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1 Introduction

The assumption of dual conformal symmetry has proven useful for understanding the struc-

ture of the large-N limit of higher-loop scattering amplitudes in N = 4 supersymmetric

Yang-Mills theory. Dual conformal invariance characterizes [1] the set of scalar diagrams

that forms a basis for the computation of higher-loop amplitudes in the unitarity-based

approach of refs. [2–6]. Moreover, coupled with the assumption of Wilson loop/MHV scat-

tering amplitude duality [7–10], dual conformal symmetry has been used [11] to explain

why maximally-helicity-violating planar n-gluon amplitudes obey the Bern-Dixon-Smirnov

(BDS) ansatz [12] for n = 4 and 5. It also helps to explain why the BDS ansatz fails to pre-

dict the scattering amplitude starting at n = 6, as observed in refs. [13–16], and constrains

the form of the discrepancy, called the remainder function (for reviews see refs. [17, 18]).

Wilson loop/MHV amplitude duality has been used to determine the precise form of this

remainder function for n = 6 in refs. [16, 19–21].

Scattering amplitudes in massless gauge theories possess infrared (IR) divergences that

must be regulated. It is desirable that the regulator preserve as many symmetries as possi-

ble. While dimensional regularization explicitly breaks dual conformal symmetry (see, e.g.,
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ref. [22]), an alternative Higgs regulator proposed by Alday, Henn, Plefka, and Schuster [23]

leaves the dual conformal symmetry unbroken. In this approach, the supersymmetric Yang-

Mills (SYM) theory is considered on the Coulomb branch where scalar vevs break the gauge

symmetry, causing some of the gauge bosons to become massive through the Higgs mech-

anism. Planar gluon scattering amplitudes on this branch can be computed using scalar

diagrams in which some of the internal and external states are massive, regulating the IR

divergences of the scattering amplitudes. (For earlier applications of a massive IR regu-

lator, see refs. [7, 24–27]; low-energy amplitudes in the Higgsed phase of SYM have been

studied in ref. [28].) The diagrams remain dual conformal invariant, however, provided that

the dual conformal generators are taken to act on the masses as well as on the kinematical

variables, a generalization referred to as extended dual conformal symmetry.

The assumption of extended dual conformal symmetry1 severely restricts the number

of diagrams that can appear in the scattering amplitudes. In particular it forbids loop

integrals containing triangles, which have indeed recently been shown to be absent from

one-loop amplitudes on the Coulomb branch [29] (a related discussion was given in ref. [26]).

At one point in moduli space, all the lines along the periphery of the diagrams have mass m,

while the external states and the lines in the interior of the diagram are all massless. This

is believed to be sufficient to regulate all IR divergences of planar scattering amplitudes.2

The original SYM theory is then recovered by taking m small.

Using the Higgs regulator described above, the N = 4 SYM planar four-gluon ampli-

tude was computed at one and two loops in ref. [23] and at three loops in ref. [30], assuming

that only integrals invariant under extended dual conformal symmetry contribute. It was

shown that, at least through three loops, the Higgs-regulated four-gluon amplitude obeys

an exponential ansatz

log M4(s, t) = −
1

8
γ(a)

[

log2
( s

m2

)

+ log2
( t

m2

)

]

− G̃0(a)

[

log
( s

m2

)

+ log
( t

m2

)

]

+
1

8
γ(a)

[

log2
(s

t

)

+ π2
]

+ c̃4(a) + O(m2) (1.1)

analogous to the BDS ansatz in dimensional regularization. Here M4(s, t) is the ratio of

the all-orders planar amplitude to the tree-level amplitude, γ(a) is the cusp anomalous

dimension [31], and G̃0(a) and c̃4(a) are analogs of functions appearing in the BDS ansatz.

One of the advantages of the Higgs-regulated ansatz (1.1) is that IR divergences take the

form of logarithms of m2; consequently, the L-loop amplitude may be computed by simply

exponentiating log M4(s, t) without regard for the O(m2) terms since they continue to

vanish as m → 0 even when multiplied by logarithms of m2. Putting it another way, in

order to test eq. (1.1) one need not compute any O(m2) terms of the Higgs-regulated L-loop

amplitudes because they cannot make any contribution to the IR-finite part of log M(s, t).

This stands in stark contrast to dimensional regularization, where checking the BDS ansatz

1Or rather the slightly stronger assumption (which holds in every known example) that every amplitude

can be expressed in an integral basis in which each element is dual conformal invariant.
2More precisely, diagrams which cannot be rendered finite in this manner also cannot be rendered finite

in off-shell regularization, and it is believed that such diagrams never contribute to the amplitude [8].
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at each additional loop order requires recalculation of two more terms in the ǫ expansion

of each lower loop integral.

One of the results of the current paper is to extend the computation of the Higgs-

regulated four-gluon amplitude to four loops. Following the observed behavior through

three loops, we assume that the Higgs-regulated four-loop amplitude can be expressed

as the same linear combination of eight scalar integrals as the dimensionally-regulated

amplitude. Specializing to the kinematic point s = t, we demonstrate that the result is

consistent with the exponentiation of IR divergences built into the BDS ansatz (1.1), and

we confirm, with significantly improved numerical precision, the value of the four-loop cusp

anomalous dimension found in refs. [32, 33].

Taking the Regge limit s ≫ t, the ansatz (1.1) implies that the Higgs-regulated four-

gluon amplitude exhibits exact Regge behavior [8, 34–39]

M4(s, t) = M4(t, s) = β(t)
( s

m2

)α(t)−1
(1.2)

where the all-loop-orders Regge trajectory is

α(t) − 1 = −
1

4
γ(a) log

( t

m2

)

− G̃0(a). (1.3)

The coefficient of log t, the cusp anomalous dimension, is independent of the IR regulator,

while the constant part is scheme-dependent. In ref. [30], we verified that the Higgs-

regulated four-gluon amplitude obeys eq. (1.2) through three-loop order, and in the current

paper, we extend this to four loops.

