point of
enhancement to E8. This does not mean that the geometries we consider must descend
from a single globally well-defined E8 singularity over the entire surface, as in [23]. Indeed,
it is a very strong assumption on the class of compactifications to literally import all of
the structures of the perturbative heterotic string to the F-theory setting. To give just one
example of how this can fail, consider the heterotic E8 × E8 theory compactified on a T 2

with radii chosen so that the full gauge group is E8 × E8 × SU(2). This latter factor is
simply missing from the spectral cover description, and points to a significant limitation on
the class of compactifications covered by such global unfoldings. Along these lines, let us
also note that though there is a Kodaira classification of degenerations of an elliptic fiber
for K3 surfaces, no such classification is known for codimension three singularities, of the
type considered here.7 In particular, though we can find a local patch which describes the
singular fibers in terms of enhancement to E8, extending this over the surface S may include

7As a related point, let us note that orbifold singularities given by quotienting C2 by a discrete sub-

group of SU(2) admit an ADE classification, though there is no similar ADE classification for orbifolds

of C3 and C4, in part because now collapsing Kähler surfaces may be present at these more general

orbifold singularities.
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additional seven-branes which intersect the GUT stack. These additional six-dimensional
matter fields cannot be embedded inside a single E8 factor, but nevertheless are expected
to be present in a general compactification.

The reason that it is important to point out these limitations is that certain statements
have appeared in the literature, which appear to have propagated from [41] that there
is an obstruction to activating a GUT breaking flux without inducing charged exotics.
Under the strong assumptions that the geometry over S is described by the unfolding of
a single globally defined E8, and moreover, that no additional factorization occurs in the
discriminant locus, this can be established [41]. However, this result crucially relies on
knowing that everything unfolds from a single global E8. It is through this assumption
that one determines more information about the homology classes of the matter curves.
Since the index theory is controlled by the cohomology class of the gauge field flux and the
homology classes of the matter curves, this can in principle produce a non-trivial constraint
on the low energy content.

But in the case of a single E8 unfolding at a point, we in general expect to have some
flexibility in the homology class of the corresponding matter fields. Indeed, it is only after
compactifying all curves by specifying the content of the unfolding over all of S that we can
hope to read off the homology classes, and thus determine by index theory considerations
the chiral matter content on a curve. To summarize and repeat: In general local models
based on a compact Kähler surface S with a non-compact normal direction, no obstruction
to achieving doublet triplet splitting with hyperflux has been proven in general, and we shall
assume in this paper that this condition can be satisfied.

5.2 Dirac scenarios

We now discuss the various Dirac neutrino scenarios. We refer to appendix A for a deriva-
tion of the orbit classification. As found in appendix A, there are essentially three distinct
orbits available for matter fields in Dirac neutrino scenarios. In all three cases, we find that
the monodromy group preserves two U(1) factors in SU(5)⊥. Labeling these U(1) factors
as U(1)PQ and U(1)χ the charge assignments we find for the visible matter are:

Minimal Matter 10M , Y10 5M , Y ′5 Y ′
10

Y5 5H 5H X† NR

U(1)PQ +1 +1 +3 +3 −2 −2 +4 −3
U(1)χ −1 +3 +1 −3 +2 −2 0 −5

. (5.7)

where the Y ’s denote messenger fields, and the subscript indicates the representation con-
tent. An interesting feature of this analysis is that it suggests a potentially more general
choice for the U(1)PQ charges. The symmetry U(1)χ is a linear combination of hypercharge
and U(1)B−L. In an integral normalization of U(1)Y so that the lepton doublet has U(1)Y
charge −3, the B − L generator is given as:

U(1)B−L = −1
5

U(1)χ +
2
15

U(1)Y . (5.8)

Note that the charge assignments in the messenger sector have non-trivial U(1)B−L charge.
As one final comment, although our conventions for the U(1)PQ symmetry are chosen so
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as to coincide with those taken in [3, 8], there is a more general possibility for the “PQ
deformation” given by taking an arbitrary linear combination of U(1)PQ and U(1)χ.

The actual choice of the U(1)PQ generator naturally splits into two distinct scenarios,
depending on the action of the monodromy group. We find that the monodromy group is
isomorphic to Z2, Z2 ×Z2, Z3 or S3. Invariance under the corresponding subgroup largely
fixes the direction of the Cartan. Viewing U(1)PQ and U(1)χ as elements in the vector
space dual to the weights spanned by the ti’s, we find that when the monodromy group is
isomorphic to either Z2 or Z2 × Z2,

GDirac
mono ' Z2 or Z2 × Z2: (5.9)

t∗PQ = t∗1 + t∗2 − 3t∗3 − 3t∗4 + 4t∗5 (5.10)

t∗χ = −(t∗1 + t∗2 + t∗3 + t∗4) + 4t∗5, (5.11)

where the t∗i correspond to weights in the dual space such that:

t∗i (tj) = δij. (5.12)

The monodromy group action leaves these generators invariant. With respect to this
convention, Z2 is generated by the permutation group element (12)(34), which acts in the
obvious way on the ti’s. The Z2×Z2 group is generated by (12) and (34). In the case where
the monodromy group is isomorphic to Z3 or S3, the generators for U(1)PQ are instead
given as:

GDirac
mono ' Z3 or S3: (5.13)

t∗PQ = t∗1 + t∗2 + t∗3 − 3t∗4 (5.14)

t∗χ = −(t∗1 + t∗2 + t∗3 + t∗4) + 4t∗5. (5.15)

Without loss of generality, the Z3 group can be taken to be generated by the three cycle
(123). Having specified the underlying symmetries of each Dirac scenario, we now turn to
the explicit orbits in each case.

5.2.1 Z2 and Z2 × Z2 orbits

In this subsection we summarize the classification of the orbits in the cases where the
monodromy group is isomorphic to either Z2 or Z2 × Z2. In this case, the generators for
U(1)PQ and U(1)χ lie in the directions:

G ' Z2 or Z2 × Z2: (5.16)

t∗PQ = t∗1 + t∗2 − 3t∗3 − 3t∗4 + 4t∗5 (5.17)

t∗χ = −(t∗1 + t∗2 + t∗3 + t∗4) + 4t∗5. (5.18)
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In the case where the monodromy group is generated by the order two element (12)(34),
the orbits of the monodromy group are:

GDirac
mono = 〈(12)(34)〉 ' Z2: (5.19)

Minimal Matter (5.20)

Orb(10M , Y10) = t1, t2 (5.21)

Orb(Y ′
10

) = −t3,−t4 (5.22)

Orb(5M ) = t4 + t5, t3 + t5 (5.23)

Orb(5H) = −t1 − t2 (5.24)

Orb(5H) = t1 + t4, t2 + t3 (5.25)

Orb(X†) = t2 − t4, t1 − t3 (5.26)

Orb(NR) = t1 − t5, t2 − t5 (5.27)

for minimal matter. There are in principle additional charged matter fields, which lie in
the additional orbits:

GDirac
mono = 〈(12)(34)〉 ' Z2: (5.28)

Extra Charged Matter (5.29)

Orb(10(1)) = t5 (5.30)

Orb(5(1)) = t1 + t3, t2 + t4 (5.31)

Orb(5(2)) = t1 + t5, t2 + t5 (5.32)

Orb(5(3)) = t3 + t4, (5.33)

as well as additional matter curves supporting neutral fields:

GDirac
mono = 〈(12)(34)〉 ' Z2: (5.34)

Extra Neutral (5.35)

Orb(D(1)) = t1 − t2, t2 − t1 (5.36)

Orb(D(2)) = t1 − t4, t2 − t3 (5.37)

Orb(D(3)) = t3 − t4, t4 − t3 (5.38)

Orb(D(4)) = t3 − t5, t4 − t5. (5.39)

Note that here, and in what follows, by ‘Extra Neutral’ we mean extra fields which are not
charged under the standard model gauge group.

Each such orbit defines a matter curve, so that in addition to the dark chiral matter
listed, we also have the conjugate representations as well. Besides the chiral matter localized
on curves, there are also two zero weights, ZPQ and Zχ which descend from the adjoint
of SU(5)⊥. These can be identified with bulk modes which are roughly the center of mass
motion degrees of freedom for the seven-branes. The U(1)PQ and U(1)χ charges for all of
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the fields listed above are:

Minimal 10M , Y10 5M Y ′
10

5H 5H X† NR

U(1)PQ +1 +1 +3 −2 −2 +4 −3
U(1)χ −1 +3 +1 +2 −2 0 −5

(5.40)

Extra Charged 10(1) 5(1) 5(2) 5(3)

U(1)PQ +4 −2 +5 −6
U(1)χ +4 −2 +3 −2

(5.41)

Extra Neutral D(1) D(2) D(3) D(4) ZPQ Zχ

U(1)PQ 0 +4 0 −7 0 0
U(1)χ 0 0 0 −5 0 0

. (5.42)

In the Dirac scenario where the monodromy group is enlarged to Z2×Z2 = 〈(12), (34)〉,
the only difference is that the size of the orbits are enlarged. The orbits of the monodromy
group in this case are:

GDirac
mono = 〈(12), (34)〉 ' Z2 × Z2: (5.43)

Minimal Matter (5.44)

Orb(10M , Y10) = t1, t2 (5.45)

Orb(Y ′
10

) = −t3,−t4 (5.46)

Orb(5M ) = t4 + t5, t3 + t5 (5.47)

Orb(5H) = −t1 − t2 (5.48)

Orb(5H) = t1 + t4, t2 + t3, t2 + t4, t1 + t3 (5.49)

Orb(X†) = t2 − t4, t1 − t3, t1 − t4, t2 − t3 (5.50)

Orb(NR) = t1 − t5, t2 − t5, (5.51)

while the extra charged matter is:

GDirac
mono = 〈(12), (34)〉 ' Z2 × Z2: (5.52)

Extra Charged Matter (5.53)

Orb(10(1)) = t5 (5.54)

Orb(5(2)) = t1 + t5, t2 + t5 (5.55)

Orb(5(3)) = t3 + t4, (5.56)

and the extra neutral states available are:

GDirac
mono = 〈(12), (34)〉 ' Z2 × Z2: (5.57)

Extra Neutral (5.58)

Orb(D(1)) = t1 − t2, t2 − t1 (5.59)

Orb(D(3)) = t3 − t4, t4 − t3 (5.60)

Orb(D(4)) = t3 − t5, t4 − t5. (5.61)
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5.2.2 Z3 and S3 orbits

We now turn to Dirac scenarios where the monodromy group is isomorphic to either Z3 or
S3. In this case, the two surviving U(1) directions in the Cartan of SU(5)⊥ are:

GDirac
mono ' Z3 or S3: (5.62)

t∗PQ = t∗1 + t∗2 + t∗3 − 3t∗4 (5.63)

t∗χ = −(t∗1 + t∗2 + t∗3 + t∗4) + 4t∗5. (5.64)

With respect to this convention, the possible monodromy groups are generated by either
(123), (132), or the entire symmetric group on three letters, S3. In all cases, the orbits for
the matter fields are the same. Using the results of appendix A, the resulting orbits are:

GDirac
mono ' Z3 or S3 (5.65)

Minimal Matter (5.66)

Orb(10M , Y10) = t1, t2, t3 (5.67)

Orb(Y ′
10

) = −t4 (5.68)

Orb(5M , Y ′5) = t1 + t5, t2 + t5, t3 + t5 (5.69)

Orb(Y5) = −t4 − t5 (5.70)

Orb(5H) = −t1 − t2,−t2 − t3,−t3 − t1 (5.71)

Orb(5H) = t1 + t4, t2 + t4, t3 + t4 (5.72)

Orb(X†) = t1 − t4, t2 − t4, t3 − t4 (5.73)

Orb(NR) = t4 − t5. (5.74)

In this case, the available extra matter fields are more limited, in comparison to the other
Dirac scenarios. The orbits of potentially extra charged matter are:

GDirac
mono ' Z3 or S3 Orbits (5.75)

Extra Charged Matter (5.76)

Orb(10(1)) = t5, (5.77)

Next consider extra GUT singlets which descend from the adjoint of SU(5)⊥. Due to
the action of the monodromy group, there are only two zero weights, which we denote as
ZPQ and Zχ. The remaining weights are of the form tm − tn and localize on curves in the
geometry. The available orbits can all be obtained by acting with a Z3 subgroup of the
monodromy group. Up to complex conjugation, the orbits are:

GDirac
mono ' Z3 or S3 Orbits (5.78)

Extra Singlets (5.79)

Orb(D(1)) = t1 − t5, t2 − t5, t3 − t5 (5.80)

Orb(D(2)) = t2 − t3, t3 − t1, t1 − t2. (5.81)

In addition, there are again two zero weights, ZPQ and Zχ given by the two unidentified
directions U(1)PQ and U(1)χ. These correspond to bulk modes which do not localize on
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curves. This is also the only scenario in which messengers in the 10⊕10 and 5⊕5 are both
in principle possible.

Finally, the charges of the various fields under these U(1) symmetries are:

Minimal 10M , Y10 5M , Y ′5 Y5 Y ′
10

5H 5H X† NR

U(1)PQ +1 +1 +3 +3 −2 −2 +4 −3
U(1)χ −1 +3 −3 +1 +2 −2 0 −5

(5.82)

Extra Charged 10(1)

U(1)PQ 0
U(1)χ +4

(5.83)

Extra Neutral D(1) D(2) ZPQ Zχ

U(1)PQ +1 0 0 0
U(1)χ −5 0 0 0

. (5.84)

5.3 Majorana scenarios: Z2 × Z2 and Dih4 orbits

In this subsection we discuss minimal Majorana neutrino scenarios. As in [8], we shall
assume that the right-handed neutrino states localize on matter curves. In this case, the
covering theory must contain interaction terms which are schematically of the form:

L ⊃
∫
d2θ HuLNR +H ′uL

′N ′R +MmajNRN
′
R, (5.85)

where the primes denote fields in the same orbit. The actual list of interaction terms
will typically be much larger. This can partially be traced to the presence of a Majorana
mass term, which couples states with conjugate quantum numbers. This has the effect of
also eliminating candidate global U(1) symmetries in the quotient theory which would be
explicitly broken by the Majorana mass term.

Majorana scenarios admit three consistent choices of orbits. Before proceeding to
explicit examples, we first focus on the common aspects of all such scenarios, and defer a
more complete characterization to appendix A. In all cases, the monodromy group action
identifies all four U(1) factors of SU(5)⊥. Adopting the same convention used in appendix
A, this leads to a unique direction in the Cartan for U(1)PQ:

t∗PQ = t∗1 + t∗2 + t∗3 − 4t∗4 + t∗5. (5.86)

By inspection, this choice of U(1)PQ is consistent with permutations which leave t4 invari-
ant. Thus, the monodromy group must be a subgroup of S4, the symmetric group on the
remaining ti’s. The U(1)PQ charges of all visible matter are:

Visible Matter 10M , Y10 Y ′
10

5M 5H 5H X† NR

U(1)PQ +1 +4 +2 −2 −3 +5 0
. (5.87)

An interesting feature of all Majorana scenarios is that the only messenger fields which can
be accommodated transform in the 10 ⊕ 10 of SU(5). In addition, note that in this case,
the right-handed neutrinos are neutral under U(1)PQ.
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An additional feature of such scenarios is that because the X field carries odd PQ
charge, its vev will not retain a Z2 subgroup, so we cannot embed matter parity inside of
U(1)PQ. Rather, we shall assume that there is an additional source of Z2 matter parity
under which X and the Higgs fields have charge +1, while the MSSM chiral matter supe-
fields have charge −1. Such symmetries can in principle originate from the geometry of an
F-theory compactification, as discussed for example in [2].

We now proceed to list the consistent Majorana orbits. In the case where the mon-
dromy group is 〈(12)(35), (13)(25)〉 ' Z2 × Z2, the corresponding orbits are:

GMaj
mono = 〈(12)(35), (13)(25)〉 ' Z2 × Z2 (5.88)

Minimal Matter (5.89)

Orb(10M , Y10) = t1, t2, t3, t5 (5.90)

Orb(Y ′
10

) = −t4 (5.91)

Orb(5M ) = t2 + t3, t5 + t1 (5.92)

Orb(5H) = −t1 − t2,−t5 − t3 (5.93)

Orb(5H) = t1 + t4, t2 + t4, t5 + t4, t3 + t4 (5.94)

Orb(X†) = t2 − t4, t1 − t4, t5 − t4, t3 − t4 (5.95)

Orb(NR) = ± (t1 − t3) ,± (t5 − t2) (5.96)

Besides fields with non-trivial weights, there is also a single zero weight ZPQ, which lies in
the same direction as the U(1)PQ generator. For small monodromy group orbits, there is
one possible extra charged matter curve given as:

GMaj
mono = 〈(12)(35), (13)(25)〉 ' Z2 × Z2 (5.97)

Extra Charged (5.98)

Orb(5(1)) = t1 + t3, t2 + t5. (5.99)

Next consider extra GUT singlets of the theory. Since there is a single available U(1) in
SU(5)⊥, only one zero weight denoted as ZPQ can descend from the adjoint of SU(5)⊥. The
remaining weights of the adjoint are of the form tm − tn. Under the provided monodromy
group action, these separate into the following orbits:

GMaj
mono = 〈(12)(35), (13)(25)〉 ' Z2 × Z2 (5.100)

Extra Neutral (5.101)

Orb(D(1)) = ±(t1 − t2),±(t3 − t5) (5.102)

Orb(D(2)) = ±(t1 − t5),±(t2 − t3). (5.103)

The actual charge assignments in the case where the monodromy group is Z2×Z2 are given
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as:

Visible Matter 10M , Y10 Y ′
10

5M 5H 5H X† NR

U(1)PQ +1 +4 +2 −2 −3 +5 0
(5.104)

Extra Charged 5(1)

U(1)PQ +2
(5.105)

Extra Neutral D(1) D(2) ZPQ

U(1)PQ 0 0 0
. (5.106)

Thus, in this case, there is exactly one additional unused orbit, corresponding to the 5(1).
The other Majorana scenarios simply correspond to enlarging the monodromy group

by allowing more elements from S4 to participate in the various orbits. There are two
remaining monodromy groups of order eight, which are both isomorphic to the dihedral
group Dih4 given by rotations and reflections of the square. The explicit generators for
these two monodromy groups are:

G
Maj(2)
8 ' 〈(13)(25), (1253)〉 ' Dih4 ' Z2 n Z4 (5.107)

G
Maj(3)
8 = 〈(13)(25), (1325)〉 ' Dih4 ' Z2 n Z4, (5.108)

where the Z2 acts by inversion on the Z4 factor of the semi-direct product. This also
enlarges the orbits of some of the visible matter field sectors, and identifies some of the
orbits for the dark matter fields. We refer the interested reader to appendix A for a full
classification of all possible orbits. Quite remarkably, in the two cases of the maximal
monodromy group where GMaj

mono ' Dih4, all of the orbits in the visible sector are utilized
except for one 10 curve. But this is precisely where the messenger 10 can localize! Thus,
the E8 enhancement point is just flexible to accommodate all of the minimal matter, but
nothing more! In this case, the matter content and charge assignments are:

Visible Matter 10M , Y10 Y ′
10

5M 5H 5H X† NR

U(1)PQ +1 +4 +2 −2 −3 +5 0
(5.109)

Extra Neutral D(1) ZPQ

U(1)PQ 0 0
. (5.110)

5.4 E8 and the absence of exotica

The presence of a single E8 interaction point also addresses a puzzle encountered in the
context of the gauge mediated supersymmetry breaking sector introduced in [3]. While the
PQ charge assignments for matter fields suggestively hinted at higher unification structures
such as E6, E7 and E8, in [3], it was assumed that this required full multiplets such as the
27 of E6 to localize on matter curves in the SU(5) GUT seven-brane. This would appear
to require a local enhancement from SU(5) to at least E7. In analyzing the matter trapped
along the corresponding curve, however, it was often difficult to remove additional exotic
states from the low energy theory. For example, the adjoint 133 of E7 breaks to E6×U(1)
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as:

E7 ⊃ E6 ×U(1) (5.111)

133→ 780 + 272 + 27−2 + 10. (5.112)

Breaking further to SU(5), it seemed in [3] that in addition to the states in the 27, the mat-
ter curve would also contain irreducible components descending from the 78 of E6. Here,
we have seen that rank one enhancements along matter curves are sufficient in realizing
these higher unification structures. Indeed, there are no exotic fields in this case, and the
presence of the E-type singularity is instead concentrated at a point of the geometry.

