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However, it is shown that a truncation of the BPS Skyrme theory, in which only the

first vector meson is included, already moves the Skyrme model significantly closer to

the BPS system. A theory that is close to a BPS system is required to reproduce the

experimental data on binding energies of nuclei. A zero-mode quantization of the Skyrmion

is performed in the truncated BPS theory and the results are compared to the physical

properties of the nucleon. The approach is an analogue in five-dimensional Minkowski
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based on a string theory derivation of a Yang-Mills-Chern-Simons theory in a curved five-
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1 Introduction

The Skyrme model [1] is a nonlinear theory of pions with topological soliton solutions, called

Skyrmions, that are identified as baryons. In this paper, three outstanding Skyrmion is-

sues are drawn together and progress is made by introducing an extended Skyrme model,

obtained from five-dimensional Yang-Mills theory. The three outstanding issues that the

new extended theory addresses are as follows.

Firstly, the Skyrme model is not a BPS (Bogomolny-Prasad-Sommerfield) theory, in

the sense that the soliton solutions do not attain the topological lower bound on the energy.

In fact, the single Skyrmion exceeds the topological energy bound by 23% in the case of

massless pions. This energy excess allows the possibility of a significant classical binding

energy for higher charge Skyrmions, and indeed this is the case [2]: for example, the en-

ergy of the baryon number two Skyrmion exceeds the topological bound by 18%, which is

already 5% lower than the single Skyrmion. Such binding energies are much greater than

those observed experimentally in nuclei, where binding energies are typically less than 1%.

A BPS Skyrme model would therefore appear to be a better starting point for obtain-

ing more realistic binding energies, since a small perturbation away from a BPS theory is

likely to produce the required small binding energies. Motivated by this application a BPS

Skyrme model is introduced, in which the usual Skyrme model is extended by the inclusion

of an infinite tower of vector mesons. Furthermore, neglecting some of the vector mesons

provides a natural way to perturb away from the BPS system.

Secondly, Atiyah and Manton [3, 4] have shown that computing the holonomy of Yang-

Mills instantons yields good approximations to static Skyrmion solutions of the Skyrme
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model. It is not obvious why this approximation turns out to be so successful, or if

instanton holonomies give exact solutions of some modified Skyrme model. This paper

provides an explanation of the Atiyah-Manton procedure, by proving that the holonomy of

Yang-Mills instantons yields exact solutions of the BPS Skyrme model. The BPS Skyrme

model reverts to the usual Skyrme model if all the vector mesons are neglected, and this

explains the accuracy of the Atiyah-Manton approximation. Furthermore, it is shown that

including only the first vector meson already significantly improves the accuracy of the

instanton approximation of the Skyrme field and allows an excellent approximation to the

vector meson field to be extracted from the instanton.

Thirdly, the usual Skyrme model includes pion degrees of freedom, but neglects all the

other mesons. There is a long history of attempts to include other mesons, particularly

the ρ meson [5, 6], but there are difficulties because of the large number of coupling

constants that need to be determined: although some progress has been made using the

ideas of hidden local symmetry and vector meson dominance [7–9]. In the BPS Skyrme

model, all parameters are uniquely determined once the energy and length units are fixed.

Truncating the BPS theory, for example by including only the first vector meson, allows

the usual Skyrme model to be extended without the introduction of further unknown

parameters. The Skyrmion is studied in this truncated BPS theory, including its zero-mode

quantization, and the results are compared with the physical properties of the nucleon.

The techniques used in this paper, to derive the BPS Skyrme model and its connection

to instanton holonomies, are inspired by the work of Sakai and Sugimoto [10]. Using a string

theory construction and holographic methods, they were able to derive a Skyrme model

coupled to an infinite tower of massive vector mesons from a Yang-Mills-Chern-Simons

theory in a curved five-dimensional spacetime. The Skyrme field of their extended Skyrme

model corresponds to the holonomy of the curved space instanton, though unfortunately

this instanton solution has not yet been determined, even numerically. The Skyrmion in

the truncated version of the extended Skyrme model, which includes only the pion and ρ

meson degrees of freedom, has been investigated [11], though its quantization has not. A

collective coordinate quantization of the instanton has been performed [12, 13], but only by

approximating the true curved space Yang-Mills-Chern-Simons instanton by the flat space

Yang-Mills instanton.

In some respects, the work in the present paper may be regarded as a five-dimensional

Minkowski spacetime analogue of the five-dimensional curved spacetime theory of Sakai

and Sugimoto [10], with the advantage that the instanton, and various other ingredients,

can be found explicitly. Of course, a disadvantage of this work is that there is no AdS/CFT

correspondence to justify the approach, even though several results are qualitatively similar

to those of the Sakai-Sugimoto theory, suggesting that there are some merits in considering

this theory.

2 Skyrmions and instantons

In the Skyrme model [1] the pion degrees of freedom are encoded into an SU(2)-valued

Skyrme field U. In the massless pion approximation, the static energy of the Skyrme model
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is

ESky =

∫ (
− f2

π

4
Tr(RiRi) −

1

32e2
Tr([Ri, Rj ]

2)

)
d3x, (2.1)

where Ri = ∂iU U
−1 is the su(2)−valued current. In the above, e is the dimensionless

Skyrme parameter and fπ may be interpreted as the pion decay constant. Note that there

are differing conventions, related by a factor of 2, for the pion decay constant. In this paper

the convention is chosen so that the physical value is fπ = 92.6 MeV, which agrees with

the convention in [10] and related papers.

The parameters fπ and e, whose values are to be fixed by comparison with experi-

mental data, merely set the energy and length units and can be scaled away. Explicitly,

if energy units of fπ/2e and length units of 1/efπ are used, then in dimensionless Skyrme

units the energy becomes

ESky =

∫ (
− 1

2
Tr(RiRi) −

1

16
Tr([Ri, Rj ]

2)

)
d3x. (2.2)

This dimensionless form is used in the remainder of this section.

The Skyrme field is required to tend to a constant element of SU(2) at spatial infin-

ity (usually chosen to be the identity matrix) and this compactifies space to S3. A given

Skyrme field therefore has an associated integer topological charge B ∈ Z = π3(SU(2))

given explicitly by

B = − 1

24π2

∫
εijkTr(RiRjRk) d

3x. (2.3)

It is this topological charge that is to be identified with baryon number [14, 15]. The

Skyrmion of charge B is the field U that is the global minimum of the energy (2.2) for all

fields in the given topological charge sector.