Equation (1.1) implies that the L-loop amplitude has leading log (LL) expansion

M
(L)
4 =

(−1)L

L!
logL

( t

m2

)

logL
( s

m2

)

+(−1)L−1

[(

π2

2(L − 1)!
−

π2

6(L − 2)!

)

logL−1
( t

m2

)

−
ζ3

(L − 2)!
logL−2

( t

m2

)

]

logL−1
( s

m2

)

+O
(

logL−2
( s

m2

))

(1.4)

where the LL logL s term depends only on the lowest-order term γ(a) = −4a + O(a2) of

the cusp anomalous dimension, while the next-to-leading log (NLL) logL−1 s term depends

on the O(a2) terms of γ(a) and G̃0(a). We showed in ref. [30] that the LL term stems

entirely from a single scalar diagram, the vertical ladder, in the Regge limit of the Higgs-

regulated loop expansion.3 In this paper, we show that the NLL contribution to the L-loop

3There are two ways of taking the Regge limit of a Higgs-regulated amplitude. One can either (a) first

take the limit m2
≪ s, t, and then s ≫ t, or (b) first take the limit s ≫ t, m2, and then m2

≪ t. We

demonstrated in ref. [30] that the amplitude is independent of the order of limits, at least through three

loops. The Regge behavior of individual diagrams, however, can depend on the order in which the limits are

taken. The dominance of vertical ladder diagrams is only valid in the Regge (b) limit, and the discussion

in the text assumes this order of limits.
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amplitude is given by the subleading term of the vertical ladder, together with the leading

contributions from a set of (L− 1) diagrams, consisting of vertical ladder diagrams with a

single H-shaped insertion. We explicitly confirm this through five loops via a Mellin-Barnes

computation, and present an argument (subject to certain reasonable assumptions) for its

validity to all loops.

A second thrust of this paper is to consider higher-point amplitudes in Higgs regular-

ization. We compute the Higgs-regulated five-gluon amplitude at one- and two-loops and

establish the iterative relation

M
(2)
5 =

1

2

(

M
(1)
5

)2
+

5
∑

i=1

[

ζ2

4
log2

( si

m2

)

+
ζ3

2
log
( si

m2

)

]

−ζ2 F
(1)
5 (si)+

5

4
ζ4 +O(m2) (1.5)

where

F
(1)
5 (si) = lim

m2→0

[

M
(1)
5 +

1

4

5
∑

i=1

log2
( si

m2

)

]

(1.6)

is the IR-finite part of the one-loop amplitude, which is the same as in dimensional reg-

ularization, up to an additive constant. We argue that the parity-odd part of M
(2)
5 is at

most O(m2) in Higgs regularization.

Based on the iterative relation (1.5), we propose that the generalization of eq. (1.1) to

the planar MHV n-gluon amplitude in Higgs regularization takes the form

log Mn =

n
∑

i=1

[

−
γ(a)

16
log2

( si

m2

)

−
G̃0(a)

2
log
( si

m2

)

+f̃(a)

]

+
1

4
γ(a)F (1)

n +Rn+C̃(a)+O(m2)

(1.7)

with

f̃(a) =
π4

180
a2 + O(a3), C̃(a) = −

π4

72
a2 + O(a3) (1.8)

and Rn vanishes for n = 4 and n = 5. For n ≥ 6, we expect the remainder function Rn to

be equal to its counterpart in dimensional regularization.

Various Regge limits of the n-gluon amplitude for n ≥ 5 can be defined (see, e.g.,

refs. [40, 41]). We consider the single and double Regge limits (in the Euclidean region)

of the Higgs-regulated five-gluon amplitude up to two loops. In both of these cases, the

double logarithm in log M5 cancels out, leaving single logarithmic dependence on the large

kinematic variable.

In ref. [30], an alternative approach to the Regge limit for four-gluon amplitudes was

considered by taking a different point on the Coulomb branch, involving two different

masses. We extend this approach to single and double Regge limits of the five-gluon

amplitude. In both cases, this alternative approach makes clear that log M5 should only

have single logarithmic dependence on the kinematic variables because collinear divergences

are absent. A similar approach can be taken for some, but not necessarily all, of the n = 6

Regge limits considered in refs. [40, 41].

The paper is organized as follows. In section 2 we study the four-gluon amplitude,

presenting explicit results for all contributing four-loop integrals at the symmetric point

s = t and arguing that, to all loops, the NLL contribution to the amplitude in the Regge
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limit is given by a small subset of all diagrams. In section 3 we turn our attention to

the five-gluon amplitude at two loops, the evaluation of which leads to eq. (1.5). Section

4 contains a discussion of various Regge limits of Higgs-regulated amplitudes for n ≥ 5,

with emphasis on those features which differ from similar limits of dimensionally-regulated

amplitudes. Section 5 summarizes our results, while various technical details can be found

in three appendices.

2 The four-point amplitude

In ref. [23], it was suggested that the analog of the Bern-Dixon-Smirnov ansatz [12] for the

planar four-point amplitude in Higgs regularization is

log M4(s, t) = −
1

8
γ(a)

[

log2
( s

m2

)

+ log2
( t

m2

)

]

− G̃0(a)

[

log
( s

m2

)

+ log
( t

m2

)

]

+
1

8
γ(a)

[

log2
(s

t

)

+ π2
]

+ c̃4(a) + O(m2) (2.1)

where

γ(a) =

∞
∑

ℓ=1

aℓγ(ℓ) = 4a − 4ζ2a
2 + 22ζ4a

3 + O(a4) (2.2)

is the cusp anomalous dimension, and

G̃0(a) = −ζ3a
2 + O(a3), c̃4(a) =

π4

120
a2 + O(a3) (2.3)

are analogs of functions appearing in the BDS ansatz in dimensional regularization [12], but

need not be identical since they are scheme-dependent [23]. Overlapping soft and collinear

IR divergences are responsible for the double logarithms in eq. (2.1). The nontrivial content

of eq. (2.1) is the statement about the finite terms; the IR singular terms of the amplitude

are expected to obey eq. (2.1) on general field theory grounds (see refs. [42, 43]).

