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1 Introduction

The AdS/CFT correspondence has proven a fertile ground for investigating the properties of

strongly coupled gauge theories [1, 2], in particular the thermodynamic and hydrodynamic

properties of these gauge theories at finite temperature [3–5]. However, such investigations

face acute limitations because at present, we have an insufficient understanding of string

theory in interesting holographic backgrounds, i.e., in spacetimes with Ramond-Ramond

fields. Hence the examination of holographic gauge theories is primarily confined to both

the limit of a large ‘t Hooft coupling λ and a large number of colours Nc where the dual

gravitational theory corresponds to (semi-)classical Einstein gravity with a two-derivative

bulk action. However, it is understood that accounting for higher curvature interactions, or

higher derivative interactions more generally, within a perturbative framework allows one
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to begin to consider finite λ and finite Nc corrections [6–12]. An alternative point of view

would be that admitting such higher curvature (or higher derivative) interactions introduces

new couplings amongst the operators in the dual CFT, thereby broadening the universality

class of dual CFT’s which one can study with holography [11–14]. If one examines a point

in the space of CFT’s where these new couplings are finite, the higher curvature terms

will now make finite contributions in the analysis of the dual gravity theory. However, if

any higher curvature term were to become important, the normal expectation is that an

infinite number of such terms will become important at the same time as the background

curvature must have reached the string or Planck scales. The relevance of all these terms is

really signalling that one has entered a regime where the dual gravitational theory cannot

be described by a local quantum field theory. Hence to properly investigate the effects of

these finite CFT couplings, one is brought back to the question of understanding string

theory in interesting holographic backgrounds.

However, a traditional avenue to progress in theoretical physics is the study of sim-

plified or toy models which might provide insight into the behaviour of some complex

physical system of interest. Recent work with Gauss-Bonnet (GB) gravity showed that the

utility of such toy models in a holographic framework [15–18, 20, 21]. In this case, the

usual Einstein action is supplemented by a certain curvature-squared interaction, which

corresponds precisely to the four-dimensional Euler density. With this extension of the

usual Einstein action in the five-dimensional bulk gravity theory, the class of holographic

models is extended to allow independent values of the two central charges a and c of the

dual CFT [24–26]. Further it was found that GB gravity still captures certain fundamental

constraints which can also be inferred from direct considerations of CFT’s alone. In partic-

ular, consistency of the CFT constrains the central charges to obey [13]: 1/2 ≤ a/c ≤ 3/2.

Hence GB gravity (or more generally Lovelock gravity in higher dimensions [27–30]) pro-

vides an interesting toy model to examine questions related to holographic hydrodynamics,

or perhaps the holographic c-theorem [31, 32].

Motivated by the success of holographic studies of GB gravity, this holographic model

was recently extended with the introduction of a new curvature-cubed interaction in quasi-

topological gravity [36]. The progress with GB gravity relies on the fact that even though

this is a higher curvature theory of gravity, the holographic calculations in this model

are still under control. This control stems from two properties of the theory: the equa-

tions of motion are only second order in derivatives and exact black hole solutions have

been constructed. In quasi-topological gravity, exact black hole solutions are again read-

ily constructed but on general backgrounds the equations of motion will be fourth order

in derivatives [36]. Remarkably, however, the linearized equations of motion in an AdS5

background are again second order and in fact, match precisely the linearized equations of

the Einstein theory [36]. As we will show in the following, these properties are sufficient to

allow us to examine many interesting features of the holographic framework established by

this new toy model. The new curvature-cubed interactions again expand the class of CFT’s

which can be realized with this model. In particular, the new couplings are generalized

such that the dual CFT will not be supersymmetric [13] and so this holographic model may

provide new insights on non-supersymmetric gauge theories with a conformal fixed point.

One aspect which we examine with this new holographic model are the hydrodynamic
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transport coefficients of the dual CFT, in particular the shear viscosity. It has been observed

that the ratio of shear viscosity to density entropy of typical holographic fluids is extremely

small in comparison to typical fluids for ordinary matter [3, 4]. Originally it was conjectured

that these holographic calculations provided a universal lower bound, namely η/s ≥ 1/4π.

One piece of circumstantial evidence for this conjecture came from string theory were it was

found that the leading finite λ corrections always raised η/s above the bound for supersym-

metric plasmas where c = a [6, 7, 9, 10]. However, it is now understood this KSS bound can

be violated in string theory duals of plasmas where c 6= a by the effect of new curvature-

squared interactions in the gravitational action [8, 11, 12]. However, the string theory

constructions where these higher curvature terms are under control only allow for small

perturbative violations of the KSS bound. General arguments still suggest that the ratio of

the shear viscosity to entropy density should satisfy some lower bound [3, 4, 37] and so the

question naturally arises as to the precise nature of such a bound. Hence it is certainly of

interest to explore situations where finite violations of the bound occur and the toy models

above provide a framework for such explorations. In particular, it would be interesting if

one was able to show that η/s could be pushed to zero without producing any other patholo-

gies developing in the theory. With quasi-topological gravity, we find that η/s reaches a

non-zero lower value in a particular corner of the allowed space of gravitational couplings.

An outline of the rest of the paper is as follows: In section 2, we present a brief review

of quasi-topological gravity in five dimensions and the black hole solutions of the theory.

We begin to establish the AdS/CFT dictionary for this gravitational theory in section 3

with a calculation of the central charges of the dual CFT. In section 4, we adapt the scat-

tering experiments in the CFT of [13] to a holographic calculation. These computations

yield directly the flux coefficients t2 and t4, but combined with the expressions for the

central charges, we are also able to express the coefficients A, B and C, which determine

the three-point functions of the stress tensor, in terms of the gravitational couplings. Next

in section 5, we consider various constraints on the gravitational couplings which are re-

quired to ensure the physical consistency of the dual CFT. We consider three independent

constraints: positivity of the central charge c, positivity of the energy fluxes in section 4

and avoiding violations of causality. In section 6, we examine the hydrodynamic behaviour

of the CFT plasma. In particular, we find that the minimum value of the ratio of the

shear viscosity to the entropy density in this model is η/s ≃ 0.4140/(4π). We provide a

preliminary analysis of possible instabilities of the black holes, or alternatively of a uni-

form plasma in the dual CFT at finite temperature in section 7. We conclude with a brief

discussion of our results and future directions in section 8.

2 Review of quasi-topological gravity

We begin with a review of some salient features of quasi-topological gravity. We focus on the

five-dimensional version of the gravity theory, which would be dual to a four-dimensional

CFT. The bulk gravity action can be written as [36]:

I =
1

2ℓ3P

∫

d5x
√−g

[

12

L2
+R+

λ

2
L2X4 +

7

8
µL4Z ′

5

]

(2.1)
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where X4 is the four-dimensional Euler density, as used in GB gravity

X4 = RµνρσR
µνρσ − 4RµνR

µν +R2 , (2.2)

and Z ′
5 is the new curvature-cubed interaction

Z ′
5 = Rµν

ρσRρσ
αβRαβ

µν +
1

14
(21RµνρσR

µνρσR− 120RµνρσR
µνρ

αR
σα (2.3)

+144RµνρσR
µρRνσ + 128Rµ

νRν
ρRρ

µ − 108Rµ
νRν

µR+ 11R3
)

.

The AdS vacua of this theory have a curvature scale given by

1

L̃2
=
f∞
L2

(2.4)

where the constant f∞ is determined as one of the roots of

1 − f∞ + λf2
∞ + µf3

∞ = 0 . (2.5)

Note for any choice of the couplings λ and µ, there is at most one ghost-free AdS vacuum

which supports nonsingular black hole solutions, as described in detail in [36]. The solutions

describing planar AdS black holes take the form

ds2 =
r2

L2

(

−f(r)

f∞
dt2 + dx2

1 + dx2
2 + dx2

3

)

+
L2

r2f(r)
dr2 , (2.6)

where f(r) is determined by roots of the following cubic equation:

1 − f(r) + λf(r)2 + µf(r)3 =
r40
r4

. (2.7)

For the relevant solutions, the black hole horizon occurs at r = r0, which is easily seen

to yield f(r = r0) = 0 as a solution of the above equation. The Hawking temperature is

given by

T =
r0
πL2

1

f
1/2
∞

. (2.8)

The energy and entropy densities are simply calculated as [36]:

ρ =
3r40

2ℓ3PL
5f

1/2
∞

, s =
2πr30
ℓ3PL

3
. (2.9)

Further note that these relations satisfy ρ = 3
4Ts, as expected for a four-dimensional CFT

(in the absence of a chemical potential).

Apart from finding exact black hole solutions, another remarkable property of quasi-

topological gravity is that the linearized graviton equations in the five-dimensional AdS

vacuum take the form [36]:

−1

2

(

1 − 2λf∞ − 3µf2
∞

)

[

∇2hab + ∇a∇b hc
c −∇a∇chcb −∇b∇chca (2.10)

−g[0]

ab

(

∇2hc
c −∇c ∇dhcd

)

+
2

L̃2
hab −

2

L̃2
g[0]

ab hc
c

]

= ℓ3P T̂ab .
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Here g[0]

ab is the background AdS5 metric and L̃ is the curvature scale in eq. (2.4). Hence the

observation is that in the AdS5 background, the linearized equations are only second order

in derivatives. In fact, up to an overall factor, the above equations (2.10) are precisely the

same as the linearized equations for Einstein gravity in an AdS5 background — for example,

see [38, 39]. This result contrasts with that for a generic R3 action which would yield fourth

order equations of motion.1 However, the same occurs here for quasi-topological gravity on

a general spacetime geometry. That is, on general backgrounds, the linearized equations

are fourth order in derivatives for the present theory as well.

3 Central charges

In this section and the following section, we develop the dictionary relating the couplings

in five-dimensional quasi-topological gravity to parameters which characterize the dual

four-dimensional CFT. Since we are only dealing with the gravitational sector of the AdS

theory, we are looking to examine the behaviour of the stress energy tensor of the CFT.

Two such parameters are the central charges, c and a, of the CFT. We calculate these

through their appearance in the trace anomaly [24], using the now standard holographic

approach of [44, 45]. The central charge c also fixes the coefficient of the leading singularity

in the operator product of the stress tensor with itself [46–50]. Hence as a verification of our

first calculation, we also determine c from examining the two-point function in section 3.2.

3.1 Holographic trace anomaly

The two central charges of a four-dimensional CFT can be defined by the trace anomaly

that arises when the CFT is placed on a curved background geometry [24]:

〈Ta
a 〉 =

c

16π2
I4 −

a

16π2
X4 , (3.1)

where X4 is the four-dimensional Euler density, whose structure is given in eq. (2.2) (al-

though here, X4 is evaluated for the four-dimensional background metric of the CFT), and

I4 is the square of the Weyl tensor, i.e.,

I4 = Cabcd C
abcd = RabcdR

abcd − 2RabR
ab +

1

3
R2 , (3.2)

In order to compute c and a for the CFT dual to quasi-topological gravity, we follow

the holographic procedure described in [44, 45]. We should note that modifications to the

central charges from R2 interactions were examined previously in [25, 26] while perturbative

corrections coming from R3 interactions were considered in [51]. Efficient methods, i.e.,

‘short cuts’ to calculate the holographic trace anomalies for an arbitrary gravitational

action are discussed in [32–35].

Following [44, 45], we begin with the Fefferman-Graham expansion

ds2 =
L̃2

4ρ2
dρ2 +

gab

ρ
dxadxb , (3.3)

1Recently, other theories of curvature-cubed gravity with exceptional properties were identified in [40–

43]. In fact, up to a contribution proportional to the six-dimensional Euler density, the curvature-cubed

interaction constructed in five dimensions by [42, 43] is identical to that studied here.
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with

gab = g(0)ab + ρ g(1)ab + ρ2g(2)ab + · · · , (3.4)

where the boundary metric g(0)ab corresponds to the background geometry of the dual CFT.

The next step is to substitute this expansion of the metric into the gravity action (2.1).