The Faddeev-Bogomolny bound [16] states that

ESky ≥ 12π2|B|, (2.4)

and it is easy to prove that this bound cannot be attained for non-zero B.

Recall that BPS solitons may be defined as solutions in which a topological energy

bound is saturated and therefore, in this sense, Skyrmions are not BPS solitons. Skyrmion

solutions can only be obtained numerically and, as mentioned in the previous section, the

energy of the B = 1 Skyrmion is 12π2 × 1.23 and the energy of the B = 2 Skyrmion

is 24π2 × 1.18. Numerical Skyrmion solutions have been obtained up to reasonably large

baryon numbers [17, 18] and reveal that the energies for larger values of B are significantly

closer to the bound than for these low charge Skyrmions: for example, the B = 17 Skyrmion

has an energy less than 17×12π2×1.08. Computations based on periodic Skyrme fields [19]

predict the limiting value ESky/B → 12π2 × 1.036, as B → ∞. The fact that the energy

of the single Skyrmion is much further from the bound than for larger values of B implies

binding energies that are much greater than those found experimentally for nuclei, which are

typically less than 1%. The small binding energies of nuclei therefore motivate the search for

a BPS Skyrme model, in which binding energies would vanish, allowing the possibility that

a small perturbation of the BPS system might result in realistic nuclear binding energies.
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Although Skyrmions can only be obtained numerically, there are two analytic methods

that produce Skyrme fields which are excellent approximations to the true Skyrmion solu-

tions. One approach is the rational map approximation [20], but the method of interest in

this paper is that of Atiyah and Manton [3, 4] in which a Skyrme field is generated from

the holonomy of a Yang-Mills instanton in R4. This is briefly reviewed below.

Let AI be the components of an SU(2) Yang-Mills instanton in R4, where uppercase

latin indices run over all four space coordinates I = 1, 2, 3, 4. The Skyrme field is defined to

be the holonomy of this instanton computed along lines parallel to the x4-axis. Explicitly,

U(x) = ±P exp

∫ ∞

−∞
A4(x, x4) dx4, (2.5)

where P denotes path ordering and x = (x1, x2, x3) are the Cartesian coordinates in the

remaining R3 ⊂ R4. As A4 takes values in the Lie algebra su(2) its exponential is group-

valued, so that U(x) : R3 7→ SU(2), as required for a static Skyrme field. The ± factor

in (2.5) is because the holonomy should really be defined on a closed loop on S4 and

the sign may be required to account for the transition function that connects −∞ to ∞,

corresponding to the same point on S4.

As shown by Atiyah and Manton [3, 4], the baryon number of this Skyrme field is

equal to the instanton number of the gauge field, that is, B = N where

N = − 1

16π2

∫
Tr(FIJ

⋆FIJ) d4x , (2.6)

and the dual field strength is defined by ⋆FIJ = 1
2
εIJKLFKL.

The Yang-Mills theory is conformally invariant and hence the instanton field includes

an arbitrary scale. This construction does not provide an exact solution of the Skyrme

model for any instanton, but for each N a suitable choice of instanton, including its scale,

provides a remarkably good approximation to the static Skyrmion with baryon number N.

The energy of the approximate Skyrme field is typically around a percent higher than that

of the numerical Skyrmion and correctly reproduces the symmetry of the Skyrmion for a

range of highly symmetric cases studied to date. For example, instantons have been con-

structed that correspond to the B = 1 spherically symmetric and B = 2 axially symmetric

Skyrmions [3, 4], tetrahedral and cubic Skyrmions with B = 3 and B = 4 [21], icosahedrally

symmetric Skyrmions with B = 7 and B = 17 [22, 23], and the triply periodic Skyrme

crystal [24]. There is therefore significant evidence to support the correspondence between

Skyrmions and instanton holonomies, though a deeper understanding of this connection

and its remarkable accuracy is desirable.

Recently, the representation of a Skyrme field as an instanton holonomy has reap-

peared in the context of five-dimensional theories in compactified and/or curved space-

times [10, 25–27]. Although these approaches certainly have the flavour of the Atiyah-

Manton construction, none of them actually involve exact self-dual Yang-Mills instantons

in R4. However, as the Sakai-Sugimoto construction [10] is a main motivation for the

present paper, and the techniques used here have some similarities to that work, it is

perhaps useful to give a brief overview of the relevant aspects of this model.
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The Sakai-Sugimoto theory is based on a holographic approach to QCD in the limit of

a large number of colours, using the AdS/CFT correspondence to map to a dual string the-

ory consisting of probe D8-branes in a background of D4-branes. The action on the probe

D8-branes leads to a Yang-Mills-Chern-Simons theory in a five-dimensional curved space-

time. The spacetime involves a warped product of (3+1)-dimensional Minkowski spacetime

and an additional holographic direction. The static soliton in this theory is interpreted as

the baryon, and has a fixed size determined by the ratio of the Chern-Simons coefficient to

the curvature associated with the holographic direction. Unfortunately, the soliton in this

theory has not been determined, even numerically. The expectation is that for a sufficiently

small Chern-Simons coupling the soliton size will be small enough that the soliton can be

approximated by a soliton of the flat space theory, which is simply a self-dual Yang-Mills

instanton in R4, with a particular small scale. In fact, all work to date on this theory has

used the flat space Yang-Mills instanton approximation, see for example [12, 13]. The dual

theory in (3+1)-dimensional Minkowski spacetime is obtained by performing an expansion

of the five-dimensional theory in terms of Kaluza-Klein modes of the holographic direction.

These modes contain the Skyrme field plus an infinite tower of massive vector mesons and

the associated theory is an extended Skyrme model, which reverts to the usual Skyrme

model if the massive vector mesons are ignored. In summary, the Sakai-Sugimoto theory

provides a correspondence between Yang-Mills-Chern-Simons instantons on a curved four-

manifold and an extended Skyrme model. One of the results of the present paper is to

produce an analogous correspondence where the curved four-manifold is replaced by R4

and the Chern-Simons term is absent. This allows a direct connection to be made to the

Atiyah-Manton construction and also provides a natural extension of this method, together

with an understanding of the remarkable accuracy of this approach.

It should be noted that a realization of the Atiyah-Manton construction has been

proposed [28] in which instantons appear as domain wall Skyrmions in a five-dimensional

Yang-Mills-Higgs theory. This is certainly different from the approach discussed in the

present paper and does not involve vector mesons. It also implies that terms involving

higher derivatives than the Skyrme term should appear, which is not the case here, though

it might be possible that some connection could be made between the two approaches by

integrating out the vector mesons.