According to the assumption of dual conformal symmetry, the planar L-loop amplitude

can be written as

M (L) =
∑

I

c(I) I (2.4)

where the sum runs over all extended dual conformal integrals I, with some coefficients

c(I). In the case of the four-point amplitude, the coefficients are simply numbers. The set

of loop integrals invariant under extended dual conformal symmetry is significantly smaller

than that of generic loop integrals.

At two and three loops, the assumption (2.4), together with the infrared consistency

conditions, leads to a result in agreement with the exponential ansatz (2.1), with the

values (2.2), (2.3) and4 [30]

G̃
(3)
0 ≈ 2.688870547851 ± 6.5 × 10−11, c̃

(3)
4 ≈ −9.24826993 ± 9.6 × 10−7 . (2.5)

4In the course of the four-loop computation of the present paper we have improved the numerical accuracy

of G̃
(3)
0 and c̃

(3)
4 quoted in ref. [30]. Here we display the results with improved numerical accuracy.
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If one assumes that these coefficients have transcendentality5 5 and 6 respectively, one finds

for them the probable analytic values6

G̃
(3)
0 =

9

2
ζ5 − ζ2ζ3, c̃

(3)
4 = −

25

4
ζ6 − 2ζ2

3 (2.6)

using the PSLQ algorithm [44, 45].

The three-loop amplitude was computed [30] by assuming that

M
(3)
4 (s, t) = −

1

8

[

I3a(s, t) + 2 I3b(s, t)
]

+ (s ↔ t) . (2.7)

There are two additional dual conformal invariant three-loop integrals, I3c and I3d, with

powers of m2 in the numerator, but which have a finite m → 0 limit. These could in

principle contribute to the three-loop amplitude if the coefficients multiplying them are

nonzero. In ref. [30], we showed that even in this case the exponential ansatz remains

valid, provided that the coefficients G̃
(3)
0 and c̃

(3)
4 are shifted accordingly.

2.1 Four-loop four-point amplitude

For the four-loop four-gluon amplitude, we will use the ansatz [32]

M
(4)
4 (s, t) =

1

16

[

I4a(s, t) + 2I4b(s, t) + 2I4c(s, t) + I4d(s, t) + 4I4e(s, t) + 2I4f (s, t)

− 2I4d2(s, t) −
1

2
If2(s, t)

]

+ (s ↔ t) (2.8)

where the individual integrals, shown in figure 1, are defined in dimensional regularization

in ref. [32]. These integrals are all dual conformal invariant, and are straightforwardly

rewritten in Higgs regularization, following refs. [23, 30]. For example, using dual coordi-

nates [1] for convenience, we have

I4b(s, t) =

∫

d4xad
4xbd

4xcd
4xd

(iπ2)4
x2

13(x
2
24)

2(x2
1d + m2)2

(x2
1a + m2)(x2

1b + m2)(x2
1c + m2)(x2

2a + m2)(x2
2d + m2)

×
1

(x2
3d + m2)(x2

4d + m2)(x2
4c + m2)x2

abx
2
bcx

2
adx

2
bdx

2
cd

. (2.9)

Note that in I4d there is no +m2 term in the loop-dependent numerator, since it connects

two internal integration points.

We have written down Mellin-Barnes representations for all eight integrals. This is

easily done introducing the MB representation loop by loop [30, 46]. Interestingly, the

dimensionality of most MB representations is one lower than the corresponding represen-

tation in dimensional regularization. At two and three loops, the opposite was the case.

5If we attribute a degree of transcendentality 0, 1, 1 and n, respectively to rational numbers, π, log and

ζn, and define the transcendentality of a product to be additive, then the L-loop amplitude is expected to

have uniform transcendentality 2L.
6We thank Lance Dixon for suggesting this value of G̃

(3)
0 to us.
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1

3

2 4

(x2
13)

3

I4a

1

3

2 4

d

x2
24(x

2
1d+m2)2

I4b

1

3

2 4d

(x2
13)

2(x2
4d+m2)

I4c

1

3

2 4d c

(x2
13)

2x2
cd

I4d

1

3

2 4d

c

x2
13(x

2
3c+m2)(x2

4d+m2)

I4e

1

3

2 4
d

c

x2
13(x

2
4d+m2)(x2

2c+m2)

I4f

1

3

2 4

x2
13

I4d2

1

3

2 4

x2
13x

2
24

I4f2

Figure 1. The eight diagrams contributing to the four-loop four-point amplitude. We use the

standard dual variable notation, labeling the external faces by x1 through x4 and the internal faces

by xa through xd. The former are related to the external momenta via pi = xi − xi+1 (where i is

understood mod 4) while the latter are each integrated with the measure d4x/(iπ2). Under each

diagram is shown the numerator factor for the corresponding integral. To avoid clutter, we omit

an overall factor of x2
13x

2
24 = st from each diagram (where xab ≡ xa − xb), and we do not label

internal faces not appearing in numerator factors. As an illustrative example we demonstrate how

to assemble all ingredients of the integral I4b in eq. (2.9).

To make contact with the exponential ansatz (2.1), we will compute M4(s, t) at the

symmetric point s = t. Defining x = m2/s = m2/t, the expression above becomes

M
(4)
4 (x) =

1

16

[

2I4a(x)+4I4b(x)+4I4c(x)+2I4d(x)+8I4e(x)+4I4f (x)−4I4d2(x)−If2(x)
]

.

(2.10)

To evaluate these integrals, we proceed as in refs. [23, 30]. The starting point is a multi-

dimensional MB representation depending on the parameter x. For simplicity, consider a

one-dimensional MB integral

∫ β+i∞

β−i∞

dz xz f(z) (2.11)

where typically f(z) is a product of Γ functions, and β < 0. In principle, one could

close the integration contour, say, on the right and obtain the answer as an infinite series

arising from poles of the Γ functions in f(z). However, since we are only interested in

the log x terms as x → 0, it is sufficient to deform the integration contour to positive

values of Re(z). The logarithms arise from taking residues at z = 0. In the case of multi-

fold MB integrals, the above strategy can be iterated. We obtain expressions of the form

– 7 –
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∑6
i=0 bi log8−i x + O(log x) using the Mathematica code MBasymptotics [47]. In general,

the coefficients bi still involve a (significantly lower) number of MB integrals, which we

evaluate numerically using the code MB [48]. Denoting L = log x, we find

I4a(x) =
1

56
L8 +

8

135
π2L6 −

8

15
ζ3L

5 −
2

27
π4L4 (2.12)

+

(

−
32

3
ζ2ζ3 −

8

3
ζ5

)

L3 + (−162.26621838645 ± 1.9 × 10−10)L2 + O(L) .