5.5 Monodromy and messengers

An intriguing byproduct of the classification of monodromy group orbits is that while it is
indeed possible to accommodate a messenger sector, some of the messengers must localize
on the same curve as the matter fields of the MSSM. Moreover, we have also seen that aside
from the Z3 or S3 Dirac scenarios, in all scenarios the only available messengers transform
in the 10⊕ 10 of SU(5)GUT. It is important to note that the presence of additional matter
fields does not alter the main features of the flavor hierarchy found in [5] and [8] which
was obtained by estimating the overlap of wave functions. A crucial ingredient in the
flavor hierarchy story is that the internal wave function for the massive generation must
not vanish near the interaction point. Indeed, letting ψ(1), . . . , ψ(N) denote the internal
wave functions for the matter fields localized on a curve, a generic linear combination of
these wave functions corresponds to the matter field which actually couples to X in the
messenger sector. Thus, provided there is another interaction point where the messengers
and X fields meet, the other linear combinations for the matter fields will not vanish at the
interaction point, so that the analysis of flavor hierarchies found in [5] and [8] will carry
over to this case as well.

Another consequence of localizing the messenger field Y10 on the same curve as the
10M is that these messengers will now couple to MSSM fields through the coupling:

5HY1010M . (5.113)

This provides a rapid channel of decay for messengers to MSSM fields. Similar considera-
tions hold for the Z3 or S3 Dirac scenarios with messengers in the 5⊕ 5. In particular, this
means that the messengers will not persist as thermal relics. This is a welcome feature of
this model, because stable thermal relics of this type would lead to far greater matter den-
sity than is observed. To a certain extent, this is to be expected because the classification
of monodromy orbits performed earlier eliminates all U(1) symmetries other than U(1)PQ,
and in the case of Dirac neutrino scenarios, also U(1)χ. Since there is no conserved mes-
senger number, it is natural to expect nothing to protect the messengers from exhibiting
such decays.

We have also seen that in all but one scenario, the messenger fields organize into vector-
like pairs in the 10 ⊕ 10 of SU(5), rather than the 5 ⊕ 5. Recall that in minimal gauge
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mediation, the soft mass terms are controlled by C(R) of the messenger fields, where:

TAij T
B
ji = C(R)δAB (5.114)

for matrices TAij in the representation R. Since C(10)/C(5) = 3, it follows that each 10
effectively counts as three 5’s.8 The presence of 10’s also scales the soft scalar masses
relative to their gaugino counterparts. Indeed, letting mscalar

(1) and mgaugino
(1) denote the soft

masses in the case of a minimal gauge mediation scenario with a single vector-like pair in
the 5⊕ 5, a minimal gauge mediation model with N5 vector-like pairs in the 5⊕ 5 has soft
masses:

mscalar =
√
N5 ·mscalar

(1) (5.115)

mgaugino = N5 ·mgaugino
(1) . (5.116)

Thus, the soft scalar masses decrease relative to the gaugino masses.
For the generic case of interest where N5 is a multiple of three, this causes the lightest

stau to become comparable in mass to the bino. In the presence of the PQ deformation,
this can lead to a further decrease in the lightest stau mass which quite suggestively hints
at scenarios with a stau NLSP. Furthermore, this also lowers the upper bound on ∆PQ.
On the other hand, the size of the PQ deformation is bounded below by the requirement
that the saxion have available a decay channel to MSSM particles [6]. This then leads to
an interesting constraint on the viable window of PQ deformations.

5.6 Semi-visible TeV scale dark matter candidates

Strictly speaking, a viable dark matter candidate need only be neutral under U(1)EM and
not under all of SU(5)GUT. Indeed, bino LSP scenarios provide an explicit example of
precisely this type. With this in mind, it is therefore important to examine potential TeV
scale dark matter candidates which are electrically neutral, but not necessarily fully neutral
under SU(5)GUT. The 5 and 10 of SU(5)GUT decompose into irreducible representations of
the Standard Model gauge group as:

SU(5)GUT ⊃ SU(3)C × SU(2)L ×U(1)Y (5.117)

5→ (3, 1)−2 + (1, 2)3 (5.118)

10→ (1, 1)6 + (3, 1)−4 + (3, 2)1. (5.119)

Once SU(2)L × U(1)Y breaks to U(1)EM, it follows that only the 5 and 5 possess elec-
trically neutral candidates, which can be thought of as the “neutrino component” of the
fundamental and anti-fundamental. Note further that in order to retain successful gauge
coupling unification, a full GUT multiplet must persist below the GUT scale.9

8More generally, recall that for the group SU(N), C(N) = 1/2 and for the two index anti-symmetric

representation of dimension N(N − 1)/2, C(N(N − 1)/2) = (N − 2)/2.
9In principle, one could consider scenarios where a piece of the messenger is retained, and another piece of

the dark matter GUT multiplet is also kept, retaining unification. This appears to be a somewhat artificial

means by which to preserve unification in this context, so we shall not pursue this possibility here. In the

context of F-theory GUTs, more motivated choices for splitting up GUT multiplets through appropriate

fluxes can also be arranged, for example as in [16].
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The available orbits for additional 5’s are typically quite limited. As we now explain,
minimal realizations of TeV scale dark matter are problematic in this context, and can
only be accommodated in a single Dirac neutrino scenario.10 Since interaction terms with
the Higgs fields both involve couplings to a 10 of SU(5)GUT, we shall assume that the same
mechanism responsible for generating the µ-term is also responsible for generating mass
for the dark matter candidate so that:∫

d4θ
X†D5D

′
5

ΛUV
. (5.120)

Thus, when X develops a supersymmetry breaking vev, it will induce a mass of µ ∼
100− 1000 GeV for the bosons and fermions of the dark matter multiplet D5 and D′

5
.

The interaction term of line (5.120) is difficult to incorporate at a single point of E8

unification. The reason for this obstruction is quite similar to the one already encountered
for messengers. In all scenarios considered in this section, the orbit of X† contains a weight
of the form:

Orb(X†) 3 t2 − t4. (5.121)

Thus, the weights for D5 and D5 must satisfy the constraint:

(t2 − t4) + (−ti − tj) + (tk + tl) = 0, (5.122)

so that the weights for D5 and D5 are respectively of the form −t2 − ti and t4 + ti. The
options for semi-visible dark matter are therefore quite limited. Indeed, there are essentially
three possible options for all of the dark matter candidates:

Option 1: Orb(D5) 3 −t2 − t1, Orb(D5) 3 t4 + t1 (5.123)

Option 2: Orb(D5) 3 −t2 − t3, Orb(D5) 3 t4 + t3 (5.124)

Option 3: Orb(D5) 3 −t2 − t5, Orb(D5) 3 t4 + t5. (5.125)

Returning to the discussion of viable orbits in Dirac and Majorana scenarios, the analysis
of subsections 5.2 and 5.3 establishes that typically, the length of the orbits other than 5M
are too large to admit additional 5’s in full GUT multiplets. Rather, we find that only in
the Z2 and Z2 × Z2 Dirac neutrino scenarios where the orbit 5M is:

Orb(5M ) = t4 + t5, t3 + t5 (5.126)

is it even possible to accommodate additional dark matter in the 5⊕ 5. The corresponding
orbits for these fields are then:

Orb(5M , D5) = t4 + t5, t3 + t5 (5.127)

Orb(D5) = −t1 − t5,−t2 − t5, (5.128)

and theire charges under U(1)PQ and U(1)χ are:

Semi-Dark 5M , D5 D5

U(1)PQ +1 −5
U(1)χ +3 −3

. (5.129)

10We thank T. Hartman for a related discussion which prompted this analysis.
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Even so, this by itself is insufficient for specifying a dark matter candidate. We will
encounter some obstructions to realizing such a candidate in section 9.

6 Bifundamentals and E-type singularities

In the previous section we focussed primarily on the constraints derived from the condition
that all of the matter of the MSSM consistently embed inside the unfolding of a single
E8 singularity. Indeed, the E-type structure is what leads to an appealing unification
structure as well as geometric rigidity in the construction. In the context of a more complete
geometry, tadpole cancellation considerations generically requires the presence of additional
seven-branes, as well three-branes. These additional branes will introduce additional
gauge group factors, which can in principle contribute to the low energy phenomenology
of the theory.

Given the presence of such objects, it is natural to study whether additional bifun-
damental matter could localize at a pairwise intersection of an E-type seven-brane with
another seven-brane. Even though this would at first appear to represent a mild general-
ization of the quiver-type constructions which are quite common in perturbatively realized
intersecting seven-brane configurations, the presence of an exceptional gauge symmetry
significantly shields the E-type seven-brane from massless bifundamentals charged under
gauge groups of the form E8 × G. As we now explain, states localized at such pairwise
intersections correspond to more exotic objects which resist an interpretation in terms of
conventional particles.

To see the source of this restriction, we first review how bifundamental matter charged
under distinct seven-branes comes about in F-theory constructions. Letting GS and GS′

denote the gauge groups of the corresponding seven-branes wrapping surfaces S and S′,
suppose that S and S′ intersect over a matter curve Σ. This curve corresponds to the
locus of the elliptic fibration where the singularity GS ×GS′ enhances to GΣ ⊃ GS ×GS′ .
“Bifundamental” matter trapped on the curve can be analyzed in terms of a gauge theory
with gauge group GΣ which locally Higgses to GS along S and GS′ along S′ [37]. As an ex-
ample, note that this covers perturbatively realized intersecting seven-brane configurations,
where GS = SU(N), GS′ = SU(M) and GΣ = SU(N +M).

While this clearly generalizes (at least in a non-compact model) to arbitrary N and
M , exceptional singularities impose far more significant restrictions. Indeed, the gauge
theory description just presented requires that GΣ admits an interpretation as a gauge
theory which is locally Higgsed. On the other hand, if GS = E8, then there is no compact
simple gauge group such that G ⊃ E8 × GS′ .11 As a consequence, there is little sense
in which “bifundamental” particle states localize along the intersection locus. Note that
this does not require the presence of a single, globally defined E8 singularity which unfolds
over an isolated surface. Indeed, it is in principle possible to consider geometries where
the singularity enhancements embed in different E8 gauge groups.

11Although there is no sense in which a compact simple gauge group contains E8×GS′ , affine extensions

such as E9 ⊃ E8 provide one possible gauge theory interpretation. In fact this seems compatible with the

interpretation of tensionless strings carrying an E8 current algebra as the analog of “bifundamental matter”.
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This begs the question, however, as to what occurs when an E8 singularity collides with
another stack of seven-branes with gauge group GS′ . These types of colliding singularities
can occur geometrically and in fact have been studied in [42]. In six dimensional theories,
this phenomenon leads to tensionless strings. In the context of F-theory compactified on a
Calabi-Yau threefold, this corresponds to the presence of a vanishing P1 in the base wrapped
by a D3-brane. Compactifying the six-dimensional theory on a T 2, a T-dual version of this
intersecting brane configuration maps to zero size E8 instantons. For example, a seven-
brane which carries E8 gauge symmetry can be Higgsed by turning on an instanton. A
zero size instanton of the seven-brane theory carries non-zero D3-brane charge. Thus,
we can view a zero size E8 instanton as an intersection of a single D3-brane with the
E8 seven-brane. As argued in [43], the small instanton limit includes tensionless strings.
The presence of such tensionless strings can be deduced as follows. One can lift this
configuration to an M-theory configuration with an M5-brane near the boundary of the
space which carries an E8 symmetry. If the M5-brane is brought to the boundary, it
corresponds to a zero size E8 instanton. On the other hand an M2-brane stretched between
the M5-brane and the boundary leads to a tensionless string as the M5-brane approaches
the boundary. This can be further analyzed in F-theory, as in [44–46], and a great deal of
information can be extracted from various duality chains. In particular one can construct
the elliptic genus of such E-strings [47].

Note, however, that although tensionless strings can be BPS objects in 5 and 6 dimen-
sions, this is not the case in four dimensions. The remnants of such tensionless strings in
four dimensions are conformal fixed points. Thus, the exotic possibility of a brane inter-
secting an E-brane can be phrased in four dimensional language as the study of a conformal
theory with an E-type global symmetry, as studied for example in [48, 49]. Some examples
of precisely this type have recently been studied in [50], and F-theory based construc-
tions involving D3-brane probes of seven-branes with E-type gauge symmetries have been
analyzed in [51], which can be viewed roughly as T-dual to the theories we are considering.

In the present context, the E8 symmetry need only be restored at a single point of the
GUT seven-brane. In other words, one can view our background as a theory near an E8

type seven-brane. Thus, if any other brane intersects the GUT or PQ seven-branes, we have
the remnant of a “nearly” conformal theory with an approximate E-type global symmetry.

We are thus led to potentially consider the possibility of an additional sector which is
nearly conformal with an approximate E-type symmetry. In other words we could contem-
plate having an “unparticle sector”, with terminology as in [52]. As the qualification of the
previous paragraph suggests, it is first important to settle how badly the conformal sym-
metry of the theory is broken. There are at least two reasons to expect that the conformal
symmetry is badly broken at scales below MGUT or M∗, the string scale. The first reason
has to do with the fact that the scalar vevs in the geometry which break the E8 symmetry to
SU(5) are typically of the GUT scale or higher (as they determine the background geome-
try), and thus a typical brane will not be particularly close to the E8 point. Thus, the would
be “tensionless string” will have a tension on the order of T ∼M3

∗ ·RGUT ∼ (1015 GeV)2.
Hence, the mass scale for the operator responsible for breaking conformal invariance is
relatively large.
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Another reason why the conformal symmetry should be badly broken is the assump-
tion of naturalness: If the mass scale for breaking of conformal symmetry is small, we will
have a tower of particles charged under the Standard Model group which will dramatically
accelerate the running of the coupling constants, and thus make the unification scale much
smaller than 1016 GeV. This could lead to a certain amount of tension with current con-
straints on the lifetime of the proton, since lowering the GUT scale will also decrease the
suppression scale of dimension six operators. Moreover, lowering the GUT seven-brane far
below 1016 GeV may be difficult to arrange in practice without significant fine tuning.

Thus, even if there are such sectors we are naturally led to consider the corresponding
conformal symmetry to be badly broken at energies near the weak scale. Without knowing
more about the nature of such conformal theories and their breaking, it is difficult to
say much about the light spectrum of particles associated with this conformal system, or
whether any such particles will even survive to low energies. Although perhaps somewhat
exotic, this possibility might produce novel phenomenological signatures at low energies,
and would be interesting to study further.

7 The sequestered sector

The progression of ideas so far has been to examine potential dark objects, first “inside” of
the E8 singularity. Next, we examined possible dark objects which may only “touch” some
part of the E8 singularity. As the next logical step, in this section we consider objects
which are “fully dark” in the sense that they do not directly intersect any seven-brane
connected with the E8 enhancement point.

Such dark objects can either correspond to degrees of freedom localized on other branes,
or fields which propagate in the threefold base of the compactification. In the context of
a local model, these degrees of freedom will decouple in the same limit which turns off
the effects of gravity. If the corresponding degrees of freedom do not develop high scale
supersymmetric masses, the corresponding masses of such particles are then cut off from
the PQ seven-brane, and will not lead to TeV scale objects. For example, the gravitino is of
this type, and has a mass in the far lower range of 10− 100 MeV. Other bulk gravitational
modes have similar masses, but will also interact quite weakly with the visible sector.

Next consider modes localized on three-branes and seven-branes, which will typically
be present in order to satisfy tadpole cancellation conditions. Here there is again a prob-
lem with generating a TeV scale dark matter candidate because the associated degrees of
freedom for these branes only indirectly communicate with the PQ seven-brane. Although
somewhat ad hoc, we can still consider scenarios where such objects develop a TeV scale
mass through some other mechanism. Even though these degrees of freedom are geomet-
rically “sequestered” from the GUT seven-brane, they can still interact non-trivially with
the visible sector. In particular, abelian gauge fields for these branes can mix non-trivially
with the U(1)Y gauge boson of the Standard Model. As we now explain, this type of effect
is difficult to avoid, and suggests that in fact all of the abelian gauge bosons will mix to a
certain extent. This would suggest that “dark gauge bosons” and “dark gauginos” cannot
be dark matter candidates, as they will decay too rapidly.
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7.1 Ubiquitous kinetic mixing

In this subsection we show that dark gauge bosons associated with “sequestered branes”
generically mix with U(1)Y because massive states charged under both groups induce one
loop mixing effects. This kinetic mixing then provides a source by which other aspects of
dark physics can potentially communicate with the Standard Model. To illustrate the main
features of kinetic mixing, we first review this phenomenon in the context of a U(1)1×U(1)2

gauge theory with bifundamental matter. Next, we explain how in the context of string
based constructions, such kinetic mixing will generically arise from massive modes charged
under both group factors.

We now review the primary features of kinetic mixing [53] in the context of a U(1)×U(1)
field theory with Lagrangian:

L ⊃ Im τ1

∫
d2θWα

(1)W
(1)
α + Im τ2

∫
d2θWα

(2)W
(2)
α + Im ε

∫
d2θWα

(1)W
(2)
α . (7.1)

The final term proportional to ε denotes the effects of kinetic mixing. For further discussion
on kinetic mixing see for example [53–57]. If matter is charged under both U(1) factors,
then loop suppressed contributions can convert a U(1)1 gauge field into a U(1)2 gauge field.
This introduces a kinetic mixing term which in a holomorphic basis leads to the coupling:12

ε (µ) = ε (µ0) +
e1e2

16π2
log

µ2
0

µ2
, (7.2)

where the ei denote the charges of the bifundamental under the two gauge groups and µ0

denotes the scale of the UV boundary conditions for the field theory. The crucial point is
that even if the mass of the bifundamental is quite large, it can still contribute to kinetic
mixing between the U(1) gauge fields. In particular, even very heavy states can also
contribute to kinetic mixing.

Returning to more string based constructions, there will generically be massive modes
charged as bifundamentals under the gauge groups of the compactification. Because kinetic
mixing does not decouple, all of these massive states will induce small effects which mix the
various U(1) factors. This can occur even when considering mixing with U(1)Y embedded
inside of SU(5) due to flux breaking of the GUT group. Note, however, that for non-
abelian hidden sector gauge groups, gauge invariance forbids such kinetic mixing terms. In
particular, this implies that although sequestered, kinetic mixing between abelian gauge
fields will generically occur in string based models, and is in fact difficult to turn off.
Moreover, this also implies that it is in fact quite difficult to completely sequester the
effects of a “dark” abelian gauge boson which is light compared to the GUT scale. While a
dark matter scenario involving kinetic mixing is therefore still a possibility, such scenarios
constitute a significant departure from the spirit of minimality advocated here, and so we
shall not pursue this option further in this paper.

12We thank D.E. Morrissey for discussion on this point.
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8 Recent dark matter experiments and theoretical explanations

In the previous sections we have presented a classification of possible dark matter candidates
in the context of F-theory GUTs. In this section we provide a very brief overview of current
experiments which provide tantalizing hints at the observation of dark matter. After
reviewing the primary signals of each such experiment, we turn to possible theoretical
explanations for these results. Aside from astrophysical sources, such experiments may
point towards the observation of dark matter. In this vein, we discuss possible dark matter
explanations for such experiments. These fall into two main categories, corresponding to
dark matter which annihilates, and dark matter which decays. As a disclaimer, our aim
here is not to provide an exhaustive overview of experimental constraints and theoretical
models, but rather, to provide a minimal characterization of dark matter explanations of
these experiments.