3 An abelian prototype

As the details of the derivation for the full non-abelian gauge theory are quite cumbersome,

it is useful to first consider a similar approach in a prototype abelian gauge theory, where

the formulae are more manageable.

Consider an abelian gauge theory in five-dimensional Minkowski spacetime with coor-

dinates t, xI , where I = 1, 2, 3, 4. For notational convenience define z = x4 and let lowercase

latin indices run over the three remaining spatial coordinates i = 1, 2, 3. The real-valued

gauge potential has components at, ai, az . As most of this paper will be concerned with

– 5 –



J
H
E
P
0
8
(
2
0
1
0
)
0
1
9

static fields with at = 0, attention may be restricted to the static Yang-Mills energy

E =
1

4

∫
fIJfIJ d

3x dz, (3.1)

where fIJ = ∂IaJ − ∂JaI .

As mentioned in the previous section, a crucial ingredient of the Sakai-Sugimoto con-

struction [10] is the expansion of the gauge potential in terms of Kaluza-Klein modes in

the holographic direction. In flat Euclidean space a replacement needs to be found for the

curved space Kaluza-Klein modes. Simply taking the zero curvature limit is not suitable

as the modes then degenerate to fourier modes, which are not appropriate on the infinite

line. The required modes must form a complete orthonormal basis for square integrable

functions on the real line with unit weight function (this is necessary to obtain canonical

kinetic terms for the vector mesons). This problem is familiar to numerical analysts using

spectral methods [29] and the recognized solution is provided by Hermite functions ψn(z),

where n is a non-negative integer and

ψn(z) =
(−1)n√
n! 2n

√
π
e

1

2
z2 dn

dzn
e−z2

. (3.2)

In a gauge in which aI → 0 as |z| → ∞, the components of the gauge potential can be

expanded in terms of Hermite functions as

az(x, z) =
∞∑

n=0

αn(x)ψn(z), ai(x, z) =
∞∑

n=0

βn
i (x)ψn(z). (3.3)

Consider a gauge transformation aI 7→ ãI = aI − ∂Ih, for which ãz = 0. Clearly, this

requires that ∂zh = az, and hence h is given by

h(x, z) =

∫ z

−∞
az(x, ξ) dξ =

∞∑

n=0

(
αn(x)

∫ z

−∞
ψn(ξ) dξ

)
. (3.4)

Hermite functions satisfy

ψ′
n(z) =

√
n

2
ψn−1(z) −

√
n+ 1

2
ψn+1(z), (3.5)

where prime denotes differentiation with respect to z. This implies that

∫ z

−∞
ψ2p+1(ξ) dξ =

p∑

m=0

γm
2p+1 ψ2m(z), (3.6)

∫ z

−∞
ψ2p(ξ) dξ = γ+

2p ψ+(z) +

p−1∑

m=0

γm
2p ψ2m+1(z), (3.7)

where γ+
2p and γm

n are non-zero constants.

The additional function ψ+(z) has been introduced and is defined by

ψ+(z) =
1

√
2π

1

4

∫ z

−∞
ψ0(ξ) dξ =

1

2
+

1

2
erf(z/

√
2) (3.8)
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with erf(z) the usual error function

erf(z) =
2√
π

∫ z

0

e−ξ2

dξ. (3.9)

The normalization of ψ+(z) has been chosen so that ψ+(−∞) = 0 and ψ+(∞) = 1.

The gauge transformation (3.4) can now be written in terms of the basis functions

ψ+(z), ψn(z) as

h(x, z) = u(x)ψ+(z) +
∞∑

n=0

hn(x)ψn(z). (3.10)

As ψn(∞) = 0 and ψ+(∞) = 1, then u(x) is identified as the holonomy

u(x) = h(x,∞) =

∫ ∞

−∞
az(x, ξ) dξ. (3.11)

In the new gauge, where ãz = 0, then

ãi = ai − ∂ih = −∂iu(x)ψ+(z) +

∞∑

n=0

(βn
i (x) − ∂ih

n(x))ψn(z). (3.12)

After defining the vector fields vn
i (x) = βn

i (x) − ∂ih
n(x) this becomes

ãi = −∂iu(x)ψ+(z) +

∞∑

n=0

vn
i (x)ψn(z). (3.13)

In this gauge the holonomy appears in the boundary condition ãi → −∂iu as z → ∞.

Using (3.13) and (3.5) the components of the field strength are

f̃zi = −∂iuψ
′
+(z) +

∞∑

n=0

vn
i ψ

′
n(z) (3.14)

=

(
− 1

π
1

4

∂iu+ v1
i

)
ψ0(z)√

2
+

∞∑

n=1

(
vn+1
i

√
n+ 1 − vn−1

i

√
n

)
ψn(z)√

2

and

f̃ij =

∞∑

n=0

(∂iv
n
j − ∂jv

n
i )ψn(z). (3.15)

Using the orthonormality of the Hermite functions

∫ ∞

−∞
ψm(z)ψn(z) dz = δmn (3.16)

to perform the integration over z, the abelian Yang-Mills energy (3.1) becomes

E =

∫ (
1

4
√
π

(∂iu)
2 − 1

2π
1

4

v1
i ∂iu+

∞∑

n=0

{
1

4
(∂iv

n
j −∂jv

n
i )2 +

1

2
m2

n(vn
i )2 − 1

2
qnv

n
i v

n+2
i

})
d3x,

(3.17)

where the coefficients are m2
n = n+ 1

2
and qn =

√
(n + 1)(n + 2).
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The second term in (3.17) may seem a little strange, but it is simply the analogue

in the prototype abelian theory of the familiar mixing between the Skyrme field and the

lightest axial vector meson that arises in coupling the Skyrme model to vector mesons [6].

This approach has produced a correspondence between abelian Yang-Mills theory inR4 and a field theory in R3 containing an infinite tower of vector mesons, plus a scalar

field related to the holonomy of the gauge potential. Note that mn are not the meson

masses because qn 6= 0, hence the associated mass matrix is not diagonal. A truncated

theory can be defined by including only the first N vector mesons and setting vn
i ≡ 0 for

all n ≥ N . The mass matrix is then diagonalized by an SO(N ) rotation of the remaining

vector mesons and the meson masses determined from the eigenvalues of the N ×N mass

matrix. In the extreme case, N = 1, where only the first vector meson remains, no rotation

is required and the mass of this meson is obviously m0 = 1/
√

2.

