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1 Introduction

One of the main purposes of the CERN Large Hadron Collider (LHC) is the search for Higgs

bosons. The discovery of a light Higgs boson is a decisive test for all models predicting

supersymmetric (SUSY) particles at the TeV scale and in particular of the MSSM [1, 2]. A

remarkable feature of the MSSM is the restricted Higgs sector. This allows Higgs searches

without any assumption about the mechanism of SUSY breaking, but only constraints

from the Higgs sector [3]. For the MSSM Higgs boson searches at the hadron colliders, two

new complementary benchmark scenarios, the “small αeff” and the “gluophobic” scenarios,

have been proposed in addition to those used at the CERN Large Electron-Positron Collider

(LEP).

More precisely, in the “gluophobic” scenario the gluon fusion process is strongly sup-

pressed due to cancellation between top quark and squark loop contributions. Nevertheless,

the channel tt̄ → tt̄h → tt̄bb̄ is enhanced as compared to the Standard Model (SM) case,

so that this becomes the most promising detection mode. In the “small αeff” scenario the

decay width for h → bb̄ is much smaller than its SM value. In this case the complemen-

tary channel h → γγ is enhanced as compared to the SM and it becomes the preferred

detection mode.

For a light Higgs boson (mh ≤ 130 GeV) the decay h → bb̄ is the dominant mode,

but its detection at hadron colliders is difficult due to large QCD backgrounds for the b

jets. However, at lepton colliders the Higgs boson search relies on b tagging that can be

performed with high efficiency.

For the discovery of the Higgs bosons, the cross section of the main production channels,

decay widths and branching ratios are necessary to be known with high accuracy. Within
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the SM the radiative corrections to the fermionic Higgs decay were intensively studied in

the literature. The QCD and EW corrections are known up to the three-loop order: O(α3
s)

originating from the light degrees of freedom were first derived in ref. [4] and the top-induced

O(α3
s) corrections in ref. [5]; the QCD-EW interference contributions of O(α2

sxt)
1 can be

found in ref. [6, 7]. In this paper we concentrate on the fermionic Higgs decay in the MSSM,

for moderate Higgs boson masses Mh ≤ 130 GeV. The processes h → bb̄ and h → τ+τ−
(the second most important decay mode) are affected by large radiative corrections for

scenarios with large values of tan β and moderate values of the neutral CP-odd Higgs

boson mass MA (tan β ≥ 20 ,MA ≤ 250 GeV) [8–10]. In this case, apart from pure QCD

and EW corrections mentioned above, there are Higgs boson propagator corrections and

vertex corrections due to SUSY particles. The first class of radiative corrections, can be

taken into account by introducing the effective mixing angle αeff that diagonalizes the

neutral Higgs boson mass matrix [11]. Such type of corrections are known analytically up

to two-loop order in supersymmetric QCD (SQCD) and the supersymmetric electroweak

theory (SEW), see [12] and references therein. The second class of radiative corrections are

especially important for large values of tan β. Usually, they are derived using the effective

Lagrangian approach [13]. The one-loop contributions are known since long [8–10, 14],

while the two-loop corrections have been computed very recently [15, 16].

It is the aim of this paper to present the complete two-loop SQCD corrections to the

decay width h → bb̄, taking into account the exact dependence on the supersymmetric

particle masses and working in the full theory.

The paper is organized as follows: in the next section we introduce our framework

and the quantities required for the computation of the decay width Γ(h → qq̄) through

two loops in the MSSM. In section 3 we describe the actual two-loop calculation, pointing

out the connection between the radiative corrections to the vertex hqq̄ and those to the

quark propagator through the low-energy theorem. The formalism discussed in this section

is valid for a general quark flavour. However, we specify our calculation for the case of

bottom quark which generates the dominant decay mode of a light Higgs boson. In section

4 we perform a numerical analysis and discuss the phenomenological implications of the

two-loop SQCD vertex corrections to Γ(h → bb̄). We present the conclusions in section 5.

2 Notation and theoretical framework

The part of the MSSM Lagrangian describing the fermionic Higgs decay can be written in

the following form

L = LQCD + LSQCD +
∑

i=1,2

Lqφi
+
∑

i=1,2

Lq̃φi
(2.1)

where

Lqφi
= −

6
∑

q=1

mq

v
gφi
q q̄qφi and Lq̃φi

= −
6
∑

q=1

∑

r,k=1,2

mq

v
gφi

q̃;krq̃
⋆
kq̃rφi . (2.2)

1For the definition of the parameter xt see section 2.1.
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f gφ1

q gφ1

q̃;11 gφ1

q̃;12 = gφ1

q̃;21 gφ1

q̃;22

up 0 −µSq/Sβ −µCq/Sβ µSq/Sβ

down 1/Cβ (2mq + AqSq)/Cβ AqCq/Cβ (2mq − AqSq)/Cβ

f gφ2

q gφ2

q̃;11 gφ2

q̃;12 = gφ2

q̃;21 gφ2

q̃;22

up 1/Sβ (2mq + AqSq)/Sβ AqCq/Sβ (2mq − AqSq)/Sβ

down 0 −µSq/Cβ −µCq/Cβ µSq/Cβ

Table 1. Yukawa coupling coefficients for up and down type quark and squark, where Sq = sin 2θq

and Cq = cos 2θq, and Sβ = sin β and Cβ = cosβ.