On-shell g(2) drops out and we are left with an action involving g(0) and g(1). To extract

the conformal anomaly, we focus on terms which when integrated produce a log divergence.

This leads to

I = N
∫

ǫ

dρ

ρ

∫

d4x
√

g(0)

[(

t1R
(0)2 + t2R

(0)
abR

(0)ab + t3R
(0)
abcdR

(0)abcd

)

(3.5)

+AR(0)abg(1)ab +BR(0) tr g(1) + C tr g2
(1) +D (tr g(1))

2

]

.

where, e.g., R
(0)
ab corresponds to the Ricci tensor calculated for the boundary metric g(0)ab.

Further ǫ defines a UV regulator surface which cuts off the radial integral. The constant

coefficients appearing in the above expression (3.5) are given by

t1 =
1

2
(λf∞ − 3µf2

∞) = −4t2 = t3 ,

A = −(1 − 2λf∞ − 3µf2
∞) = −2B = C , (3.6)

D = −1

6
(7 − λf∞ + 5µf2

∞) , N =
L3

ℓ3Pf
3/2
∞

.

Next we eliminate g(1)ij using its equation of motion and then following [44, 45], we can

interpret the result as

I ≃ − log ǫ
1

2

∫

d4x
√

g(0) 〈Ta
a 〉 . (3.7)

Hence comparing the coefficients of the various terms involving the background curvatures

with eq. (3.1), we find

c = π2L
3

ℓ3P

1

f
3/2
∞

(

1 − 2λf∞ − 3µf2
∞

)

, (3.8)

a = π2L
3

ℓ3P

1

f
3/2
∞

(

1 − 6λf∞ + 9µf2
∞

)

. (3.9)

Given these results in eqs. (3.8) and (3.9), we also have

c− a

c
=

4f∞(λ− 3µf∞)

1 − 2λf∞ − 3µf2
∞

. (3.10)

3.2 Two-point function

Now we turn to computing the two-point function of the stress tensor as an alternative

approach to determining the central charge c. It is known [46–49, 52] that in a four-

dimensional CFT2

〈Tab(x)Tcd(x
′) 〉 =

CT

(x− x′)8
Iab,cd(x− x′) (3.11)

2We assume a Minkowski signature for the metric. Hence in eq. (3.12), xa = ηabx
b (i.e., x0 = −t).
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where

Iab,cd(x) =
1

2
(Iac(x)Ibd(x) + Iad(x)Ibc(x)) −

1

4
ηabηcd

and Iab(x) = ηab − 2
xaxb

x2
. (3.12)

This structure is completely dictated by the constraints imposed by conformal symme-

try [49, 52]. The coefficient CT is related to the central charge c which appears as the

coefficient of the (Weyl)2 term in the trace anomaly (3.1):

CT =
40

π4
c . (3.13)

In order to compute CT , it is sufficient to focus on the specific case 〈Txy Txy 〉. To

determine this two-point function, we will turn on a perturbation r2hxy(r, z)/L
2 in the

AdS5 background, i.e., in eq. (2.6) after setting r0 = 0. The quadratic action for hxy = φ

can be written as

I2 =
1

2ℓ3P

∫

d5x
(

Kr(∂rφ)2 +Kz(∂zφ)2 + ∂rΓ
)

, (3.14)

where

Kr = −r
5f

1/2
∞

2L5
(1 − 2λf∞ − 3µf2

∞) , (3.15)

Kz = − r

2f
1/2
∞ L

(1 − 2λf∞ − 3µf2
∞) . (3.16)

The details of Γ are unimportant since the ∂rΓ contribution is canceled by a generalized

Gibbons-Hawking boundary term [6]. Upon making the ansatz

φ = eipzHp(r) , (3.17)

the equation of motion for φ reduces to

H ′′
p (r) +

5

r
H ′

p(r) −
L4p2

f∞r4
Hp(r) = 0 . (3.18)

The general solution can be written as

Hp(r) = C1
1

r2
K2

(

L2p

f
1/2
∞ r

)

+ C2
1

r2
I2

(

L2p

f
1/2
∞ r

)

, (3.19)

where I2(x) and K2(x) are modified Bessel functions of the first and second kind, respec-

tively. In order to fix Hp(r = ∞) = 1, we set C1 = p2L4/(2f∞) and C2 = 0. Using the

equations of motion, eq. (3.14) can then be rewritten as

I2 =
1

2ℓ3P

∫

d5x ∂r(Krφ∂rφ) . (3.20)
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Substituting in the solution, we make a Fourier transform and extract the term proportional

to log |p|, which amounts to ignoring all contact terms:

〈Txy Txy 〉(p) =
L3

8ℓ3Pf
3/2
∞

(1 − 2λf∞ − 3µf2
∞) p4 log |p| . (3.21)

In order to compare the above result with eq. (3.11), it convenient to recast the latter

in Fourier space following [53]. We re-express the two-point function as [52]

〈Tab(x)Tcd(x
′) 〉 =

CT

40
EC

ab
ef

, cd
gh ∂e∂f ∂

′
g∂

′
h

1

(x− x′)4
, (3.22)

where the tensor EC satisfies

EC
abef , cdgh k

ekfkgkh =
1

24

(

2 kakbkckd−
3

2
k2(kakcηbd+kbkcηad+kakdηbc+kbkdηac) (3.23)

+k2(kakbηcd + kckdηab) +
3

2
(k2)2(ηacηbd + ηadηbc) − (k2)2ηabηcd

)

.

In the case of interest with (ab) = (xy) = (cd), the factor involving EC and the four

derivatives simply evaluates to

p4/16 . (3.24)

Hence in momentum space, the two-point function can be written as [53]

〈Txy Txy 〉(p) =
CT

640
p4

∫

d4x
eip·x

x4
=
π2 CT

320
p4 log |p| + (analytic in p) . (3.25)

Comparing eqs. (3.21) and (3.25), we find

CT =
40

π2

L3

ℓ3P

1

f
3/2
∞

(1 − 2λf∞ − 3µf2
∞) (3.26)

and finally using eq. (3.13), we have

c = π2L
3

ℓ3P

1

f
3/2
∞

(

1 − 2λf∞ − 3µf2
∞

)

. (3.27)

This expression precisely matches that in eq. (3.8) which was found using the holographic

trace anomaly in the previous section.

4 Holographic computation of energy fluxes

At this point, our holographic dictionary contains two entries. That is, eqs. (3.8) and (3.9)

relating the central charges of the four-dimensional CFT to the couplings of the five-

dimensional bulk gravity theory. However, the quasi-topological gravity (2.1) is character-

ized by three independent dimensionless parameters: λ, µ and L/ℓP. Hence we need to

extend the dictionary further by identifying additional parameters which play an analogous

universal role in the dual CFT. Further, since we are only dealing with the gravitational

– 8 –
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sector of the AdS5 theory, we must find parameters governing the behaviour of the stress

tensor in the CFT. A natural next step is to consider the three-point function of Tij, as was

extensively studied by [49, 52]. There it was shown that conformal symmetry and energy

conservation are powerful enough to determine the the three-point function up to three

constants, which are labeled A, B and C in [52]. In fact, the two central charges can be

expressed in terms of these three parameters, as we will elucidate below — see eqs. (4.35)

and (4.36). Further as discussed in [13], constructing a holographic model which can ex-

plore the full range of these CFT parameters requires the introduction of curvature-squared

and curvature-cubed interactions in the bulk gravity theory. In fact, this was the primary

motivation for constructing the quasi-topological gravity theory.

One can perform a holographic calculation of the full three-point function [39], however,

extending these calculations to quasi-topological gravity proves to be extremely challenging.

Therefore, we choose an indirect route to determining these coefficients here. In particular,

we construct a holographic description of a particular thought experiment proposed for

four-dimensional CFT’s in [13]. The experiment consists of first producing a disturbance,

which is localized and injects a fixed energy, with an insertion of the stress tensor εij T
ij,

where εij is a constant polarization tensor. Then one measures the energy flux escaping to

null infinity in the direction indicated by the unit vector n. The final result takes the form

〈E(n)〉 =
E

4π

[

1 + t2

(

ε∗ijεikn
jnk

ε∗ijεij
− 1

3

)

+ t4

(

|εijninj|2
ε∗ijεij

− 2

15

)]

, (4.1)

where E is the total energy. The structure of this expression is completely dictated by the

symmetry of the construction. Hence the two constant coefficients, t2 and t4, are parameters

that characterize the underlying CFT. Our holographic computation of t2 and t4 will extend

our AdS/CFT dictionary to the point where the three independent gravitational couplings

will be related to three independent parameters in the dual CFT.

Note that the (negative) constants appearing in eq. (4.1) in the two factors multiplied

by t2 and t4 were chosen so that these factors contribute zero net flux when integrated over

all directions. The negative sign of these constants leads to interesting constraints on the

coefficients t2 and t4, which we discuss below in section 5.2.

4.1 Field theory calculations

Let us first consider the discussion of [13] in more detail. Again, we begin by making a small

localized perturbation of the CFT in Minkowski space with metric ds2 = −dt2 + δijdx
idxj .

With time this perturbation spreads out, and sufficiently far away one may imagine taking

successively larger concentric two-spheres through which one is measuring the energy flux.

Let us parameterize the points on these two spheres by a radius r (i.e., r2 = xix
i as usual)

and a unit vector n = (n1, n2, n3). Then the energy flux measured in the direction given

by n is given by

E(n) = lim
r→+∞

r2
∫ +∞

−∞
dt T t

i(t, r n) ni . (4.2)

As it stands, the flux in eq. (4.2) includes contributions from both the past and future

null boundaries of Minkowski space. To separate out the future contribution which we

– 9 –
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are interested in, we select one of the coordinates x3 and construct light-cone coordinates

x± = t ± x3. Then it is clear that the integral above has two contributions, namely one

from future null infinity x+ → +∞ and another one from past null infinity x− → −∞. We

will take only the former.3 For large r, it is convenient to write

r2 = (x+−x−)2+(x1)2+(x2)2
x+→+∞−→ (x+)2(1+(y1)2+(y2)2), where y1,2 ≡ x1,2/x+.

Therefore we obtain

E(n) = − lim
x+→+∞

(x+)2
(

1+(y1)2+(y2)2
)

∫ +∞

−∞
dx−

[

T+i(x
+, x−,n)+T−i(x

+, x−,n)
]

ni .

(4.3)

Motivated by the preceding, we define new coordinates ya:

y+ = − 1

x+
, y− = x− − (x1)2 + (x2)2

x+
, y1,2 =

x1,2

x+
. (4.4)

In terms of these coordinates, the desired energy flux is measured y+ = 0. Further it is

not difficult to show that on this surface, we have

y1,2 =
n1,2

1 + n3
. (4.5)

Now we transform the energy momentum tensor from xa to ya coordinates, as usual

T x
ab =

∂yc

∂xa

∂yd

∂xb
T y

cd . (4.6)

Here we are simplifying our notation with the superscripts, x and y, to indicate in which

coordinate system the stress tensor is written, i.e., T y
−− = Ty−y− . Now at y+ = 0, we obtain

T x
++ =

(

(y1)2 + (y2)2
)2
T y
−− , T x

+ 1,2 = −2 y1,2
(

(y1)2 + (y2)2
)

T y
−− , (4.7)

T x
+− =

(

(y1)2 + (y2)2
)

T y
−− , T x

−− = T y
−− , T x

− 1,2 = −2 y1,2 T y
−− .

Hence we see that on this surface (i.e., y+ = 0), there is a single relevant component of the

energy momentum tensor in y coordinates. Using these relations, we rewrite eq. (4.3) as:

E(n) = Ω3

∫ +∞

−∞
dy−

T y
−−(y+ = 0, y−, y1, y2)

(y+)2
(4.8)

with Ω = 2/(1 + n3).