Perhaps it is worth making a comparison between the above approach and the more

common techniques of holographic QCD. In holographic QCD the curvature of the extra

dimension induces a discrete spectrum and fields are then expanded in terms of the associ-

ated Kaluza-Klein modes. In the current situation the extra dimension is flat and therefore

the spectrum is continuous. A discrete spectrum must be identified in order to mimic the

holographic construction. The traditional approach to this problem in flat space is to

compactify the extra dimension to produce a discrete spectrum. The continuous spectrum

is then recovered in the limit of decompactification. However, for the application in the

present paper it is not appropriate to compactify the extra dimension, because a modifica-

tion of space means that the connection to the instanton in R4 is then lost. Furthermore,

the identification of the holonomy with the non-normalizable mode is no longer obvious

in a compact extra dimension. The above Hermite truncation selects a discrete spectrum

without the need to modify spacetime, and the continuous spectrum is recovered in the

limit N → ∞. In this respect it is a crucial feature that the associated mass matrix is not

diagonal. Increasing N not only adds an additional mode but also shifts the masses of all

the previous modes, allowing the continuous spectrum to reappear as N → ∞.

In principle, the eigenfunctions of any Sturm-Lioville operator on the line might be

used as basis functions. However, a significant restriction is imposed by the requirement

that the basis functions are orthonormal with respect to the unit weight function, which

is needed to obtain the standard kinetic terms for the vector mesons. Hermite functions

are a canonical choice and possess additional desirable features, such as the associated

Sturm-Lioville operator involving only second and not first order derivatives. The pre-

cise combination of conditions that need to be imposed to uniquely arrive at the Hermite

functions has not been investigated.

In the next section a similar approach will be applied to SU(2) Yang-Mills theory, where

it is shown that the SU(2)-valued scalar field that arises from the instanton holonomy is

the Skyrme field, with energy function precisely that of the Skyrme model.
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4 The Skyrme model from Yang-Mills theory

Consider SU(2) Yang-Mills gauge theory in R4 with the su(2)-valued gauge potential AI ,

with I = 1, 2, 3, 4, and again for convenience set z = x4. The Yang-Mills energy is given by

E = −1

8

∫
Tr(FIJFIJ) d3x dz, (4.1)

where the factor of 1
8

is due to the normalization of the su(2) generators as −Tr(TaTb) =

2δab.

Starting with a gauge in which AI → 0 as |z| → ∞, the gauge Az = 0 is obtained by

applying the gauge transformation

AI 7→ gAIg
−1 − ∂Ig g

−1, (4.2)

with

g(x, z) = P exp

∫ z

−∞
Az(x, ξ) dξ. (4.3)

The holonomy is

U(x) = g(x,∞) = P exp

∫ ∞

−∞
Az(x, z) dz, (4.4)

and in the new gauge the holonomy appears in the boundary condition for Ai, since now

Ai → −∂iU U
−1 as z → ∞.

As in the abelian case (3.13), the gauge field can be expanded in terms of Hermite

functions as

Ai = −∂iU U
−1 ψ+(z) +

∞∑

n=0

W n
i (x)ψn(z). (4.5)

The emergence of the Skyrme model can be seen by first neglecting the vector fields

W n
i . With this truncation the components of the field strength are

Fzi = −∂iU U
−1 ψ′

+ = −Ri
ψ0√
2π

1

4

, Fij = [Ri, Rj ]ψ+(ψ+ − 1). (4.6)

Substituting these expressions into the Yang-Mills energy (4.1), and performing the inte-

gration over z, yields the energy of the Skyrme model

ES =

∫ (
− c1

2
Tr(RiRi) −

c2
16

Tr([Ri, Rj ]
2)

)
d3x, (4.7)

where

c1 =
1

4
√
π
, c2 =

∫ ∞

−∞
2ψ2

+(ψ+ − 1)2 dz = 0.198. (4.8)

This is the Skyrme model in dimensionless units, but it is not in Skyrme units because the

constants c1 and c2 are not unity. In these units the Faddeev-Bogomolny energy bound (2.4)

becomes

ES ≥ 12π2√c1c2 |B| = 2.005π2 |B|. (4.9)
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This bound should be compared with the energy bound that derives from the full Yang-

Mills theory, namely

E ≥ 2π2 |B|, (4.10)

which is attained by the instanton solutions. This shows that the two bounds are re-

markably close, but that the Faddeev-Bogomolny bound is stricter by 1
4
%. Of course,

the Faddeev-Bogomolny bound only applies to the usual Skyrme model, whereas the

bound (4.10) is equally valid if some, or indeed all, of the vector mesons are included.

The Skyrme model is not scale invariant, in contrast to the Yang-Mills theory, and

hence the scale of the Skyrme model has emerged because of the truncation that ignores

the vector mesons. Perhaps it is useful to think of this in terms of the theory flowing

to a conformal theory as all the vector mesons are included. The issue of Skyrmion and

instanton scales also appears in the Sakai-Sugimoto derivation [10] of the Skyrme model.

In that case the Yang-Mills theory in curved space with a Chern-Simons term is not scale

invariant and the instanton has a fixed small size, of the order of the string scale. The

size of the Skyrmion in the usual Skyrme model is not related to the size of the instanton,

but as more vector mesons are included the size of the Skyrmion in the extended Skyrme

model must tend to the small size of the instanton.

The energy of a single Skyrmion exceeds the Faddeev-Bogomolny bound by about 23%

and the energy of a Skyrme field generated from the holonomy of a single instanton exceeds

the Faddeev-Bogomolny bound by about 24%, for an optimal choice of the instanton scale.

When combined with the above bounds, this reveals that, for the optimal instanton scale,

the result of neglecting all the vector mesons is to raise the energy by less than 25%. The

vector meson terms in the expansion (4.5) have trivial topology and therefore the holonomy

term captures all the topological features of the instanton (and hence the Skyrmion), but

the above results demonstrate that it also captures most of the energetic properties too.

Including the infinite tower of vector mesons produces a BPS Skyrme model, since the

model is simply equivalent to Yang-Mills theory with one extra dimension. An infinite

sequence of extended Skyrme models exist that interpolate between the usual Skyrme

model and the BPS Skyrme model, as the number of included vector mesons ranges from

zero to infinity. The remainder of this paper is devoted to a detailed analysis of the first

member of this sequence that extends the usual Skyrme model.

5 Including the first vector meson

This section considers the extension of the Skyrme model obtained by including only the

first vector meson, which physically corresponds to coupling the pion field to the ρ meson.