LQCD +LSQCD denotes the supersymmetric extension of the full QCD Lagrangian with six

quark flavours. The couplings gφi
q and gφi

q̃;kr are defined in table 1, mq denotes the mass of

quark q, v =
√

v2
1 + v2

2 with vi , i = 1, 2, the vacuum expectation values of the two Higgs

doublets of the MSSM. The fields q̃i , i = 1, 2, denote the squark mass eigenstates, while θq

stands for the mixing angle defined through:

sin 2θq =
2mqXq

m2
q̃1
− m2

q̃2

, Xq = Aq − µSUSY

{

tan β , for down-type quarks

cot β , for up-type quarks
, (2.3)

where Aq is the trilinear coupling and µSUSY the Higgs-Higgsino bilinear coupling. The

fields φi , i = 1, 2, denote the neutral CP-even components of the MSSM Higgs doublets

and they are related to the Higgs mass eigenstates through the orthogonal transformation
(

H

h

)

=

(

cos α sin α

− sinα cos α

)(

φ1

φ2

)

. (2.4)

As usual, h stands for the lightest Higgs boson. The mixing angle α is determined at the

leading order through

tan 2α = tan 2β
M2

A + M2
Z

M2
A − M2

Z

; −π

2
< α < 0 , (2.5)

where MZ is the mass of the Z boson and tan β = v2/v1.

In the following, we assume the mass of the lightest Higgs boson h to be much smaller

than the mass of the top-quark and of the SUSY particles, as well as all the other Higgs

bosons. In this case, the physical phenomena at low energies can be described with an

effective theory containing five quark flavours and the light Higgs. At leading order in the

heavy masses, the effective Lagrangian Leff
Y can be written as a linear combination of three

physical operators [17, 18] constructed from the light degrees of freedom

L −→ Leff
Y + L(5)

QCD ; Leff
Y = −h(0)

v(0)

[

C0
1O0

1 +
∑

q

(

C0
2qO0

2q + C0
3qO0

3q

)

]

, (2.6)

where L(5)
QCD denotes the Lagrangian of QCD with five active flavours and the coefficient

functions Ci , i = 1, 2q, 3q, parametrize the effects of the heavy particles on the low-energy
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phenomena. The superscript 0 labels bare quantities. The three operators are defined as

O0
1 = (G0,′,a

µ,ν )2 ,

O0
2q = m0,′

q q̄0,′q0,′ ,

O0
3q = q̄0,′(i /D0,′ − m0,′

q )q0,′ , (2.7)

where G0,′,a
µ,ν and D0,′

µ are the gluon field strength tensor and the covariant derivative,

respectively, and the primes label the quantities in the effective theory. The operator

O3q vanishes by the fermionic equation of motion and it will not contribute to physical

observables. So, the last term in eq. (2.6) might be omitted, once the coefficients C0
1 , C0

2q

are determined. The coefficient functions contain information about the heavy particles

that were integrated out in the construction of the effective theory. On the contrary, as can

be understood from eq. (2.7), the operators encounter only the effects of the light degrees

of freedom.

The relations between the parameters and fields in the full and effective theories are

given by

G0,′,a
µ,ν = (ζ

(0)
3 )1/2G0,a

µ,ν ,

q0,′ = (ζ
(0)
2 )1/2q0 ,

g0,′
s = ζ(0)

g g0
s ,

m0,′
q = ζ(0)

m m0
q , (2.8)

where gs =
√

4παs is the strong coupling. The coefficients ζ
(0)
3 , ζ

(0)
2 , ζ

(0)
g , ζ

(0)
m are the bare

decoupling coefficients. They may be computed from the transverse part of the gluon

polarization function and the vector and scalar part of the quark self-energy via [18]

ζ
(0)
3 = 1 + Π0,h(0) ,

ζ
(0)
2 = 1 + Σ0,h

v (0) ,

ζ(0)
m =

1 − Σ0,h
s (0)

1 + Σ0,h
v (0)

. (2.9)

For the derivation of the coefficient ζ
(0)
g one has to consider in addition one vertex involving

the strong coupling, for example q̄qg or c̄cg, where c denotes the Faddeev-Popov ghost.

The decoupling coefficients are independent of the momentum transfer, so that they can

be evaluated at vanishing external momenta. The superscript h indicates that in the

framework of Dimensional Regularization (DREG) or Dimensional Reduction (DRED)

only diagrams containing at least one heavy particle inside the loops contribute and that

only the hard regions in the asymptotic expansion of the diagrams are taken into account.