Further, we note that transforming from the xa to ya coordinates produces a Weyl

scaling of the metric. Hence it is natural to use this transformation to perform the conformal

transformation:

ds2 = −dx+dx− + (dx1)2 + (dx2)2 =
−dy+dy− + (dy1)2 + (dy2)2

(y+)2

−→ ds̃2 = −dy+dy− + (dy1)2 + (dy2)2 . (4.9)

3Note that the following discussion overlooks the flux contribution on the ‘hemisphere’ at x−
→ +∞.

However, our primary concern is the functional dependence of E(n) and so this does not affect our results.
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Then the energy momentum tensor transforms

T̃ab =

∣

∣

∣

∣

∂x

∂y

∣

∣

∣

∣

−1/2 ∂xc

∂ya

∂xd

∂yb
Tcd . (4.10)

In particular, we have T̃ y
−− = T y

−−/(y
+)2 and therefore eq. (4.8) becomes:

E(n) = Ω3

∫ +∞

−∞
dy− T̃ y

−−(y+ = 0, y−, y1, y2). (4.11)

Following [13], we wish to consider the expectation value of this flux operator E(n) for

a particular state

〈E(n)〉 =
〈0| O†

E E(n)OE |0〉
〈0| O†

E OE |0〉
. (4.12)

In the present discussion, the operator OE is assumed to be a localized insertion of the

stress tensor of the form

OE =

∫

d4x εij Tij e
−iEt ψ(x/σ) . (4.13)

Here ψ(x/σ) is some profile which localizes the insertion to xa = 0 on the scale σ. We

assume E ≫ 1/σ and so the energy of the insertion is E up to order 1/σ corrections.

Finally since the stress tensor enters this construction, the operator also contains a constant

polarization tensor εij which we assume only has spatial components. The symmetry of

this construction then dictates that the flux expectation value (4.12) takes the form given in

eq. (4.1). Further, it is clear that by construction the result is completely determined by the

three-point function of the stress tensor. Hence the flux parameters t2 and t4 appearing in

eq. (4.1) will be related to A, B and C, the parameters controlling this three-point function.

4.2 Holographic calculations

The xa and ya coordinates defined in the previous section are easily extended into the AdS5

bulk with

ds2 =
L̃2

z2

(

−dx+dx− + (dx1)2 + (dx2)2 + dz2
)

(4.14)

=
L̃2

u2

(

−dy+dy− + (dy1)2 + (dy2)2 + du2
)

. (4.15)

Recall that L̃ is the curvature of the AdS5 geometry, as defined in eq. (2.4). To relate these

two coordinate systems, it is convenient to describe AdS5 as the hyperbola

− (W−1)2 − (W 0)2 + (W 1)2 + (W 3)2 + (W 3)2 + (W 4)2 = −L̃2 (4.16)

in a six-dimensional Minkowski space with (–,–,+,+,+,+) signature. Note that we reach

the boundary of AdS5 by taking WM large. The previous coordinates are mapped to the

WM coordinates with

W−1 +W 4 =
L̃2

z
, W a = L̃

xa

z
for a = 0, 1, 2, 3 , (4.17)

W 0 +W 3 =
L̃

u
, W−1 +W 4 = −L̃2 y

+

u
, W−1 −W 4 = −y

−

u
, W 1,2 = L̃

y1,2

u
.
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Note that z and u are mapped to two orthogonal null surfaces in theWM space. Further the

powers of L̃ are slightly different in the second line above to ensure that the (engineering)

dimension of the coordinates is properly accounted for, i.e., u is dimensionless while y+

has dimensions length−1. With eq.(4.17), we can relate the (xa, z) and (ya, u) coordinate

systems in eqs. (4.14) and (4.15) as

y+ = − 1

x+
, y1,2 =

x1,2

x+
, u =

z

x+
,

y− = x− − (x1)2 + (x2)2

x+
− z2

x+
. (4.18)

Notice that on the asymptotic boundary z = 0, the above coordinate transformation re-

duces to that given in eq. (4.4). Further with y+ = 0 and any finite value of u, we are on

the AdS5 horizon at z = ∞ in the (xa, z) coordinates.

As commented above, in calculating the flux expectation value in eq. (4.12), we are

essentially determining a specific component of the three-point function of the stress tensor.

Hence in our holographic description, we must first introduce appropriate metric pertur-

bations hµν in the AdS5 bulk which couple to the dual insertions of Tab. We then evaluate

the on-shell contribution to the cubic effective action for the graviton insertions.

As discussed in [36], in general, the equations of motion for quasi-topological gravity

involve higher derivatives. Hence one would expect that linearized equations of motion for

the metric perturbations here are also higher order. However, it was observed in [36] that

in fact these linearized equations for gravitons propagating in the AdS5 vacuum match

precisely the second order equations of Einstein’s theory, up to some overall (constant)

coefficient, as shown in eq. (2.10). This makes the following calculations much simpler

as we may borrow previous results [13, 39] for the graviton solutions in Einstein gravity.

Hence while the higher derivative contributions in quasi-topological gravity are essential to

producing a nonvanishing value for t4 in the dual CFT, they only contribute through the

three-point interactions in the following.

We first consider the flux operator E(n) in eq. (4.11). It is natural to use the (ya, u)

coordinates in eq. (4.15) and the standard AdS/CFT dictionary advises us that T̃ y
−−(y)

couples to h++(ya, u = 0). Considering first a localized insertion h++(ya, u = 0) =

δ(y1)δ(y2)δ(y+), the bulk solution is given by

h++(y+, y−, y1, y2, u) =
u2

(u2 − y+(y− − y′−) + (y1)2 + (y2)2)4
. (4.19)

As noted above, we are using the same solution here as in [13] because the linearized

equations of motion for perturbations around AdS5 in quasi-topological gravity are the

same for Einstein gravity [36]. To obtain the operator E(n), we then integrate in y−, as

well as multiplying by an overall factor of Ω3 and performing a translation in y1 and y2,

to obtain

h++(y+, y1, y2, u) =
8 δ(y+)

(1 + n3)3
u2

(u2 + (y1 − y′1)2 + (y2 − y′2)2)3
, (4.20)

with y′1,2 = n1,2/(1 + n3), as in eq. (4.5).
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In fact we can make this insertion at a nonlinear level in the bulk gravity theory,

following [13] and [14]. To achieve this, we consider the shockwave background:

ds2 =
L̃2

u2

[

δ(y+)W(y1, y2, u)(dy+)2−dy+dy−+(dy1)2+(dy2)2+du2
]

(4.21)

This metric solves the full equations of motion coming from eq. (2.1) provided that

W(y1, y2, u) satisfies the equation of motion

∂2
uW − 3

u
∂uW + ∂2

y1W + ∂2
y2W = 0 . (4.22)

This simple linear equation appears as the equation of motion in Einstein gravity and one

can readily show that it is not corrected by the higher curvature terms in eq. (2.1) with the

arguments of [54, 55]. From our expression for h++ in eq. (4.20), the relevant wavefunction

is

W(y1, y2, u) =
Ω3

L̃2

u4

(u2 + (y1 − y′1)2 + (y2 − y′2)2)3
(4.23)

with y′1,2 = n1,2/(1 + n3), as before.

Next we turn to the graviton perturbations dual to the operator insertion OE in

eq. (4.13). To simplify the discussion, we choose a particular polarization with εx1x2 =

1 = εx2x1 and all other components vanishing. Using the (xa, z) coordinate system in

eq. (4.14), the desired operator (4.13) is sourced by a metric perturbation with the bound-

ary value: hx1x2(xa, z → 0) = z−2e−iE(x++x−)/2. The bulk solution that corresponds to

this boundary perturbation is then

hx1x2(xa, z) =

∫

d4x′ e−i E

2
(x′++x′−) 1

(z2 + (x− x′)2)2
. (4.24)

Since the h++ perturbation is completely localised at y+ = 0, for later purposes, we will

primarily be interested in the behaviour of hx1x2(xa, z) on that surface. Following [13], it

is possible to perform the above integral using the parameterization of AdS5 in eq. (4.16)

to produce

hx1x2(W+ ≃ 0,W−,W i) ≃ (W+)2

L̃4E2
e−iEW−/2δ3(W i) , (4.25)

where W± = W−1 ±W 4. Implicitly, W 0 has been replaced with (W 0)2 = 1− (W i)2 which

is the reduction of eq. (4.16) with W+ = 0. Using eq. (4.17), we may express the coordinate

dependence in terms of (ya, u)

hx1x2(y+ ≃ 0, y−, y1, y2, u) ≃ (y+)2

E2
eiEy−/2 δ(y1) δ(y2) δ(u− 1) . (4.26)

Finally with the coordinate transformation (4.18), we also transform the tensor indices to

find that at y+ → 0, our metric perturbation becomes

hy1y2 ≃ 1

E2
eiEy−/2 δ(y1) δ(y2) δ(u − 1) (4.27)

along with other hy+y1 , hy+y2 and hy+y+ components. However, the form of the latter

will not be important, as we now discuss. Note that the original expression (4.24) was
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transverse and traceless in the (xa, z) coordinates but as a result, the expression produced

by simply making a coordinate transformation to the (ya, u) coordinates is not. However,

it is convenient to work in this gauge since a great simplification results in the equation of

motion for the graviton propagating in the AdS5 background, i.e., away from the shockwave

deformation in eq. (4.21). Hence at this point, we choose add to eq. (4.27) the components

required to impose transverse traceless gauge in the (ya, u) coordinates.

The mode above was traceless by construction and so we only need to ensure that the

transverse condition is satisfied as well, i.e., ∇µhµν = 0. In the present case, the latter can

be satisfied as long as hy1y2 is accompanied by modes satisfying:

∂y−hy+y1 =
1

2
∂y2hy2y1 , ∂y−hy+y2 =

1

2
∂y1hy1y2 ,

∂y−hy+y+ =
1

2

(

∂y1hy1y+ + ∂y2hy2y+

)

. (4.28)

Together the hy1y2 , hy+y1 , hy+y2 and hy+y+ components form an independent transverse

traceless mode. We have verified that with hy1y2(y, u) ≡ L̃2/u2 φ(y, u) and the remaining

components chosen to satisfy eq. (4.28), the equation of motion for φ(y, u) becomes simply

that of a massless scalar in AdS5 (up to interaction terms with the shockwave):

∂2
uφ− 3

u
∂uφ+ ∂2

y1φ+ ∂2
y2φ− 4∂y+∂y−φ = 0 . (4.29)

To find the three-point function, we add these perturbations to the metric (4.21) and

evaluate the action (2.1) on-shell. Then we must extract the terms of the form W φ2 from

this result. After integration by parts and using the equations of motion, the cubic effective

action becomes

S
(3)
Wφ2 = − 1

8ℓ3P

∫

d5x
√−g φ ∂2

−φ W
[

1 − 2f∞λ− 3µf2
∞ + f∞(λ− 87f∞µ)T2 + 21f2

∞µT4

]

(4.30)

where

T2 =
∂2

1W + ∂2
2W − 2 ∂uW
W

∣

∣

∣

∣

u=1, y1=y2=0

,

T4 =

(

3T2 +
∂2

1∂
2
2W − ∂u∂

2
1W − ∂u∂

2
2W

W

)
∣

∣

∣

∣

u=1, y1=y2=0

. (4.31)

Implicitly here, we are using that with the perturbations given above, i.e., eqs. (4.20)

and (4.26), the interaction is entirely localized along y+ = 0 = y1 = y2 and u = 1.

Substituting the solution (4.23) for W(y1, y2, u) into eq. (4.31), we obtain

T2 = 24

(

n2
1 + n2

2

2
− 1

3

)

T4 = 180

(

2n2
1 n

2
2 −

2

15

)

. (4.32)

The expressions above involving n1 and n2 should be interpreted as two independent SO(3)-

invariant combinations of the unit vector ni and the (implicit) polarization tensor εij , i.e.,

n2
1 + n2

2

2
=
ε∗ij εik n

jnk

ε∗ij εij
, 2n2

1n
2
2 =

|εij ninj|2
ε∗ij εij

. (4.33)
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This was the guiding principle in selecting the two combinations presented in eq. (4.31).