I4b(x) =
149

5040
L8 −

1

60
π2L6 −

6

5
ζ3L

5 +
11

72
π4L4 (2.13)

+

(

151

3
ζ2ζ3 +

247

6
ζ5

)

L3 + (525.46852427784 ± 9.9 × 10−10)L2 + O(L) .

I4c(x) =
271

10080
L8 −

2

3
ζ3L

5 −
11

270
π4L4 (2.14)

+

(

−2ζ2ζ3 −
127

3
ζ5

)

L3 + (−128.86933736 ± 4.2 × 10−7)L2 + O(L) .

I4d(x) =
9

560
L8 +

19

270
π2L6 −

4

15
ζ3L

5 −
19

135
π4L4 (2.15)

+

(

−
128

3
ζ2ζ3 − 40ζ5

)

L3 + (−710.51212126801 ± 1.4 × 10−10)L2 + O(L) .

I4e(x) =
271

10080
L8 +

1

60
π2L6 −

2

3
ζ3L

5 −
191

2160
π4L4 (2.16)

+

(

−
23

6
ζ2ζ3 −

335

12
ζ5

)

L3 + (222.7007725 ± 1.8 × 10−6)L2 + O(L) .

I4f (x) =
199

2520
L8 −

22

135
π2L6 −

12

5
ζ3L

5 +
17

30
π4L4 (2.17)

+

(

68ζ2ζ3 +
286

3
ζ5

)

L3 + (−117.32774717 ± 1.8 × 10−7)L2 + O(L) .

I4d2(x) = −
8

15
ζ3L

5 +
2

45
π4L4 (2.18)

+

(

16ζ2ζ3 −
16

3
ζ5

)

L3 + (180.37203096920 ± 6.6 × 10−10)L2 + O(L) .

I4f2(x) =
199

1260
L8 −

44

135
π2L6 −

88

15
ζ3L

5 +
17

15
π4L4 (2.19)

+

(

168ζ2ζ3 +
700

3
ζ5

)

L3 + (324.1906414642 ± 2.6 × 10−9)L2 + O(L) .

Summing up the contributions of the four-loop integrals computed above using eq. (2.10),

we obtain

M
(4)
4 (x) =

1

24
L8−ζ3L

5 +
1

60
π4L4 +(6ζ2ζ3 − 9ζ5) L3 +(6.71603090±9.1×10−7)L2 +O(L) .

(2.20)

The coefficients of L4 and L3 in the expressions above were obtained numerically, so we

cannot distinguish between rational and transcendental numbers. Nevertheless, motivated

by the expectation that the result should have uniform transcendentality, we have replaced
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the numerical values by their probable analytical equivalents. Specifically, we used the

Mathematica implementation of the PSLQ algorithm to identify linear combinations of

numbers with the correct degree of transcendentality that agree with our results within

the numerical accuracy. It goes without saying that this does not constitute a proof that

these expressions are necessarily correct. A guess for the numerical coefficient of the L2

term is −1
2ζ6 + 5ζ2

3 .

Exponentiation of the IR logarithms requires that

M
(4)
4 (x) =

1

24
L8 − ζ3L

5 +
1

60
π4L4 +

(

4ζ2ζ3 − 2G̃
(3)
0

)

L3

+

(

−c̃
(3)
4 −

1

4
γ(4) −

13

360
π6 + 2ζ2

3

)

L2 + O(L) (2.21)

where we have used the values of γ(a), G̃0(a), and c̃4(a) given in eqs. (2.2) and (2.3). There

is complete agreement between eqs. (2.20) and (2.21). Comparing the coefficients of L3,

we confirm the value G̃
(3)
0 = 9

2ζ5 − ζ2ζ3 obtained at three loops by assuming that I3d does

not contribute. Comparing the coefficients of L2, we confirm the value c̃
(3)
4 = −25

4 ζ6 − 2ζ2
3

obtained at three loops by assuming that I3c does not contribute, provided that the four-

loop cusp anomalous dimension is given by

γ(4) = −117.1788222 ± 3.7 × 10−6 ≈ −4ζ3
2 − 24ζ2ζ4 − 4ζ2

3 − 50ζ6 (2.22)

in perfect agreement with the result (also numerical) found in refs. [32, 33], and in agree-

ment with the spin chain prediction from ref. [49]. It is noteworthy that our result (2.22)

improves the numerical precision by two orders of magnitude compared to ref. [33] and by

five orders of magnitude compared to ref. [32].7

Similar to the situation at three loops, there are 10 four-loop integrals (in addition

to those shown in eq. (2.8)) that could in principle contribute to the four-loop amplitude,

based solely on requiring dual conformal invariance [50]. As we have seen, however, our

results are completely consistent with the absence of these additional integrals at three and

four loops.

It is amusing that the coefficients appearing in the results for the individual integrals

are rather complicated (e.g. the coefficients of the L8 terms), yet they sum up to give the

very simple result (2.20), as required by infrared consistency. This suggests there may

exist a better organization of the calculation that avoids the complexity of the intermedi-

ate results.