They have been computed in QCD including corrections up to the four-loop order for the

strong coupling [19, 20] and three-loop order for quark masses [18]. In the MSSM the

two-loop SQCD [21–23] and SEW [24] expressions are known. Similar to the case of SM,

the decoupling coefficients derived within the MSSM can be connected through the Low
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Energy Theorem (LET) [25–31] with the coefficients C0
1 , C0

2q. We discuss in more detail

the relation between the coefficients C0
2q, C

0
3q and ζ

(0)
m , ζ

(0)
2 in subsection 3.2.

The renormalization procedure of the dimension four operators in the Minimal Sub-

traction Scheme within DREG (MS) [32] is known since long time [17]. The main aspect is

that different operators in general mix under renormalization. For the convenience of the

reader we reproduce the results for the renormalization constants of the operators O0
1 and

O0
2q that are of interest for the fermionic Higgs decays

O1 = Z11O0
1 + Z12O0

2q , O2 = Z22O0
2q , where

Z11 =

(

1 − π

α′
s

β(α′
s)

ǫ

)−1

, Z12 = −4γm(α′
s)

ǫ

(

1 − π

α′
s

β(α′
s)

ǫ

)−1

, Z22 = 1 , (2.10)

C1 = Z−1
11 C0

1 , C2q = C0
2q −

Z12

Z11
C0

1 . (2.11)

The explicit expressions for the β-function and quark mass anomalous dimension γm of

QCD with nl = 5 active flavours at the one-loop order that are needed in the present

paper, are given by

β(α′
s) = −

(

α′
s

π

)2

β0 + O((α′
s)

3) , β0 =
11

4
− nl

6
,

γm(α′
s) = −α′

s

π
γ0 + O((α′

s)
2) , γ0 =

3

4
CF . (2.12)

The bare coefficient functions C0
i , i = 1, 2q, must be computed diagrammatically. For the

calculation of the O(α2
s) corrections to the process h → qq̄, the knowledge of the coefficient

functions C0
1 and C0

2q is required at the one- and two-loop order, respectively.

The renormalized coefficient functions and operators are finite but not renormalization

group (RG) invariant. In ref. [6, 7], a redefinition of the coefficient functions and operators

was introduced so that they are separately RG invariant. This procedure allows us to choose

independent renormalization scales for coefficient functions and operators. In practice, one

makes a separation of scales: one chooses µ ≈ Mh for the renormalization scale of the

operators and µ ≈ M̃ (where M̃ denotes an averaged mass for the heavy supersymmetric

particles) for the coefficient functions. The new coefficient functions read [6, 7]

C1(M̃ ,Mh) =
α′

s(M̃ )β(5)(α′
s(Mh))

α′
s(Mh)β(5)(α′

s(M̃))
C1(M̃) ,

C2(M̃ ,Mh) =
4α′

s(M̃ )

πβ(5)(α′
s(M̃ ))

[γ(5)
m (α′

s(M̃)) − γ(5)
m (α′

s(Mh))]C1(M̃ ) + C2q(M̃) , (2.13)

where the superscript (5) marks that nl = 5 in eq. (2.12). We employ this approach for

the evaluation of the decay width Γ(h → q̄q). More details about the practical calculation

are discussed in the next section.

2.1 Higgs decay width

Once the renormalized coefficient functions C1, C2 are known, the decay width for the

process h → q̄q can be predicted. From eqs. (2.6) and (2.7) one can derive a general

– 5 –
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formula for the inclusive h → q̄q decay width [6, 7]

Γ(h → q̄q) = Γ(0)(1 + δ̄u)2
[

(1 + ∆QCD
q )C2

2 + ΞQCD
q C1C2

]

, (2.14)

where Γ(0) represents the complete leading order (LO) result given by

Γ(0) =
NcGF Mhm2

q

4π
√

2

(

1 −
4m2

q

M2
h

)3/2

. (2.15)

As is well known, the large logarithms of the type ln(M2
h/m2

q) can be resummed by taking

mq in eq. (2.15) to be the MS mass mMS
q (µ) evaluated at the scale µ = Mh. The QCD

correction ∆QCD
q is known since long time [33, 34],

∆QCD
q =

α′
s(µ)

π

(

17

3
+ 2 ln

µ2

M2
h

)

+

(

α′
s(µ)

π

)2 [8851

144
− 47

6
ζ(2) − 97

6
ζ(3) +

263

9
ln

µ2

M2
h

+
47

12
ln2 µ2

M2
h

]

, (2.16)

with ζ(x) being the Riemann’s zeta function. The additional QCD correction generated

through double-triangle topologies ΞQCD
q was first computed in ref. [6, 7],

ΞQCD
q =

α′
s(µ)

π
CF

(

−19 + 6ζ(2) − ln2
m2

q

M2
h

− 6 ln
µ2

M2
h

)

. (2.17)

The universal corrections δ̄u of O(αn
s xt), where xt = (αt/4π)2 = GF M2

t /(8π2
√

2), with αt

the top-Yukawa coupling, contain the contributions from the renormalization of the Higgs

wave function and the vacuum expectation value [35],

δ̄u = xt

[

7

2
+

α′
s(µ)

π

(

19

3
− 2ζ(2) + 7 ln

µ2

M2
t

)

+ O(α2
s)

]

. (2.18)

The coefficient functions C1 , C2q (and implicitly C1, C2) are known within SQCD at the

one-loop order since quite some time [14, 36]. For completeness, we display them here

providing also O(ǫ) terms that are necessary for the two-loop calculation.