To normalize the final result, we must divide by the two-point function 〈Ty1y2 Ty1y2〉, which

is essentially the calculation of section 3.2. We finally arrive at an expression identical to

that in eq. (4.1) with

t2 =
24f∞(λ− 87f∞µ)

1 − 2f∞λ− 3f2
∞µ

, t4 =
3780f2

∞µ

1 − 2f∞λ− 3f2
∞µ

. (4.34)

4.3 General three-point parameters

At this point, we return to A, B and C, the parameters in the dual CFT controlling the

general structure of the three-point function of the stress tensor [49, 52]. In fact, these

parameters fix both the central charges, c and a, and the flux parameters, t2 and t4, in the

CFT. Hence we can use the results in the previous section and in section 3 to express the

three-point parameters in terms of the gravitational couplings.

First, we can express the central charges as [49]

c =
π6

480
(9A− B − 10C) , (4.35)

a =
π6

2880
(13A− 2B − 40C) . (4.36)

Further we have [13, 20]

t2 =
15(5A + 4B − 12C)

9A− B − 10C , t4 = −15(17A + 32B − 80C)

4(9A −B − 10C)
. (4.37)

Given that these four quantities are all determined by the same three parameters, these

expressions must be redundant. That is, we can see that there is a consistency condition:

c− a

c
=

1

6
t2 +

4

45
t4 =

41A− 4B − 20C
6(9A− B − 10C)

. (4.38)

With the results (4.34) in the previous section,

1

6
t2 +

4

45
t4 =

4f∞(λ− 3µf∞)

1 − 2λf∞ − 3µf2
∞

. (4.39)

Now comparing to eq. (3.10), we see that our holographic results satisfy the required

relation (4.38).

Combining these expressions (4.35)–(4.37) with the results of the holographic calcula-

tions, eqs. (4.34), (4.35) and (4.36), we arrive at the following expressions

A = −512

9π4

L3

ℓ3P

1

f
3/2
∞

(

1 − 12λf∞ + 48µf2
∞

)

, (4.40)

B = − 32

9π4

L3

ℓ3P

1

f
3/2
∞

(

49 − 318λf∞ + 4377µf2
∞

)

, (4.41)

C = − 32

9π4

L3

ℓ3P

1

f
3/2
∞

(

23 − 168λf∞ + 213µf2
∞

)

. (4.42)
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5 Physical constraints

Having established several interesting entries in the AdS/CFT dictionary for quasi-

topological gravity, we next consider various constraints on the gravitational couplings that

arise to ensure the physical consistency of the dual CFT’s. We consider three independent

constraints in the following:

5.1 Positivity of CT

Unitarity of the CFT requires that the central charge CT or c is positive. This constraint on

c may seem somewhat mysterious from the point of view of the holographic trace anomaly

discussed in section 3.1. However, the definition in section 3.2 shows CT appears in the

two-point function and so this central charge controls the sign of the norm of CFT states

created with the stress tensor. Hence given eq. (3.26), the dual gravity theory must satisfy

1 − 2f∞ λ− 3f2
∞ µ > 0 . (5.1)

At this point, we note that multiplying the expression on the left-hand side of eq. (5.1)

by minus one yields precisely the derivative of the left-hand side of eq. (2.5), i.e., the

slope of the polynomial there evaluated at the root given by eq. (2.5). This comment is

related to the observation in [36] that this slope appears as a pre-factor in the kinetic

term for graviton or in the linearized equations of motion (2.10) in the AdS vacua of the

theory. That is, the sign of the slope determines whether or not the graviton is a ghost in

a particular AdS vacuum — the graviton is well-behaved when the slope is negative. Of

course, the holographic calculation in section 3.2 shows that CT is precisely determined by

the graviton propagator and so it is no surprise that the same factor appears in both places.

Further, we note that in AdS vacua with a ghost-like graviton, this pathology would make

a prominent appearance as non-unitarity in the dual CFT since CT would be negative.

The analogous observations were made for GB gravity in [20].

5.2 Positivity of energy fluxes

Turning to the expression of the energy flux in eq. (4.1), we note that the two factors

multiplied by t2 and t4 were normalized to give a vanishing contribution to the net flux when

integrated over all directions. Hence depending on the specific direction, these factors may

give either a positive or negative contribution to 〈E(n)〉. Further, it is easy to see that if the

coefficients t2 and t4 become too large, the energy flux measured in various directions will

become negative. Following [13], avoiding this problem then imposes various constraints

on these coefficients:4

Tensor : 1 − 1

3
t2 −

2

15
t4 ≥ 0 , (5.2)

Vector : 1 +
1

6
t2 −

2

15
t4 ≥ 0 , (5.3)

Scalar : 1 +
1

3
t2 +

8

15
t4 ≥ 0 . (5.4)

4A complementary analysis in [56] produced a constraint equivalent to eq. (5.4), again as a positivity

constraint on the three-point function of the stress tensor.
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Figure 1. The allowed region in (λ, µ)-plane satisfying the constraints appearing in eqs. (5.5)–

(5.7). Within this region, the energy flux (4.1) in the dual CFT is positive for any direction. The

(blue) segment on the λ-axis within the allowed region matches precisely the allowed values of the

coupling in five-dimensional GB gravity.

If the polarization tensor is chosen with εx1x2 = 1 = εx2x1 and all other components

vanishing, as in section 4.2, the tensor, vector and scalar constraints above correspond

to demanding a positive flux with n2
3 = 1, n2

1 = 1 (or n2
2 = 1), and n2

1 = 1/2 = n2
2,

respectively. Using eq. (4.34), we translate these constraints on t2 and t4 to constraints on

the gravitational couplings:

Tensor : 1 − 10f∞λ+ 189f2
∞µ ≥ 0 , (5.5)

Vector : 1 + 2f∞λ− 855f2
∞µ ≥ 0 , (5.6)

Scalar : 1 + 6f∞λ+ 1317f2
∞µ ≥ 0 . (5.7)

In the present case, these constraints confine the higher curvature couplings of quasi-

topological gravity to lie within a small region in the (λ, µ)-plane, as shown in figure 1.

Setting µ = 0 reduces the theory to GB gravity and one recovers the expected con-

straints from eqs. (5.5)–(5.7) in this limit [14, 17]. First with µ = 0, eq. (2.5) yields

f∞ = 1
2λ

(

1 −
√

1 − 4λ
)

for the ghost-free AdS vacuum. Then, for example, the tensor

constraint (5.5) reduces to 5
√

1 − 4λ− 4 ≥ 0 or λ ≤ 9/100. Similarly, the vector (5.6) and

scalar (5.7) constraints yield λ ≥ −3/4 and λ ≥ −7/36, respectively. Hence to maintain

positive energy fluxes in all directions, the curvature-squared coupling must lie in the range

− 7
36 ≤ λ ≤ 9

100 , as expected [14, 17]. While the latter combines the results for the tensor

and scalar constraints, the inequality arising from the vector constraint also matches the

previously derived result [14, 17]. The allowed GB theories are illustrated in figure 1 as

the blue segment on the λ-axis (i.e., µ = 0) within the allowed region.
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5.3 Causality constraints

Constraining the gravitational couplings by demanding that the dual CFT respects causal-

ity was first explored in the context of five-dimensional Gauss-Bonnet gravity [15, 16]. In

this analysis, one considers graviton fluctuations that probe the bulk geometry. The AdS5

vacuum (i.e., eq. (2.6) with f(r) = f∞) is Lorentz invariant in the CFT directions and

so no violations of causality would be found with this bulk spacetime. Instead, the black

hole solution provides a background where Lorentz invariance is broken and in certain in-

stances, the dual CFT plasma supports superluminal signals. Hence one constrains the

gravitational couplings to avoid the appearance of such superluminal modes. The original

analysis [15, 16] of GB gravity only considered gravitons polarized transversely to the mo-

mentum direction, in what is conventionally called the tensor channel. The analysis was

later extended to the shear and sound channels in [14, 17]. These causality constraints

have since been extended to GB gravity in higher dimensions [18–23] and more generally

to higher order Lovelock theories [27–30].

In all of these cases, it was found that the causality constraints precisely match those

arising from requiring positive energy fluxes. In particular, for five-dimensional GB theory,

these constraints are exactly equivalent to those presented in eqs. (5.5)–(5.7) with µ = 0.

However, it has been shown that this matching does not appear in general, in particular

for cases where the gravitational equations of motion are not second order [14]. Hence, in

general, one has two independent sets of constraints, one required by the positive fluxes

and a second determined by the absence of superluminal modes. In quasi-topological

gravity, the linearized equations in a general background (and as we will see, in a black

hole background) are fourth order in derivatives and so we do not expect that the previous

constraints (5.5)–(5.7) will be reproduced by the causality analysis. However, unfortunately

our final results here will be similar to those in [14]. That is, we find no evidence of causality

violation once the curvature-cubed coupling µ is turned on in quasi-topological gravity.

There is a broad literature discussing causality in general field theories [57–59]. The

key property characterizing how quickly signals propagate is the speed with which a wave-

front propagates out from a discontinuity in some initial data. This front velocity is given

by

vfront ≡ lim
|q|→∞

Re(ω)/q . (5.8)

That is, we are interested in the phase velocity of modes in the limit of infinitesimally short

wavelengths. Hence in a relativistic field theory, we would require that vfront ≤ 1 in order

to avoid any acausal behaviour.

In the present holographic framework, we need to determine the front velocity of signals

in the dual CFT. That is, we must determine this velocity for excitations dual to various

graviton channels in the bulk spacetime. Consider the black hole background given in

eq. (2.6) and define the new coordinate ρ = r20/r
2. The metric becomes

ds2 =
r20
L2ρ

(

−f(ρ)

f∞
dt2 + dx2

1 + dx2
2 + dx2

3

)

+
L2

4ρ2f(ρ)
dρ2 . (5.9)
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For simplicity, we will focus on tensor perturbations of the form

hx1x2 =
r20
L2ρ

e−iωt+iqx3φ(ρ) (5.10)

propagating on the background given in eq. (5.9). The determination of the front velocity

for such modes was described in detail in [15]. For our present purposes, it suffices to derive

the effective speed in the CFT directions at large momentum and frequency by focusing on

the contributions coming from the t and z derivatives in the linearized equations of motion.

That is, the full linearized equation for φ(ρ) takes the form

∂ρ

(

C(2)(ρ, q2) ∂ρφ(ρ)
)

+ C(0)(ρ, q2, ω2)φ(ρ) = 0 , (5.11)

The function C(2) contains two terms, one independent of q and the other proportional to

q2. In contrast, the C(0) function is a sum of terms proportional to ω2, q2, ω2q2 and q4.

In the large momentum and frequency limit, the radial derivatives can be neglected and

essentially only the C(0) term is relevant above. By setting this term to zero, one finds an

effective ‘dispersion relation’ relating the frequency to the momentum. As the final result

is quite a complicated expression, let us approach it in several steps.

We start by setting both λ and µ to zero, in which case our theory reduces to Einstein

gravity. Then the dispersion relation is simply

0 = ω2 − f(ρ)

f∞
q2 . (5.12)

For Einstein gravity, f(ρ) = 1 − ρ2 (and f∞ = 1). Therefore the pre-factor multiplying

q2 above is less than one for any finite radius and we expect that these excitations always

propagate at less than the speed of light, i.e., ω2/q2 ≤ 1. Next we consider GB gravity

with λ 6= 0 and µ = 0. In this case the dispersion relation becomes

0 = ω2
(

1 − 2λf(ρ) + 2ρλf ′(ρ)
)

− f(ρ)

f∞
q2
(

1 − 2λf(ρ) + 2λρf ′(ρ) − 4ρ2λf ′′(ρ)
)

(5.13)

Using the GB black hole solutions and expanding the above expression near the AdS

boundary yields

ω2

q2
= 1 − 1 − 10f∞λ

f∞(1 − 2f∞λ)2
ρ2 + O

(

ρ4
)

. (5.14)

Hence we expect that preventing a superluminal front velocity requires 1 − 10f∞λ ≥ 0,

which matches precisely the tensor constraint (5.5) with µ = 0. Of course, this agreement

for GB gravity was previously noted [13, 14, 17].