2.2 Regge limit of the four-point function

The four-point amplitude (2.1) can be rewritten as

log M4 = −
1

4
γ(a)(log v)(log u) + G̃0(a) (log u + log v) +

π2

8
γ(a) + c̃4(a) + O(m2) (2.23)

7The value (2.22) corresponds to r = −1.99999892 ± 6.3 × 10−7 in the parameterization used in those

references.
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where u = m2/s and v = m2/t. Note that (log u)2 and (log v)2 terms are absent, which

is related to the Regge-exactness of the four-point amplitude. This can alternatively be

interpreted as follows [30]. The Higgs-regulated amplitude can be computed at a different

point in moduli space, where the diagrams contain internal lines with different masses m

and M along the periphery, and external lines with mass M − m. By dual conformal

invariance, the amplitude only depends on u = m2/s and v = M2/t. The absence of

(log m2)2 terms in the amplitude can be understood as the absence of collinear divergences

when massive (M) particles scatter by exchanging lighter (m) particles (with the mass of

the lighter particles serving as an IR regulator).

We may exponentiate eq. (2.23), and expand the result in powers of the coupling a

and of the Regge logarithms log u. At L-loop order, the leading logarithm is logL u, NLL

is logL−1 u, etc. To LL and NLL order, the L-loop amplitude in the Regge limit is given by

M
(L)
4 =

[

1

L!
(− log v)L

]

logL u

+

[(

π2

2(L − 1)!
−

π2

6(L − 2)!

)

(− log v)L−1 −
ζ3

(L − 2)!
(− log v)L−2

]

logL−1 u

+O(logL−2 u) (2.24)

where we have used eqs. (2.2) and (2.3). In contrast to dimensional regularization, in

Higgs regularization there is a single diagram, the vertical ladder ILa(v, u) (see figure 2),

that contributes8 to the LL term of the L-loop amplitude (2.24). In the LL limit, the

vertical ladder factorizes into a product of (two-dimensional) bubble integrals (again see

figure 2). Moreover, the LL, NLL, and NNLL contributions of the vertical ladder diagram

were computed (cf. eq. (4.16) in ref. [30]) using the method of ref. [51]. Subtracting the

vertical ladder contribution from the prediction (2.24) for the full amplitude, we obtain

M
(L)
4 −

(

−
1

2

)L

ILa(v, u)=
(−1)L

3(L − 2)!
logL−1 u

[

logL+1 v+π2 logL−1 v+O(v)
]

+O(logL−2 u).

(2.25)

From this, one sees that contributions from diagrams other than the vertical ladder are

required at NLL order to obtain the expected amplitude in the Regge limit.

Rules for evaluating the leading log s behavior of multiloop integrals were summarized

in refs. [51, 52]. One begins by identifying paths through the graph, which, when contracted

to a point, split the diagram into two parts with a single vertex in common, and with p1

and p4 on one side and p2 and p3 on the other (for example, each of the rungs of the vertical

ladder diagram). Paths of minimal length are called “d-lines” [53] or “t-paths” [54]. A

scalar diagram containing m d-lines of length n goes as logm−1 s/sn as s → ∞. For example,

the L-loop vertical ladder diagram contains (L + 1) d-lines of length one, so the vertical

ladder integral (multiplied by stL to make it dual conformal invariant) goes as logL s, or

equivalently logL u, as discussed above. All other L-loop diagrams contain at most (L− 1)

d-lines and hence prima facie give at most a logL−2 u contribution. For example, the four-

loop diagrams I4c(v, u) and I4d(v, u) (see figure 1) each contain two d-lines of length one

8in the Regge (b) limit (see footnote 3).
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s

t

p1

p2 p3

p4

..
.

..
.

..
.

..
.

..
.

..
.

..
.

s ≫ ts ≫ t

IL a IL HLL and NLL NLL

Figure 2. Factorization of the leading-log and next-to-leading-log contributions to the Regge limit

s ≫ t of the L-loop vertical ladder integral IL a(v, u) into simpler integrals. Factorization of the

NLL contribution of the vertical ladder integral with H-shaped insertion IL H . The dotted line

indicates a loop-momentum-dependent numerator.

and prima facie go as log u. (These diagrams also contain two paths of length two, which

are not minimal and therefore do not contribute.)

The MB calculation summarized in appendix A, however, shows that both of these dia-

grams go as log3 u, two powers higher than expected. This is because the d-line rules given

above only apply to scalar diagrams with no non-trivial (i.e., loop-momentum-dependent)

numerator factors. The presence of numerator factors, which are required for the loop

integrations next to the H-shaped insertion to have the correct dual conformal weight, can

increase the leading power of log u of the diagram. The reader may ascertain from the

results of appendix A that diagrams with no nontrivial numerator factors have the log u

dependence predicted by the d-line rules, whereas those with numerator factors can have

a stronger log u dependence.

We show in appendix B that when an H-shaped insertion in a vertical ladder diagram is

accompanied by a numerator factor, the two lines of length two constituting the sides of the

H are effectively promoted to length one, increasing the d-line count by two. In particular,

an L-loop vertical ladder diagram with a single H-shaped insertion ILH (see figure 2), which

prima facie would go as logL−3 u, actually goes as logL−1 u due to its numerator factors,

and thus contributes to the amplitude at NLL order. A calculation in appendix B further

shows that, subject to reasonable assumptions, the leading log contribution of the integral

ILH factorizes as

IL H =
(−1)L−1

(L − 1)!
logL−1 u × K(v)L−2 × K ′(v) + O(logL−2 u) , (2.26)

where K(v) and K ′(v) correspond to the two-dimensional bubble and two-loop bubble

diagrams shown in figure 2 (see ref. [30] for further discussion). Taking v small, we have

K(v) = −2 log v + O(v) ,

K ′(v) = −
4

3
log3 v −

4

3
π2 log v + O(v) . (2.27)
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Note that eq. (2.26) implies that the position where the H-shaped insertion is made into

the vertical ladder integral is unimportant at NLL order, i.e. all such integrals give the

same NLL contribution.

At two loops, ILH is just the horizontal ladder I2a(u, v). At three loops, ILH is the

tennis court diagram I3b(u, v). In ref. [30], it was shown that the leading contribution of

these diagrams is precisely given by eq. (2.26). At four loops, the three ILH diagrams are

given by I4c(v, u), its flipped version, and I4d(v, u). The results for these integrals found

in appendix A are also in agreement with eq. (2.26) and, moreover, all other four-loop

diagrams contribute at most to NNLL. Finally, we have verified eq. (2.26) at five loops as

well using the integrals given in ref. [5].