8.1 Experiments

There are currently many different astrophysically based experiments which are potentially
capable of detecting dark matter. Recently, the PAMELA satellite experiment [31, 32] has
observed an excess in the positron fraction e+/(e+ + e−) in comparison to the cosmic ray
background in the range of 10 GeV to 100 GeV. In particular, as opposed to the expected
power law falloff, this experiment instead observes an increase in the observed positron
fraction as a function of energy in this range. Moreover, PAMELA does not detect an
excess in the analogous anti-proton fraction. If one accepts a dark matter explanation for
this experiment, this suggests the presence of a dark particle with mass at least 100 GeV
which preferentially produces positrons, rather than anti-protons.

Corroborating evidence for heavy dark matter with mass near the weak scale has also
emerged from various recent experiments which measure the total e+ + e− flux in different
energy ranges. Experiments such as ATIC [33], PPB-BETS [34] and HESS [35] all appear
to be consistent with the PAMELA experiment. Moreover, ATIC appears to detect an
increase in flux up to around 700 GeV, with a steep falloff at higher energies. Again
assuming a dark matter explanation for such experiments, this motivates an even heavier
source of dark matter.

Most recently, however, the FERMI satellite experiment [36], which is also sensitive to
the electron energy spectrum from 20 GeV to 1 TeV detects a milder increase in signal at
energies above 300 GeV, when compared with the results of ATIC. At lower energy scales
FERMI appears to be consistent with ATIC. This leads to a certain amount of tension with
the results of the other experiments. Moreover, the fact that there is no steep falloff in the
signal casts some doubt on dark matter explanations for the other signals. Nevertheless,
FERMI points towards a lower bound on the mass of the dark matter around 1 TeV [58].
Presented with this at least suggestive evidence for the presence of dark matter, we now
turn to some of the broad features of such scenarios.
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8.2 Theoretical scenarios

The suggestive energy range of excess positrons and electrons found in recent experiments
begs for a theoretical explanation of some sort. Either some astrophysical explanation, or
some new production mechanism beyond that found in the Standard Model must be intro-
duced. In this subsection, we discuss these two possibilities, focussing first on the exciting
prospect that such experiments may require a novel extension of the Standard Model. Af-
ter reviewing some of the features of annihilating and decaying dark matter scenarios, we
next discuss potential astrophysical origins for the observed experimental results.

8.2.1 Annihilating dark matter

Assuming that the current experiments possess a particle physics origin, this suggests an
exciting window into the physics of dark objects. Generating an appropriate excess of elec-
trons can potentially be generated provided dark matter particles preferentially annihilate
into leptonic final states. Modulo effects related to the propagation of dark matter across
the galaxy, the annihilation cross section for dark matter must obey the relation:

Φann
e+ ∝

(
ρlocal

DM

mDM

)2

· 〈σannv〉DM
present (8.1)

where in the above, Φe+ denotes the positron flux, ρlocal
DM denotes the local energy density of

dark matter, and 〈σannv〉DM
present denotes the thermally averaged annihilation cross section

for dark matter. Here, the local density for dark matter is known to be greater than the
overall cold dark matter density as:

ρlocal
DM = A · ρDM, (8.2)

whereA is the “accumulation factor” which is on the order of 102 for weak scale dark matter.
To get a sense of the required cross section necessary to explain the results of the

PAMELA experiment, we note that if the corresponding dark matter candidate comprises
all of the dark matter relic abundance, then as explained for example in [59]:

〈σannv〉DM
present ∼ 10−24 − 10−23 cm−3 s ∼ 10−7 − 10−6 GeV−2, (8.3)

will generate a sufficiently large signal to explain current data available from PAMELA.
On the other hand, if the dark matter is given by a WIMP thermal relic, then (ignoring

saxion dilution effects), generating the required relic abundance leads to 〈σannv〉WIMP ∼
10−9−10−8 GeV−2. Generating a sufficient signal from this value of the cross section would
then require an enhancement in the overall size of the cross section, by a factor of 102 to
103. Indeed, we can write:

ΦPAMELA
e+ = ΦWIMP

e+ ·BWIMP, (8.4)

where
BWIMP ∼ 102 − 103 (8.5)
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is some enhancement factor. This enhancement factor can either be argued for by some
astrophysical reason, or through an infrared enhancement in the cross section. In the
latter scenario, an infrared enhancement is in principle possible if dark matter interacts
with a light particle. Summing the corresponding ladder diagrams associated with this
annihilation can lead to a “Sommerfeld enhancement” in the annihilation cross section as
discussed for example in [60–63]. An important ingredient for this infrared enhancement is
the presence of a light bosonic mediator between the dark and visible sectors, with a mass
around a few GeV.

It is important to note that because the flux depends on the square of the number
density, this leads to the expectation that a large number of gamma rays should be gener-
ated near the center of the galaxy. This leads to a certain amount of tension with present
observation [64]. In addition, there are potential issues with constraints from BBN [65].

8.2.2 Decaying dark matter

It is also possible to consider scenarios where a sufficiently long-lived dark matter particle
decays preferentially to leptonic final states. In this case, the corresponding flux is dictated
by the local dark matter energy density as:

Φdec
e+ ∝

(
ρlocal

DM

mDM

)
· ΓDM, (8.6)

where ΓDM denotes the decay rate to positron final states. In order to accommodate
PAMELA, for example, this requires the corresponding lifetime to be on the order of [66]:

ΓDM ∼ 10−51 GeV ∼
(
1026 sec

)−1 . (8.7)

The numerology connected with this lifetime leads to a quite suggestive link with
dimension six operators suppressed by the GUT scale [66]. For example, the decay of a
TeV scale dark matter particle via a “dark analogue” of the operator responsible for proton
decay in ordinary GUT models naturally lead to the requisite decay rate of the form:

ΓDM ∼
m5

DM

M4
GUT

∼ 6× 10−51 GeV ·
(mDM

TeV

)5
(

2× 1016 GeV
MGUT

)4

. (8.8)

Moreover, because the flux scales only linearly with the number density, there is consid-
erably less tension with current constraints on gamma rays from the galactic center, in
comparison with annihilating dark matter scenarios. It is important to stress, however,
that in order for a decaying dark matter candidate to generate a sufficiently large signal,
it cannot contain any rapid decay channels.

8.2.3 Astrophysical explanations

Although less exciting from the perspective of particle physics, astrophysical sources based
on pulsars provides a source of distortion in the energy dependence in the flux measured
by various experiments. Pulsar winds appear to be capable of generating up to 1000 TeV
boosts in the energy of electrons (see for example [67]). Contributions from both nearby
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and distant pulsars can in principle produce signals which can explain the types of signals
found in the current slew of experiments. As shown for example in [68–71] pulsars appear
to provide an explanation for the PAMELA excess. Most conservatively then, pulsars
appear to provide a promising explanation using established physics. This is certainly
quite economical, and the obstructions we shall encounter later in realizing dark matter
capable of generating a sufficient flux in F-theory GUTs will point back to pulsars as an
attractive option.

Upcoming experiments such as FERMI will study anisotropies in the flux back-
ground [72]. This should provide a means by which to distinguish between astrophysical
compact sources and dark matter scenarios based on a larger halo.

9 Exceptional obstructions to annihilating and decaying scenarios

Having discussed potential dark matter candidates in F-theory GUTs, we now proceed
to analyze whether any of these options provide an adequate explanation for recent dark
matter experiments. In all cases we encounter significant obstructions to the existence of
a weak to TeV scale dark matter candidate which can account for these experiments. This
leads us to the conclusion that at least with the minimal geometric ingredients necessary
for other aspects of F-theory GUTs, recent dark matter experiments have an astrophysical
explanation, and moreover, that the gravitino remains as the primary dark matter candidate
in F-theory GUTs.

In principle, there could be other candidate dark matter candidates in the context of
less minimal F-theory GUT models. This would, however, lead to a less motivated as well as
less predictive framework. Given the tight interrelations between various phenomenological
ingredients already found in previous work on F-theory GUTs, in this paper we shall
exclusively focus on those elements which are compatible with minimal considerations.

Even though one might initially think that global considerations could provide many
dark matter candidates invisible to the local model, such candidates do not provide weak to
TeV scale dark matter candidates. Indeed, recall that the available dark matter candidates
roughly split into those which are “inside” the minimal E8 of the local GUT model, possible
candidates “nearby” which interact with at least some seven-brane factor of this E8, and
candidates which are fully sequestered. Of these possibilities, note that since the weak
scale is controlled by the scale of supersymmetry breaking, which is in turn controlled by
the vev of the chiral superfield X, weak or TeV scale dark matter must interact closely
with X, or at least with other degrees of freedom which interact closely with X. As shown
in section 2, degrees of freedom which are completely sequestered from the PQ seven-brane
either have very large masses set by high scale supersymmetric dynamics, or have lower
masses on the order of 10−100 MeV as for the gravitino, while for some fermions the mass
can as be low as 10− 100 keV.

Weak to TeV scale dark matter candidates must interact with degrees of freedom more
closely linked to the supersymmetry breaking sector, and thus, to the PQ seven-brane. In
principle, viable candidates could descend either from the minimal E8 enhancement point,
or from “nearby branes” which intersect the PQ seven-brane, but do not embed in this
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minimal E8. This latter possibility is somewhat exotic, as well as non-minimal as discussed
in section 6, so we shall not dwell on this possibility here. Rather, in this section we shall
instead focus on those candidates which the presence of the E8 enhancement point allows.
Whether or not such candidates are present depends on the specific choice of fluxes. In
principle, there could be many candidates, or none at all. Some of our discussion will be
more general and will also apply to any PQ charged object.

Restricting further to minimal dark matter which descends from a local Higgsing of
the E8 enhancement point, we have seen in section 5 that there are essentially two types
of possible dark matter candidates, corresponding to electrically neutral matter which can
descend either from the 5 or 5 of SU(5), or as a GUT singlet. This first possibility is quite
limited, and meets with significant constraints.

Having dispensed with this option, we are then left with dark matter candidates which
transform as singlets under the GUT group. In the covering theory, such matter fields
descend from the adjoint representation of SU(5)⊥. Our aim in this section will be to show
that these singlets also meet with little success because all available candidates decay faster
than cosmological timescales. This again points to the natural role of gravitino dark matter
in F-theory GUTs.

The rest of this section is organized as follows. We first illustrate that already at the
level of cosmological considerations, the decay of the saxion presents significant obstruc-
tions to realizing a dark matter scenario capable of generating large positron fluxes, as
required to provide a dark matter explanation of experiments such as PAMELA. Indeed,
this decay dilutes the abundance of thermally produced relics, and, in certain instances can
overproduce relics through non-thermal processes. After explaining some of the issues with
such scenarios, we next turn to a list of potential dark matter candidates. First, we ex-
plain in greater detail why current experimental limits strongly disfavor electrically neutral
components in extra 5⊕5’s. Next, we study the available GUT singlets which can descend
from the local Higgsing of an E8 point of enhancement. We find that in all cases, dark
matter candidates which develop a suitable mass are also unstable against rapid decay to
MSSM fields, and briefly comment on some non-minimal possibilities. Finally, we discuss
other aspects of annihilating dark matter scenarios, such as the absence of light GeV scale
gauge bosons inside of E8, and constraints on light scalars.

9.1 Saxion decay and dark matter production in F-theory

In order to generate a sufficiently large signal capable of providing an explanation for recent
dark matter experiments, the relic abundance of the corresponding dark matter particles
must comprise at least a portion of the total dark matter relic abundance. Note that as the
fraction of dark matter given by a candidate decreases, the resulting strength of the signal
generated by this candidate must increase. For example, the flux generated in annihilating
and decaying dark matter scenarios respectively scale as:

Φann
e+ ∝

(
ρlocal

DM

mDM

)2

· 〈σannv〉DM
present (9.1)

Φdec
e+ ∝

(
ρlocal

DM

mDM

)
· ΓDM, (9.2)
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with notation as in equations (8.1) and (8.6). Thus, decreasing the fraction of the dark
matter relic abundance requires a corresponding increasing in either the annihilation cross
section, or decay rate.

Generally speaking, the relic abundance for dark matter can be generated either from
the thermal bath of the early Universe, or at a later stage due to a late decaying particle.
This distinction is especially important in F-theory GUTs, because in the most common
cosmological scenario, oscillations of the saxion will dominate the energy density of the
Universe prior to its decay.13 Indeed, once the saxion decays, it will release a significant
amount of entropy, diluting the relic abundance of all previously generated thermal relics
through the relation:

Ωafter = DsaxΩbefore, (9.3)

where as reviewed in section 3, the typical size of the dilution factor is:

Dsax ∼ 10−4. (9.4)

On the other hand, the decay of the saxion can also generate new sources of dark matter
relics. In the following subsections we analyze both possibilities.

9.1.1 Thermal production

We now consider the expected flux from annihilating and decaying scenarios, under the
assumption that a species of dark matter is produced thermally from the primordial bath,
in which it freezes out at a temperature T f(i). The decay of the saxion imposes quite severe
conditions on annihilating scenarios, but somewhat milder conditions on decaying dark
matter scenarios.

First consider annihilating scenarios. In the case of an annihilating scenario, the flux is:

Φ(i)
e+
∝
(
riρ

local
DM

mi

)2

·
〈
σ(i)v

〉
present

, (9.5)

where ri denotes the actual fraction of dark matter of the ith species participating in
annihilation processes so that:

ri ≡
Ωi

Ωtotal
DM

≤ 1. (9.6)

Since we are assuming the relic abundance is generated thermally, we have the relation:

Ωih
2 ∝ Dsax ·

1〈
σ(i)v

〉
T=T f

(i)

, (9.7)

where here, we have taken into account the effects of saxion dilution.
To compare this with the expected signal from PAMELA, we first compare the expected

signal of this scenario with dilution, to a WIMP scenario with no dilution. Recall that (in
13It is in principle possible to decrease the initial reheating temperature T 0

RH to such a low value that

the oscillation of the saxion never comes to dominate the energy density of the Universe. In keeping with

the broad outlines of the cosmological scenario found in [6], we shall typically take the initial reheating

temperature higher than this low value.
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the absence of saxion dilution), WIMPs naturally produce the correct relic abundance to
account for all of the dark matter. In particular, we have:

Ωtotal
DM h2 = ΩWIMPh

2 ∝ 1
〈σv〉WIMP

, (9.8)

where 〈σv〉WIMP is the annihilation cross section for WIMPs and the constant of propor-
tionality is roughly the same in lines (9.7) and (9.8). Taking the ratio of Ωih

2 to Ωtotal
DM h2,

we therefore obtain:
Ωih

2

Ωtotal
DM h2

= Dsax ·
〈σv〉WIMP〈
σ(i)v

〉
T=T f

(i)

, (9.9)

In other words, returning to equation (9.6), we obtain:

〈
σ(i)v

〉
T=T f

(i)

= Dsax ·
〈σv〉WIMP

ri
. (9.10)

Assuming that the cross section at freeze out is roughly the same as at present, we can
now express the flux as:

Φ(i)
e+
∝
(
riρ

local
DM

mWIMP

)2

·Dsax ·
〈σv〉WIMP

ri
. (9.11)

In other words, in comparison with a WIMP scenario, the expected flux from the annihi-
lating scenario is:

Φ(i)
e+

= riDsaxΦWIMP
e+ =

riDsax

BWIMP
ΦPAMELA
e+ . 10−7 · ΦPAMELA

e+ , (9.12)

where in the second relation we have used equation (8.4), and in the last inequality, we
have used the fact that ri, Dsax ∼ 10−4 and B−1

WIMP ∼ 10−2 − 10−3 are all factors less
than one. Thus, saxion dilution exacerbates the problems with generating a sufficiently
large signal already present in WIMP scenarios! It is therefore necessary to boost the cross
section by a factor of at least 107, which is unappealing. To bypass this constraint, it seems
necessary to consider cosmological scenarios where the saxion never comes to dominate the
energy density of the Universe. This requires a significant decrease in the initial reheating
temperature T 0

RH, to values in the range of 104− 106 GeV [6]. In principle, this is a logical
possibility, but runs counter to the idea that gravity should in principle decouple from
gauge theory considerations. Indeed, lowering the initial reheating temperature so much is
in conflict with this parameter range.

The consequences of saxion dilution in decaying dark matter scenarios are somewhat
milder. Assuming that the decay rate for weak scale decaying dark matter is controlled by
a dimension six operator with suppression scale ΛUV, the relevant decay rate scales much
as in equation (8.8):

ΓDM ∼
m5

DM

Λ4
UV

∼ 6× 10−51 GeV ·
(mDM

TeV

)5
(

2× 1016 GeV
ΛUV

)4

. (9.13)
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Thus, while dilution introduces a decrease in the expected flux by a factor of 10−4, note
that a factor of 10 decrease in ΛUV below the GUT scale easily makes up this difference.
In the context of F-theory GUTs, such suppression scales are quite commonplace, either
as the mass scale of a normal curve, or from enhancements in the effective scale due to the
local behavior of Green’s functions. In other words, the effects of saxion dilution are far
milder in decaying scenarios.

9.1.2 Non-thermal production

Even though the decay of the saxion dilutes the thermally produced relics, its decays can
generate a new source for such particles. This type of production mechanism requires the
mass of the saxion to be greater than the decay products. When this is not the case,
the relevant decay channel is closed, and some other means must be found to generate a
sufficient relic abundance. Indeed, we find that if saxion decays can generate the relevant
dark matter, then they will be overproduced.

Kinematic considerations require that the saxion mass be at least as heavy as the dark
matter candidate. Otherwise, the needed decay channel will be unavailable. Assuming a
TeV scale dark matter candidate, this is already quite problematic, because the mass of
the saxion is more typically in the range of 500 GeV, than a TeV. The reason for this upper
bound comes about because of the interplay between the mass of the saxion and the PQ
deformation through the relation [6]:

msax ∝ ∆PQ, (9.14)

where the constant of proportionality depends on the embedding of SU(5)×U(1)PQ in E8,
and details of the saxion potential. For illustrative purposes, we use the mass scale induced
by the PQ deformation for X as a rough estimate that this constant is on the order of four.
On the other hand, the PQ deformation also induces a tachyonic contribution to the mass
squared of many of the scalars, including the stau [3]:

m2 = m2
0 − q∆2

PQ, (9.15)

where m0 denotes the mass in the absence of the PQ deformation. This leads to an upper
bound on the size of the PQ deformation. To overcome this obstacle, it is necessary to
increase m0, which will increase the amount of fine-tuning present in the gauge mediation
sector.

To take an explicit example, in a Dirac neutrino scenario with zero PQ deformation,
the mass of the lightest stau with minimal fine tuning is on the order of 200 GeV. With a
single pair of 10⊕ 10 messengers with minimal fine tuning, the maximum allowed ∆PQ is
on the order of 150 GeV. This would lead to a saxion mass on the order of 600 GeV, which
is significantly less than 1 TeV. To generate a TeV scale mass would require a factor of two
increase in the soft scalar masses generated by gauge mediation effects. This would also
increase the mass of the squarks, and would exacerbate the fine-tuning already present.

Leaving aside this potential worry, we now show that there are further issues with
generating the required relic abundance from saxion decays. It is important to note that
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the decay to a dark matter candidate produced in this way need not be the dominant decay
channel. For example, in F-theory GUTs, the dominant decay channel for the saxion is
to a pair of Higgs fields. The branching fraction to gravitinos is significantly smaller, as
the relevant decay amplitude derives from a Planck suppressed higher-dimension operator.
Even so, because the gravitino is stable, the resulting relic abundance of gravitinos produced
in this way can still comprise up to ten percent of the relic abundance [6]. Thus, even if a
dark matter candidate couples only very weakly to the saxion through a higher dimension
operator, the branching fraction can still generate a sizable dark matter relic abundance.