The expansion (4.5) is not convenient once the vector mesons are included, because

the fields do not have a definite parity. It is first necessary to perform an additional gauge

transformation to obtain an expansion in terms of parity eigenstates.

Given the holonomy U, define the SU(2)-valued field S to be its positive square root,

so that S2 = U. After a gauge transformation by g = S−1, the expansion (4.5) takes the

– 10 –
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form

Ai = −1

2
Piψ⋆ +

1

2
Qi +

∞∑

n=0

V n
i ψn (5.1)

where ψ⋆ = erf(z/
√

2) and

Pi = S−1∂iS + ∂iS S
−1, Qi = S−1∂iS − ∂iS S

−1. (5.2)

The vector meson V n
i is simply the previous vector meson W n

i in the new gauge.

Including only the first vector meson V 0
i (and dropping the superscript 0 for notational

convenience) gives

Fzi = −Pi
ψ0√
2π

1

4

− Vi
ψ1√

2
(5.3)

and

Fij = −[Pi, Pj ]
1

4
(1 − ψ2

⋆) + (∂iVj − ∂jVi)ψ0 + [Vi, Vj ]ψ
2
0

−([Pi, Vj ] + [Vi, Pj ])
1

2
ψ⋆ψ0 + ([Qi, Vj ] + [Vi, Qj ])

1

2
ψ0. (5.4)

Substituting these expressions into the Yang-Mills energy and integrating over z produces

the energy

E = ES + EV + EI, (5.5)

where ES is the earlier Skyrme energy (4.7) and EV is the vector meson energy

EV =

∫
−Tr

{
1

8
(∂iVj − ∂jVi)

2 +
1

4
m2V 2

i + c3(∂iVj − ∂jVi)[Vi, Vj ] + c4[Vi, Vj ]
2

}
d3x, (5.6)

with mass m = 1√
2

and constants

c3 =

∫ ∞

−∞

1

4
ψ3

0 dz =
1

2
√

6π
1

4

, c4 =

∫ ∞

−∞

1

8
ψ4

0 dz =
1

8

√
1

2π
. (5.7)

In most phenomenological approaches to including the ρ meson, the energy EV is taken

to be that of a massive Yang-Mills field. However, EV only has this form if 2c23/c4 is equal

to unity, whereas 2c23/c4 = 2
√

2/3 = 0.94, and hence there is a slight difference from a

massive Yang-Mills theory.

The interaction energy EI is

EI =

∫
−Tr

{
− c5[Pi, Pj ](∂iVj − ∂jVi) − c6[Pi, Pj ][Vi, Vj ] − c5[Pi, Pj ][Qi, Vj ]

+
1

4
[Qi, Vj ](∂iVj − ∂jVi) + c3[Qi, Vj ][Vi, Vj ] + c7([Pi, Vj ] + [Vi, Pj ])

2

+
1

32
([Qi, Vj ] + [Vi, Qj ])

2

}
d3x, (5.8)

where the constants are

c5 =

∫ ∞

−∞

1

16
(1 − ψ2

⋆)ψ0 dz =
π

1

4

12
√

2
, c6 =

∫ ∞

−∞

1

16
(1 − ψ2

⋆)ψ
2
0 dz = 0.049

c7 =

∫ ∞

−∞

1

32
ψ2

⋆ψ
2
0 dz =

1

32
− 1

2
c6 = 0.007. (5.9)

– 11 –



J
H
E
P
0
8
(
2
0
1
0
)
0
1
9

The energy (5.5) corresponds to an extended Skyrme model in which both the pion and

ρ meson degrees of freedom are included. Models similar to this have been investigated in

the past [5, 6, 8, 9] but because of the difficulty in determining the many possible interaction

coefficients some of these terms have not been included, and/or simple relations between

the coefficients have been imposed, for example by generating the theory using principles

of hidden local symmetry [7]. An advatange of the current derivation is that all interaction

coefficients are uniquely fixed from the higher-dimensional Yang-Mills theory.

A similar truncation of the Sakai-Sugimoto theory produces an energy of precisely

the same form as that found here, but with different values for the coefficients, and the

classical single Skyrmion has been studied numerically [11]. The results show that the

classical energy of the Skyrmion in that case is reduced by about 10% in comparison to

the usual Skyrmion, but no quantization of the Skyrmion has been performed. In a later

section it will be shown that the energy of a single Skyrmion in the theory (5.5) is even

lower than this, and moreover a quantization of the Skyrmion reveals that it is vital to

take into account the quantum spin energy of the Skyrmion when attempting to match to

the physical properties of the nucleon.

6 The Skyrmion and its instanton approximation

As the extended model (5.5) is obtained directly from Yang-Mills theory then good approx-

imations to the energy minimizing fields of this model will be obtained by extracting the

appropriate components of the instanton, in terms of the basis expansion used for the trun-

cation. In this section this extraction is performed for the case of a single Skyrmion through

a detailed calculation of the decomposition of the instanton in terms of the expansion (5.1).

The single Skyrmion and the single instanton both have SO(3) symmetry, associated

with spherical symmetry in R3. It is therefore useful to introduce the following symmetric

tensors

Xia = δia − x̂ix̂a, Yia = x̂ix̂a, Zia = ǫijax̂j, (6.1)

where x̂i = xi/|x|.
The N = 1 instanton located at the origin in R4 is given by AI = iAIaτa where τa are

the Pauli matrices and

Aia = η(Xia + Yia) + ζZia, Aza = ζYia, (6.2)

with the functions η and ζ defined to be

η(r, z) =
z

λ2 + r2 + z2
, ζ(r, z) = − r

λ2 + r2 + z2
. (6.3)

Here λ is the arbitrary scale of the instanton.

The gauge Az = 0 is obtained after the gauge transformation

g(x, z) = exp(iF (r, z)x̂aτa), (6.4)

where

F (r, z) =

∫ z

−∞
ζ(r, ξ) dξ = − πr√

λ2 + r2

{
1

2
+

1

π
tan−1

(
z√

λ2 + r2

)}
. (6.5)
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Figure 1. The Skyrme field profile function minimizing the energy ES. The solid curve is the

numerical solution and the dashed curve is the instanton approximation.

The associated holonomy has the standard hedgehog form

U = exp(if(r)x̂aτa), (6.6)

with profile function

f(r) = F (r,∞) = − πr√
λ2 + r2

. (6.7)

The Skyrme field must tend to a constant element of SU(2) as r → ∞ and this is usually

taken to be the identity matrix, corresponding to the boundary condition f(∞) = 0. In

this section it is slightly more convenient to take the non-standard choice that U → −1 as

r → ∞, with the associated profile function boundary conditions f(0) = 0 and f(∞) = −π,
as satisfied by the profile function in (6.7). This is not an important change but does mean

that some additional factors of π do not need to be introduced and carried throughout the

following calculation.