C1 = −α′
s(µ)

12π

{

− sinα

cos β

[

M2
t µSUSYXt

4m2
t̃1

m2
t̃2

tan β
− ǫ

MtµSUSY sin 2θt

8 tan β

(

Lt̃1

m2
t̃1

−
Lt̃2

m2
t̃2

)]

+
cos α

sin β

[

4m2
t̃1

m2
t̃2

+ m2
t̃1

M2
t + m2

t̃2
M2

t − AtM
2
t Xt

4m2
t̃1

m2
t̃2

+ǫ
AtMt sin 2θt

8

(

Lt̃1

m2
t̃1

−
Lt̃2

m2
t̃2

)

+ ǫ
M2

t

4

(

4Lt

M2
t

+
Lt̃1

m2
t̃1

+
Lt̃2

m2
t̃2

)]}

, (2.19)
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C2q = − sin α

cos β

1 + α′

s(µ)
2π CF Abmg̃

[

F1(m
2
b̃1

,m2
b̃2

,m2
g̃) + ǫF2(m

2
b̃1

,m2
b̃2

,m2
g̃)

]

1 + α′

s(µ)
2π CF Xbmg̃

[

F1(m2
b̃1

,m2
b̃2

,m2
g̃) + ǫF2(m2

b̃1
,m2

b̃2
,m2

g̃)

] (2.20)

+
cos α

sin β

α′

s(µ)
2π CF (−µSUSY tan β)mg̃

[

F1(m
2
b̃1

,m2
b̃2

,m2
g̃) + ǫF2(m

2
b̃1

,m2
b̃2

,m2
g̃)

]

1 + α′

s(µ)
2π CF Xbmg̃

[

F1(m2
b̃1

,m2
b̃2

,m2
g̃) + ǫF2(m2

b̃1
,m2

b̃2
,m2

g̃)

] ,

where CF = 4/3, Lx = ln(µ2/m2
x) and the functions F1 and F2 are defined through

F1(x, y, z) = −
xy ln y

x + yz ln z
y + zx ln x

z

(x − y)(y − z)(z − x)
,

F2(x, y, z) = − 1

(x − y)(y − z)(z − x)

[

xy ln
y

x

(

1 + ln
µ2

√
xy

)

+yz ln
z

y

(

1 + ln
µ2

√
yz

)

+ zx ln
x

z

(

1 + ln
µ2

√
xz

)

]

. (2.21)

In the above formulas, α′
s(µ) denotes the strong coupling constant computed in the MS

scheme and taking into account nl = 5 active quark flavours.

The computation of the coefficient function C2q through two loops in SQCD is discussed

in some detail in the next section.

3 Calculation of the coefficient function C2q at next-to-next-to-leading

order (NNLO)

For the derivation of the coefficient functions one has to compute Green functions in the

full and effective theory and make use of the decoupling relations eq. (2.8) to connect

them [18]. In general, one Green function contains several coefficient functions. For exam-

ple, the amputated Green function involving the qq̄ pair and the zero-momentum insertion

of the operator Oh which mediates the couplings to the light Higgs boson h contains both

coefficient functions C2q and C3q. Similarly, one possibility to compute the coefficient

function C1 involves the Green function formed by the coupling of the operators Oh to

two gluons.

In the following, we restrict the discussion to the computation of the coefficient function

C2q. Considering the appropriate one-particle-irreducible (1PI) Green function, we get

Γ0
q̄qOh

(p,−p) = i2
∫

dxdyeip(x−y)〈Tq0(x)q̄0(y)Oh(0)〉1PI , (3.1)

where p is the outgoing momentum of q. In a next step we express the operator Oh with

the help of eqs. (2.6) and (2.7) and make use of the decoupling relations eq. (2.8). One can

easily see that the above Green function will get contributions only from the operators O2q

– 7 –
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and O3q

Γ0,h
q̄qOh

(p,−p) = −ζ
(0)
2

∫

dxdyeip(x−y)〈Tq′,0(x)q̄′,0(y)(C2qO2q + C3qO3q)〉1PI ,

= ζ
(0)
2 ζ(0)

m (C0
2q − C0

3q)m
0
b + ζ

(0)
2 C0

3q/p . (3.2)

In the last step we have used the Feynman rules for the scalar dimension four operators

that can be found in ref. [37] and the fact that Γ0,h
q̄qOh

(p,−p) denotes an amputated Green

function. Exploiting the fact that the coefficient functions do not depend on the momentum

transfer, one can set also p = 0. In this case, on the l.h.s. of eq. (3.2) only the hard parts of

the Green function survive, as the massless tadpoles are set to zero in DRED and DREG.

As before, the superscript h stands for hard contributions.