Now for the full theory with both λ 6= 0 and µ 6= 0, the story is quite different.

As described in [36], the linearized equations of motion describing gravitons in a general

background for quasi-topological gravity are fourth order in derivatives. As a result, one

finds that the equations for the tensor perturbations in the black hole background now

involve higher powers of momentum, i.e., terms proportional to ω2q2 and q4, as well as
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q2∂2
u. These quartic momentum terms will then dominate the large q limit. Indeed, in this

case the full effective dispersion relation becomes

0 = ω2
(

1 − 2λf(ρ) + 2ρλf ′(ρ)
)

− f(ρ)

f∞
q2
(

1 − 2λf(ρ) + 2λρf ′(ρ) − 4ρ2λf ′′(ρ)
)

−3µω2
[

f(ρ)
(

f(ρ) − 2ρf ′(ρ) + 27ρ2f ′′(ρ) + 48ρ3f (3)(ρ) + 12ρ4f (4)(ρ)
)

+3ρ2f ′(ρ)
(

f ′(ρ) + 6ρ f ′′(ρ) + 2ρ2f (3)(ρ)
)

+ 6ρ4f ′′(ρ)2
]

+3µ
f(ρ)

f∞
q2
[

f(ρ)
(

f(ρ) − 2ρf ′(ρ) − 23ρ2f ′′(ρ) − 48ρ3f (3)(ρ) − 12ρ4f (4)(ρ)
)

+ρ2f ′(ρ)
(

f ′(ρ) − 24 ρ f ′′(ρ) − 12ρ2f (3)(ρ)
)]

−12µρ2 f(ρ)

f∞
q2
(

f ′(ρ) + 2ρf ′′(ρ)

)(

ω2 − f(ρ)

f∞
q2
)

(5.15)

Hence as commented above, in the limit of large q, the contributions from the higher

momentum terms, appearing in the last line above, come to dominate. In fact then, the

dispersion relation reduces to that found for Einstein gravity (5.12). Therefore we conclude

that the dual excitations always propagate at less than the speed of light. A similar result

was also found in [14] when considering a Weyl-tensor squared interaction added to the

usual Einstein action.

However, one might find this analysis somewhat suspect. In particular, this effective

dispersion relation may not be well-defined here because of the very presence of these higher

derivative terms which produced the simplification in the final step. Further in these higher

derivative contributions, the asymptotic behaviour of the factor f ′′(r) + 2
rf

′(r) ∼ (r0/r)
6

gives a very rapid decay and so perhaps modes propagating very close to the AdS boundary

can evade our previous conclusion.

To eliminate these potential loopholes, we now proceed with a more careful analysis

by rewriting the equation of motion (5.11) in a Schrödinger form, following [15, 17]. The

first step is to isolate the ω2 contributions by rewriting eq. (5.11) as

A(ρ, q2) ∂2
ρφ(ρ) +B(ρ, q2) ∂ρφ(ρ) + C(ρ, q2)φ(ρ) +D(ρ, q2)w2φ(ρ) = 0 . (5.16)

Here we have defined the dimensionless frequency and momentum,w =
ω

2πT
, q =

q

2πT
. (5.17)

Performing a change of coordinates and rescaling φ(ρ) = Z(ρ)ψ(ρ) according to

dy

dρ
=

√

D(ρ, q2)
A(ρ, q2) , ∂ρZ(ρ, q2)

Z(ρ, q2) =
∂ρA(ρ, q2)

4A(ρ, q2)
− ∂ρD(ρ, q2)

4D(ρ, q2)
− B(ρ, q2)

2A(ρ, q2)
, (5.18)

the eq. (5.16) takes the desired form

− 1q2 ∂2
yψ(y) + U(y, q2)ψ(y) = α2 ψ(y) , (5.19)

– 20 –



J
H
E
P
0
8
(
2
0
1
0
)
0
3
5

where α2 = w2/q2. Note that in terms of the Schrödinger coordinate y, the horizon now

appears at y → +∞ and the asymptotic AdS boundary, at y = 0. In terms of the radial

coordinate ρ, the effective potential can be expressed asq2U(ρ, q2) = −A(ρ, q2)
D(ρ, q2) ∂2

ρZ(ρ, q2)
Z(ρ, q2) − B(ρ, q2)

D(ρ, q2)

∂ρZ(ρ, q2)

Z(ρ, q2) − C(ρ, q2)
D(ρ, q2)

. (5.20)

More concretely the effective potential is of the form,q2U(ρ, q2) =

∑i=6
i=0 ni(u)(q2)i

∑i=5
i=0 di(u)(q2)i

(5.21)

for some complicated functions ni and di. If we now take the large momentum limit we

obtain the result

U(ρ, q2) =
f(ρ)

f∞
+ O(1/q2) . (5.22)

Now this is precisely the effective potential which one would obtain for Einstein gravity in

the large momentum limit. There is an infinite series of subleading corrections in O(1/q2)

which differ from Einstein theory but these terms are irrelevant in the limit of large q. This

confirms our conclusion from the original analysis of the effective dispersion relation.

Notice that in principle one has to worry that the boundary and large momentum limits

do not commute. This is clear from the form of expression (5.21), where the momentum

appears in ratios. We will briefly comment on this in the discussion section. So perhaps a

more subtle analysis may still find new constraints from demanding causality is respected

in the dual CFT.

Our discussion here has focused on the tensor modes (5.10). However, the subtleties re-

garding the boundary and large q limits carry over to the vector and scalar channels. In the

large q limit, one obtains the same results as in the tensor channel. That is, in this limit the

higher momentum terms dominate and one obtains a trivial dispersion relation, leading to

no causality violation. Now one may wish to apply a more careful analysis for these modes,

along the lines of that given above for the tensor channel. However, unfortunately for the

vector and scalar channels, the previous analysis with an effective Schrödinger equation can

not be applied in a straightforward way because of the appearance of higher powers of w.

6 Holographic hydrodynamics

In this section, we compute the ratio of the shear viscosity to entropy density for five-

dimensional quasi-topological gravity. By now, the holographic calculation of the shear

viscosity is well understood. The first computations of this transport coefficient from an

AdS/CFT perspective appeared in [3, 4] for Einstein gravity. These calculations were

soon after extended to include higher curvature corrections to Einstein gravity, the first

of example being the computation of the leading corrections to η/s for the strongly cou-

pled N = 4 super-Yang-Mills theory [6, 7, 9]. These computations were carried out for

GB gravity [16, 18–23] and also higher order Lovelock theories [27–30], where the higher

derivative terms need not be treated as small corrections. Further investigations also pro-

vided increasingly efficient techniques for these calculations [60–63] In the following, we

will use the ‘pole method’ of [63].
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We begin with the metric for the planar AdS black hole given in eq. (2.6) and which

we write out again here

ds2 =
r2

L2

(

−f(r)

f∞
dt2 + dx2 + dx2

2 + dx2
3

)

+
L2

r2f(r)
dr2 . (6.1)

Recall that f(r) is determined by roots of the cubic equation in eq. (2.7). Now it is

convenient to transform to a radial coordinate z = 1 − r20/r
2, with which the horizon is

positioned at z = 0 and the asymptotic boundary, at z = 1. The metric then becomes

ds2 =
r20

L2(1 − z)

(

−f(z)

f∞
dt2 + dx2

1 + dx2
2 + dx2

3

)

+
L2

4f(z)

dz2

(1 − z)2
. (6.2)

An important feature of these coordinates is that f(z) has a simple zero at the horizon. A

Taylor expansion around z = 0 yields

f(z) = f ′0 z +
1

2
f ′′0 z

2 +
1

6
f ′′′0 z3 + · · · , (6.3)

where, e.g., f ′0 = ∂zf |z=0. We present eq. (6.3) to establish a useful notation for the fol-

lowing.

Following [63], we perturb the metric (6.2) by shifting

dx→ dx+ ε e−iωt dy , (6.4)

where ε is treated as an infinitesimal parameter. Then we evaluate the Lagrangian density,

i.e., the entire integrand in eq. (2.1) including
√−g, on the shifted background to quadratic

order in ε. The presence of this off-shell perturbation (6.4) produces a pole at z = 0 in the

(otherwise) on-shell action. The shear viscosity is then given by the ‘time’ formula [63]

η = −8πT lim
ω,ε→0

Resz=0 L
ω2 ε2

, (6.5)

where Resz=0 L denotes the residue of the pole in the Lagrangian density. Recall the

Hawking temperature for the above black hole metric (6.2) is given in eq. (2.8). The final

result of this calculation for quasi-topological gravity is

η =
r30

2ℓ3PL
3

[

1 − 2λf ′0 − 9µ
(

f ′20 + 2f ′′20 + 2f ′0
(

f ′′′0 − 3f ′′0
))

]

. (6.6)

Now with the z coordinate, the cubic equation determining f can be written

f(z) − λf(z)2 − µf(z)3 = z (2 − z) (6.7)

and substituting in the Taylor expansion (6.3), we can explicitly determine the coefficients:

f ′0 = 2 , f ′′0 = −2(1 − 4λ) , f ′′′0 = −24(λ − 4λ2 − 2µ) . (6.8)

The above expression (6.6) for the shear viscosity then becomes

η =
r30
2ℓ3P

[

1 − 4λ− 36µ(9 − 64λ+ 128λ2 + 48µ)
]

. (6.9)
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Figure 2. Contours of constant η/s shown in the allowed region of the gravitational couplings —

see figure 1. The ratio increases in going from the lower-left to the upper-right in the plot.

We readily verify that with µ = 0, this result (6.9) reduces to the expected result for GB

gravity [16]. Combining this result with eq. (2.9), we find

η

s
=

1

4π

[

1 − 4λ− 36µ(9 − 64λ+ 128λ2 + 48µ)
]

. (6.10)

A contour plot of the ratio of the shear viscosity to the entropy density in space of gravi-

tational couplings, λ and µ, is shown in figure 2. From this plot, it is evident that η/s is

maximized in the upper-right corner of the the allowed region of couplings. This point cor-

responds to the intersection of the boundaries defined by the tensor and vector constraints,

i.e., eqs. (5.5) and (5.6), respectively. At this point, one finds

f∞ =
2838

2543
, λ =

246671

2684748
, µ =

6466849

5714486118
. (6.11)

Hence we find the minimum value for η/s for the class of four-dimensional CFT’s dual to

quasi-topological gravity is

η

s

∣

∣

∣

min
=

347182615788747017

838580510094780681

1

4π
≃ (.4140)

1

4π
. (6.12)

Note that this point is well away from the region of instabilities which will be discussed in

the next section. Hence we expect that our calculation of η/s at this point is reliable.

Within this class of CFT’s, there is also a maximum value for η/s which appears to

occur near the midpoint of the boundary produced by the scalar constraint (5.7). However,

the point of the precise minimum lies in a region where, in the next section, we find that

the uniform plasma is unstable — see figure 5. Hence our hydrodynamic calculations are

not reliable at this precise point. Excluding the unstable region, it appears the maximum
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occurs very close to the point in GB gravity where η/s is maximized [18–20]. That is, the

maximum is near (λ, µ) = (−1/8, 0) where we find

η

s

∣

∣

∣

max
≃ 3

2

1

4π
. (6.13)

7 Plasma Instabilities

Even when the various consistency conditions of section 5 are satisfied, there remains the

possibility that the black hole solution is unstable. The dual statement would be that an

infinite uniform plasma is an unstable configuration for the CFT. Such an instability need

not represent a fundamental pathology of the CFT but rather indicate that some interesting

new dynamics arises in CFT plasma for certain values of the couplings. However, it is still

important to identify such instabilities as they would invalidate the assumption of local

thermodynamic equilibrium and for example, discredit the results of our hydrodynamic

calculations in section 6.