First, consider restricting to the usual Skyrme energy ES, which will reproduce the

results of Atiyah and Manton [3, 4].

For a Skyrme field of the hedgehog form (6.6) the usual Skyrme energy (4.7) reduces

to the expression

ES = 4π

∫ ∞

0

{
c1

(
f ′2 +

2 sin2 f

r2

)
+ c2

sin2 f

r2

(
2f ′2 +

sin2 f

r2

)}
r2 dr. (6.8)

A numerical minimization of ES yields an energy of ES = 1.236× 2π2, with the associated

profile function f(r) displayed as the solid curve in figure 1.

Restricting to the instanton approximation (6.7), the usual Skyrme energy ES/2π
2 is

plotted as a function of the instanton scale λ as the dashed curve in figure 2. This com-

putation reveals that within the instanton approximation ES is minimized by an instanton
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Figure 2. The usual Skyrme energy ES/2π
2 (dashed curve) and the energy in the extended model

E/2π2 (solid curve) as a function of the instanton scale λ.

with scale λ = 1.72, which has an energy ES = 1.246× 2π2. For comparison, the instanton

generated profile function with minimizing scale is displayed as the dashed curve in figure 1.

The instanton is found to generate a good approximation to the Skyrme field, with energy

only 1% above that of the numerical solution.

The next step is to extend these calculations to determine the vector meson fields

hidden inside the instanton. The energy minimizing Skyrme field and vector meson field

are then computed in the extended Skyrme model (5.5) and compared with those from the

instanton approximation.

Performing the gauge transformation (6.4) yields the gauge Az = 0, and in this gauge

the remaining components are

Aia =Xia

(
η cos 2F−

(
ζ+

1

2r

)
sin 2F

)
+Yia

(
η−∂rF

)
+Zia

(
η sin 2F+

(
ζ+

1

2r

)
cos 2F− 1

2r

)
.

(6.9)

Now perform the additional gauge transformation with

g = S−1 = exp(− i

2
fx̂aτa), (6.10)

to obtain

Aia =Xia

(
η cosH−

(
ζ+

1

2r

)
sinH

)
+Yia

(
η−1

2
∂rH

)
+Zia

(
η sinH+

(
ζ+

1

2r

)
cosH− 1

2r

)
,

(6.11)

where

H = − 2r√
λ2 + r2

tan−1

(
z√

λ2 + r2

)
. (6.12)
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The gauge potential (6.11) now has the correct parity properties to be compared with the

expansion (5.1) in terms of parity eigenstates. An immediate comparison yields that

Pia = Xia
1

r
sin f + Yia f

′, and Qia = Zia
1

r
(cos f − 1), (6.13)

where Pi = iPiaτa etc. Then, by definition of the terms in the expansion (5.1), this gives

that

V n
ia = kn

1Xia + kn
2Yia + kn

3Zia, (6.14)

where the profile functions kn
i (r) are given by the integrals

kn
1 (r) =

∫ ∞

−∞

{
η cosH −

(
ζ +

1

2r

)
sinH +

1

2r
sin f ψ⋆

}
ψn dz (6.15)

kn
2 (r) =

∫ ∞

−∞

{
η − 1

2
∂rH +

1

2
f ′ ψ⋆

}
ψn dz

kn
3 (r) =

∫ ∞

−∞

{
η sinH +

(
ζ +

1

2r

)
cosH − 1

2r
cos f

}
ψn dz.

For the even vector mesons it is easy to show that k2n
1 (r) = k2n

2 (r) = 0 due to the

symmetry ψ2n(−z) = ψ2n(z), and for the odd vector mesons k2n+1
3 (r) = 0 due to the

symmetry ψ2n+1(−z) = −ψ2n+1(z). This is the correct parity associated with the fact that

V n
i is a vector meson for even n and an axial vector meson for odd n.

For the first vector meson n = 0, and again dropping the superscript on V 0
i , the above

results reduce to

Via = ρ(r)Zia, (6.16)

where the profile function ρ(r) is

ρ(r) =

∫ ∞

−∞

{
η sinH +

(
ζ +

1

2r

)
cosH − 1

2r
cos f

}
ψ0 dz. (6.17)

The profile function ρ(r) satisfies the boundary conditions ρ(0) = ρ(∞) = 0.

In terms of arbitrary profile functions f(r) and ρ(r) appearing in the spherical

ansatz (6.6) and (6.16), the additional terms in the energy E = ES + EV + EI become

EV = 4π

∫ ∞

0

{
ρ′2 +

3ρ2

r2
+

2ρρ′

r
+m2ρ2 + c316

ρ3

r
+ c416ρ

4

}
r2 dr, (6.18)

and

EI = 4π

∫ ∞

0

{
− 16c5

sin f

r

(
f ′

(
ρ′ +

ρ

r

)
+
ρ sin f cos f

r2

)
+ 4

ρ2

r2
(cos f − 1) (6.19)

−16c6
ρ2 sin2 f

r2
+ 16c3

ρ3

r
(cos f − 1) + 32c7f

′2ρ2 + 2
ρ2

r2
(cos f − 1)2

}
r2 dr.

A numerical minimization of the extended energy E yields the value E = 1.060 × 2π2.

This shows that the energy of a Skyrmion in this theory is significantly closer to the

topological lower energy bound (4.10) than in the usual Skyrme model. This result reveals
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Figure 3. The Skyrme field profile function minimizing the energy E. The solid curve is the

numerical solution and the dashed curve is the instanton approximation.

that the truncation of the BPS Skyrme theory, in which only the first vector meson is

included, already moves the usual Skyrme model significantly closer to the BPS theory.

The numerically determined Skyrme profile function f(r) is displayed as the solid curve in

figure 3 and the vector meson profile function ρ(r) as the solid curve in figure 4.

Applying the instanton approximation, with profile functions (6.7) and (6.17), the

energy E/2π2 is plotted, as a function of the instanton scale λ, as the solid curve in figure 2.