The validity of the approximation m2
h = p2

h ≈ 0 was extensively studied in the context

of the SM and reconfirmed for the case of gluon fusion at two-loop order in SQCD in

ref. [38]. We expect that this approximation holds also in the case of fermionic Higgs

decays, due to the heavy supersymmetric mass spectrum.

There are two possibilities currently used in the literature for the derivation of

Γ0,h
q̄qOh

(0, 0). The first one is the direct computation of the scalar and vector components

of the vertex function making use of the appropriate projectors. The second one uses the

LET, which relates the vertex corrections to the hqq̄ coupling to the quark self-energy

corrections via appropriate derivatives [25–31, 38].

3.1 Direct calculation of the coefficient function C0
2q at NNLO

Decomposing the Green function Γ0,h
q̄qOh

into its scalar and vector components Γ0,h
q̄qOh;s,

Γ0,h
q̄qOh;v one derives from eq. (3.2) two linearly independent relations for the coefficients C0

2q

and C0
3q

Γ0,h
q̄qOh;s(0, 0) = ζ

(0)
2 ζ(0)

m (C0
2q − C0

3q) ,

Γ0,h
q̄qOh;v(0, 0) = ζ

(0)
2 C0

3q . (3.3)

In SQCD at the two-loop order there is also an axial contribution to Γ0,h
q̄qOh

(0, 0), which

arises from diagrams where a top quark-squark pair is exchanged from a gluino propaga-

tor. However, it generates only contributions O(α4
s) to Γ(h → qq̄) which are beyond the

precision we are interested in this paper.

Finally, using eqs. (2.9) the expression for C0
2q through two loops reads

C0
2q =

Γ0,h
q̄qOh;s(0, 0)

1 − Σ0,h
s (0)

+
Γ0,h

q̄qOh;v(0, 0)

1 + Σ0,h
v (0)

. (3.4)

One can either work in the (φ1, φ2) basis, i.e. generating two sets of vertex corrections for

each Higgs field, or one derives the Feynman rules for the couplings of quarks and squarks

to the light Higgs using the relation eq. (2.4).

For the computation of the vertex corrections up to two loops we have implemented

two independent setups. In one of them, the Feynman diagrams are generate with the help
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of the program FeynArts [39, 40], then its output is handled in a self-written Mathematica

code which includes the two-loop tensor reduction and the mapping of the vertex topologies

to the two-loop tadpole ones [41]. The last step is possible due to the fact, that we neglect

the mass of the light Higgs boson and of the external light quarks. In the second setup, the

Feynman diagrams are generated with the program QGRAF [42], and further processed with

q2e and exp [43, 44]. The reduction of various vacuum integrals to the master integral was

performed by a self-written FORM [45] routine.

3.2 LET derivation of the coefficient function C0
2q at NNLO

The connection between the coefficient functions C0
1 , C0

2q and the decoupling coefficients

ζ0
s , ζ0

m or equivalently Π0,h(0),Σ0,h
s (0) and Σ0,h

v (0) was extensively studied in the context

of the SM. The validity of the LET was verified up to three-loop order in QCD [18]. In the

framework of the MSSM, however, the derivation of LET is much more involved due to the

presence of the two Higgs doublets and of many massive particles and mixing angles. The

applicability of LET in SQCD at two-loop order was verified only very recently. Namely,

the relationship between the coefficient function C1 and the hard part of the transverse

gluon polarization function Π0,h(0) has been established in ref. [38]. Furthermore, the

leading two-loop contributions to the effective bottom Yukawa couplings have been derived

from the scalar part of the bottom quark self-energy in ref. [15, 16]. It is one of the aims

of this paper to verify the relationship between the coefficient function C2q and the hard

part of the scalar and vector contributions to the quark self-energy.

For our calculation it is very convenient to work in (φ1, φ2) basis, which means that

we have to decompose the Green functions according to eq. (2.4)

Γ0,h
q̄qOh;a(0, 0) = − sin αΓ0,h

q̄qOφ1
;a(0, 0) + cos αΓ0,h

q̄qOφ2
;a(0, 0) , a = s, v . (3.5)

Similarly, the coefficient function can be written as follows

C0
2q = − sin α C0

2q,φ1
+ cos α C0

2q,φ2
. (3.6)

Applying the LET2 to the individual components Γq̄qOφi
;a we get

Γ0,h
q̄qOφi

; s(0, 0) =
1

mb

∂

∂φi

[

mb(1 − Σ0,h
s (0))

]
∣

∣

∣

∣

φi=vi

≡ 1

mb
D̂q,φi

[

mb(1 − Σ0,h
s (0))

]

,

Γ0,h
q̄qOφi

; v(0, 0) =
∂

∂φi

[

− Σ0,h
v (0)

]∣

∣

∣

∣

φi=vi

≡ D̂q,φi

[

− Σ0,h
v (0)

]

, (3.7)

with i = 1, 2 and a = v, s. As we are considering only the hard parts of the above Green

functions no complication related to the occurrence of infrared divergences is encountered.