The appearance of such instabilities for five-dimensional GB theory were first noted

in [16, 17]. Although causality or positive flux constraints allow the GB coupling to be

in the range −7/36 ≤ λ ≤ 9/100, one finds that for λ < −1/8 a new instability arises.

Evidence for the latter was given as follows: First one writes the equation of motion for

the tensor modes in an effective Schrödinger form, as was done in section 5.3 above. For

λ < −1/8, the potential develops a small well where U < 0 just in front of the horizon

(i.e., near ρ = 1). For sufficiently large q, this well will support negative energy bound

states which then correspond to unstable quasinormal modes, as described in [64]. Given

that q is finite (and large), this instability indicates that the uniform plasma becomes

unstable with respect to certain non-uniform perturbations. On the gravitational side

then, this instability seems similar in certain respects to the Gregory-Laflamme instability

for black strings [65]. However, while the latter involves long wavelength modes, here

the ‘plasma instatiblity’ occurs for arbitrarily short wavelengths. Examining the sound

and shear channels, one finds that no additional instabilities arise in the consistent range,

−7/36 ≤ λ ≤ 9/100 [17]. The same analysis has also been extended to GB gravity in

higher dimensions [20]. For D = 6, one finds similar range where the theory passes all the

known consistency tests but the uniform plasma is unstable. However, for D ≥ 7, all of

the potential instabilities are pushed outside of the allowed range of the GB coupling.

In this section, we will provide a preliminary investigation of potential plasma insta-

bilities for five-dimensional quasi-topological gravity. Following the discussion above, our

strategy will be to examine the tensor modes in detail using the effective Schrödinger equa-

tion, which was presented in eq. (5.19). As described previously, because of the appearance

of higher powers of w in the sound and shear mode equations, one cannot construct an

effective Schrödinger problem in these cases. Hence a more elaborate analysis of the quasi-

normal modes would be required to detect instabilities in these channels.

We will separate our analysis into several different regimes, as we will find the behaviour

of the theory will be quite different depending on the the sign of µ and the magnitude of

– 24 –



J
H
E
P
0
8
(
2
0
1
0
)
0
3
5

q2. To see this, consider eq. (5.16). In particular, let us examine the coefficients A(ρ, q2)
and D(ρ, q2):

A(ρ, q2) = −ρ2 d

dρ

[

1

ρ

(

1 − 2λf(ρ) − 3µf(ρ)2
)

(7.1)

+9µρ
d

dρ

(

ρf ′(ρ)2
)

− 12µ
q2
f∞

(

f(ρ) − 2ρf ′(ρ)
)

]

,

D(ρ, q2) =
A(ρ, q2)
ρ f(ρ)2

− 9µ
ρ

f(ρ)

(

9f ′(ρ) + 16ρ f (3)(ρ) + 4ρ2 f (4)(ρ)
)

. (7.2)

The presence of the term proportional to µ q2 in the first expression creates the possibility

that A (or D) may vanish, which we will see leads to a singularity in the Schrödinger

potential. To see how this zero comes about, we first evaluate these functions at the

horizon (i.e., ρ = 1). Using eq. (2.7), the polynomial defining f(ρ), and ρ = r20/r
2, we find

f(ρ) ≃ −2(ρ− 1) − (1 − 4λ)(ρ− 1)2 + · · · . (7.3)

With this result, we find the corresponding expansions of A and D at the horizon

A ≃ A0 + O(ρ− 1) , D =
A0

4(ρ− 1)2
+ O(ρ− 1) (7.4)

with

A0 = 24(3 − 8λ)µ
q2
f∞

+
[

1 − 4λ− 36µ(9 − 64λ+ 128λ2 + 48µ)
]

. (7.5)

Hence we see that A vanishes at the horizon for a specific critical value of q2:q2c =
1 − 4λ− 36µ(9 − 64λ+ 128λ2 + 48µ)

24(3 − 8λ)(−µ)
. (7.6)

Now comparing with eq. (6.10), we see the expression in the numerator above is precisely

4πη/s. In the physically allowed region found in section 5.2, this ratio is always positive,

as is the factor 3− 8λ — see figure 1. Therefore we only have a valid solution for qc when

µ is negative.

Note that A0 vanishes when q = qc and so from eq. (7.4), both A and D vanish on

the horizon at this point. For larger values of q, both A and D have a zero outside of the

horizon (i.e., ρ < 1) but the two zeros appear at different radii.

From the above discussion, it is clear that we should separate the analysis into three

distinct regimes: i) µ > 0, ii) µ < 0 and |q| ≤ qc and iii) µ < 0 and |q| > qc.

7.1 Positive µ

In the case where µ ≥ 0, the functions A and D are positive everywhere outside of the

horizon. Hence, the effective Schrödinger potential (5.20) is well behaved everywhere in

the range of interest, 0 ≤ ρ ≤ 1. To identify instabilities, it may seem that we can apply

directly the strategy described above for GB theory of looking for a small negative dip in the

effective potential just outside the horizon [16, 17, 20]. However, there is a small subtlety

– 25 –



J
H
E
P
0
8
(
2
0
1
0
)
0
3
5

which requires a more detailed investigation for quasi-topological gravity. For GB gravity,

one further considers the limit of large q, which corresponds to the limit of ~ → 0 from

the point of view of the effective Schrödinger problem. With this limit, any small negative

dip will always lead to negative energy bound states as solutions to eq. (5.19) and hence

the appearance of an instability [64]. However, as found in section 5.3, the structure of

the potential strongly depend on the value of the momentum for quasi-topological gravity.

Indeed, our analysis showed that for sufficiently large momentum the effective potential

reduces to that of Einstein gravity, i.e., U ≃ f(ρ)/f∞, and so no unstable modes would

appear in this limit. That is, if one starts near an unstable point in GB theory but now

with a small positive µ, then generically the modes become more stable as the momentum

is increased. Hence in general one will have to investigate the potential for finite values ofq to find any unstable modes.

Following the reasoning of [64], we will still identify the unstable quasinormal modes

as negative energy bound states in the effective Schrödinger problem. For a moment, let us

consider applying the Bohr-Sommerfeld quantization rule for a zero-energy bound state:q∫ 1

ρ0

dρ
dy

dρ

√

−U(ρ, q2) =

(

n− 1

2

)

π . (7.7)

Here, we are assuming that the potential dips to below zero between the horizon at ρ = 1

and some lower turning point where U(ρ = ρ0, q2) = 0. For the zero-energy state, the

quantum number n would be a specific positive integer. More generally, if we were to

evaluate the integral on the left-hand side, then the integer part of n on the right would

count the number of negative energy bound states supported by the potential well. Hence

our strategy here is to scan of the parameter space (λ, µ) for positive µ. At each point,

we vary q looking for a negative dip in the potential near horizon. If the dip becomes

sufficiently deep to support a bound state (i.e., to satisfy eq. (7.7) with n = 1), we will

take this to signal of an instability in the system.

As discussed above for GB gravity, it was found that instabilities appear for λ ≤ −1/8.

Hence we focussed our scan of parameters on small positive values of µ in this regime and

our numerical results are presented in figure 3. We should explicitly say that we expect

that our Bohr-Sommerfeld analysis gives a good guide as to the unstable parameter space

but it is difficult to assess how accurate the boundary of this region is in figure 3. In this

regard, it is reassuring that the numerical curve reaches the λ axis very close to λ = −0.125

which, as indicated above, is where previous analysis [16, 17] indicated that GB gravity

should become unstable.

Note that the unstable region is very narrow just above the λ axis but the height

of this region increases as λ becomes more negative. Intuitively, this behaviour arises

because for GB gravity at µ = 0, an infinitesimal negative dip first appears in the potential

at λ = −1/8 and then becomes larger as λ is decreased further. An infinitesimal dip

appears is sufficient to support negative energy states in GB gravity because q can be

taken arbitrarily large without effecting the effective potential. As discussed above, with

nonvanishing µ, increasing the momentum makes the potential more stable or, in other

words, decreases the size of dip in U . Hence one must balance this effect with the increase
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Figure 3. Instability boundary for the positive µ estimated using the Bohr-Sommerfeld analysis.

The (blue) region below the (red) curve is unstable.

in the pre-factor q in eq. (7.7). Therefore it is easier to find an instability for positive µ

when when the initial size of the dip is larger at the corresponding point on the λ axis.

7.2 Negative µ and |q| ≤ qc

From our introductory discussion, we expect that the structure of the potential may be

radically different for negative µ and particularly for |q| ≥ qc. Here we will examine the

approach to the critical momentum, q → qc, and the same Bohr-Sommerfeld analysis as

above will show that unstable modes occur over a large part of this parameter regime.

We are again looking for a negative potential well in front of the horizon, now for

µ < 0 and |q| ≤ qc. So to begin, consider the near horizon expansion of the effective

potential (5.20):

U(ρ, q2) ≃ U0

A0
(ρ− 1) +

U1

(A0)2
(ρ− 1)2 + · · · , (7.8)

where U0 and U1 are some constants and A0 is given in eq. (7.5). An important point

to notice is that as the momentum increases towards the critical value, q2 → q2c , we have

A0 ≪ 1 and the above expansion becomes ill-defined. One must really perform a separate

expansion for the special case q2 = q2c , which yields

U(ρ, q2c) ≃ 1q2c P(λ, µ)

Q(λ, µ)
+ O(ρ− 1) . (7.9)

where P and Q are polynomials in the couplings λ and µ. Their details are not important
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Figure 4. The effective Schrödinger potential in the tensor channel for µ = −0.0003, λ = −0.1

and different values of q2. Here qc ≃ 7.2725. The effective potential at the horizon is tending to

the constant value P/(q2
cQ) ≃ −0.797

but for completeness we present them here

P = 2(1 − 4λ)2λ+ 3(−1 + 4λ)
(

−41 + 32λ
(

19 − 76λ + 96λ2
))

µ

−36(1393 + 12λ(−1905 + 8λ(1469 + 176λ(−23 + 24λ))))µ2

−5184(161 + 24λ(−49 + 96λ))µ3 − 1990656µ4 , (7.10)

Q = 3(−1+4λ)(9+8λ(−5+8λ))µ−288
(

20+3λ
(

−189+16λ
(

97−310λ+336λ2
)))

µ2

−10368(−1 + 4λ)(−45 + 104λ)µ3 + 248832µ4 . (7.11)

The essential result here is that while for q2 < q2c , the effective potential went to zero on

the horizon, precisely at the critical momentum, it is tending to a constant value at the

horizon. Hence the limit q2 → q2c is actually discontinuous. This unusual behaviour is

illustrated with an example in figure 4.

The example in this figure also illustrates if this limiting constant value is negative,

i.e., U(ρ = 1, q2 = q2c) < 0, then the effective potential develops a negative well in front

of the horizon as we approach the critical momentum. Hence there is the possibility of

developing instabilities in this regime. The dip in potential is largest with q2 = q2c and so

we focus on this case. Once again, we will use the Bohr-Sommerfeld rule (7.7) to test for

negative energy bound states. As before, we also have to worry that A0 → 0 as q2 → q2c
and so we must perform a separate expansion to evaluate dy/dρ at this point

dy

dρ
≃ − j0

2(ρ− 1)
+ · · · , where j0 =

√

3µQ(λ, µ)

R(λ, µ)
, (7.12)
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Figure 5. Unstable region (purple) for the tensor channel combining the results of sections 7.1

and 7.2, superimposed onto the region (pink) allowed by positivity of energy flux. In the section 7.3,

the analysis is extended to |q| > qc and it appears instabilities are present throughout the entire

µ < 0 region.

where Q was given above in eq. (7.11) and

R = 3µQ+ 108µ (1 − 4λ)(3 − 8λ) (3 − 80λ(1 − 4λ) + 320µ) . (7.13)

Hence the Bohr-Sommerfeld integral (7.7) yields an expression of the form

(

n− 1

2

)

π ≃ 1

2

∫ ρ0

1
dρ

(

1

ρ− 1

√

−3µP

R
+ · · ·

)

. (7.14)

This integral produces logarithmic divergence indicating that there are an infinite number

of unstable modes in this limit. Of course, this result is only true at strictly q = qc.