The mimimizing instanton scale is λ = 1.20 at which the energy is E = 1.071 × 2π2. This

demonstrates that the instanton generated fields provide an excellent approximation to

both the Skyrme field and the vector meson field, with an energy only 1% above that of the

numerical solution. For comparison to the numerical solutions, the minimizing instanton

profiles are displayed as the dashed curves in figure 3 and figure 4. Comparing figure 1 with

figure 3 confirms that, as expected, the instanton approximation to the Skyrme field profile

function is much closer to the numerical solution in the extended Skyrme theory than in

the usual Skyrme model: in fact, it is difficult to distinguish the two curves in figure 3.

7 Quantization of the Skyrmion

It is well-known that fixing the parameters of the Skyrme model in the meson sector does

not produce good results in the baryon sector. It is common practice to treat (at least

some of) the meson constants as free parameters which are then fixed by comparison to

selected baryon properties [5, 30–34]. It has been suggested [35] that the meson parameters

could be interpreted as renormalized constants in the baryon sector, that result from known

quantum effects not addressed within a simple zero-mode quantization. As demonstrated

below, the same situation persists in the extended Skyrme model.
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Figure 4. The vector meson profile function ρ minimizing the energy E. The solid curve is the

numerical solution and the dashed curve is the instanton approximation.

Given the dimensionless formulation of the theory (5.5), the energy unit ε and the

length unit l are related to the pion decay constant fπ and ρ meson mass mρ by

ε = f2
π

√
2π/mρ, l = 1/(

√
2mρ). (7.1)

This can be seen by performing the scaling E 7→ εE, xi 7→ xi/l, Vi 7→ Vi

√
l/ε, after

which the dimensionless Skyrme energy (4.7) takes the standard form (2.1) with Skyrme

parameter

e =
mρ

fπ

√
2c2π

1

4

. (7.2)

The vector meson energy (5.6) becomes

EV =

∫
−Tr

{
1

8
(∂iVj − ∂jVi)

2 +
1

4
m2

ρV
2
i + c̃3(∂iVj − ∂jVi)[Vi, Vj ] + c̃4[Vi, Vj ]

2

}
d3x, (7.3)

where

c̃3 =
mρ

2
√

6πfπ

, c̃4 =
m2

ρ

8π
√

2f2
π

. (7.4)

For completeness, the additional coefficients in the interaction energy EI remain unchanged

except for the replacement

c5 7→ c̃5 =

√
π

2

fπ

12mρ
. (7.5)

The classical Skyrmion energy is E = εM, where M = 1.06× 2π2 is the dimensionless

static energy. Taking the physical values fπ = 92.6 MeV and mρ = 776 MeV, to set

the units (7.1), gives a classical Skyrmion energy E = 580 MeV, which is far too low in

comparison to the nucleon mass of 939 MeV. There is also a quantum contribution to
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the energy associated with the spin of the nucleon, but even if this contribution raised

the total energy to that of the nucleon mass this would still not be an acceptable result,

since physically the spin contribution needs to provide only a small contribution to the

total energy. The quantum spin energy is calculated later in this section and reveals that

taking the physical values for the meson parameters fπ and mρ yields a quantum spin

contribution of 1039 MeV, which is almost twice that of the classical energy and gives a

total energy which is far too large. This shows that taking the physical values for the

meson parameters does not produce acceptable results for the baryon. Confirmation of

this is provided by calculating the size of the baryon, as follows.

The physical value of the nucleon isoscalar root mean square radius is
√

〈r2〉 = 0.72 fm.

For the Skyrmion its dimensionless form R is calculated from the radial baryon density B as

R2 =

∫ ∞

0

r2B dr = −
∫ ∞

0

r2
2

π
f ′ sin f dr = 0.82. (7.6)

Inserting the length unit gives

√
〈r2〉 =

R√
2mρ

. (7.7)

Taking the physical value for mρ, and using the fact that in natural units MeV−1 = 197 fm,

yields
√

〈r2〉 = 0.16 fm, which is far too small. This is the origin of the excessive quantum

spin energy mentioned above, when physical values are taken for the meson parameters.

The baryon is far too small and hence so is its moment of inertia, which occurs in the

denominator of the quantum spin energy.

From now on the common practice is adopted of treating the meson parameters of

the theory (in this case fπ and mρ) as free parameters that are to be fixed by comparison

to physical properties in the baryon sector.

The choice made in this paper is to fix the energy and length units by matching to the

physical values of the nucleon mass and the isoscalar root mean square radius. Matching

the latter, using equation (7.7), yields mρ = 176 MeV, which is therefore only around a

quarter of its physical value. To determine fπ it is first necessary to calculate the quantum

spin contribution to the nucleon mass, which is presented below.

So far in this paper the discussion has been restricted to static fields. It is a simple

matter to obtain the relevant Lagrangians from the static energies presented earlier by

applying the obvious relativistic generalization. From the dimensionless form (5.5) of the

static energy of the extended Skyrme model, the associated dimensionless kinetic energy

is T = TS + TV + TI where

TS =

∫
−Tr

{
c1
2
R2

0 +
c2
8

[R0, Ri]
2

}
d3x, (7.8)

TV =

∫
−Tr

{
1

4
(∂0Vi−∂iV0)

2+
1

4
m2V 2

0 +2c3(∂0Vi−∂iV0)[V0, Vi]+2c4[V0, Vi]
2

}
d3x, (7.9)
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TI =

∫
−Tr

{
− 2c5[P0, Pi](∂0Vi−∂iV0)−2c6[P0, Pi][V0, Vi]−c5[P0, Pi]([Q0, Vi]+[V0, Qi])

+
1

4
([Q0, Vi] + [V0, Qi])(∂0Vi − ∂iV0) + c3([Q0, Vi] + [V0, Qi])[V0, Vi]

+2c7([P0, Vi] + [V0, Pi])
2 +

1

16
([Q0, Vi] + [V0, Qi])

2

}
d3x. (7.10)

The zero-mode quantization involves the rigid rotor ansatz

S = e
1

2
ΩtS̃e−

1

2
Ωt, Vi = e

1

2
ΩtṼie

− 1

2
Ωt, V0 = e

1

2
ΩtṼ0e

− 1

2
Ωt, (7.11)

where Ω = iΩaτa is a constant element of su(2) determining the rotation frequency and

axis, and S̃, Ṽi are the earlier static fields that minimize the classical static energy E. For

time-dependent fields Ṽ0 can no longer be set to zero, as this is not consistent with the Gauss

law for this system, that is, the field equation for V0. The Gauss law requires that Ṽ0 has the

same tensorial structure as [Ṽi, [Ṽi,Ω]]. This determines the form of Ṽ0 = iṼ0aτa to be [5]