In practice, it is convenient to express the operators D̂q,φi
introduced in eq. (3.7) in terms of

derivatives w.r.t. masses and mixing angles. This can be achieved using the field-dependent

definition of the parameters, in our case quark and squark masses and squark mixing

angles [47, 48].

2The gauge-fixing condition for SQCD is independent of the vacuum expectation values v1,2, so that

LET holds in its trivial form [46].
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The formulas derived up to now are valid for a generic light quark flavour q. However,

for phenomenological applications the decay channel h → bb̄ is the most important one.

The explicit expressions for the operators D̂b,φi
can be easily derived from the eqs. (11)

and (12) in ref. [38]. We quote them here for completeness and to fix our normalization:

D̂b,φ1
=

1

cos β
(mbAbFb + mbGb) −

1

sin β
mtµSUSY sin 2θtFt ,

D̂b,φ2
=

1

cos β
(−mbµSUSYFb) +

1

sinβ
(mtAt sin 2θtFt + 2m2

tGt) , with

Fb =
2

m2
b̃1
− m2

b̃2

(1 − sin2 2θb)
∂

∂ sin 2θb
, Gb =

∂

∂mb
,

Ft =
∂

∂m2
t̃1

− ∂

∂m2
t̃2

+
2

m2
t̃1
− m2

t̃2

(1 − sin2 2θt)

sin 2θt

∂

∂ sin 2θt
,

Gt =
∂

∂m2
t̃1

+
∂

∂m2
t̃2

+
∂

∂m2
t

. (3.8)

In the above formulas we keep only the terms that do not vanish in the limit mb → 0.

As is well known, in eqs. (3.7) one has first to apply the derivative operators D̂q,φi
and

afterwards perform the renormalization. For simplicity of the notation we suppress the

superscript (0), labeling bare quantities. We checked explicitly at the diagram level that

eqs. (3.7) hold through two loops. The computation of the two-loop diagrams contributing

to Σ0,h
a (0) goes along the same line as that for Γ0,h

q̄qOφi
; a(0, 0). The exact results together

with few expansions for special mass hierarchies can be found in ref. [22, 23].

Let us mention at this point that for large values of tan β the dominant contribution

to the coefficient function C2q is contained in the first term in eq. (3.4). The µSUSY tan β-

enhanced contributions are implicitly resummed in eq. (3.4), through the presence of the

denominator 1 − Σ0,h
s (0), which contains contribution of the form αn

s µSUSY tan β. In the

framework of LET the µSUSY tan β-enhanced contributions to Γq̄qOh;s are generated through

the term proportional to the derivative Fb in D̂b,φ2
. Taking into account the parametric

dependence of Σ0,h
s on masses and mixing angles, one can easily derive these contributions

from the terms proportional to sin 2θb in Σ0,h
s .3 Such contributions have also been derived in

ref. [15, 16] using the effective Lagrangian approach. Indeed, after discarding the additional

pieces comprised in our computation of the coefficient C2q, namely the vector part and the

rest of the derivative operators in eq. (3.8), we get good numerical agreement with the

results of ref. [15, 16].

3.3 Regularization and renormalization scheme

It is well known that the appropriate regularization scheme for the computation of radiative

corrections in supersymmetric theories is DRED. However, the most convenient regular-

ization scheme for the handling of the dimension four operators at higher orders is DREG

as discussed in section 2. For the renormalization we employed two different approaches.

In one of them we computed the radiative corrections to the coefficient functions directly

3A similar observation was made in ref. [15, 16], too.
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in DREG. This implies that some of the supersymmetric relations between couplings of

quarks and squarks do not hold anymore. More precisely, one has to distinguish between

the gluino-quark-squark coupling ĝs and the gauge coupling gs, and between the Yukawa

couplings of Higgs bosons to quarks gφi
q and squarks gφi

q̃;kr. The relationships between the

different couplings are necessary only at the one-loop order and they are well known since

long time [49].

In the second approach, we performed the two-loop computation of the coefficient

functions in the DRED scheme and afterwards converted the results into the DREG scheme

using the two-loop translation relations for the quark masses and strong couplings defined

in the full [50] and effective theory [51], and eqs. (3.7). As a consistency check, we explicitly

verified that the results obtained with the two methods agree.

For the renormalization of the divergent parameters we used the on-shell scheme for the

gluino and bottom squark masses and mixing angle and the minimal subtraction scheme

MS or DR for the strong coupling and the bottom quark mass. The renormalization of the

trilinear coupling Ab was performed implicitly through the use of relation eq. (2.3). The

explicit formulas for the one-loop counterterms are well-known in the literature (see for

example ref. [52]).

The complete two-loop results for the SQCD corrections to the coefficient function C2q

discussed in this section are too lengthy to be given here. They are available in MATHEMATICA

format upon request from the authors. For further applications, we also provide results for

the case where all parameters are renormalized minimally.

In principle, the results obtained in this section can be easily generalized to the heavy

Higgs decays taking into account the necessary changes in the Yukawa couplings as given

in table 1. However, the application of effective theory formalism introduced in section 3

is not justified in this case, i.e. the condition MH ≪ Mt ,MSUSY does not hold anymore.