At L-loop order there are (L−1) vertical ladder diagrams containing a single H-shaped

insertion, so that the total contribution to the amplitude of the vertical ladders with one

H-shaped insertion is (multiplying the contributions by (−1/2)L)

(

−
1

2

)L

(L − 1)IL H =
(−1)L

3(L − 2)!
logL−1 u

[

logL+1 v + π2 logL−1 v + O(v)
]

+ O(logL−2 u)

(2.28)

which precisely matches the result (2.25) expected from the exponential ansatz.

In summary, we have shown that in Higgs regularization, the NLL contribution to the

four-gluon amplitude in the Regge limit is given by a small set of diagrams: the vertical

ladders and the vertical ladders with one H-shaped insertion. We confirmed this through

five loops by direct evaluation of the integrals, and we gave an argument that this holds to

all loop orders.

3 The five-point amplitude

In this section, we direct our attention to the two-loop n = 5 point amplitude of N = 4 SYM

theory, which is of interest for several reasons. It serves as a further instructive application

of the Higgs mechanism to regulate infrared divergences, and confirms the universality

of the exponential structure of IR singularities of n-point amplitudes in massless gauge

theories (which is usually studied in dimensional regularization; for example, see refs. [42,

43]). We also establish an iterative relation at two loops, which is the exact analog of

the five-point iterative relation in dimensional regularization [55, 56]. This allows us to

write an all-loop ansatz for n-point amplitudes in Higgs regularization, analogous to the

BDS ansatz in dimensional regularization, whose content is that the IR-finite part of the

amplitudes also exponentiates. Of course the separation between IR-divergent and IR-finite

terms is not unique since one could always add a constant to one while subtracting the

same constant from the other. Knowledge of the four-point amplitude alone does not give

enough information to resolve this ambiguity in a natural way, but after computing the

five-point amplitude, we will be able to determine a unique way of writing the universal

IR-divergent part of the Higgs-regulated scattering amplitude for any n.

As in ref. [30] we evade a Feynman diagram calculation by beginning with the ansatz

that Higgs-regulated five-point loop amplitudes (normalized, as usual, by dividing by the

corresponding tree amplitudes) can be expressed as linear combinations of all possible dual
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p1 p2

p3

p4
p5

I
(1)
5

p5

p4

p1 p2

p3

I
(2)a
5

qp5

p1

p4

p2

p3

I
(2)b
5

Figure 3. Dual conformal scalar integrals contributing to the five-particle amplitude at one and

two loops. The dashed line indicates that the integral contains the loop-momentum-dependent

numerator factor (q + p5)
2 + m2.

conformally invariant scalar integrals. At one loop there is a unique integral I
(1)
5 (si) (see

figure 3) that can appear in the ansatz

M
(1)
5 = −

1

4

∑

cyclic

s1s5I
(1)
5 (si) + O(m2), (3.1)

where +O(m2) stands for potential parity-odd terms (see below),

si = (pi + pi+1)
2, i = 1, . . . , 5 (3.2)

(with p6 ≡ p1), and the sum in eq. (3.1) runs over the five cyclic permutations of the

external momenta pi. The small m2 expansion of I
(1)
5 (si) is given in appendix C. After

summing over cyclic permutations, the one-loop amplitude simplifies to

M
(1)
5 =

5
∑

i=1

[

−
1

4
log2

( si

m2

)

]

+ F
(1)
5 + O(m2) (3.3)

where the corresponding finite remainder F
(1)
5 is given by9

F
(1)
5 = −

1

4

5
∑

i=1

[

log

(

si

si+1

)

log

(

si−1

si+2

)

−
π2

3

]

(3.4)

with si+5 = si.

At two loops there are two dual conformal invariant scalar integrals that contribute to

the amplitude: the double box I
(2)a
5 (si) and the pentagon-box I

(2)b
5 (si) with a numerator

factor involving the pentagon loop momentum (see figure 3). The coefficients of these inte-

grals in the amplitude M
(2)
5 (si) are determined by the consistency of infrared singularities,

leading to the ansatz

M
(2)
5 = −

1

8

∑

cyclic

[

s1s
2
2I

(2)a
5 (si) + s2

3s4I
(2)a
5 (s6−i) + s2s3s5I

(2)b
5 (si)

]

+ O(m2), (3.5)

9Recently it has been shown [58, 59] that, when expressed in momentum-twistor variables, the expression

in eqs. (3.3) and (3.4) computes the volume of a 4-simplex in AdS5 with 5 (regulated) points on the boundary.
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where, as in the four-point calculation, the relative numerical coefficients of each diagram

are precisely the same as in dimensional regularization.

Out of abundance of caution we have included +O(m2) in both eqs. (3.5) and (3.1) in

order to encapsulate possible parity-odd terms. In dimensional regularization, M
(2)
5 has a

non-vanishing parity-odd contribution starting at O(ǫ−1). The parity-odd part of log M5,

however, is O(ǫ) at one- and two-loop order [55–57] due to the non-trivial cancellation

of parity-odd terms in M
(2)
5 and −1

2(M
(1)
5 )2, which also has a contribution starting at

O(ǫ−1). The vanishing of the parity-odd contribution to the Higgs-regulated amplitude

M
(2)
5 , together with the fact that terms that vanish as m → 0 are not required to compute

log M5 in Higgs regularization, implies that the parity-odd contribution to log M5 is O(m2)

at one and two loops.

The small m2 expansions of I
(2)a
5 (si) and I

(2)b
5 (si) are given in appendix C. After

summing over cyclic permutations, we find

M
(2)
5 =

1

2

(

M
(1)
5

)2
+

5
∑

i=1

[

ζ2

4
log2

( si

m2

)

+
ζ3

2
log
( si

m2

)

(3.6)

−
ζ2

4
log2

(

si

si+1

)

+
ζ2

4
log2

(

si

si+2

)

− ζ4

]

+ O(m2).