Ṽ0a = χ1Ωa + χ2x̂ax̂bΩb, (7.12)

where χ1(r), χ2(r) are two additional radial profile functions with boundary conditions

χ′
1(0) = χ1(∞) = χ2(0) = χ2(∞) = 0. The kinetic energy takes the form T = 1

2
I|Ω|2,

where |Ω|2 = −1
2
Tr(Ω2) and I = IS + IV + II is the moment of inertia, which after a

tedious calculation is found to be

IS =
16π

3

∫ ∞

0

{
c1 + c2

(
f ′2 +

sin2 f

r2

)}
sin2 f r2 dr, (7.13)

IV =
4π

3

∫ ∞

0

{
4ρ2 + 4

χ2
2

r2
+ 3χ′2

1 + 2χ′
1χ

′
2 + χ′2

2 +m2(3χ2
1 + 2χ1χ2 + χ2

2)

+32c3ρ

(
2ρχ1 + ρχ2 +

χ2
2

r

)
+ 64c4ρ

2(2χ2
1 + 2χ1χ2 + χ2

2)

}
r2 dr, (7.14)

II =
4π

3

∫ ∞

0

{
− 32c5 sin f

(
sin f

r

(
ρ− χ2

r

)
+ f ′χ′

1

)
− 64c6ρ

sin2 f

r
χ1

−8 sin2 f

2

(
− 8c5

sin2 f

r

(
ρ+

χ1

r

)
+ρ2+2ρ

χ1

r
+
χ2

2

r2
+8c3ρ

(
2
χ2

1

r
+2

χ1χ2

r
+
χ2

2

r
+χ1ρ

))

+64c7

(
f ′2χ2

1 + sin2 f

((
ρ− χ1

r

)2

+
(χ1 + χ2)

2

r2

))

+8 sin4 f

2

((
ρ+

χ1

r

)2

+
(χ1 + χ2)

2

r2

)}
r2 dr. (7.15)

The functions χ1, χ2 are determined by the V0 field equation and this is equivalent

to the minimization of IV + II, given the profile functions f and ρ. The minimizing profile

functions are presented in figure 5 and the associated moment of inertia is computed to

be I = IS + (IV + II) = 13.73 + 1.96 = 15.69

In terms of the spin J = I|Ω| the dimensionless quantum spin energy is

EQ =
J2

2I
, (7.16)
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Figure 5. The profile functions χ1 (solid curve) and χ2 (dashed curve).

where J2 = j(j + 1) and the quantum spin number j = 1
2

for the nucleon. The moment of

inertia I has units of εl2 and the quantum spin energy has units which are the reciprocal

of this. The mass of the nucleon is therefore

MN = εM +
1

εl2
EQ =

f2
π

mρ

√
2πM +

m3
ρ

f2
π

√
2

π

3

8I
. (7.17)

Taking the previously determined valuemρ = 176 MeV and requiring that (7.17) reproduces

the nucleon mass MN = 939 MeV yields fπ = 55.1 MeV, which is around 60% of its physical

value. With these parameter values the classical and quantum spin contributions to the

nucleon mass are 905 MeV and 34 MeV respectively, which is an acceptable split.

By equation (7.2), this set of parameter values gives a Skyrme parameter e = 3.81.

It is interesting to note that these parameters are reasonably close to those suggested in

the usual Skyrme model by fitting to the properties of the lithium-6 nucleus, which give

fπ = 37.6 MeV and e = 3.26 [33].

8 Conclusion

Inspired by methods of holographic QCD, a sequence of extended Skyrme models has been

introduced that interpolate between the usual Skyrme model and a BPS Skyrme model.

This provides an explanation and extension of the Atiyah-Manton construction of Skyrme

fields from instanton holonomies, as this construction produces exact solutions of the BPS

Skyrme model.

The first extended Skyrme model is a nonlinear theory of pions coupled to the

ρ meson and this has been investigated in some detail. The results reveal that this

model is significantly closer to a BPS theory than the usual Skyrme model, and it has

been demonstrated that an extension of the Atiyah-Manton construction provides an
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excellent approximation to both the pion and ρ meson fields. This is encouraging as the

experimental data on nuclear binding energies reveals that they are typically less than

1%, suggesting that a model close to a BPS theory is required.

There are several avenues for future research that follow from the work presented in

this paper. An obvious next step is to investigate multi-Skyrmions in the extended theory,

to confirm and evaluate the reduced binding energies. This could be performed either using

numerical full field simulations, similar to those applied in the usual Skyrme model [17, 18],

or using the instanton approximation. A study of the extended Skyrme models that include

additional vector mesons would also be of interest: in particular it would be useful to

compute the change in binding energies as more vector mesons are introduced.

Many aspects of the Sakai-Sugimoto theory have been investigated since its in-

troduction and it would be interesting to attempt similar studies for the flat space

analogue introduced here. Examples of aspects to study include finite baryon density

and temperature [36–41], the determination of interaction coupling constants and form

factors [42–45], together with an analysis of the nuclear force [46].

The Skyrme models considered in this paper are all applicable to massless pions,

but it has been shown that in the usual Skyrme model there are significant differences

in the massive pion theory, and the differences are encouraging in respect to comparisons

with the properties of nuclei [34, 47, 48]. A pion mass term could simply be included in

the extended Skyrme models, although the connection to a BPS Skyrme theory would

then be lost. However, it is still to be expected that binding energies would be reduced

in comparison to the usual Skyrme model, as the resulting increase in energy applies to

Skyrmions of all baryon numbers. The Atiyah-Manton construction does not produce

Skyrme fields with asymptotic fields appropriate to massive pions, but a modification of

this construction has been introduced for massive pions [49], based on a connection to

hyperbolic Skyrmions. It would be interesting to see if this modified construction can be

understood in terms of the techniques introduced in the present paper, and perhaps this

might lead to an extended BPS Skyrme theory for massive pions.

Finally, during the preparation of this manuscript a preprint appeared [50] introducing

novel Skyrmions in a different BPS Skyrme model. The BPS Skyrme model in question is

of the type introduced some time ago [51], involving only a pion mass term and a term of

sixth-order in the derivatives of the Skyrme field, and is therefore quite different from the

one considered in the present paper. The novel Skyrmions presented in [50] are examples of

compactons, that is, they have compact support. Such Skyrmions are trivially BPS solitons,

since compactons placed far enough apart do not interact at all. However, there is an

interesting mathematical structure, associated with an infinite dimensional symmetry, that

for example allows the single Skyrmion to be obtained as a solution of a first order equation.
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