4 Numerical results

In this section we study the phenomenological implications of the two-loop corrections to

the coefficient function C2q on the Higgs decay width Γ(h → bb̄). The SM input parameters

are the strong coupling constant at the Z-boson mass scale αs(MZ) = 0.1184 [53], the top

quark pole mass Mt = 173.1 GeV [54] and the running bottom quark mass in the MS

scheme mb(mb) = 4.163 GeV [55]. For the supersymmetric mass spectrum we adopted the

corresponding values of the “small αeff” and “gluophobic” scenarios as defined in ref. [3].4

For the running of the strong coupling constant within QCD we use the Mathematica

package RunDec [56]. For the evaluation of the strong coupling constant within the six-

flavour SQCD and the DR scheme we follow ref. [23].5

An important ingredient for the computation of the decay width Γ(h → bb̄) is the effec-

tive mixing angle of the neutral Higgs sector αeff [11] that takes into account the radiative

corrections to the Higgs propagator. In practical applications one replaces the tree-level

mixing angle α defined in eq. (2.5) with αeff . This can be computed in perturbation theory

4We used the tree-level formulas to derive the mass eigenvalues for squark fields.
5For a more detailed discussion see ref. [23] and the references therein.
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from the knowledge of the radiative corrections to the self-energy matrix of the neutral

Higgs doublet Σ̂φ1
, Σ̂φ2

, Σ̂φ1φ2
,

tan αeff =
−(M2

A + M2
Z) sin β cos β − Σ̂φ1φ2

M2
Z cos2 β + M2

A sin2 β − M2
h − Σ̂φ1

, (4.1)

where Mh stands for the on-shell mass of the light Higgs boson. For the numerical analyses

we implemented the exact two-loop results from ref. [57].6

In figure 1 we show separately the renormalization scale dependence of the coefficient

functions C2q,φ1
and C2q,φ2

, which describe the effective Yukawa couplings of the neutral

Higgs fields φ1 and φ2. We choose the “small αeff” scenario with tan β = 50, MA =

300 GeV and evaluate αeff with the tree-level formula in order to avoid additional scale

dependence. The dashed and solid lines correspond to the one- and two-loop results,

respectively. As can be read from the figure, at the one-loop order the scale dependence

amounts to about 50% when the renormalization scale is varied around the average value

µ0 = (mb̃1
+ mb̃2

+ mg̃)/3 ≃ 658 GeV by a factor 10. At the two-loop order the variation

with the renormalization scale is significantly improved. The remaining scale dependence

is below 6%. An interesting aspect is the opposite evolution of the two coefficient functions

with the renormalization scale. This feature is reflected in a milder scale dependence of the

full coefficient function C2q of about 4% and 0.5% at one- and two-loop order, respectively.

However, for low A-boson masses MA ≤ 120 GeV this numbers change to 27% and 5%,

respectively. As usual, we can interpret the last number as an estimation of the theoretical

uncertainties due to unknown higher order corrections. So, the two-loop SQCD corrections

are essential for the accurate prediction of the decay width Γ(h → bb̄).

In figure 2 we display the renormalization scale dependence for the “gluophobic” sce-

nario, where we fixed the value of tan β to 20, MA = 300 GeV and maintain the same

convention for the lines. A similar behaviour as for the “small αeff” scenario is observed.

However, in this case the coefficient function C2q,φ2
has a much stronger scale dependence

at the one-loop order than the coefficient C2q,φ1
. The scale variation of the full coefficient

function C2q sums up to 1.5% and 0.2% for MA = 300 GeV at the one- and two-loop order,

respectively. However for MA ≤ 120 GeV the scale variation amounts to 8% and 1.5% at

one- and two-loop order, respectively, which shows the importance of the two-loop SQCD

corrections for this region of the parameter space.

We can conclude that for phenomenological analyses the choice of the renormalization

scale around µ0 ensures small radiative corrections and a good convergence of the pertur-

bative scale. In the following, we set µ ≃ µ0 for the computation of the SQCD corrections

to the coefficient functions C2q and the decay width Γ(h → bb̄).

In figure 3 we depict the dependence of the full coefficient function C2q on the A boson

mass MA (a) and the light Higgs boson mass Mh (b) for the “small αeff” scenario. We set

tan β = 50 and vary the mass of the A boson between 100 GeV≤ MA ≤ 200 GeV. For the

evaluation of the Higgs boson mass and the effective mixing angle αeff we employed the