Using the identity

5
∑

i=1

log

(

si

si+3

)

log

(

si+1

si+2

)

=

5
∑

i=1

[

2 log
( si

m2

)

log
(si+1

m2

)

− 2 log
( si

m2

)

log
(si+2

m2

)]

(3.7)

we may rewrite this as

M
(2)
5 −

1

2

(

M
(1)
5

)2
=

5
∑

i=1

[

ζ2

4
log2

( si

m2

)

+
ζ3

2
log
( si

m2

)

]

− ζ2 F
(1)
5 + c̃

(2)
5 + O(m2) (3.8)

where c̃
(2)
5 = 5

4ζ4 and F
(1)
5 (si) is given in eq. (3.4). Equation (3.8) is analogous to the

two-loop five-point iterative relation of refs. [55, 56].

It is instructive to rewrite the one- and two-loop four-point amplitudes in a form similar

to eqs. (3.3) and (3.8). Using eq. (2.1), with s = s1 = s3 and t = s2 = s4 for four-particle

kinematics, we have

M
(1)
4 =

4
∑

i=1

[

−
1

4
log2

( si

m2

)

]

+ F
(1)
4 + O(m2), (3.9)

M
(2)
4 −

1

2

(

M
(1)
4

)2
=

4
∑

i=1

[

ζ2

4
log2

( si

m2

)

+
ζ3

2
log
( si

m2

)

]

− ζ2 F
(1)
4 + c̃

(2)
4 (3.10)

where c̃
(2)
4 = 3

4ζ4 and

F
(1)
4 =

1

8

4
∑

i=1

[

log2

(

si

si+1

)

+ π2

]

. (3.11)
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By re-expressing the constants in eqs. (3.8) and (3.10) as

c̃(2)
n =

(2n − 5)

4
ζ4 (3.12)

we may combine eqs. (3.8) and (3.10) into

M (2)
n −

1

2

(

M (1)
n

)2
=

n
∑

i=1

[

ζ2

4
log2

( si

m2

)

+
ζ3

2
log
( si

m2

)

+
ζ4

2

]

− ζ2 F (1)
n −

5

4
ζ4 + O(m2),

n = 4, 5. (3.13)

Note that the common infrared divergence term

n
∑

i=1

[

ζ2

4
log2

( si

m2

)

+
ζ3

2
log
( si

m2

)

+
ζ4

2

]

(3.14)

resembles the form expected from dimensional regularization [42, 43, 60]:

−
[

ζ2 + ζ3ǫ + ζ4ǫ
2
]

M (1)
n (2ǫ). (3.15)

It would be interesting to understand more precisely the relation between these two forms

of the infrared divergences, perhaps along the lines of ref. [61].10

Armed with the above ingredients we are now in a position to pose the n-point gener-

alization of eq. (2.1) as

log Mn =

n
∑

i=1

[

−
γ(a)

16
log2

( si

m2

)

−
G̃0(a)

2
log
( si

m2

)

+ f̃(a)

]

+
1

4
γ(a)F (1)

n + Rn + C̃(a) + O(m2) (3.16)

where

f̃(a) =
ζ4

2
a2 + O(a3), C̃(a) = −

5ζ4

4
a2 + O(a3) (3.17)

and the remainder function Rn vanishes for n = 4 and n = 5.

We can then proceed by defining the Higgs regularization analogs of the IR-finite

functions Fn introduced in ref. [12] by subtracting the universal infrared singularities from

the logarithm of the amplitude

Fn = lim
m2→0

(

log Mn −
n
∑

i=1

[

−
γ(a)

16
log2

( si

m2

)

−
G̃0(a)

2
log
( si

m2

)

+ f̃(a)

])

. (3.18)

The precise forms of the one-loop functions (3.4) and (3.11) and the two-loop functions

F
(2)
4 =

4
∑

i=1

[

−
ζ2

8
log2

(

si

si+1

)

−
35ζ4

16

]

,

F
(2)
5 =

5
∑

i=1

[

−
ζ2

4
log2

(

si

si+1

)

+
ζ2

4
log2

(

si

si+2

)

−
3ζ4

2

]

(3.19)

10We are grateful to S. Moch for discussion and correspondence on this question.
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differ (by additive constants) from the corresponding expressions in dimensional regular-

ization, which may be found in ref. [12]. Through two loops, however, the n = 4 and n = 5

IR-finite functions satisfy a similar iterative relation

Fn =
1

4
γ(a)F (1)

n + C̃(a) + O(a3), n = 4, 5 . (3.20)

While the constants G̃0(a) and c̃n(a) defined above take different values in Higgs and

in dimensional regularization, it is fascinating to note that the two-loop value of C̃(a) in

eq. (3.16) is identical to the corresponding value in dimensional regularization [60]. Perhaps

this is a coincidence, or perhaps it has a deeper explanation, especially in light of the fact

that the same value appears yet again in the finite part of the two-loop lightlike polygon

Wilson loop after appropriate subtraction of UV divergences [62].

For n ≥ 6, we expect that the “remainder” function Rn in eq. (3.16) is non-trivial,

just as in the corresponding formula in dimensional regularization [15, 16]. However it

is natural to expect Rn to take the same value in Higgs regularization as it does in di-

mensional regularization. This is because the remainder function is an infrared-finite, dual

conformally invariant quantity (as required by the dual conformal Ward identity), so it

constitutes a good “observable” of SYM theory. The 6-particle remainder function at two

loops was first computed numerically in ref. [15], where agreement with the correspond-

ing remainder function for lightlike hexagon Wilson loops [16, 63] was established, and an

analytic expression has been given more recently in refs. [19–21].

4 Regge limits

In this section we discuss a number of features of the Regge limits of Higgs-regulated

amplitudes for n ≥ 5. As emphasized in footnote 3 such limits may be taken in two different

orders: limits (a) where all m2
i are first taken to be much smaller than all kinematical

invariants, and subsequently a Regge limit is taken, and limits (b) where the Regge limits

are taken first with various fixed kinematic invariants and fixed masses m2
i , which are

subsequently taken to be much smaller than the fixed kinematic invariants. The Regge

behavior of individual diagrams can depend on the order, (a) or (b), in which these limits

are taken.