We now compute the relic abundance generated by the decay of the saxion:

ΩNT
φ h2 =

(
s0

ρc,0

)
mφY

NT
φ , (9.16)

where s0 and ρc,0 respectively denote the present entropy and critical density, and Y NT
φ

denotes the yield non-thermally generated by the decay of the saxion:

Y NT
φ ∼

nNT
φ,after

safter
, (9.17)

where nNT
φ,after denotes the number density of the dark matter generated non-thermally, and

safter denotes the entropy density after the decay of the saxion. As reviewed for example
in [6], this can be related to the reheating temperature for the saxion, and the branching
fraction of the saxion to dark matter so that:

Y NT
φ ∼ 3

2
Bφ

T sax
RH

msax
, (9.18)

where Bφ denotes the saxion branching fraction to the dark matter species φ. The resulting
relic abundance is then given by:

ΩNT
φ h2 =

(
s0

ρc,0
h2

)
· 3

2
mφBφ

T sax
RH

msax
. (9.19)

Using s0/ρc,0 ∼ 3×108 (h2 GeV)−1, and the rough estimate mφ ∼ msax/2, we therefore find:

ΩNT
φ h2 ∼ 2× 108 GeV−1 ·Bφ · T sax

RH . (9.20)

To estimate the resulting relic abundance, we now determine the branching fraction
to the dark matter candidate φ. Assuming the mass of dark matter chiral superfields Φ1

and Φ2 is generated through the higher dimension operator:

L ⊃ γ
∫
d4θ

X†Φ1Φ2

ΛUV
, (9.21)

we now show that the coupling to the saxion leads to an overproduction of dark
matter particles.

For the purposes of this discussion we may take the bosonic component of the chiral
superfield to be the quasi-stable dark matter candidate. If the fermionic component is
lighter, then the bosonic component will eventually decay to its fermionic partner, also
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emitting a gravitino. Letting x, φ1 and φ2 denote the scalar components of these chiral
superfields, taking derivatives of the Kähler potential shows that the bosonic component
fields couple as:

L ⊃ γ φ2

ΛUV
∂µx∂µφ1 + γ

φ1

ΛUV
∂µx∂µφ2 + h.c. (9.22)

Here we shall assume that the bosons are stable against further decays, and then compute
the branching fraction. Writing x = 〈x〉 exp(ia + s), with s the saxion, it follows that
the saxion indeed couples to the φi’s. Provided the mass of the saxion is larger than the
combined mass of the two decay products, we obtain a rough estimate for the decay rate:

Γx→φ1φ2 ∼
γ2

32π
m3

sax

Λ2
UV

. (9.23)

With the decay rate in hand, we now compute the expected branching fraction. Returning
to equation (3.8), the total saxion decay rate is related to the axion branching fraction as:

Γsax ∼
1
Ba

Γa ∼
1
Ba

1
64π

m3
sax

f2
a

, (9.24)

where Ba is the branching fraction to axions and fa is the axion decay constant. Hence,
the branching fraction to dark matter is:

Bφ =
Γx→φ1φ2

Γsax
∼ Ba

m2
φ

Λ2
GMSB

∼ 1× 10−4 ·Ba
( mφ

1 TeV

)2
(

105 GeV
ΛGMSB

)2

, (9.25)

where we have used the fact that in F-theory GUTs, the scale of supersymmetry breaking
and axion decay constant are related to the characteristic scale of gauge mediation as
FX/fa = ΛGMSB ∼ 105 GeV [3]. Further, we have taken the natural value mφ ∼TeV for
the mass of the dark matter candidate. The saxion reheating temperature is:

T sax
RH ∼ 0.5

√
ΓsaxMPL ∼ 10 GeV · 1

B
1/2
a

( mφ

1 TeV

)3/2
. (9.26)

Returning to equation (9.20), the resulting thermal relic abundance is then:

ΩNT
φ h2 ∼ 2× 105 ·B1/2

a

( mφ

1 TeV

)7/2
(

105 GeV
ΛGMSB

)2

. (9.27)

The actual branching fraction to axions depends on the mass of the saxion. Indeed, as
the saxion becomes more massive than the corresponding states in the MSSM, additional
channels will begin to open up. As a consequence, the value of Ba can decrease, even though
the decay rate to axions scales with m3

sax. Note, though, that to generate a suitable relic
abundance would require Ba ∼ 10−10, which is far smaller than the value of Ba ∼ 10−3 −
10−1 found in [6]. Hence, we deduce that the decay of the saxion actually overproduces
the corresponding relic. In the above we also assumed that the bosonic component was the
dark matter. If this is not the case, note that it will decay, generating a further source of
gravitino relics, which appears to be far greater than can otherwise be allowed.
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Summarizing, the above analysis demonstrates that the decay of the saxion overpro-
duces TeV scale dark matter candidates, when such a decay channel is available. Turning
this discussion around, we can view this either as a constraint on how the saxion couples
to the dark matter, or as an upper bound on the mass of the saxion, so that kinematics
can forbid such decays. In the former case, this leaves open exactly how the dark matter
develops a weak scale mass. This can in principle be accommodated if another GUT sin-
glet develops a weak scale, but this is somewhat less minimal. Assuming that the saxion
can decay to the dark matter candidate, this imposes an intriguing cosmological upper
bound on the mass, of around 1 TeV. Combined with the condition that the saxion must
be allowed to decay to an MSSM scalar such as the Higgs, this leads to the mass range:

230 GeV . msax . 1 TeV. (9.28)

We have also seen that in the case of thermally produced annihilating dark matter,
saxion dilution tends to eliminate any candidate signatures. On the other hand, thermally
produced decaying dark matter can still generate a sizable signal capable of explaining
excess fluxes. Even so, it is possible that including additional non-minimal ingredients
could produce an appropriate relic abundance. Assuming this is the case, we now turn to
other obstructions with realizing such scenarios in minimal F-theory GUT models.

9.2 Eliminating semi-visible candidates

In this section we discuss obstructions in F-theory associated with realizing dark mat-
ter from the electrically neutral component of the 5 ⊕ 5 of SU(5). In subsection 5.6 we
found that in the case of a Dirac scenario with Z2 monodromy group, it is indeed possi-
ble to consider vector-like pairs in the 5 ⊕ 5 which develop a mass through the Giudice-
Masiero operator: ∫

d4θ
X†D5D

′
5

ΛUV
→
∫
d2θ µDD5D

′
5
. (9.29)

This induces a mass µD on the order of the µ parameter. The electrically neutral com-
ponents of the 5 and 5 then provide potential dark matter candidates. A quite attractive
feature of such semi-visible dark matter candidates is that although electrically neutral,
this component can still couple to the Standard Model through SU(2) interactions.

Current experimental limits impose strong restrictions on the existence of such elec-
trically neutral objects. First note that in order not to spoil the unification of the coupling
constants, all of the components of the GUT multiplet must have comparable mass. Thus,
we can expect extra states with non-trivial SU(3)C and U(1)EM charges. Direct searches
at the Tevatron only rule out extra colored states with mass less than about 300 GeV [73],
which is well below the expected mass of D5 and D′

5
.

A more stringent constraint comes from the SU(2) doublet components of the dark
matter candidate.14 Experimental bounds on dark matter scattering off of nuclei in experi-
ments such as CDMS are sensitive to a convolution between the total flux from dark matter
and the effective cross section for scattering with nuclei from Z0 gauge boson exchange. In

14We thank D.E. Morrissey for discussion on this point.
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this context, the corresponding effective cross section for matter far above the GeV scale
is [74]:15

σDM,nuc ∼ 7.5× 10−39 cm2. (9.30)

This is to be contrasted with current experimental constraints from CDMS. Assuming that
all of the dark matter relic abundance participates in nuclei scattering, and moreover, that
the local dark matter density is roughly 0.3 GeV/cm3, this leads to a lower bound on the
size of the allowed cross section [76]:

σCDMS . 10−43 cm2. (9.31)

It is important to note that this result scales linearly with the overall dark matter number
density, so in principle, lowering the local density by roughly a factor of 10−4 can provide
one way for a dark matter candidate to evade such a bound. Note, however, that this
will also lower the expected positron flux which experiments such as PAMELA can in
principle produce.

An alternative way to evade such a bound is in principle possible in inelastic dark
matter (iDM) scenarios, in which a small Majorana mass is also included in the effective
Lagrangian [77]. This induces a mass splitting between the two Dirac mass states. In
particular, when the lighter dark matter state interacts with the nuclei, it can “up-scatter”
to the heavier state. Kinematic considerations now imply that the resulting phase space
available for the convolution between dark matter flux and the total cross section is some-
what lower. In order for this mechanism to lead to a sufficient suppression in the reaction
rate expected from CDMS, this requires a Majorana mass term of at least 100 keV.

Generating such a large Majorana mass term is quite problematic in minimal F-theory
GUT setups. Indeed, this requires the presence of a higher dimension operator such as:

∫
d2θ

(
HuLD′

5

)2

ΛUV
, (9.32)

where LD5
denotes the “lepton doublet” part of D5. On the other hand, similar operators

in the Majorana neutrino scenario of [8] generate masses closer to 10 meV. Without adding
a significantly more elaborate sector with which D5 and D′

5
interact, this effectively rules

out such semi-visible dark matter candidates.

9.3 Unstable GUT singlets

In the previous subsections we found that the decay of the saxion in F-theory GUTs
dilutes thermal relics, and can also overproduce dark matter candidates. Leaving aside
these potential concerns, in this section we show that all of the available dark matter
candidates decay far too rapidly. This then eliminates all annihilating and decaying dark
matter scenarios based on particles embedded in E8.

Any dark matter candidate must be sufficiently long-lived. Dimension five decay op-
erators pose significant problems for the lifetime of a dark matter candidate. Indeed, the

15See for example [75] for a brief discussion of how to extract the value of this cross section from [74].
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expected decay rate in this case is of the form:

ΓDM ∼
m3

DM

M2
GUT

∼ 10−24 GeV ·
( mDM

1 TeV

)3
(

3× 1016 GeV
MGUT

)2

(9.33)

∼ 10 sec−1 ·
( mDM

1 TeV

)3
(

3× 1016 GeV
MGUT

)2

, (9.34)

which is far shorter than any cosmological timescale. In other words, if a dark matter
candidate can couple to MSSM fields through a dimension five operator, and if the decay is
kinematically allowed, the corresponding field will be unstable on cosmological timescales.

The aim of this section is to show that all of the GUT singlets which descend from
the local Higgsing of E8 decay far too rapidly to constitute dark matter candidates. This
is a general statement, and does not require delving into the particular details of a specific
annihilating or decaying scenario. The relevant higher dimension operators can all be
generated much as in [2, 3, 8] by integrating out heavy modes localized on curves.

Available GUT singlets which can constitute dark matter descend from the adjoint
of SU(5)⊥, so in the languague of section 5 are either given as non-trivial weights of the
form tm− tn, or as zero weights. Of the available states which descend from the adjoint of
SU(5)⊥, note that the zero weights correspond to bulk modes of other seven-branes. Since
no symmetry forbids F-terms involving one zero weight and three MSSM chiral superfields,
we conclude that such modes cannot constitute dark matter candidates. This leaves only
the weights of the form tm − tn as possibilities.

With notation as in section 5, the available GUT singlets are given as either D(i), the
conjugates Dc

(i) which localize on the same curve, or as GUT singlets which localize on
either the X curve or the NR curve. Index theory considerations exclude the possibility of
fields conjugate to X or NR, but in principle, extra “generations” on these curves could be
present, which we denote as X̂ and N̂R. Using the classification of section 5, the available
dark matter candidates, and their respective charges under the available symmetries in the
various neutrino scenarios are:

GDirac
mono ' Z2 or Z2 × Z2 X̂ N̂R D(1), D

c
(1) D(2) Dc

(2) D(3), D
c
(3) D(4) Dc

(4)

U(1)PQ −4 −3 0 +4 −4 0 −7 +7
U(1)χ 0 −5 0 0 0 0 −5 +5

(9.35)

GDirac
mono ' Z3 or S3 X̂ N̂R D(1) Dc

(1) D(2), D
c
(2)

U(1)PQ −4 −3 +1 −1 0
U(1)χ 0 −5 −5 +5 0

(9.36)

GMaj
mono X̂ N̂R D(1), D

c
(1) D(2), D

c
(2)

U(1)PQ −5 0 0 0
. (9.37)

Of these candidates, it is necessary to state how each available dark matter candidate
can develop a weak to TeV scale mass. The most minimal option is to correlate the mass
through the same type of mechanism which generates the µ term, through a Giudice-
Masiero operator. It is in principle possible to also consider cubic superpotential couplings
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between three GUT singlets where one field develops a weak scale vev. Although less
minimal, this possibility can occur in F-theory GUTs provided the field which develops
a vev has a suitable PQ charge. Indeed, the PQ deformation can induce a tachyonic
contribution to the mass squared for the bosonic component of this field. Letting Φ(i)

denote candidate dark matter chiral multiplets, this leaves the following possibilities for
how the dark fields can develop a suitable mass:

∫
d4θ

X†Φ(1)Φ(2)

ΛUV
or
∫
d2θ Φ(1)Φ(2)Φ(3), (9.38)

where in the second possibility, at least one of the Φ(i)’s develops a weak scale vev.

Our strategy to deduce the absence of any quasi-stable dark matter candidates is as
follows. Given a pair of chiral superfields Φ(i) and Φ(j)which develop a weak to TeV scale
mass through the coupling:,

µij

∫
d2θ Φ(i)Φ(j), (9.39)

then either both fields are quasi-stable, or neither is. Indeed, if the components of Φ(i)

decay rapidly, then mixing through the mass term will also induce a decay for Φ(j). It
is therefore enough to show that for any available pair of chiral superfields, at least one
member of the pair decays rapidly to MSSM fields.

We now demonstrate that in all cases, a TeV scale GUT singlet possesses a rapid decay
channel. Since the actual weight assignments are somewhat specific to the details of a given
monodromy group, we discuss these possibilities separately.

9.3.1 Dirac scenarios: GDirac
mono ' Z2 or Z2 × Z2

First consider monodromy scenarios where GDirac
mono ' Z2 or Z2 × Z2. Consistency with

U(1)PQ and U(1)χ leads to the following options for generating weak to TeV scale masses
in this Dirac scenario:

GDirac
mono ' Z2 or Z2 × Z2 (9.40)∫

d4θ
X†Φ(1)Φ(2)

ΛUV
=⇒ Φ(1) = Dc

(2), Φ(2) = D(1), D
c
(1), D(3), D

c
(3) (9.41)∫

d2θ Φ(1)Φ(2)Φ(3) =⇒ Φ(1) = X̂, Φ(2) = D(2), Φ(3) = D(1), D
c
(1), D(3), D

c
(3) (9.42)∫

d2θ Φ(1)Φ(2)Φ(3) =⇒ Φ(1) = X̂, Φ(2) = N̂R, Φ(3) = Dc
(4) (9.43)∫

d2θ Φ(1)Φ(2)Φ(3) =⇒ Φ(1) = N̂R, Φ(2) = Dc
(2), Φ(3) = Dc

(4). (9.44)

As we now explain, all available dark matter candidates are unstable on cosmological
timescales. To establish this, recall that the available orbits for minimal matter and possible
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dark matter candidates are:

GDirac
mono = 〈(12)(34)〉 ' Z2: (9.45)

Orb(10M , Y10) = t1, t2 (9.46)

Orb(Y ′
10

) = −t3,−t4 (9.47)

Orb(5M ) = t4 + t5, t3 + t5 (9.48)

Orb(5H) = −t1 − t2 (9.49)

Orb(5H) = t1 + t4, t2 + t3 (9.50)

Orb(X†) = t2 − t4, t1 − t3 (9.51)

Orb(X̂) = t4 − t2, t3 − t1 (9.52)

Orb(NR, N̂R) = t1 − t5, t2 − t5 (9.53)

Orb(D(1), D
c
(1)) = t1 − t2, t2 − t1 (9.54)

Orb(D(2)) = t1 − t4, t2 − t3 (9.55)

Orb(Dc
(2)) = t4 − t1, t3 − t2 (9.56)

Orb(D(3), D
c
(3)) = t3 − t4, t4 − t3 (9.57)

Orb(Dc
(4)) = t5 − t3, t5 − t4. (9.58)

By inspection, D(1) and Dc
(1) are in the same orbit, and similar considerations apply for

D(3) and Dc
(3). Hence, nothing forbids the mass terms:∫

d2θ D(1)D(1) +
∫
d2θ D(3)D(3), (9.59)

which will generically be at the GUT scale. Thus, these fields are unsuitable as dark matter
candidates.16 In particular, this means that potential couplings involving these operators
are now excluded as dark matter candidates, since as in the usual seesaw mechanism, the
mass of the heavy state is near the GUT scale, and the light state will have mass closer to
µ2/MGUT. This eliminates lines (9.41) and (9.42) as viable options.

The remaining dark matter candidate fields are then given by either the bosonic or
fermionic component of the chiral superfields N̂R, X̂, Dc

(2), or Dc
(4). As we now argue,

N̂R must constitute a TeV scale dark matter candidate. Note that of the two remaining
options given by lines (9.43) and (9.44), both involve the field N̂R. Either N̂R corresponds
to a dark matter candidate, or it generates a weak to TeV scale vev, inducing a mass term
for the other dark matter candidates.

In the context of F-theory GUTs, however, N̂R will typically not acquire a vev due
to the PQ deformation. Indeed, since it has the same charge as the X field, the PQ
deformation will induce a positive mass squared contribution. Moreover, if N̂R did develop
a vev, it would induce matter parity couplings in the low energy theory:∫

d4θ
H†dLNR

ΛUV
→
∫
d4θ

H†dL 〈NR〉
ΛUV

. (9.60)

16It is also possible to show that these candidates also couple to MSSM fields through dimension five

operators, so that they will also decay rapidly.
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This is a somewhat more exotic possibility in the context of F-theory GUTs, and so we will
not dwell on this in any great detail. Another fine-tuned possibility would be to require
that the mass of N̂R is quite low. In this case, kinematic considerations could exclude
a potential decay channel. This is again a somewhat exotic possibility in the context of
F-theory GUTs. Indeed, if anything, the PQ deformation tends to further increase the
mass of N̂R. Thus, in all cases we conclude that in any candidate dark matter scenario,
there must exist a quasi-stable N̂R field of TeV scale mass which is localized on the same
curve as the other right-handed neutrinos.

As we now explain, the candidate field N̂R always couples to operators which induce
rapid decays of the field. Since N̂R couples through a mass term to the remaining dark
matter candidates, it follows that all remaining states will be unstable against rapid decay.
In this regard, it is tempting to simply end the discussion here by invoking the presence of
operators of the form: ∫

d4θ
H†dLN̂R

ΛUV
. (9.61)

Note, however, that this is the same type of term which induces a Dirac neutrino mass [8].
Since there are only three generations of L’s, one linear combination of the modes localized
on the NR curve will not couple to H†dL. Thus, this coupling is by itself not enough to
guarantee that N̂R decays rapidly.

Besides H†dLN̂R/ΛUV, N̂R also couples to MSSM fields through the dimension
five operator:∫

d2θ
N̂R5M5M10M

ΛUV
: N̂R = t1 − t5, 5M = t4 + t5, 5M = t3 + t5, 10M = t2, (9.62)

where we have also listed the corresponding weight assignments. Both the bosonic and
fermionic components of the N̂R chiral multiplet can now decay rapidly.

Some examples of the available decay channels for the bosonic and fermionic compo-
nents of N̂R are respectively:

φ bNR
→ τ̃±1 τ

∓ντ . (9.63)

ψ bNR
→ τ̃±1 τ̃

∓
1 ντ , (9.64)

where τ̃±1 denotes the lightest stau. In F-theory GUTs, the mass of the lightest stau is
typically in the range of 100− 300 GeV. Since the components of N̂R are required to be in
the TeV range just to provide a possible dark matter candidate, it follows that this dark
matter candidate is unstable against rapid decay. It now follows that since all remaining
candidates mix by a mass term with the components of N̂R, all available dark matter
candidates are unstable against rapid decay.