6Very recently the three-loop SQCD corrections to Mh have been computed [58]. However, they are

valid only for specific mass hierarchies.
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Figure 1. The renormalization scale dependence of the coefficient functions C2q,φ1
cosβ (a)

and C2q,φ2
sinβ (b) is depicted at one- and two-loop order in the “small αeff” scenario.
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Figure 2. The renormalization scale dependence of the coefficient functions C2q,φ1
cosβ (a)

and C2q,φ2
sinβ (b) is depicted at one- and two-loop order in the “gluophobic” scenario.
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Figure 3. The coefficient function C2q as a function of MA (a) and Mh (b) is shown at

one- and two-loop order in the “small αeff” scenario.
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two-loop SQCD results [57]. As can be seen from figure 3(a) for low MA values there are

large one-loop corrections of about 60% of the tree-level values. They originate from the

large corrections to the scalar part of the quark self-energy, that are actually resummed

through the use of the formula given in the eq. (3.4). This feature is also reflected by the

relatively small two-loop corrections of about 2% of the tree-level values. For MA values

larger than 130 GeV one observes a steep increase of the coefficient function C2q (decrease

of the absolute value) due to cancellation of eq. (4.1), that implies αeff → 0. In this case,

C2q reaches its minimal absolute value. From panel (b) one notices a similar steep increase

of the coefficient function C2q when Mh reaches its maximal value of about 125 GeV. A

similar behaviour is also observed for the “gluophobic” scenario. So, for both scenarios

we expect a strong suppression of the decay width Γ(h → bb̄) for large A-boson masses or

equivalently for Mh close to its maximal value for which αeff → 0.

In figure 4 the dependence of the coefficient function C2q on tan β is shown for the

“small αeff” (a) and “gluophobic” (b) scenarios, where the A-boson mass was fixed to

MA = 130 GeV. As expected, we observe a significant increase of the magnitude of the ra-

diative corrections with the increase of the tan β value. At the one-loop order the radiative

corrections amount to about 70% (a) and to 33% (b) from the tree level values. At the

two-loop order they sum up to 3% and 5%, respectively.

In figure 5 we display the decay width for h → bb̄ as a function of the Higgs boson mass

Mh, considering the “small αeff”(a) and “gluophobic”(b) scenarios. We chose tan β = 50

and tan β = 20 for the case (a) and (b), respectively. The two-loop genuine QCD and

EW corrections to the process h → bb̄, as well as the two-loop SQCD corrections to the

Higgs boson propagator are depicted by the dotted lines. More precisely, they are derived

from eq. (2.14), where the coefficient functions C1 and C2 are set to their tree-level values.

The additional SQCD vertex corrections parametrized through the coefficient functions

C1 and C2 are represented at the one- and two-loop order by the dashed and solid lines,

respectively. We also take into account the one-loop SEW corrections to the coefficient

function C2 and fix their renormalization scale at µSEW = (mt̃1
+ mt̃2

+ µSUSY)/15, for

which the two-loop SEW corrections become negligible [15, 16].

For a relatively light Higgs boson mass Mh, the large one-loop radiative corrections

of about 70% (a) and 50% (b) are still amplified by mild two-loop corrections that can

reach as much as about 8% from the decay width including QCD corrections even for

the selected choice of the renormalization scale of SQCD corrections. The large SQCD

radiative corrections to Γ(h → bb̄) have only a relatively small impact on the branching

ratio BR(h → bb̄) but they can have a large impact on BR(h → τ+τ−). For sufficiently

large tan β and µSUSY, the measurement of BR(h → τ+τ−) can provide information about

the distinction between the SM and MSSM predictions.

For a large Higgs boson mass for which αeff → 0, the partial decay widths for h → bb̄

and h → τ+τ− are significantly suppressed. In this case the radiative corrections (in

particular the corrections to the Higgs boson propagator in eq. (4.1)) are essential for an

accurate prediction of Γ(h → bb̄) and Γ(h → τ+τ−). Furthermore, the BR(h → γγ) will

be strongly enhanced, improving the LHC prospects of finding a light Higgs.
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Figure 4. The coefficient function C2q as a function of tanβ for MA = 130GeV in (a) the

“small αeff” and (b) the “gluophobic” scenario.
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Figure 5. Γ(h → bb̄) for (a) the “small αeff” and (b) “gluophobic” scenario as a function of

Mh. The dotted lines display the two-loop QCD and EW corrections together with two-loop

corrections to the Higgs boson propagator. The dashed and solid lines depict in addition

the one- and two-loop SUSY-QCD vertex corrections, respectively.
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5 Conclusions

The knowledge of the Higgs boson couplings is essential for its searches at the present

hadron colliders. In this paper we calculate the two-loop corrections of O(α2
s) to the

Yukawa couplings within the MSSM. We employed the effective Lagrangian approach under

the assumption of large top quark and supersymmetric particle masses. We calculate

analytically the two-loop corrections to the coefficient function C2q , taking into account

the complete mass dependence. For large values of tan β the radiative corrections need to

be resummed, which in our approach is performed through the use of the formula given in

eq. (3.4). Furthermore, we verified at the diagram level the applicability of the low-energy

theorem for Higgs interactions in the framework of the MSSM as stated in ref. [38].

From the phenomenological point of view, the two-loop corrections presented here

reduce significantly the theoretical uncertainties, estimated through the variation with the

renormalization scale, at the percent level. The two-loop SQCD corrections become sizable

for tan β ≥ 20 and MA ≤ 130 GeV.
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