However, by taking the momentum arbitrarily close to the critical value, the resulting

negative dip in the potential will always support a large number of unstable modes as well.

To summarize, we must exclude as unstable the region with µ < 0 where the effective

potential tends to a negative constant on the horizon at the critical value qc. That is, the

region where µ < 0 and P/Q ≤ 0. The boundary of this region is well approximated by

the curve

µ ≃ − 2

123
λ− 14120

206763
λ2 − 27472807424

28153056843
λ3. (7.15)

Putting this constraint for negative µ together with that obtained for positive µ in the

previous section, one obtains the unstable region shown in figure 5. Here we are showing the

region of instability together with the physically allowed region defined by the constraints

in eqs. (5.5)–(5.7).
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7.3 Negative µ and |q| > qc

With µ < 0, we are of course free to take the momentum beyond the critical value. As

noted above, when q2 > q2c , both A and D have a zero at some finite radius outside of the

horizon but the two zeros appear at different radii. Let us label the two zeros as ρA and

ρD. In the following, we consider the case where ρA > ρD, but in general this depends in

detail on the values of λ and µ. However, the following analysis is easily adapted to the

opposite situation where ρA < ρD and the conclusions will be unchanged.

Let us first consider the effective potential in the vicinity of D’s zero. Expanding the

various coefficients in eq. (5.16) around ρ ≃ ρD gives

A = A0 + O (ρ− ρD) ,

B = B0 + O (ρ− ρD) ,

C = C0 + O (ρ− ρD) ,

D = −D1(ρ− ρD) + O
(

(ρ− ρD)2
)

. (7.16)

It is important to note that the constants A0 and D1 are both positive, so that dy/dρ in

eq. (5.18) is well defined in the region ρ < ρD. Using the expressions above, along with

eq. (5.18), we find

yD − y ≃ 2

3

√

D1

A0
(ρD − ρ)3/2 (7.17)

Z ≃ (ρD − ρ)−1/4 . (7.18)

Finally, with eq. (5.20), we obtain the effective potentialq2 U(ρ) = −A0

D1

5/16

(ρ− ρD)3

= − 5/36

(yD − y)2
. (7.19)

Hence we find that the effective potential contains a singularity at ρ = ρD but the struc-

ture of the singularity is surprisingly simple. In particular, the coefficient is completely

independent of the parameters, λ, µ and q, but of course, the latter still determine the

precise location of the singularity.

We can perform a similar analysis for the effective potential in the vicinity of the zero

in A. We begin by expanding around ρ ≃ ρA

A = −A1 (ρ− ρA) + O
(

(ρ− ρD)2
)

,

B = −A1 + O (ρ− ρA) ,

C = Ĉ0 + O (ρ− ρA) ,

D = −D0 + O (ρ− ρA) . (7.20)
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for some positive constants D0 and A1. Note that the leading coefficient in B has the

special form B0 = A1, which follows from the original equation (5.11). Then in this case

y − yA ≃ 2

√

D0

A1
(ρ− ρA)1/2 , (7.21)

Z ≃ (ρ− ρA)−1/4 (7.22)

and the potential becomes q2 U(ρ) = −A1

D0

1/16

ρ− ρA

= − 1/4

(y − yA)2
. (7.23)

Here again we find that the effective potential contains a singularity with a very simple

form at the zero of A. The parameters, λ, µ and q, fix the precise location of the singularity

but the overall coefficient is independent of these.

Implicitly the above analysis assumes that ρ > ρA where both A and D are negative.

Similarly in consider the zero in D, we assumed ρ < ρD where both A and D are positive.

Special consideration must be given to the range ρD < ρ < ρA where D < 0 and A > 0.

To accommodate the latter, we must modify the construction of the effective Schrödinger

equation (5.19) slightly. In particular, in eq. (5.18), the definition of the new coordinate is

replaced by

dy

dρ
=

√

−D(ρ, q2)
A(ρ, q2) . (7.24)

The final result can then be most simply expressed as flipping the sign of both the effective

potential and the effective energy of eq. (5.19). That is, in this region, the Schrödinger

equation becomes

− 1q2 ∂2
yψ(y) +

[

−U(y, q2)
]

ψ(y) =
[

−α2
]

ψ(y) , (7.25)

where U is given by precisely the same expression in eq. (5.20) and α2 = w2/q2, as before.

For present purposes, the behaviour near the zeros ρ = ρD and ρA are of primary interest.

Carefully keeping track of the signs, one finds that near these points, the Schrödinger equa-

tion (7.25) has precisely the same form as above, with a singular and attractive potential.

That is, in the vicinity of these zeros, we may write the Schrödinger equation as

− ψ′′(y) − γ

y2
ψ(y) ≃ 0 (7.26)

where γ = 5/36 for ρ = ρD and 1/4 for ρ = ρA. In either case we have shifted the y

coordinate to put the singularity at the origin. The 1/y2 potential has been studied exten-

sively in the literature [66–69]. Remarkably for a one-dimensional Schrödinger equation,

the value γ = 1/4 marks the boundary between the conformal regime when the potential is

repulsive or weakly attractive and the regime with a sufficiently attractive potential where

discrete bound states appear and conformality is lost.
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The key point in presenting eq. (7.26) that this equation applies here for both positive

and negative y. However, in this one-dimensional setting, the wave-function must propagate

through the singularity at y = 0. So one should approach the problem by solving for y < 0

and y > 0 independently and then matching the solutions with an appropriate boundary

condition at the origin. This procedure is most easily demonstrated for the zero in D, in

which case γ = 5/36. Then eq. (7.26) has two independent solutions

ψ(y) = d1 y
1/6 + d2 y

5/6 for y > 0 ,

ψ(y) = d̃1 (−y)1/6 + d̃2 (−y)5/6 for y < 0 .

Using eqs. (7.17) and (7.18) above, we can convert these back to the radial profile of the

original tensor mode, i.e., φ = Zψ, in the vicinity ρ ≃ ρD

φ(ρ) = δ1 + δ2(ρ− ρD) for ρ < ρD ,

= δ̃1 + δ̃2(ρ− ρD) for ρ > ρD . (7.27)

Matching of solutions at ρD is achieved straightforwardly by imposing continuity of the

radial profile and its first derivative, i.e., δ1 = δ̃1 and δ2 = δ̃2. Hence while some care must

be taken, the zero in D presents no real difficulty in finding well-behaved solutions.

Next we turn to the zero in A, where the situation is more subtle. In this case, γ = 1/4

in eq. (7.26) and the two independent solutions are

ψ(y) = a1 y
1/2 + a2 y

1/2 log(y) for y > 0 ,

ψ(y) = ã1 (−y)1/2 + ã2 (−y)1/2 log(−y) for y < 0 .

Using eqs. (7.21) and (7.22), these expressions are translated to the radial profile φ = Zψ

in the vicinity ρ ≃ ρA

φ(ρ) = α1 + α2 log(ρ− ρA), for ρ > ρA ,

= α̃1 + α̃2 log(ρA − ρ), for ρ < ρA . (7.28)

The matching at ρA is slightly more involved because of the logarithmic behaviour of these

solutions. Integrating the equation of motion (5.16) around ρA, we obtain

−A1(ρ− ρA)∂ρφ
∣

∣

ρA+ǫ

ρA−ǫ
=

∫ ρA+ǫ

ρA−ǫ
dρ
(

D0 w2 − Ĉ0

)

φ . (7.29)

As ǫ→ 0, the right-hand side vanishes and the vanishing of the left-hand side requires α2 +

α̃2 = 0. Another natural boundary condition is that the flux of probability in the effective

Schrödinger problem should be continuous as the wave-function propagates through the

singularity at y = 0. If we express this flux in terms of the radial profile φ and the

coordinate ρ, then we require

Im
[

φ∗A1(ρ− ρA)∂ρφ
]ρA+ǫ

ρA−ǫ
= 0 .
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Continuity then leads to Im(α∗
1α2) = Im(α̃∗

1α̃2) and so it seems natural to set α1 = −α̃1 as

well.5 Our final solution in the vicinity of ρ ≃ ρA then takes the form

φ = (α1 + α2 log |ρ− ρA|) sgn(ρ− ρA) . (7.30)

Again the constants α1 and α2 are arbitrary but our analysis shows appropriate boundary

conditions at this point will produce a suitable physical solution.

At this stage, we have shown that despite of the appearance of new singularities in the

equation of motion (5.16) in this regime (i.e., µ < 0 and |q| > qc), we may more or less

straightforwardly solve for the radial profile φ. The precise solutions and the corresponding

quasinormal eigenfrequencies w will still be set by the boundary conditions on the field at

the black hole horizon ρ = 1 and at the asymptotic boundary ρ = 0. To better under-

stand these boundary conditions, we now return to the overall behaviour of the effective

Schrödinger potential.

Figure 6 provides an example of the effective potential in the desired regime. One

point which the figure illustrates is that for large momenta q2 ≫ q2c , the general discussion

of section 5.3 still applies here and over most of the range the effective potential approaches

that of Einstein gravity, i.e., U ≃ f(ρ)/f∞. However, the figure also makes evident the

singularities extensively discussed above, which appear as sharp dip at ρ = ρA and ρD. As

is typical of q2 ≫ q2c , the zeros are very close together and in fact it is difficult to resolve

the two distinct singularities in the example given in figure 6. Intuitively, one expects that

this deviation of the Einstein potential will provide a small perturbation and so there will

be a set of stable modes whose quasinormal frequencies and radial profiles deviate only

slightly from the solutions in Einstein gravity.

However, the singularities introduce a new boundary surface into the problem and

we argue that this also leads to a additional set of new unstable modes, as follows: The

Einstein potential vanishes at the horizon and so solving the Schrödinger equation (5.19)

with a negative energy yields two independent solutions, one which grows exponentially

(and diverges at the horizon) and another which decays. Similarly, there are two asymptotic

solutions, one which grows and another which decays as one approaches the AdS boundary.

Now the potential is smooth throughout 0 < ρ < 1 if we are considering pure Einstein

gravity. As a result, the solution which decays at the horizon is precisely that which grows

at the asymptotic boundary and vice versa. Hence one finds no normalizable solutions

with a negative effective energy which agrees with the result that the black hole is stable

in Einstein gravity. However, if we consider quasi-topological gravity with µ < 0 and

|q| > qc, while the effective potential is well approximated by the Einstein potential for

most radii, a dramatic difference arises with the appearance of the singularities at ρ = ρA

and ρD. Now we have the possibility of matching a solution in the range ρ > ρA which

decays at the horizon to a solution in the range ρ < ρD which decays at the asymptotic

boundary. Because of the sign of the effective energy in the Schrödinger equation (7.25)

is flipped in the range ρD < ρ < ρA, the solution would be oscillatory in this interval

5This is not a unique solution for this constraint and so it may be that a further boundary condition

should be applied to single out this result as the unique physical solution.