9.3.2 Dirac scenarios: GDirac
mono ' Z3 or S3

Next consider monodromy scenarios where GDirac
mono ' Z3 or S3. Returning to our general

discussion of available GUT singlets, compatibility with U(1)PQ and U(1)χ leads to the
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following options:

GDirac
mono ' Z3 or S3 (9.65)∫

d4θ
X†Φ(1)Φ(2)

ΛUV
=⇒ Φ(1) = N̂R, Φ(2) = Dc

(1) (9.66)∫
d4θ

X†Φ(1)Φ(2)

ΛUV
=⇒ Φ(1) = X̂, Φ(2) = D(2), D

c
(2) (9.67)∫

d2θ Φ(1)Φ(2)Φ(3) =⇒ Φ(1) = D(1), Φ(2) = Dc
(1), Φ(3) = D(2), D

c
(2). (9.68)

Of these options, we can immediately eliminate the last possibility, because it involves a
vector-like pair of fields localized on the same curve. Such modes will generically lift from
the low energy theory, and so this coupling is ruled out. This leaves the first two options,
and N̂R, Dc

(1), X̂, D(2) and Dc
(2) as potential dark matter candidates. To establish the

absence of a stable dark matter candidate, it is enough to show that the candidates N̂R,
D(2) and Dc

(2) are all unstable on cosmological timescales. To this end, recall that the orbits
for the minimal matter and relevant dark matter candidates are as obtained in section 5:

GDirac
mono ' Z3 or S3 (9.69)

Orb(10M , Y10) = t1, t2, t3 (9.70)

Orb(Y ′
10

) = −t4 (9.71)

Orb(5M ) = t1 + t5, t2 + t5, t3 + t5 (9.72)

Orb(5H) = −t1 − t2,−t2 − t3,−t3 − t1 (9.73)

Orb(5H) = t1 + t4, t2 + t4, t3 + t4 (9.74)

Orb(X†) = t1 − t4, t2 − t4, t3 − t4 (9.75)

Orb(NR, N̂R) = t4 − t5. (9.76)

Orb(Dc
(1)) = t5 − t1, t5 − t2, t5 − t3 (9.77)

Orb(D(2)) = t2 − t3, t3 − t1, t1 − t2 (9.78)

Orb(Dc
(2)) = t3 − t2, t1 − t3, t2 − t1. (9.79)

We first show that the candidate dark matter field N̂R again decays too rapidly. Indeed,
this field participates in the dimension five operator:

∫
d2θ

N̂R5M5M10M
ΛUV

: N̂R = t4 − t5, 5M = t1 + t5, 5M = t2 + t5, 10M = t3, (9.80)

with the weights of all fields indicated. Thus, just as in subsection 9.3.1, we conclude that
both the bosonic and fermionic components of N̂R decay too rapidly to constitute viable
dark matter candidates.

Next consider the dark matter candidates D(2) and Dc
(2). These candidates also decay
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quite rapidly due to the higher dimension operators:∫
d2θ

D(2)5H10M10M
ΛUV

: D(2) = t1 − t2, 5H = −t3 − t1, 10M = t2, 10M = t3 (9.81)∫
d2θ

Dc
(2)5H5M10M

ΛUV
: Dc

(2) = t2 − t1, 5H = t1 + t4, 5M = t1 + t5, 10M = t3, (9.82)

where in the above, we have also indicated the corresponding weights of the fields.
Since the Higgs fields develop a weak scale vev anyway, it is enough to consider some

of the induced cubic couplings of lines (9.81) and (9.82) with non-zero Higgs vevs. These
operators have the form:

Mweak

ΛUV

∫
d2θ DELER, (9.83)

where EL is the charged part of the lepton doublet. Thus, both the scalar and fermionic
components of D can decay to leptons quite rapidly. For example, the fermionic component
of the D’s can decay via:

ψD → τ̃±1 τ
∓. (9.84)

Since the lightest stau typically has mass in the range of 100− 300 GeV, nothing kinemat-
ically forbids the decay of a TeV scale D.

Thus, we conclude that in all Dirac scenarios, generating a TeV scale mass for the dark
matter candidate is incompatible with it being quasi-stable.

9.3.3 Majorana scenarios

The Majorana scenarios are significantly more constrained than their Dirac counterparts
because the sizes of the orbits are that much longer. This also means that the number
of available GUT singlets will also be significantly reduced. Returning to line (9.37), the
available GUT singlets are X̂, N̂R, D(1), Dc

(1), D(2) and Dc
(2). Of these possibilities, note

that only X̂ has non-trivial PQ charge. Indeed, the analysis of appendix A establishes that
in all Majorana scenarios, the weights for the orbit of D(i) and N̂R contains both tm − tn
as well as tn − tm. Hence, there is no symmetry in the covering theory which forbids the
dark matter candidates Φ(i) from developing a large mass through the terms:

MGUT

∫
d2θ Φ(i)Φ(i) : Φ(i) = tm − tn,Φ(i) = tn − tm. (9.85)

In other words, the dark matter candidate lifts from the low energy theory.17 This
also means that no light states are available with which X̂ can pair up to develop a
weak to TeV scale mass. Thus, in all Majorana neutrino scenarios, there are simply no
candidates available.

Combining this with the analysis of the Dirac scenarios, we conclude that in no case
do we have a TeV scale quasi-stable dark matter candidate.

17Note that such heavy fields are not cosmologically problematic because they can also decay due to

couplings of the form Φ(i)5H5M 10M/ΛUV.
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9.3.4 Non-minimal scenarios

Although beyond the scope of this paper, we note that less minimal models in which
nearby seven-branes intersecting the PQ seven-brane also participate can potentially
lead to additional possibilities, such as when an E8-type singularity nearly collides with
other singularities.

At least at the level of effective field theory considerations, it is conceivable that a dark
matter candidate could have PQ charges and additional discrete symmetries as necessary to
exclude operators which induce rapid decay. For example, in the context of a Dirac neutrino
scenario, we can introduce dark matter chiral multiplets Φ(1) and Φ(2), with PQ charges:

5M 10M 5H 5H X† NR Φ(1) Φ(2)

Dirac U(1)PQ +1 +1 −2 −2 +4 −3 q1 q2 = −q1 − 4
. (9.86)

Provided q1 is at least an order ten number, it is now immediate that an odd number of
Φ(i)’s cannot appear in an operator. It is therefore enough to consider operators which
are quadratic in the Φ(i)’s appearing in the combinations Φ(1)Φ(2) or Φ†(i)Φ(i). To induce a
decay, one of the Φ(i)’s must then develop a weak scale vev. Note that although very large
PQ charges constitute a significant departure from the minimal scenarios considered in this
paper, PQ charges as large as ±7 naturally appeared in the monodromy orbit classification
reviewed in section 5.

We now rule out potentially problematic dimension five or lower operators which could
destabilize the dark matter candidate. The available operators are of the form Φ(1)Φ(2)O12

or Φ†(i)Φ(i)Oii, where O12 and Oii are operators constructed from the minimal matter of
F-theory GUTs with respective PQ charges +4 and 0. In the former case, note that by
inspection of the available minimal matter and their charges, no dimension four or five
F-terms can be generated, and as for D-terms, only O12 = X† is available. By gauge
invariance, the combination Φ†(i)Φ(i) must involve at least two minimal fields. We therefore
conclude that in all cases, no dangerous operator is available.18

On the other hand, symmetry considerations are compatible with operators of the form:

L ⊃
∫
d4θ

Φ†(i)Φ(j)Σ
†
MSSMΣMSSM

Λ2
UV

, (9.87)

where ΣMSSM denotes a chiral superfield of the MSSM. See [66] for further discussion on
this and other operators which are suitable for decaying dark matter scenarios. Letting the
same variables denote the bosonic components of Σ, and φ and ψ the respective bosonic
and fermionic components of Φ, the Lagrangian therefore contains the terms:

L ⊃
φ(j)Σ

†
MSSM

Λ2
UV

∂µφ†(i)∂µΣMSSM +
φ(j)Σ

†
MSSM

Λ2
UV

ψ(i)iσ
µ∂µψΣ. (9.88)

18Since we have already excluded all combinations involving X and X†, this also rules out instanton gen-

erated operators. Indeed, an instanton suppressed contribution can effectively be viewed as multiplication

by a field with the same charge as X† since instantons also induce the Polonyi term qinstX, as in the gauge

mediated supersymmetry breaking scenario in [3] (see also [13]).
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In other words, provided one of the φ(i)’s develops a weak scale vev, this leads to the
required decay rate associated with a dimension six operator.

As a cautionary note, this is by itself still insufficient to demonstrate that such pos-
sibilities can be realized in F-theory. A complete realization would require introducing a
somewhat exotic sector of the type discussed in section 6.

9.4 Other aspects of annihilating scenarios

In the previous subsections we have encountered significant obstructions to realizing other
dark matter candidates besides the gravitino in F-theory GUTs. These obstructions are
especially severe in the case of annihilating scenarios, where we have seen that the dilution
of thermally produced dark matter requires an even bigger boost in the annihilation cross
section, as compared with WIMP scenarios. Moreover, when the saxion decay generates
such candidates non-thermally, we have also found that the relic abundance is too large
by several orders of magnitude! In addition, all of the available GUT singlets from E8

which could in principle develop a weak to TeV scale mass are unstable on cosmological
timescales, and are therefore unsuitable as dark matter candidates.

In this subsection we comment on some additional aspects of annihilating scenarios
where the candidate dark sector embeds inside of E8. The first point is that a common in-
gredient in many annihilating scenarios, namely the existence of an additional light “dark”
gauge boson is simply unavailable within E8. On the other hand, we show that with suf-
ficient fine tuning of the parameters of F-theory GUTs, a light scalar could potentially
communicate between the dark and visible sectors. This by itself is interesting, although
it is not completely clear even in this case how to overcome all of the other obstacles found
earlier in this section.

As reviewed in section 8, there is already some tension in annihilating dark matter
scenarios because the expected annihilation cross section from thermally produced WIMPs
leads to a signal which is too small to explain the results of PAMELA by a factor of
10−2 − 10−3. One way that the annihilation cross section can be boosted (as required
by PAMELA), is through an infrared enhancement due to the exchange of a light boson
with mass far below the weak scale, and closer to a few GeV. See for example [60–63] for
discussion on this possibility. It is therefore natural to ask whether such degrees of freedom
are available in F-theory GUTs.

The classification of monodromy orbits reviewed in section 5 already shows that no spin
one mediators are available inside of a minimal E8 F-theory GUT. Indeed, in the Dirac
neutrino scenarios, there are only two U(1)’s, U(1)PQ and U(1)χ, and in the Majorana
neutrino scenarios, only U(1)PQ is available. Since U(1)PQ is anomalous, the generalized
Green-Schwarz mechanism cancels the corresponding anomaly, but also cause this gauge
boson to develop a large mass via the Stückelberg mechanism. This leaves only U(1)χ
in the Dirac neutrino scenario as even a candidate for consideration. As reviewed in
section 5, U(1)χ is a very specific linear combination of U(1)Y and U(1)B−L dictated by
the embedding SO(10) ⊃ SU(5)GUT×U(1)χ. The experimental bounds on the mass of this
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type of gauge boson are quite stringent, and well above 100 GeV.19 We therefore conclude
that there are no available gauge bosons in an E8 F-theory GUT which can provide the
required Sommerfeld enhancement.

This leaves open the possibility, however, that a light scalar could play the role of
the required mediator. Indeed, in the case of Dirac neutrino scenarios there are typically
several extra GUT singlet curves available. Rather than present an exhaustive list of
possible scenarios involving such models, here we simply comment on the fact that at least
some of the ingredients of such scenarios can indeed be accommodated within E8. Even
so, this by itself does not overcome all of the obstacles reviewed at the beginning of this
subsection, and we will encounter additional problems in the specific example considered.

To illustrate some of the issues involved, consider the model of [79]. This model
includes a U(1)B−L gauge boson, and a chiral superfield S which couples to another GUT
singlet S′ through a “dark µ-term”, so that the following terms are present in the effective
Lagrangian:

L ⊃
∫
d4θS†eVB−LS +

∫
d4θS′†e−VB−LS′ + µdark

∫
d2θ SS′. (9.89)

When the S’s develop TeV scale vevs, this will Higgs the U(1)B−L symmetry. Letting
tanβdark denote the ratio:

tanβdark =
〈S〉
〈S′〉

, (9.90)

when tanβdark is sufficiently close to one (which requires fine tuning in the parameters
of the F-theory GUT), the physical mass spectrum will consist of a triplet of TeV scale
“neutralinos”, given by the U(1)B−L gaugino and the two S and S′ “Higgsinos”, and a
scalar with mass on the order of a few GeV [79]. Our aim in this section will not be to
realize every detail of the construction in [79], but rather to show that the elements in the
Lagrangian of line (9.89) can indeed be accommodated in some Dirac neutrino scenarios.

To present one example of this type, recall that when the monodromy group of a
Dirac scenario is either Z3 or S3, we have available the following GUT singlets as dark
matter candidates:

GDirac
mono ' Z3 or S3 X̂ N̂R D(1) Dc

(1) D(2) Dc
(2) ZPQ Zχ

U(1)PQ −4 −3 +1 −1 0 0 0 0
U(1)χ 0 −5 −5 +5 0 0 0 0

. (9.91)

At the level of symmetries then, we can consider an extra right-handed neutrino “genera-
tion” N̂R, and pair this with Dc

(1). Making the identification:

S = N̂R (9.92)

S′ = Dc
(1), (9.93)

note that the effective field theory does not forbid the operator X†SS′/ΛUV, which induces
a “µdark-term” once X develops a supersymmetry breaking vev.

19See for example [78] for further discussion on the physics of extra U(1) gauge bosons.
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It is important to check that U(1)χ (and hence U(1)B−L) is non-anomalous with respect
to this choice of matter assignments. Note that in addition to the MSSM matter fields, as
in [8], there are three generations of right-handed neutrinos, and, by inspection of the U(1)χ
charge assignments of the messengers, N̂R and Dc

(1), all of these additional contributions
appear in vector-like pairs with respect to U(1)χ. Thus, there is at least the possibility
that the mass of the U(1)B−L gauge boson could remain close to the TeV scale.

In fact, it is also straightforward to check that the operator X†SS′/ΛUV is compatible
with the orbits of the monodromy group. Indeed, using the orbits reviewed in section 5,
we can take the following weights for X†, S = N̂R, and S′ = Dc

(1):

Orb(X†) 3 t1 − t4 (9.94)

Orb(N̂R) 3 t4 − t5 (9.95)

Orb(Dc
(1)) 3 t5 − t1. (9.96)

Thus, it is therefore in principle possible to reproduce the Lagrangian of line (9.89).
Note, however, that as argued in subsection 9.3, it is unappealing to allow N̂R to

develop a vev, as this breaks matter parity in the model. Moreover, it is unclear in the
present context how to arrange for the vevs of N̂R and Dc

(1) to be very close to each other
so that tanβdark ' 1. Indeed, the PQ charges of these two fields are different, and will
therefore experience different PQ deformations. Thus, without significant fine tuning of
the model, it appears difficult to generate the required scalar with mass on the order of a
few GeV.

Although all of the ingredients of the construction presented above fall inside of E8,
making this model fully realistic still appears to be quite problematic. Indeed, the required
elements include a TeV scale U(1)χ gauge boson, an extra generation on the right-handed
neutrino curve, and an additional GUT singlet matter curve. This constitutes a significant
departure from the spirit of minimality adopted in this paper. Coupled with the fact that we
have also encountered significant phenomenological problems with saxion dilution, and the
instability of all available dark matter candidates, we again end with the same conclusion
that TeV scale dark matter in both annihilating and decaying scenarios is unfeasible in
minimal F-theory GUTs.

10 Conclusions

F-theory GUTs provide a quite predictive framework for making contact between string
theory and phenomenology. In particular, the rich interplay between geometric and group
theoretic ingredients leads to significant constraints which appear unmotivated from the
perspective of the four-dimensional effective field theory. In this paper we have exploited
the rigid structure present in this unified approach to study whether additional charged and
uncharged matter of such models can provide potential candidates for dark matter beyond
the gravitino. Assuming that all of the interaction terms of the F-theory GUT descend
from a single point of E8 enhancement, we have found a remarkably rigid structure which
does not admit many options for additional matter. A surprising outcome of this analysis
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is that in all but one Dirac neutrino scenario, incorporating a minimal gauge mediated
supersymmetry breaking sector forces the messengers to transform in vector-like pairs in
the 10⊕10 of SU(5). Moreover, embedding in E8 also significantly limits the available dark
matter candidates. Indeed, since supersymmetry breaking is correlated with the dynamics
of a seven-brane which is present in the local model, TeV scale dark matter candidates are
forced to also interact closely with the GUT seven-brane. Expanding out from the E8 point
of enhancement, we have studied other potential dark objects which either intersect some
locus connected with the E8 point of enhancement, or which are fully cut off from the visible
sector. In all cases, we have encountered obstructions which render all available candidates
as unsuitable explanations for recent experimental results connected with the detection of
dark matter. This again reinforces the point that in F-theory GUTs, gravitinos remain
as the prime candidate for dark matter. In the remainder of this section we speculate on
possible directions of future investigation.

While aesthetically quite pleasing, the existence of a single point of E8 enhancement
leads to surprisingly strong restrictions on the form of both the visible and dark sectors of
F-theory GUTs. In particular, contrary to a perhaps naive notion that a single vector-like
pair of messengers in the 5⊕ 5 is “minimal”, here we have seen that geometric minimality
instead selects as the more natural option messengers organized into multiples of 10 ⊕ 10
(where each such pair effectively plays the role of three 5⊕5 pairs). This leads to a class of
signatures which are distinct from the single 5⊕5 messenger case, and it would be interesting
to study the phenomenology of such models in greater detail. In this vein, we have seen
that in the Dirac scenario, there is naturally another candidate U(1) symmetry which can
combine with the U(1)PQ symmetry. This defines a whole family of PQ deformations, with
different consequences for phenomenology.

More broadly speaking, however, less minimal implementations of F-theory GUTs need
not contain a single point of E8 enhancement. In this case, some of the constraints will
nevertheless survive provided there is still a sense in which all matter descends from a single
well-defined E8 singularity. On the other hand, more general F-theory compactifications
provide another element of flexibility. Our goal here has to been to study a particularly
motivated choice which is compatible with the requirements of unification. It would be
interesting to determine what can be said about dark matter in this more general case.

The primary restrictions we have encountered have centered on obstructions encoun-
tered in trying to fit a TeV scale dark matter candidate with recent experimental results.
We have also seen that F-theory GUTs can quite naturally accommodate additional fields
with masses in the range of 10 MeV to a few GeV. It would be interesting to study the
consequences of such objects for other dark matter experiments, such as DAMA.
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A Monodromy orbit classification

In this appendix we present a full classification of possible monodromy groups such that
all of the interaction terms of an F-theory GUT consistently embed at a single unified E8

interaction point. With notation as in section 5, we consider the decomposition of the
adjoint representation of E8 into irreducible representations of SU(5)GUT × SU(5)⊥:

E8 ⊃ SU(5)GUT × SU(5)⊥ (A.1)

248→ (1, 24) + (24, 1) + (5, 10) + (5, 10) + (10, 5) + (10, 5). (A.2)

The dark objects transform as singlets under SU(5)GUT and must therefore descend from
the 24 of SU(5)⊥. The Cartan of SU(5)⊥ can be parameterized by the coordinates t1, . . . , t5
subject to the constraint:

t1 + . . .+ t5 = 0. (A.3)

The weights of the 5⊥, 10⊥ and 24⊥ of SU(5)⊥ are then given as:

5⊥ : ti (A.4)

10⊥ : ti + tj (A.5)

24⊥ : ± (ti − tj) + 4× (0 weights) (A.6)

for 1 ≤ i, j ≤ 5 such that i 6= j. It thus follows that matter fields with appropriate
SU(5)GUT representation content localize along the following curves:

5GUT : −ti − tj = 0 (A.7)

10GUT : ti = 0 (A.8)

1GUT : ti − tj = 0, (A.9)

so that the vanishing loci then correspond to local enhancements in the singularity type of
the compactification. A matter field with a given weight will necessarily also be charged
under a U(1) subgroup of SU(5)⊥, dictated by its weight.

In this appendix we classify possible monodromy orbits consistent with the interac-
tion terms:∫

d4θ
X†HuHd

ΛUV
+
∫
d2θ 5H × 10M × 10M +

∫
d2θ 5H × 5M × 10M + Neutrinos, (A.10)

with the neutrino sector as specified in section 5. More precisely, we shall also demand that
that all three generations in the 10M localize on one curve, and further all three generations
in the 5M localize on one curve.

The rest of this appendix is organized as follows. First, we discuss constraints on the
orbit imposed by the interaction terms of the MSSM. Next, we separate our classification
of orbits under the monodromy group into Dirac and Majorana neutrino scenarios.

– 61 –



J
H
E
P
0
8
(
2
0
1
0
)
0
4
0

A.1 Constraints from the MSSM

We now proceed to classify the possible orbits of the monodromy group inherited from
SU(5)⊥ which are compatible with the MSSM interactions of line (A.10). We will return
to constraints imposed by the neutrino sector in later subsections.

Although we do not know the full orbit of the monodromy group G, we do know that
it must be compatible with the presence of the interaction term 5H × 10M × 10M . In
particular, without loss of generality, we may fix the weight assignment of the 10M orbit
to include the SU(5)⊥ weights t1 and t2. Hence, we also conclude that the orbit of the
5H matter field must also contain a weight of the form −t1 − t2. Note that there can in
principle be additional weights in each orbit. Nevertheless, we can now conclude that the
orbits of 5H and 10M minimally contain:

Orb(10M ) = t1, t2, . . . (A.11)

Orb(5H) = −t1 − t2, . . . . (A.12)

Next consider the presence of the interaction term X†HuHd/ΛUV. In principle, various
components of each orbit in the cover can participate in such an interaction term. Thus, the
Hu field which participates in a given covering theory interaction term need not correspond
to the weight −t1− t2 but might instead correspond to a weight of the form −ti− tj . Note,
however, that since −ti− tj and −t1− t2 both lie in the same orbit, there exists an element
of the monodromy group which maps −ti − tj to −t1 − t2. This group action will also
map the weights for X† and Hd to other elements of their respective orbits. Since X† is a
singlet under SU(5)GUT which is charged under U(1)PQ, it must correspond to a weight of
the form tk − tl. In addition, Hd must correspond to a weight of the form tm + tn. The
presence of the interaction term X†HuHd/ΛUV then imposes the constraint:

(tk − tl) + (−t1 − t2) + (tm + tn) = 0, (A.13)

which implies one of the two sets of conditions must be met:

tm + tn = t1 + tl and tk − tl = t2 − tl (A.14)

tm + tn = t2 + tl and tk − tl = t1 − tl. (A.15)

In fact, since line (A.11) already requires the monodromy group to identify t1 and t2 in
the same orbit, the distinction between these two options is ambiguous. Since nothing in
our discussion fixes tl, without loss of generality, we may take one element of the orbit for
X† to be t2 − t4, with one weight in the orbit of Hd then fixed to be t1 + t4. We therefore
conclude that in addition to the 10M and 5H orbits, we must minimally also include the
following terms in the orbit for Hd and X†:

Orb(10M ) = t1, t2, . . . (A.16)

Orb(5H) = −t1 − t2, . . . (A.17)

Orb(5H) = t1 + t4, . . . (A.18)

Orb(X†) = t2 − t4, . . . . (A.19)
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The final non-neutrino constraint which we can obtain derives from the presence of the
interaction term 5H × 5M × 10M . Again, by a suitable action of the monodromy group,
we know that there will be an interaction in the cover which involves the 5H with weight
t1 + t4. The weight of 5M is then of the form ti + tj , and the weight for 10M is tk. The
presence of the interaction term then requires:

(t1 + t4) + (ti + tj) + tk = 0. (A.20)

Hence, ti, tj and tk must all be distinct, and all different from t1 and t4.
We now further fix the weight assignments for the 5M field. Recall that the orbit of

this field contains a weight of the form ti + tj with ti and tj distinct from t1 and t2. There
are in principle three possibilities available, once we fix the weight of the 10M :

Option 1: Orb(5M ) 3 t3 + t5, Orb(10M ) 3 t2 (A.21)

Option 2: Orb(5M ) 3 t2 + t5, Orb(10M ) 3 t3 (A.22)

Option 3: Orb(5M ) 3 t2 + t3, Orb(10M ) 3 t5. (A.23)

Options two and three are in some sense the same because up to this point our discussion
has not distinguished between t3 and t5. We may therefore focus without loss of generality
on options one and two.

To proceed further, we next turn to constraints derived from the specific content of
the Dirac and Majorana neutrino scenarios. After fixing a convention for the direction of
the U(1)PQ symmetry, we return to the three options listed in lines (A.21)–(A.23).

A.2 Dirac neutrino scenarios

First consider Dirac neutrino scenarios. Our strategy will be to first constrain the form of
U(1)PQ, and to then use this information and compatibility with the remaining interaction
terms to fix further properties of the weights.

Our first constraint stems from a proper identification of the U(1)PQ symmetry. This
can be viewed as vector in the space dual to the weight space, such that for each weight
ti, we assign a definite charge. The general form of U(1)PQ is:

t∗PQ = a1t
∗
1 + a2t

∗
2 + a3t

∗
3 + a4t

∗
4 + a5t

∗
5, (A.24)

where:
t∗i (tj) = δij. (A.25)

In order for an element of the Cartan to remain intact under monodromy, it must be
invariant under the action of the monodromy group.

To fix conventions, as in [3, 8] we use the same PQ charge assignments associated with
the embedding E6 ⊃ SO(10)×U(1)PQ:20

5M 10M 5H 5H X† NR

Dirac U(1)PQ +1 +1 −2 −2 +4 −3
. (A.26)

20We will find below that there is in fact another U(1) in Dirac scenarios, so that the actual “PQ

deformation” can correspond to a linear combination of this U(1) and the other U(1) we find. Note,

however, that since all of the interaction terms we find will be invariant under both U(1)’s, there is no loss

of generality in remaining with this convention.
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With this convention, we now fix some of the values of the ai. The orbit of the 10M contains
the weights t1 and t2. Since the 10M has PQ charge +1, we conclude:

a1 = a2 = 1. (A.27)

Note that this also fixes the PQ charge of the 5H weight −t1 − t2. Next consider the
PQ charge for the 5H , which is −2. The orbit of this field contains the weight t1 + t4,
which implies:

a1 + a4 = −2. (A.28)

Hence, we also deduce that a4 = −3.

A.2.1 First Dirac scenario

Returning to lines (A.21)–(A.23), we now show that both physically distinct options yield
an acceptable monodromy group action. First consider the possibility that option 1 of
line (A.21) is realized so that:

Option 1: Orb(5M ) 3 t3 + t5, Orb(10M ) 3 t2. (A.29)

Since the PQ charges of 5M and 10M are both +1, this imposes the constraint:

a3 + a5 = 1. (A.30)

Combining all of the constraints derived previously, the form of the U(1)PQ generator in
the dual to the weight space is fixed to be of the form:

t∗PQ = t∗1 + t∗2 + a3t
∗
3 − 3t∗4 + (1− a3)t∗5. (A.31)

We now determine the weight assignments for the neutrino sector by requiring the
presence of the interaction term H†dLNR/ΛUV. Fixing the weight assignment for H†d, L
and NR as −t1 − t4, ti + tj and tm − tn, it follows that these weights obey the constraint:

(−t1 − t4) + (ti + tj) + (tm − tn) = 0. (A.32)

There are two possible solutions, corresponding to the weight assignments:

Option 1a: Orb(5M ) 3 t1 + tn, Orb(NR) 3 t4 − tn (A.33)

Option 1b: Orb(5M ) 3 t4 + tn, Orb(NR) 3 t1 − tn. (A.34)

Since the PQ charge of 5M and NR are respectively +1 and −3, this leads to the constraints:

Option 1a: 1 + an = 1, − 3− an = 0 (A.35)

Option 1b:− 3 + an = 1, 1− an = −3. (A.36)

Option 1a does not possess a consistent solution. We therefore conclude that an = 4 is the
unique possibility. This implies that either (a3, a5) = (4,−3) or (a3, a5) = (−3, 4). Since
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none of our analysis has so far distinguished t3 or t5, without loss of generality, we may
take a3 = −3. Hence, the U(1)PQ direction is fixed to be:

t∗PQ = t∗1 + t∗2 − 3t∗3 − 3t∗4 + 4t∗5. (A.37)

Returning to the weight assignment for the right-handed neutrino, this also fixes the
orbit of NR to contain the weight t1 − t5, and the orbit 5M to contain the weight t4 + t5.
We therefore conclude that the orbits for each field are of the form:

Orb(10M ) = t1, t2, . . . (A.38)

Orb(5M ) = t4 + t5, . . . (A.39)

Orb(5H) = −t1 − t2, . . . (A.40)

Orb(5H) = t1 + t4, . . . (A.41)

Orb(X†) = t2 − t4, . . . (A.42)

Orb(NR) = t1 − t5, . . . . (A.43)

The form of the U(1)PQ generator tPQ also allows us to deduce the allowed monodromy
groups. The essential point is that a permutation on the ti’s must leave t∗PQ fixed. In
particular, this means that the only possible generators are, in terms of cycles (12), (34),
and (12)(34). Thus, the only available monodromy groups are generated by such elements,
and are therefore isomorphic to either Z2 or Z2 × Z2.

In fact, it is possible to go further and deduce that the monodromy group must act non-
trivially on t3 and t4. Suppose to the contrary that t4 is invariant under the monodromy
group. Returning to the weight assignments of lines (A.38)–(A.43), the interaction 5H ×
5M × 10M would then be of the form 2t4 + . . .. Since t4 appears twice, this interaction
term would then be forbidden. This in particular implies that either the orbit of 5M , or
5H must include a contribution from t3. Hence, the monodromy group acts non-trivially
on t3 and t4. In this case, there are therefore precisely two monodromy groups:

G
Dir(1)
(2) = 〈(12)(34)〉 ' Z2 (A.44)

G
Dir(1)
(4) = 〈(12), (34)〉 ' Z2 × Z2, (A.45)

where the subscript indicates the order of the group. It is therefore possible to write out
the full orbits in this case. In the case where the monodromy group is GDir(1)

(2) , we find:

G
Dir(1)
(2) = 〈(12)(34)〉 ' Z2 Orbits: (A.46)

Orb(10M ) = t1, t2 (A.47)

Orb(5M ) = t4 + t5, t3 + t5 (A.48)

Orb(5H) = −t1 − t2 (A.49)

Orb(5H) = t1 + t4, t2 + t3 (A.50)

Orb(X†) = t2 − t4, t1 − t3 (A.51)

Orb(NR) = t1 − t5, t2 − t5. (A.52)
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Note that the orbit for the 10M , for example truncates at exactly two weights. Adding
additional weights would lead to distinct orbits, which is counter the condition that there
is a single 10M curve. Similar considerations apply for the other length two orbits. In the
case of GDir(1)

(4) we have:

G
Dir(1)
(4) = 〈(12), (34)〉 ' Z2 × Z2 Orbits: (A.53)

Orb(10M ) = t1, t2 (A.54)

Orb(5M ) = t4 + t5, t3 + t5 (A.55)

Orb(5H) = −t1 − t2 (A.56)

Orb(5H) = t1 + t4, t2 + t3, t2 + t4, t1 + t3 (A.57)

Orb(X†) = t2 − t4, t1 − t3, t1 − t4, t2 − t3 (A.58)

Orb(NR) = t1 − t5, t2 − t5. (A.59)

It is very tempting to include in this list the messenger fields Y and Y ′ reviewed in
section 5 required for gauge mediated supersymmetry breaking [3]. A priori, such messenger
fields can either localize on curves distinct from the matter curves, or as noted in [8] can
potentially reside on the same curve as other matter fields. For example, the 5M curve
could in principle support another generation in the 5 provided another curve is free to
support an entire GUT multiplet in the 5.

To classify possible matter curve assignments for messenger fields, we demand that the
interaction terms XY Y ′ be present. First consider the case of messengers in the 10 ⊕ 10.
Fixing the weight of the X field as t4 − t2, the constraint on the weights now reads:

(t4 − t2) + ti − tj = 0. (A.60)

Hence, one of the messenger fields must localize on t2, as an additional 10 in the orbit of
the 10M , and the other messenger in the 10 has weight assignment −t4:

Orb(10M , Y10) = t1, t2 (A.61)

Orb(Y ′
10

) = −t3,−t4. (A.62)

We therefore conclude that messengers in the 10 ⊕ 10 are indeed possible, but that Y10

must localize on the same curve as the 10M .
Next consider messengers in the 5⊕5 of SU(5). Again fixing the weight of X as t4−t2,

this imposes the constraint:

(t4 − t2)− (ti + tj) + (tk + tl) = 0. (A.63)

Hence, the Y ′
5

must be of the form t2 + ti, and the weight of the Y5 is given by −t4 − ti.
There are in principle three possible options for the weight assignments of the messengers:

Option 1: Orb(Y5) 3 −t4 − t1, Orb(Y ′5) 3 t2 + t1 (A.64)

Option 2: Orb(Y5) 3 −t4 − t3, Orb(Y ′5) 3 t2 + t3 (A.65)

Option 3: Orb(Y5) 3 −t4 − t5, Orb(Y ′5) 3 t2 + t5. (A.66)
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Returning to the list of already specified orbits, we see that in the case of option 1, Y ′
5

would
localize on the 5H curve. Similarly, for option 2 Y ′

5
would localize on the 5H curve. Since

a non-trivial hyperflux pierces both curves, a full GUT multiplet of messengers cannot
localize on these curves. This leaves only option 3. While this is in principle possible,
note that this requires Y5 to localize on the same matter curve as the 5M . Index theory
considerations then imply that while it is perhaps possible to arrange for three 5M ’s and
one Y5 to localize on the same curve, this is quite unnatural. Hence, the messengers cannot
transform in the 5⊕ 5.

The orbits for all of the visible matter fields are then:

G
Dir(1)
(2) = 〈(12)(34)〉 ' Z2 Orbits: (A.67)

Orb(10M , Y10) = t1, t2 (A.68)

Orb(Y ′
10

) = −t3,−t4 (A.69)

Orb(5M ) = t4 + t5, t3 + t5 (A.70)

Orb(5H) = −t1 − t2 (A.71)

Orb(5H) = t1 + t4, t2 + t3 (A.72)

Orb(X†) = t2 − t4, t1 − t3 (A.73)

Orb(NR) = t1 − t5, t2 − t5. (A.74)

Similarly, the existence of messengers in the 5 is not possible in the case of the larger
monodromy group G

Dir(1)
(4) ' Z2× Z2. It thus follows that in the case of GDir(1)

(4) , only
10’s can correspond to messenger fields. In this case, the full orbits including the messen-
gers are:

G
Dir(1)
(4) = 〈(12), (34)〉 ' Z2 × Z2 Orbits: (A.75)

Minimal Matter (A.76)

Orb(10M , Y10) = t1, t2 (A.77)

Orb(Y ′
10

) = −t3,−t4 (A.78)

Orb(5M ) = t4 + t5, t3 + t5 (A.79)

Orb(5H) = −t1 − t2 (A.80)

Orb(5H) = t1 + t4, t2 + t3, t2 + t4, t1 + t3 (A.81)

Orb(X†) = t2 − t4, t1 − t3, t1 − t4, t2 − t3 (A.82)

Orb(NR) = t1 − t5, t2 − t5. (A.83)

Having specified the content of the visible matter, we now turn to extra charged and
neutral fields which can fit inside of E8. An interesting consequence of the classification
already performed is that it eliminates half of the possible U(1) dark gauge bosons. Indeed,
since the 1 and 2 directions, and the 3 and 4 directions are also identified, it follows that
of the original U(1)4 ⊂ SU(5)⊥ abelian gauge bosons, only two gauge bosons remain. We
have identified one such gauge boson with U(1)PQ. The other invariant can be identified as:

t∗PQ′ = a (t∗1 + t∗2) + b(t∗3 + t∗4) + ct∗5. (A.84)
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In keeping with conventions associated with the embedding E6 ⊃ SO(10) × U(1)PQ ⊃
SU(5)× U(1)χ × U(1)PQ used in [3, 8], we demand that the pattern of charges consistent
with the decomposition of the spinor 16 of SO(10) appear as:

SO(10) ⊃ SU(5)×U(1)χ (A.85)

16→ 1−5 + 5+3 + 10−1, (A.86)

which will occur provided a = −1, b = +3 and c = 0. Summarizing, the two U(1)
generators are given as:

t∗PQ = (t∗1 + t∗2)− 3(t∗3 + t∗4) + 4t∗5 (A.87)

t∗χ = −(t∗1 + t∗2 + t∗3 + t∗4) + 4t∗5. (A.88)

Under these two U(1)’s the minimal matter fields of the F-theory GUT have charges:

Minimal 10M , Y10 5M Y ′
10

5H 5H X† NR

U(1)PQ +1 +1 +3 −2 −2 +4 −3
U(1)χ −1 +3 +1 +2 −2 0 −5

. (A.89)

Besides the minimal matter required for realizing an F-theory GUT, there could in
principle be additional matter either charged or uncharged under the GUT group. Under
the monodromy group actions just encountered, there are a few additional matter curves
on which a 5 or a 10 could localize. The corresponding orbits for extra 5’s and 10’s not
already used are:

G
Dir(1)
(2) = 〈(12)(34)〉 ' Z2 Orbits: (A.90)

Extra Charged (A.91)

Orb(10(1)) = t5 (A.92)

Orb(5(1)) = t1 + t3, t2 + t4 (A.93)

Orb(5(2)) = t1 + t5, t2 + t5 (A.94)

Orb(5(3)) = t3 + t4, (A.95)

while in the case of the larger monodromy group G
Dir(1)
(4) , 5(1) combines to form a larger

orbit in the minimal matter sector, so that we now have:

G
Dir(1)
(4) = 〈(12), (34)〉 ' Z2 × Z2 Orbits: (A.96)

Extra Charged (A.97)

Orb(10(1)) = t5 (A.98)

Orb(5(2)) = t1 + t5, t2 + t5 (A.99)

Orb(5(3)) = t3 + t4. (A.100)

Besides these possibilities, there can also be extra matter fields neutral under SU(5)GUT

which transform in the adjoint of SU(5)⊥. These correspond either to the zero weights,
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which we can identify with directions in the Cartan, as well as weights of the form tm− tn.
Of the zero weights, only two survive, because of the action of the monodromy group,
which we denote as ZPQ and Zχ. Next consider the non-zero weights. Some of these have
already been encountered in terms of the X and NR fields. Besides these possibilities,
the full list of singlets (omitting conjugate weights unless in the same orbit) then fill out
the following distinct orbits:

G
Dir(1)
(2) = 〈(12)(34)〉 ' Z2 Orbits: (A.101)

Extra Singlets (A.102)

Orb(D(1)) = t1 − t2, t2 − t1 (A.103)

Orb(D(2)) = t1 − t4, t2 − t3 (A.104)

Orb(D(3)) = t3 − t4, t4 − t3 (A.105)

Orb(D(4)) = t3 − t5, t4 − t5. (A.106)

In the case of the larger monodromy group, D(2) joins the orbit of X†, and the orbits
are instead:

G
Dir(1)
(4) = 〈(12), (34)〉 ' Z2 × Z2 Orbits: (A.107)

Extra Singlets (A.108)

Orb(D(1)) = t1 − t2, t2 − t1 (A.109)

Orb(D(3)) = t3 − t4, t4 − t3 (A.110)

Orb(D(4)) = t3 − t5, t4 − t5. (A.111)

Under the two surviving U(1)’s, the charges of the various extra objects (omitting complex
conjugates) are then:

Extra Charged 10(1) 5(1) 5(2) 5(3)

U(1)PQ +4 −2 +5 −6
U(1)χ +4 −2 +3 −2

(A.112)

Extra Neutral D(1) D(2) D(3) D(4) ZPQ Zχ

U(1)PQ 0 +4 0 −7 0 0
U(1)χ 0 0 0 −5 0 0

. (A.113)

A.2.2 Second Dirac scenario

In the previous section we presented a complete classification of possible orbits and mon-
odromy groups under the assumption that option 1 of line (A.21) is realized in a Dirac
scenario. Next consider the possibility that option 2 of line (A.21) is realized so that:

Option 2: Orb(5M ) 3 t2 + t5, Orb(10M ) 3 t3 (A.114)

Since the PQ charges of 5M and 10M are both +1, this imposes the constraint:

a2 + a5 = 1 (A.115)

a3 = 1. (A.116)
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Combining all of the constraints derived previously, the form of the U(1)PQ generator in
the dual to the weight space is fixed to be of the form:

t∗PQ = t∗1 + t∗2 + t∗3 − 3t∗4. (A.117)

In order for this choice to be invariant under the action of the monodromy group, it
follows that the monodromy group can only act non-trivially on the directions t∗1, t

∗
2 and

t∗3. Hence, the monodromy group must be a subgroup of the permutation group S3 acting
on these three letters. We now deduce the remaining orbits and weight assignments by
demanding consistency with the interaction term 5H × 5M × 10M and the presence of the
Dirac interaction term H†dLNR/ΛUV.