– 33 –



J
H
E
P
0
8
(
2
0
1
0
)
0
3
5

0.0 0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Ρ

U

0.327 0.3275 0.328 0.3285
-2000

-1500

-1000

-500

0

Figure 6. Comparison of the effective potential for µ < 0 and q2 > q2

c (red) with that for

Einstein gravity (black). The red curve is given for λ = −0.1, µ = −0.0003 and q = 40. For

these gravitational couplings, the critical momentum is approximately qc ≃ 7.27. The inset shows

a close-up of the effective potential to resolve the two separate singularities at ρA = 0.328378 and

ρD = 0.327955. (Note that in keeping with the discussion at eq. (7.25), the sign of U in the inset

has been reversed on the interval ρA > ρ > ρD.)

and tuning α2 should allow us to match onto the decaying solutions with the boundary

conditions indicated above. Hence we should also be able to construct an infinite set of

negative energy states which are localized near the interval ρD < ρ < ρA. It appears that

these unstable modes would naturally be regarded as the progeny of the diverging number

of unstable modes which were found to accumulate in the limit q2 → q2c , in the previous

section. In any event, our conclusion is that generally when µ is negative, the black holes

in quasitopological gravity have unstable quasinormal modes with |q| > qc.
To summarize, our analysis in this section indicates that instabilities appear in the

tensor channel throughout the lower half of the space of couplings with µ < 0 and in the

narrow sliver shown in figure 3 with µ > 0. However, we should re-iterate that our analysis

here only represents a preliminary investigation of the potential plasma instabilities in five-

dimensional quasi-topological gravity. A thorough and detailed analysis of the quasinormal

modes is required to validate the results derived here and to develop a full picture of the

unstable modes.

8 Discussion

In this paper, we have begun an examination of the holographic properties of quasi-

topological gravity. The main new feature of this toy model is that it allows us to examine

CFT’s in which the flux parameter t4 in eq. (4.1) is nonvanishing. In this case, the dual
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CFT cannot be supersymmetric [13] and so these new models allow us to begin explor-

ing holography in a context which is fundamentally nonsupersymmetric. In this regard,

quasi-topological gravity differs from Lovelock theories which are consistent with super-

symmetry [70]. Of course, conformal fixed points are believed to occur for a wide variety

of nonsupersymmetric gauge theories [71–76]. Further one might speculate that extending

some of these to large Nc and strong coupling may generate a holographic dual close to

Einstein gravity [77–80]. Hence, in the spirit of exploring quasi-topological gravity as a toy

model, one may gain new insights into such conformal fixed points.

One aspect of physics which we explored was the hydrodynamic properties of the CFT

plasma. In particular, we calculated the ratio of shear viscosity to entropy density (6.10).

Similar results have already been found in a framework where the curvature-cubed terms

were treated perturbatively [51]. Eq. (6.10) should reduce to these results in the regime of

small couplings where one only keeps the terms linear in λ and µ. Our full nonperturbative

calculation is straightforward using the techniques developed in [63] and produces a final

expression which contains contributions which are nonlinear in the gravitational couplings,

e.g., proportional to µλ2. This differs from cubic Lovelock theories in higher dimensions

which also contain curvature cubed interactions. In fact, in this case, η/s is independent of

the coupling constant controlling the curvature-cubed interactions [27–30, 81] and remains

simply linear in the curvature squared coupling, as in GB gravity [16, 18–20]. Of course,

these theories are also distinguished from the present case since t4 remains zero in the

Lovelock theories despite the appearance of the curvature cubed interaction [27–30].

Considering the value of η/s when t4 6= 0, we find no dramatic behaviour. The value

smoothly increases or decreases as we move away from the axis into the (λ, µ) plane, as

illustrated in figure 2. One point that this analysis makes clear is that η/s = 1/4π is simply

a codimension one surface (here a contour) which cuts through the space of gravitational

couplings or alternatively through the space of parameters which differentiate the dual

CFT’s. The main feature that distinguishes this surface is that it runs through the point

where the bulk theory is Einstein gravity, which we favour as theorists. This illustrates

that even if η/s was found to be precisely 1/4π for some system arose in nature (e.g., the

quark-gluon plasma or a trapped atomic gas), there is no guarantee that the holographic

dual would anywhere be close to a theory of Einstein gravity.

This holographic model also illustrates the point that the CFT plasma can readily

achieve η/s < 1/4π. Of course, even though the originally conjectured KSS bound on η/s

has been proven incorrect, there are still general arguments to suggest that this ratio should

satisfy some lower bound [3, 4, 37]. Hence the question naturally arises as to the precise

nature of such a bound. Holographic models provide an excellent theoretical framework to

study this question, as they provide access to a variety of strongly coupled fluids in this

‘KSS regime’ where η/s is unusually small.

In the present case of holographic fluids modeled by quasi-topological gravity, this

ratio reaches a minimum value at the upper corner of the allowed parameter space with

η/s ≃ (0.4140)/(4π), as given in eq. (6.12). It may be of interest to note that at the point,

the dual CFT has t2 = 0 while t4 reaches its maximal value with t4 = 15/2. It is clear that

this value does not represent a fundamental bound. If one explores holographic models
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with GB gravity in higher dimensions, one finds the minimum ratio is η/s ≃ (0.4139)/(4π)

for D ≃ 9.207 [18–20]. This analysis was also extended to Lovelock gravity with a cubic

curvature interaction forD ≥ 7 [27–30]. Initially here, it appeared that η/s could be pushed

to zero (or even negative values) but taking care to account for plasma instabilities, one

finds that the hyrdodynamic results are only reliable down to η/s ∼ (0.3938)/(4π) [82].

The cubic interaction of quasi-topological gravity can also be extended to higher D ≥ 7 [36]

and so it would be interesting to examine the contributions of such interactions to higher

dimensional holographic models. One might note the Lovelock models introduce additional

parameters to distinguish the dual CFT’s but still have t4 = 0. While it is perhaps not

surprising then, these results explicitly demonstrate that many more parameters in the

CFT will effect the value of η/s than simply A, B and C, the three couplings which fix the

the three-point function of the stress tensor.

While the various holographic models above all seem to point to a minimum value

around η/s ∼ (0.4)/(4π), it seems clear that this collection of models only explores a

limited parameter space. One might imagine that one can continue to systematically lower

η/s by continuing explore a wider range of CFT’s by adding more and more interesting

couplings in the dual gravitational theory (and without introducing any other pathologies

in the holographic model). In fact, there seems to be some evidence in favour of such a

scenario at least in very high dimensions [83].

There is one difference between quasi-topological gravity and GB gravity (or the more

general Lovelock theories) which is particularly striking. All of the Lovelock gravity models

are distinguished by having second order equations of motion while the general equations

in quasi-topological gravity are fourth order. It seems that the latter is inevitable in order

to produce a holographic theory where t4 6= 0 since the Lovelock theories are in fact the

most general gravitational theories with second order equations of motion [84, 85]. To

develop some intuition for such higher order equations, we might establish an analogy with

a higher-derivative scalar field equation (in flat space)

(

� +
a

M2
�

2
)

φ = 0 . (8.1)

Here we imagine M2 is some high energy scale and a is the dimensionless coupling that

controls the strength of the higher-derivative term. The (flat space) propagator for this

scalar can be written as

1

q2(1 − a q2/M2)
=

1

q2
− 1

q2 −M2/a
. (8.2)

Now the 1/q2 pole is associated with the regular modes which are easily excited at low

energies. The second pole 1/(q2 −M2/a) is associated with ghost modes that appear out

at the high energy scale. Depending on the sign of a, these new modes may have a regular

mass (a < 0) or be tachyonic (a > 0). Further writing out the dispersion relation for the

ghost modes, we have

q2 −M2/a = −ω2 + (ki)2 −M2/a = 0 . (8.3)
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As noted, when a is negative, the mass above has the ‘right sign’ and these modes only go

on-shell when ω2 ∼M2/|a|, i.e., at very high energies. On the other hand, if a is positive,

the modes are ‘unstable’ and in this case, we can bring these modes on-shell above a certain

threshold of large spatial momentum, i.e., (ki)2 ∼M2/a. Comparing this discussion to our

analysis of the tensor channel equation for quasi-topological gravity, the coupling µ for the

curvature-cubed interactions would play a role analogous to a above. In parallel with the

present scalar theory in section 7.3, we found that a new set of unstable modes appears

above a certain momentum threshold for a particular sign of µ, i.e., q2 ≥ q2c for µ < 0.

One important point that arises in the scalar field model is that the extra high energy

modes are ghosts for either sign of a, as seen from the overall sign of their contribution to the

propagator (8.2). Hence a natural worry would be that ghosts must also appear in quasi-

topological gravity but we will argue that this is not the case, in the following. In section 7,

we have found new unstable modes in quasi-topological theory. This certainly indicates

that working on the uniform black hole background is problematic but it is not clear that

they indicate that there is a fundamental pathology in the form of ghost modes. One

important difference between the equations in quasi-topological gravity and in the simple

scalar model are that the former are not Lorentz invariant (in the gauge theory directions).

Of course, the lack of Lorentz invariance is not a surprise since the black hole background

is dual to a uniform finite temperature plasma which defines a preferred reference frame.

Hence the same statement would apply even if we were considering graviton modes in a

black hole solution of Einstein gravity. However, the discrepancy is more significant for the

higher derivative terms here. For example, while a q4 term appears in eq. (5.15) there is

no w4 contribution. Hence it is not clear whether the additional instabilities appearing in

the black hole background are associated with ghost modes.

Let us consider this point further. At zero temperature, the background spacetime

reduces to simply AdS5 and as noted before with eq. (2.10), the linearized equations of

motion reduce to the second order equations of Einstein gravity. Hence in this limit,

both the higher derivative contributions and the additional unstable modes vanish for any

values of λ and µ. As noted in [36], the higher derivative terms appear in the linearized

equations of motion through couplings to the background curvature when one is considering

fluctuations around a nontrivial background spacetime. In particular, these terms arise

from a nontrivial Weyl curvature in the background, e.g., for a transverse traceless mode

(i.e., ∇ahab = 0) and ha
a = 0), the four-derivative terms can be written as [36]:6

Ccdef hde;cf(ab) + 2
(

�hc
(a

)

;deC|cde|b ) + 2�
2hcdCcadb + gab (�hcd);ef C

cedf . (8.4)

Hence the specific features of any instabilities will always depend on the details of the

background geometry under study. It may be of interest to explicitly repeat the analysis of

section 7 for other nontrivial configurations, i.e., one simple example would be the confining

phase represented by the AdS soliton [86].

Another interesting aspect of these higher derivative terms (8.4) is that they will vanish

in the asymptotic region with AdS boundary conditions, since the Weyl curvature will van-

ish there. Hence any unstable modes associated with these terms will be ‘confined’ to the

6Here we adopt the standard notation: T(ab) = 1
2

(Tab + Tba).
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interior, e.g., near the horizon. Hence in the dual CFT, the instabilities will be associated

with dynamics of infrared excitations and will be insensitive to the ultraviolet details of the

theory. Given this observation and the previous discussion, it seems then that these prob-

lems cannot represent a fundamental pathology, i.e., ghosts, in the theory. Hence we would

conclude that the analogy with the scalar field in eq. (8.1) is simply deficient in this respect.

Still the higher derivative terms and the resulting instabilities are a worrying aspect

of quasi-topological gravity. In particular, we have made a preliminary analysis of the

shear and sound channel equations of motion. In this case, it appears that the coefficient

analogous A in eq. (5.16) can again have go to zero but when µ is positive. Hence one would

be tempted to conclude that instabilities will now appear for positive µ. Unfortunately,

this would mean that the plasma is only stable with µ = 0. This makes the need for a

detailed analysis of the quasinormal modes even more pressing to develop a full picture of

the instabilities.

To close, let us re-iterate that quasi-topological gravity was introduced as a toy model

to study extensions of the usual AdS/CFT correspondence. We have not identified an ap-

proach by which the new gravitational action (2.1) emerges from a UV complete theory and

we have no reason to expect that the new theory is radiatively stable. If one were tempted

to construct a full quantum version of quasi-topological gravity, another issue which would

need to be addressed is the appearance of several different vacua (corresponding to the

roots of eq. (2.5)) and in particular vacua in which the graviton is a ghost. It is not clear

what the role of these vacua would be in, e.g., a path integral formulation of the theory.7

All of these considerations as well as the appearance of instabilities at large momenta rein-

force the idea that quasi-topological gravity (as well as Lovelock theories of gravity) should

only be treated as toy models which may give us insight into the long wavelength physics,

e.g., hydrodynamic behaviour, of strongly coupled conformal fixed points.
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