Returning to the interaction term 5H×5M×10M , fix the weight appearing in the orbit
of 5H as t1 + t4. The existence of this interaction term then requires:

(t1 + t4) + (ti + tj) + tk = 0. (A.118)

Since 10M already involves t1 and t2 it cannot involve t5, as this would lead to two distinct
orbits for 10M . Thus, 5M must be of the form ti + t5 for some i = 2, 3. Now, although we
do not know the full action of the monodromy group, we do know that t4 is also invariant.
As a consequence, since 10M has in its orbit t1 and t2, it follows that the orbit of 5H must
include t1 + t4, as well as its image, t2 + t4. Repeating the same argument as before, it
now follows that 5M must be of the form ti + t5 for i = 1 or 3. Summarizing, we now learn
that the orbits of the various matter fields contains the following weights:

Orb(10M ) = t1, t2, . . . (A.119)

Orb(5M ) = ti + t5, . . . (A.120)

Orb(5H) = −t1 − t2, . . . (A.121)

Orb(5H) = t1 + t4, t2 + t4, . . . (A.122)

Orb(X†) = t1 − t4, t2 − t4, . . . (A.123)

for some ti given by either t1, t2 or t3.
To fully specify the weight assignment for the 5M , next consider the interaction term

H†dLNR/ΛUV. Fixing the weight of H†d as −t1 − t4, this interaction term requires:

(−t1 − t4) + (ti + tj) + (tm − tn) = 0. (A.124)

Thus, we deduce that the orbits for 5M and NR must satisfy one of two options:

Option 1: Orb(5M ) 3 t1 + tj , Orb(NR) 3 t4 − tj (A.125)

Option 2: Orb(5M ) 3 t4 + tj , Orb(NR) 3 t1 − tj . (A.126)

In the latter case, it is note possible for 5M to attain PQ charge +1 with the PQ direction
of equation (A.117). Hence, only option 1 is available. Since NR must have PQ charge −3,
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tj must correspond to t5. Indeed, for all other choices of tj , t4− tj has PQ charge −4. We
can therefore further fix the orbit of 5M and NR to include:

Orb(10M ) = t1, t2, . . . (A.127)

Orb(5M ) = t1 + t5, t2 + t5, . . . (A.128)

Orb(5H) = −t1 − t2, . . . (A.129)

Orb(5H) = t1 + t4, t2 + t4, . . . (A.130)

Orb(X†) = t1 − t4, t2 − t4, . . . (A.131)

Orb(NR) = t4 − t5. (A.132)

In fact, the listed weights do not fill out a complete orbit. Indeed, returning to the
5H × 5M × 10M interaction, using the weights listed above, t1 or t2 always appears twice.

Fixing the weight assignment for the 5M as t1 + t5, note that the remaining weights
for the 10M and 5H must satisfy the relation:

(t1 + t5) + (ti + tj) + tk = 0. (A.133)

Thus, either ti, tj or tk must involve t3. Since t4 and t5 are fixed under monodromy, the
orbits for 10M and 5H respectively include t1 and t1 + t5, this implies that the monodromy
group contains an element which sends t1 to t3. Hence, the orbit of 10M must include t3,
the orbit of 5M must include t3 + t5, and the orbit of 5H must include t3 + t4. Similar
considerations apply to the orbit of X† so that the orbits include t1 − t4, t2 − t4, t3 − t4.
Hence, the orbits include:

Orb(10M ) = t1, t2, t3 (A.134)

Orb(5M ) = t1 + t5, t2 + t5, t3 + t5 (A.135)

Orb(5H) = −t1 − t2, . . . (A.136)

Orb(5H) = t1 + t4, t2 + t4, t3 + t4 (A.137)

Orb(X†) = t1 − t4, t2 − t4, t3 − t4 (A.138)

Orb(NR) = t4 − t5. (A.139)

To fix the remaining orbits, we now appeal to some facts from group theory. As we
have already noted, the monodromy group is a subgroup of S3. Recall that the elements
of S3 are given by the following list of cycles:

S3 = {id, (12), (13), (23), (123), (132)} . (A.140)

On the other hand, since the orbit for 10M contains three distinct weights, the monodromy
group must have order at least three. Now, the order of any subgroup of S3 must divide
that of the subgroup, so Gmono ' Z3 or S3. In either case, it follows that the monodromy
group contains a Z3 subgroup, and thus a three cycle. There are only two available three
cycles, namely (123) and (132), and both generate the same orbits. We thus conclude that
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the full set of orbits is:

GDir(2)
mono ' Z3 or S3 (A.141)

Orb(10M ) = t1, t2, t3 (A.142)

Orb(5M ) = t1 + t5, t2 + t5, t3 + t5 (A.143)

Orb(5H) = −t1 − t2,−t2 − t3,−t3 − t1 (A.144)

Orb(5H) = t1 + t4, t2 + t4, t3 + t4 (A.145)

Orb(X†) = t1 − t4, t2 − t4, t3 − t4 (A.146)

Orb(NR) = t4 − t5. (A.147)

As in subsection A.2.1, we now address whether it is possible to combine this mon-
odromy group action with a messenger sector. First consider messenger fields in the 5⊕ 5
of SU(5). Fixing the weight of X as t4 − t1, the interaction term XY5Y

′
5

imposes the
weight constraint:

(t4 − t1) + (−ti − tj) + (tk + tl) = 0. (A.148)

Thus, the orbit of the Y5 contains −t4−ti and the orbit of Y ′
5

contains t1+ti. Compatibility
with the other orbits then fixes this weight to be t1 + t5, which is in the same orbit as the
5M field.

Next consider messengers in the 10 ⊕ 10 of SU(5). Fixing the weight of X as t4 − t1,
the interaction term XY10Y

′
10

imposes the constraint:

(t4 − t1) + ti − tj = 0. (A.149)

Thus, the orbit of Y10 contains the weight t1, and the orbit of Y ′
10

contains the weight −t4.
Acting with the three cycle present in the monodromy group it follows that Y10 lies in the
same orbit as the 10M , while the orbit of Y ′

10
is given by t4. Summarizing, the weight

assignments for all of the visible matter are:

GDir(2)
mono ' Z3 or S3 (A.150)

Orb(10M , Y10) = t1, t2, t3 (A.151)

Orb(Y ′
10

) = −t4 (A.152)

Orb(5M , Y ′5) = t1 + t5, t2 + t5, t3 + t5 (A.153)

Orb(Y5) = −t4 − t5 (A.154)

Orb(5H) = −t1 − t2,−t2 − t3,−t3 − t1 (A.155)

Orb(5H) = t1 + t4, t2 + t4, t3 + t4 (A.156)

Orb(X†) = t1 − t4, t2 − t4, t3 − t4 (A.157)

Orb(NR) = t4 − t5. (A.158)

The action of the monodromy group manifestly identifies three directions in the Cartan.
Hence, of the four possible U(1) gauge bosons in SU(5)⊥, only two remain. We have already
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identified one such direction with U(1)PQ. With notation as in subsection A.2.1, the other
remaining direction is given as U(1)χ which is now specified by the direction:

t∗χ = −(t∗1 + t∗2 + t∗3 + t∗4) + 4t∗5. (A.159)

The charge assignments for each matter field are then:

Minimal Matter 10M , Y10 Y ′
10

5M , Y ′5 Y5 5H 5H X† NR

U(1)PQ +1 +3 +1 +3 −2 −2 +4 −3
U(1)χ −1 +1 +3 −3 +2 −2 0 −5

. (A.160)

As in the case of the first Dirac scenario, it is of interest to classify extra matter fields
which live in unidentified orbits. In this case, the available orbits for extra 10 curves are:

GDir(2)
mono ' Z3 or S3 Orbits (A.161)

Extra Charged (A.162)

Orb(10(1)) = t5 (A.163)

Next consider extra GUT singlets which descend from the adjoint of SU(5)⊥. In
this case, we have only two possible gauge bosons corresponding to U(1)PQ and U(1)χ.
Moreover, due to the action of the monodromy group, there are only two zero weights,
which we denote as ZPQ and Zχ. The remaining weights are of the form tm − tn and
localize on curves in the geometry. The available orbits can all be obtained by acting with
a Z3 subgroup of the monodromy group. Thus, (omitting complex conjugate weights) we
have the orbits:

GDir(2)
mono ' Z3 or S3 Orbits (A.164)

Extra Singlets (A.165)

Orb(D(1)) = t1 − t5, t2 − t5, t3 − t5 (A.166)

Orb(D(2)) = t2 − t3, t3 − t1, t1 − t2. (A.167)

Up to complex conjugates, the corresponding charges of the extra matter are then:

Extra Charged 10(1)

U(1)PQ 0
U(1)χ +4

(A.168)

Extra Neutral D(1) D(2) ZPQ Zχ

U(1)PQ +1 0 0 0
U(1)χ −5 0 0 0

. (A.169)

A.3 Majorana neutrino scenarios

In the previous subsections we classified all possible monodromy group interactions consis-
tent with a Dirac neutrino scenario. In this subsection we return to the case of a minimal
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Majorana neutrino scenario. Returning to our general discussion, the appropriate MSSM
interaction terms required the following weights to be present in the orbit of each field:

Orb(10M ) = t1, t2, . . . (A.170)

Orb(5H) = −t1 − t2, . . . (A.171)

Orb(5H) = t1 + t4, . . . (A.172)

Orb(X†) = t2 − t4, . . . . (A.173)

In the case of a minimal Majorana neutrino scenario, the action of the monodromy
group is more involved, as it involves a more non-trivial identification of matter fields. We
will be interested in covering theories which contain the F-term:∫

d2θ HuLNR, (A.174)

where the NR’s develop a suitable Majorana mass. In fact, as explained in [8], the existence
of the higher-dimension operator: ∫

d2θ
(HuL)2

ΛUV
(A.175)

requires the PQ charge assignments:

5M 10M 5H 5H X† NR

Majorana U(1)PQ +2 +1 −2 −3 +5 0
. (A.176)

Letting t∗PQ correspond to the direction corresponding to the U(1)PQ generator in the
Cartan, the general form of t∗PQ is:

t∗PQ = a1t
∗
1 + a2t

∗
2 + a3t

∗
3 + a4t

∗
4 + a5t

∗
5. (A.177)

Since the charge of 10M is +1, we conclude that a1 = a2 = 1. Moreover, since the PQ
charge of 5H is −3, we further conclude that a4 = −4. Thus, we can already fix part of
t∗PQ to be of the form:

t∗PQ = t∗1 + t∗2 + a3t
∗
3 − 4t∗4 + a5t

∗
5. (A.178)

We now use the presence of the F-term HuLNR to further constrain the orbits of the
various fields. Since NR is assumed to localize on a curve, it has weight tm − tn. Fixing
the weight of Hu as −t1 − t2, it follows that since the weight for L must be of the form
ti + tj , we obtain the constraint:

(−t1 − t2) + (ti + tj) + (tm − tn). (A.179)

Thus, NR must involve a weight of the form t1 − tn as well as (under the action of the
monodromy group sending t1 to t2) t2 − tn′ . The weight tn must be distinct from t1 and
t2 since otherwise L would localize on the same curve as Hu. Nothing in our discussion so
far has distinguished t3 and t5, so without loss of generality, we may further take the NR

orbit to contain the weight t1 − t3. This also implies that the orbit of the 5M contains the
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weight t2 + t3. Since NR has PQ charge 0 in the minimal Majorana scenario, it follows
that we can also fix a3 = 1. Thus, the form of t∗PQ is constrained to be of the form:

t∗PQ = t∗1 + t∗2 + t∗3 − 4t∗4 + a5t
∗
5. (A.180)

Note that invariance of this generator under the monodromy group implies that t4 cannot
be mapped to any of t1, t2 or t3. To summarize, the orbits then must contain the terms:

Orb(10M ) = t1, t2, . . . (A.181)

Orb(5M ) = t2 + t3, . . . (A.182)

Orb(5H) = −t1 − t2, . . . (A.183)

Orb(5H) = t1 + t4, . . . (A.184)

Orb(X†) = t2 − t4, . . . (A.185)

Orb(NR) = t1 − t3, . . . . (A.186)

To further fix the form of the monodromy group, note that the listed weights are
incompatible with the interaction term 5H × 5M × 10M . Returning to lines (A.21)–(A.23),
recall that the orbits of the 5M and 5H contain one of the two following possibilities:

Option 1: Orb(5M ) 3 t3 + t5, Orb(10M ) 3 t2 (A.187)

Option 2: Orb(5M ) 3 t2 + t5, Orb(10M ) 3 t3 (A.188)

Option 3: Orb(5M ) 3 t2 + t3, Orb(10M ) 3 t5. (A.189)

Since the PQ charges for the 5M and 10M are respectively +2 and +1, it follows that
the condition on a5 in the three cases is:

Option 1: 1 + a5 = 2 (A.190)

Option 2: 1 + a5 = 2 (A.191)

Option 3: a5 = 1. (A.192)

Thus, in all three cases, we find the same requirement that a5 = 1. Hence, the form of
t∗PQ is uniquely fixed to be of the form:

t∗PQ = t∗1 + t∗2 + t∗3 − 4t∗4 + t∗5. (A.193)

By inspection of t∗PQ, t4 is fixed by the monodromy group, and so the monodromy
group must be a subgroup of S4, the permutation group on the letters t1, t2, t3 and t5.
Since t1 + t4 is in the orbit of the monodromy group, and moreover, since there exists an
element of the monodromy group which sends t1 to t2 with t4 fixed, we also deduce that
the orbits for 5H must include both t1 + t4 and t2 + t4. Similar reasoning implies that the
orbit for X† must include both t2− t4 and t1− t4. Hence, the orbits under the monodromy
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group must be enlarged so that:

Orb(10M ) = t1, t2, . . . (A.194)

Orb(5M ) = t2 + t3, . . . (A.195)

Orb(5H) = −t1 − t2, . . . (A.196)

Orb(5H) = t1 + t4, t2 + t4 . . . (A.197)

Orb(X†) = t2 − t4, t1 − t4, . . . (A.198)

Orb(NR) = t1 − t3, . . . . (A.199)

The interaction term 5H × 5M × 10M requires a further enlargement in the orbits.
Indeed, fixing the weight of 5M as t2 + t3, we obtain the constraint:

(ti + tj) + (t2 + t3) + tk = 0. (A.200)

Since t4 is not in the orbit of 10M , the only available weights for 10M are then t1 and t5.
The available orbits consistent with this constraint are:

Option 1: Orb(5H) 3 t4 + t5, Orb(10M ) 3 t1 (A.201)

Option 2: Orb(5H) 3 t1 + t4, Orb(10M ) 3 t5. (A.202)

Note that in either case, the fact that t4 is fixed under the monodromy group then forces
the existence of an element in the monodromy group which sends t1 to t5. In particular,
it follows that both weights must be included in a consistent orbit. Enlarging the orbits
further to include maps from t1 to t5, t1 to t2 and t2 to t5 (consistent with the orbit of the
10M ) we have:

Orb(10M ) = t1, t2, t5, . . . (A.203)

Orb(5M ) = t2 + t3, t5 + ti, t1 + tj . . . (A.204)

Orb(5H) = −t1 − t2,−t5 − tk, . . . (A.205)

Orb(5H) = t1 + t4, t2 + t4, t5 + t4, . . . (A.206)

Orb(X†) = t2 − t4, t1 − t4, t5 − t4, . . . (A.207)

Orb(NR) = t1 − t3, t5 − tl, t2 − tm, . . . , (A.208)

for some ti, tj and tk.
By far the most significant constraint stems from the requirement that the Majorana

mass term NRN
c
R be present. Since NR and N c

R must localize on the same curve, and must
also lie in the same orbit, it follows that the orbit for NR must be enlarged to include the
complex conjugate weights. Thus, we deduce that the orbits are minimally:

Orb(10M ) = t1, t2, t5, . . . (A.209)

Orb(5M ) = t2 + t3, t5 + ti, t1 + tj . . . (A.210)

Orb(5H) = −t1 − t2,−t5 − tk, . . . (A.211)

Orb(5H) = t1 + t4, t2 + t4, t5 + t4, . . . (A.212)

Orb(X†) = t2 − t4, t1 − t4, t5 − t4, . . . (A.213)

Orb(NR) = ± (t1 − t3) ,± (t5 − tl) ,± (t2 − tm) , . . . . (A.214)
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In particular, this implies that there exists an element of the monodromy group which acts
by interchanging t1 − t3 with t3 − t1. Hence, there exists an element of the monodromy
group which interchanges t1 with t3. It follows that the orbit of 10M includes t1, t2, t3,
t5 so that the length of the 10M orbit is precisely four (since t4 is invariant under the
monodromy group). Thus, there exist elements of the monodromy group such that t1 maps
to any of t2, t3 or t5. Using the fact that t4 remains fixed by the monodromy group, we
can thus further enlarge the orbits to:

Orb(10M ) = t1, t2, t3, t5, . . . (A.215)

Orb(5M ) = t2 + t3, t5 + ti, t1 + tj . . . (A.216)

Orb(5H) = −t1 − t2,−t5 − tl,−t3 − tm . . . (A.217)

Orb(5H) = t1 + t4, t2 + t4, t5 + t4, t3 + t4 (A.218)

Orb(X†) = t2 − t4, t1 − t4, t5 − t4, t3 − t4 (A.219)

Orb(NR) = ± (t1 − t3) ,± (t5 − tn) ,± (t2 − tp) , . . . . (A.220)

In particular, it follows that the length of the 5H orbit, and the X† orbit are both four.
We now deduce further properties of the monodromy group action. Since Orb(NR)

contains both t1 − t3 as well as t3 − t1, there exists a monodromy group element which
permutes t1 and t3. Note that this does not fix the action on the rest of the t’s. Indeed,
the action of the two cycle (13) maps the weight t2 + t3 of 5M to t2 + t1, which is in the
conjugate orbit of 5H . Since the 5M and 5H must localize on distinct matter curves, this
implies that the group element which interchanges t1 and t3 also acts on t2. Now, the only
other available ti is t5, since t4 is invariant under the monodromy group. It thus follows
that the monodromy group contains the element σ = (13)(25). Note that this also excludes
the two cycle (25) since (25) · (13)(25) = (13). To summarize, we therefore deduce that the
monodromy contains neither (13) nor (25), but does contain (13)(25):

(13), (25) /∈ GMaj
mono (A.221)

(13)(25) ∈ GMaj
mono. (A.222)

Acting on the available weights with σ = (13)(25) on the listed weights allows us to
further enlarge the available orbits. For example, acting on the weight t2 + t3 in the orbit
of 5M with σ, it follows that Orb(5M ) also contains t5 + t1. Moreover, acting on the weight
−t1−t2 in the orbit of 5H with σ, it follows that Orb(5H) also contains the weight −t3−t5.
Hence, we can further fix the orbits under the monodromy group as:

Orb(10M ) = t1, t2, t3, t5 (A.223)

Orb(5M ) = t2 + t3, t5 + t1, . . . (A.224)

Orb(5H) = −t1 − t2,−t5 − t3, . . . (A.225)

Orb(5H) = t1 + t4, t2 + t4, t5 + t4, t3 + t4 (A.226)

Orb(X†) = t2 − t4, t1 − t4, t5 − t4, t3 − t4 (A.227)

Orb(NR) = ± (t1 − t3) ,± (t5 − tn) ,± (t2 − tp) , . . . . (A.228)
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Using the listed weights, we now show that the monodromy group does not contain
any three cycles. The essential point is that the existence of any three cycle would lead to
an identification of the 5M and 5H orbits. The three cycles in S4 are:

Three Cycles in S4 = {(123), (125), (132), (135), (152), (153), (235), (253)} . (A.229)

In each case, there exists a weight of one orbit of either 5M or 5H which gets mapped to a
weight in the other conjugate orbit. As explicit examples, we have three cycles which map
elements of Orb(5H) to Orb(5M ):

Orb(5H)→ Orb(5M ) (A.230)

(123) : t1 + t2 → t2 + t3 (A.231)

(135) : t5 + t3 → t1 + t5 (A.232)

(152) : t1 + t2 → t5 + t1 (A.233)

(253) : t1 + t2 → t1 + t5 (A.234)

The remaining three cycles all map an element of Orb(5M ) to Orb(5H):

Orb(5M )→ Orb(5H) (A.235)

(125) : t5 + t1 → t1 + t2 (A.236)

(132) : t2 + t3 → t1 + t2 (A.237)

(153) : t2 + t3 → t2 + t1 (A.238)

(235) : t5 + t1 → t2 + t1. (A.239)

It therefore follows that the monodromy group contains no three cycles. In particular, we
therefore conclude that the monodromy group does not contain any order three subgroups.
By the Sylow theorem, it thus follows that the order of the monodromy group must not be
divisible by 3 so that:

3 - #GMaj
mono. (A.240)

On the other hand, the available subgroups of S4 have order 24, 12, 8, 6, 4, 3, 2 and 1.
This excludes order 24, 12, 6 and 3 monodromy groups as possibilities. Moreover, because
the orbit of the 10M is length 4, the monodromy group has order at least 4. We therefore
deduce that the monodromy group has order 4 or 8:

#GMaj
mono = 4 or #GMaj

mono = 8. (A.241)

To proceed further, we examine each possibility in turn.

A.3.1 First Majorana scenario: #GMaj
mono = 4

First consider scenarios where the monodromy group is order four, which we denote
as GMaj(1)

4 :
#GMaj

mono = 4. (A.242)
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In this case, the maximal orbit length is 4. Returning to the parts of the orbits fixed by
prior considerations, recall that we have:

Orb(10M ) = t1, t2, t3, t5 (A.243)

Orb(5M ) = t2 + t3, t5 + t1, . . . (A.244)

Orb(5H) = −t1 − t2,−t5 − t3, . . . (A.245)

Orb(5H) = t1 + t4, t2 + t4, t5 + t4, t3 + t4 (A.246)

Orb(X†) = t2 − t4, t1 − t4, t5 − t4, t3 − t4 (A.247)

Orb(NR) = ± (t1 − t3) ,± (t5 − tn) ,± (t2 − tp) , . . . . (A.248)

Since the orbit of NR has length four, it follows that this orbit truncates to ± (t1 − t3) and
± (t5 − t2) so that:

Orb(10M ) = t1, t2, t3, t5 (A.249)

Orb(5M ) = t2 + t3, t5 + t1, . . . (A.250)

Orb(5H) = −t1 − t2,−t5 − t3, . . . (A.251)

Orb(5H) = t1 + t4, t2 + t4, t5 + t4, t3 + t4 (A.252)

Orb(X†) = t2 − t4, t1 − t4, t5 − t4, t3 − t4 (A.253)

Orb(NR) = ± (t1 − t3) ,± (t5 − t2) . (A.254)

As we now explain, the monodromy group does not contain any two cycles either. The
full list of two cycles in S4 are:

Two Cycles in S4 = {(12), (13), (15), (23), (25), (35)} . (A.255)

By inspection of the action of these group elements on weights in the orbit of NR, the
following two cycles cannot be included in G

Maj(1)
4 :

(12), (15), (23), (35) /∈ GMaj(1)
4 . (A.256)

On the other hand, we have already seen that the action of (13) and (25) would identify
the orbits for 5M and 5H . Thus, the monodromy group does not contain any two cycles:

(12), (15), (23), (35), (13), (25) /∈ GMaj(1)
4 . (A.257)

The absence of two cycles now allows us to completely fix the form of the monodromy
group. Indeed, since there exists an element which maps t1− t3 to t2− t5, the monodromy
group either contains either (12)(35) or (1235). Note, however, that (1235) sends the 5M
weight t2 +t3 to t3 +t5. Since t3 +t5 lies in the orbit conjugate to 5H , we therefore conclude
that (12)(35) is an element of the monodromy group. Since we have already argued that
the monodromy group contains (13)(25), we deduce that:

(12)(35), (13)(25) ∈ GMaj(1)
4 . (A.258)
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Taking the product of these two elements generates a third non-trivial element:

(13)(25) · (12)(35) = (12)(35) · (13)(25) = (15)(23). (A.259)

Taking all products of group elements, it is now immediate that GMaj(1)
4 is an abelian group.

Since GMaj(1)
4 is an abelian order four group with an order two element, it follows from

the Chinese remainder theorem that GMaj(1)
4 is isomorphic to Z2 × Z2. Having specified

explicitly the group elements of GMaj(1)
4 , we can now fix all of the orbits as:

G
Maj(1)
4 = 〈(12)(35), (13)(25)〉 ' Z2 × Z2 (A.260)

Orb(10M ) = t1, t2, t3, t5 (A.261)

Orb(5M ) = t2 + t3, t5 + t1 (A.262)

Orb(5H) = −t1 − t2,−t5 − t3 (A.263)

Orb(5H) = t1 + t4, t2 + t4, t5 + t4, t3 + t4 (A.264)

Orb(X†) = t2 − t4, t1 − t4, t5 − t4, t3 − t4 (A.265)

Orb(NR) = ± (t1 − t3) ,± (t5 − t2) . (A.266)

We will return to the case where the monodromy group contains more generators in the
following subsection.

Next consider the messenger sector of the theory. First consider messengers in the
5⊕5 of SU(5). Fixing the weight assignment of X as t4− t2, the presence of the interaction
term XY5Y

′
5

requires the weights for the messengers to satisfy the constraint:

(t4 − t2) + (−ti − tj) + (tk + tl) = 0. (A.267)

Hence, the orbits of the Y5 and Y ′
5

respectively include −t4− ti and t2 + ti. Note, however,
that the conjugate to the weight for Y5 already falls in the orbit for the 5H . Since full
GUT multiplets do not localize on this curve, it follows that this model does not admit
messengers in the 5 ⊕ 5. Next consider messenger fields in the 10 ⊕ 10. In this case, the
constraint on the weights requires:

(t4 − t2) + ti +−tk = 0. (A.268)

Thus, the orbit for the Y10 contains the weight t2 and the orbit for the Y ′
10

contains the
weight −t4. It thus follows that just as for the Dirac scenario, one of the messenger fields
fits inside of the same orbit as the 10M . Summarizing, the visible sector fields consists of
the following orbits:

G
Maj(1)
4 = 〈(12)(35), (13)(25)〉 ' Z2 × Z2 (A.269)

Orb(10M , Y10) = t1, t2, t3, t5 (A.270)

Orb(Y ′
10

) = −t4 (A.271)

Orb(5M ) = t2 + t3, t5 + t1 (A.272)

Orb(5H) = −t1 − t2,−t5 − t3 (A.273)

Orb(5H) = t1 + t4, t2 + t4, t5 + t4, t3 + t4 (A.274)

Orb(X†) = t2 − t4, t1 − t4, t5 − t4, t3 − t4 (A.275)

Orb(NR) = ± (t1 − t3) ,± (t5 − t2) . (A.276)
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The action of the monodromy group manifestly identifies four directions in the Cartan.
Hence, of the four possible U(1) gauge bosons in SU(5)⊥, only U(1)PQ remains. The PQ
charge assignments for the matter fields are:

Minimal 10M , Y10 Y ′
10

5M 5H 5H X† NR

U(1)PQ +1 +4 +2 −2 −3 +5 0
. (A.277)

In this case, all of the orbits of the 10 are already exhausted. Moreover, the available
orbits for additional 5’s are quite limited:

G
Maj(1)
4 = 〈(12)(35), (13)(25)〉 ' Z2 × Z2 (A.278)

Extra Charged (A.279)

Orb(5(1)) = t1 + t3, t2 + t5. (A.280)

Next consider extra GUT singlets of the theory. Since there is a single available U(1) in
SU(5)⊥, only one zero weight denoted as ZPQ can descend from the adjoint of SU(5)⊥. The
remaining weights of the adjoint are of the form tm − tn. Under the provided monodromy
group action, these separate into the following orbits:

G
Maj(1)
4 = 〈(12)(35), (13)(25)〉 ' Z2 × Z2 (A.281)

Orb(D(1)) = ±(t1 − t2),±(t3 − t5) (A.282)

Orb(D(2)) = ±(t1 − t5),±(t2 − t3) (A.283)

The corresponding PQ charge of these fields is:

Extra Charged 5(1)

U(1)PQ +2
(A.284)

Extra Neutral D(1) D(2) ZPQ

U(1)PQ 0 0 0
. (A.285)

A.3.2 Second and third Majorana scenarios: #GMaj
mono = 8

In the previous section we completely classified the available monodromy groups when
the order of the monodromy group is four. We now turn to monodromy groups with eight
elements. Even without specifying the explicit action of the monodromy group, it is already
possible to deduce that the monodromy group must be isomorphic to the dihedral group
Dih4, namely the group generated by rotations and reflections of the square. At the level
of abstract groups, we have:

Dih4 ' Z2 n Z4, (A.286)

where the Z2 acts by inversion on the Z4 elements.
To show that the monodromy group must be isomorphic to Dih4, recall that GMaj

mono is
a subgroup of S4 of order 8 = 23. It now follows from the Sylow theorems that all groups
of this order are isomorphic. Further note that S4 is the group of symmetries of the cube.
Since Dih4 is a symmetry which acts on one of the faces of the cube, we can already deduce
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that all of the order eight monodromy groups are isomorphic to Dih4. It is important to
note that specifying the abstract group is not enough to fix the actual orbits.

Returning to the parts of the orbit already specified before subsection (A.3.1), we have:

Orb(10M ) = t1, t2, t3, t5 (A.287)

Orb(5M ) = t2 + t3, t5 + t1, . . . (A.288)

Orb(5H) = −t1 − t2,−t5 − t3, . . . (A.289)

Orb(5H) = t1 + t4, t2 + t4, t5 + t4, t3 + t4 (A.290)

Orb(X†) = t2 − t4, t1 − t4, t5 − t4, t3 − t4 (A.291)

Orb(NR) = ± (t1 − t3) ,± (t5 − tn) ,± (t2 − tp) , . . . . (A.292)

To this end, we now proceed to classify the possible options for the corresponding orbits.
The analysis we consider splits to two cases, namely the case where the orbit of 5M has
length two, and the case where the orbit of the 5M is bigger. In the following subsections
we consider these two cases separately.

A.3.3 Length two 5M orbit

First suppose that the orbit for the 5M truncates at exactly two weights so that:

Orb(5M ) = t2 + t3, t5 + t1. (A.293)

On the other hand, we have also seen that the monodromy group must contain a four cycle.
There are six candidate four cycles of S4, given as:

Four Cycles in S4 = {(1235), (1253), (1325), (1352), (1523), (1532)} . (A.294)

Of these possibilities, it is enough to focus on the cases (1235), (1253), (1325) since the
remaining possibilities are inverse elements. Note, however, that neither (1235) nor (1325)
preserves Orb(5M ). It therefore follows that the four cycle of GMaj

mono must contain (1253).
Combined with the analysis leading to line (A.222) showing that the group element (13)(25)
must always be present, we conclude that:

(13)(25), (1253) ∈ GMaj(2)
8 . (A.295)

In fact, these elements generate an order eight group since (1253) · (1253) = (15)(23) 6=
(13)(25). Taking all available products between powers of these two generators, the explicit
elements are:

G
Maj(2)
8 = {id, (1253), (15)(23), (1352), (13)(25), (23), (12)(35), (15)} . (A.296)
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The corresponding orbits are then:

G
Maj(2)
8 ' 〈(13)(25), (1253)〉 ' Dih4 (A.297)

Orb(10M ) = t1, t2, t3, t5 (A.298)

Orb(5M ) = t2 + t3, t5 + t1 (A.299)

Orb(5H) = −t1 − t2,−t5 − t3,−t1 − t3,−t5 − t2 (A.300)

Orb(5H) = t1 + t4, t2 + t4, t5 + t4, t3 + t4 (A.301)

Orb(X†) = t2 − t4, t1 − t4, t5 − t4, t3 − t4 (A.302)

Orb(NR) = ± (t1 − t3) ,± (t5 − t2) ,± (t5 − t3) ,± (t1 − t2) . (A.303)

As in subsection A.3.1, the only available messengers can fit into vector-like pairs in
the 10⊕ 10 of SU(5). This can be traced back to the fact that the X† field always contains
a contribution from t4. The full list of orbits is therefore given by:

G
Maj(2)
8 ' 〈(13)(25), (1253)〉 ' Dih4 (A.304)

Orb(10M , Y10) = t1, t2, t3, t5 (A.305)

Orb(Y ′
10

) = −t4 (A.306)

Orb(5M ) = t2 + t3, t5 + t1 (A.307)

Orb(5H) = −t1 − t2,−t5 − t3,−t1 − t3,−t5 − t2 (A.308)

Orb(5H) = t1 + t4, t2 + t4, t5 + t4, t3 + t4 (A.309)

Orb(X†) = t2 − t4, t1 − t4, t5 − t4, t3 − t4 (A.310)

Orb(NR) = ± (t1 − t3) ,± (t5 − t2) ,± (t5 − t3) ,± (t1 − t2) . (A.311)

In this case, all available charged GUT matter is already part of the minimal matter
sector. Next consider extra GUT singlets. There is again a single gauge boson, and the
adjoints are either given by the one remaining zero weight ZPQ, or by charged weights in
the adjoint. Tracing through all orbits, we now have:

G
Maj(2)
8 ' 〈(13)(25), (1253)〉 ' Dih4 (A.312)

Extra Singlets (A.313)

Orb(D(1)) = ±(t1 − t5),±(t2 − t3). (A.314)

The corresponding charges under U(1)PQ are then:

Extra Neutral D(1) ZPQ

U(1)PQ 0 0
. (A.315)

A.3.4 Length four 5M orbit

In the previous subsection we deduced the form of the monodromy group in the case where
the length of the 5M orbit is two. Next suppose that the length of the 5M orbit is greater
than two. In fact, the orbit for 5M cannot have length three because of the orbit-stabilizer
theorem. The stabilizer of a weight w is given as the set of elements of the monodromy
group leaving it invariant:

– 83 –



J
H
E
P
0
8
(
2
0
1
0
)
0
4
0

Returning to the available list of orbits:

StabG(w) = {σ ∈ G|σ(w) = w} . (A.316)

The orbit-stabilizer theorem establishes that the product of the length of the orbit and the
order of the stabilizer are equal to the order of the group:

#Orb(w) ·#StabG(w) = #G. (A.317)

Since #G is not divisible by 3, we conclude that the length of the 5M orbit must be precisely
4. On the other hand, returning to the list of orbits already specified, we have:

Orb(10M ) = t1, t2, t3, t5 (A.318)

Orb(5M ) = t2 + t3, t5 + t1, . . . (A.319)

Orb(5H) = −t1 − t2,−t5 − t3, . . . (A.320)

Orb(5H) = t1 + t4, t2 + t4, t5 + t4, t3 + t4 (A.321)

Orb(X†) = t2 − t4, t1 − t4, t5 − t4, t3 − t4 (A.322)

Orb(NR) = ± (t1 − t3) ,± (t5 − tn) ,± (t2 − tp) , . . . . (A.323)

Prior considerations have already fixed eight out of the ten weights available for orbits of
the 5, leaving only t1 + t3 and t2 + t5 as options. We can therefore uniquely fix the orbits
for the 5’s as:

Orb(5M ) = t2 + t3, t5 + t1, t1 + t3, t2 + t5 (A.324)

Orb(5H) = −t1 − t2,−t5 − t3 (A.325)

Orb(5H) = t1 + t4, t2 + t4, t5 + t4, t3 + t4. (A.326)

Note that the orbit for the 5H is now of length two. Just as in the previous subsection,
we now ask which four cycles of S4 leave this orbit fixed. Of the available candidates:

Four Cycles in S4 = {(1235), (1253), (1325), (1352), (1523), (1532)} , (A.327)

only (1325) and (1523) preserve this orbit. Combined with the analysis leading to
line (A.222) showing that the group element (13)(25) must always be present, we con-
clude that:

(13)(25), (1325) ∈ GMaj(3)
8 . (A.328)

In fact, these elements generate an order eight group since (1325) · (1325) = (12)(35) 6=
(13)(25). Taking all available products between powers of these two generators, the explicit
elements are:

G
Maj(3)
8 = {id, (1325), (12)(35), (1523), (13)(25), (12), (15)(23), (35)} . (A.329)

Just as in the other Majorana scenarios, the messenger fields can only consistently embed
in the 10⊕ 10 of SU(5). This can again be traced to the larger size of orbit lengths in the
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Majorana scenario. It therefore follows that in this case as well, the full list of orbits are:

G
Maj(3)
8 = 〈(13)(25), (1325)〉 ' Dih4 (A.330)

Minimal Matter (A.331)

Orb(10M , Y10) = t1, t2, t3, t5 (A.332)

Orb(Y ′10) = −t4 (A.333)

Orb(5M ) = t2 + t3, t5 + t1, t1 + t3, t2 + t5 (A.334)

Orb(5H) = −t1 − t2,−t5 − t3 (A.335)

Orb(5H) = t1 + t4, t2 + t4, t5 + t4, t3 + t4 (A.336)

Orb(X†) = t2 − t4, t1 − t4, t5 − t4, t3 − t4 (A.337)

Orb(NR) = ± (t1 − t3) ,± (t5 − t2) ,±(t5 − t1),±(t2 − t3). (A.338)

In this case, note that there are no additional orbits for additional matter charged under
SU(5)GUT to localize.

Next consider extra matter corresponding to GUT singlets. As for all of the Majorana
scenarios, there is a single U(1) invariant under the action of the monodromy group. The
dark chiral matter is given by the zero weight of the adjoint of SU(5)⊥ denoted by ZPQ,
and weights of the form tm − tn. The extra matter candidates fill out the following orbit:

G
Maj(3)
8 = 〈(13)(25), (1325)〉 ' Dih4

Extra Singlet Orbits

Orb(D(1)) = ± (t1 − t2) ,± (t3 − t5) .

The PQ charge assignments are then:

Extra Neutral D(1) ZPQ

U(1)PQ 0 0
. (A.339)
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