4.1 The five-point amplitude

For the purposes of discussing the Regge limits of the five-gluon amplitude, we adopt the

following parameterization of the kinematical invariants [40]

s = (p1 + p2)
2, t1 = (p2 + p3)

2, s1 = (p3 + p4)
2,

s2 = (p4 + p5)
2, t2 = (p5 + p1)

2, s = s1s2/κ. (4.1)

We will consider two different limits of these invariants, as defined in ref. [40]:

Single Regge limit: s → ∞, s1 → ∞, κ, s2, t1, t2 fixed , (4.2)

Double Regge limit: s → ∞, s1 → ∞, s2 → ∞ κ, t1, t2 fixed . (4.3)
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In the following two sections, we will consider the Regge limits (a) and (b) for the five-

point amplitude. We will see that, at least through two loops, the amplitude is the same

in both limits.

4.2 Regge (a) limits for n = 5

If we wish to take Regge limit (a) of the five-gluon amplitude, we can start with the

conjectured ansatz (3.16), in which the small m2 limit has already been taken. In terms of

the parameters (4.1), eq. (3.16) for n = 5 takes the form

log M5 = ω(t1) log
( s1

m2

)

+ ω(t2) log
( s2

m2

)

+
1

16
γ(a)

[

− log2

(

t1
t2

)

− log2
( κ

m2

)

+ 2 log
( κ

m2

)

log

(

t1t2
m4

)]

−
1

2
G̃0

[

log

(

t1
m2

)

+ log

(

t2
m2

)

− log
( κ

m2

)

]

+ O(m2) (4.4)

where

ω(t) = α(t) − 1 = −
1

4
γ(a) log

( t

m2

)

− G̃0(a) (4.5)

is the same trajectory as in the four-point function (1.3). Equation (4.4) is equivalent

to [14, 40]

M5 =
( s1

m2

)ω(t1) ( s2

m2

)ω(t2)
F (t1, t2, κ) , (4.6)

which exhibits the expected factorization. From eq. (4.6) it is straightforward to take the

Regge limit to obtain the following expressions, separating the Regge behavior from the

fixed term:

Single Regge (a) limit: M5 −→
( s1

m2

)ω(t1)
[

( s2

m2

)ω(t2)
F (t1, t2, κ)

]

, (4.7)

Double Regge (a) limit: M5 −→
( s1

m2

)ω(t1) ( s2

m2

)ω(t2)
[F (t1, t2, κ)] . (4.8)

Equations (4.7) and (4.8) have the same form as in ref. [40], but with a different value

for the constant term in the trajectory function (4.5), and a different F (t1, t2, κ) due to the

difference between eq. (4.4) and the analogous BDS result.

4.3 Regge (b) limits for n = 5

To obtain the Regge (b) limits of the five-point amplitude, one must start with scalar

integrals with finite m, take the Regge limit first, and only afterwards take m small. We

have evaluated the five-point one- and two-loop diagrams in this way and have obtained

results identical to eq. (4.7) in the single Regge limit and to eq. (4.8) in the double Regge

limit. Hence, at least to two-loop order, the amplitude is independent11 of the order in

which the Regge limit is taken (even though the individual diagrams are not).

11In an “unphysical” Regge limit s → ∞ with s1, s2, t1, t2 fixed, described on p. 177 of ref. [51], the

one-loop amplitude does depend on the order of limits, yielding log2 s dependence in the Regge (a) limit,

as can be seen from eq. (4.4), but log s dependence in the Regge (b) limit.
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x4x4

x5x5

p1 p1

p2 p2

p3 p3

p4p4

p5p5

(ii)(i)

Figure 4. Two-mass configurations illustrating the (i) single and (ii) double Regge (b) limits for

the five-point amplitude. Fat and thin lines along the periphery denote particles of mass M and m

respectively. Fat and thin exterior lines denote particles of mass M − m and 0 respectively.

In ref. [30], an alternative approach to the Regge (b) limits was applied to explain the

absence of double logarithms in the Regge limit of the four-gluon amplitude. We can do

the same for various Regge (b) limits of five-gluon amplitudes. Consider the theory at a

different point on the Coulomb branch, where the scalar diagrams have internal lines with

variable masses along the periphery (and vanishing masses in the interior). Let mi be the

mass of the line(s) connecting pi−1 and pi. The masses of the external lines are given by

p2
i = −(mi−mi+1)

2. Due to dual conformal symmetry, the amplitude depends only on the

dual conformal invariants

ui,i+2 =
mimi+2

(pi + pi+1)2 + (mi − mi+2)2
. (4.9)

By making various choices for mi, we can reproduce the single and double Regge limits.

Single Regge (b) limit. By making the choice m3 = m, and mi = M for i 6= 3, we have

u13 =
Mm

s + (M − m)2
, u24 =

M2

t1
, u35 =

Mm

s1 + (M − m)2
, u41 =

M2

s2
, u52 =

M2

t1
.

(4.10)

Then taking the limit m ≪ M yields u13, u35 ≪ u24, u41, u52, which is equivalent to the

single Regge limit (4.2). The resulting diagrams (e.g., see figure 4(i)) cannot have collinear

divergences because the massless external lines never connect to the light mass internal

lines. The amplitude therefore has at most a simple log m IR divergence, which corresponds

to log u35 (or log u13) and therefore to a simple log s1 dependence in the single Regge limit,

in agreement with eq. (4.4).

Double Regge (b) limit. By choosing m1 = m3 = m, and m2 = m4 = m5 = M ,

we have

u13 =
m2

s
, u24 =

M2

t1
, u35 =

Mm

s1 + (M − m)2
, u41 =

Mm

s2 + (M − m)2
, u52 =

M2

t1
.

(4.11)

Taking the limit m ≪ M yields u13 ≪ u35, u41 ≪ u24, u52, which is equivalent to the

double Regge limit (4.3). Again, none of the diagrams that contribute to the amplitude in
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this limit has collinear divergences (e.g., see figure 4(ii)), hence the amplitude has at most

a simple log m IR divergence, which corresponds to log u35 or log u41, and therefore to a

simple log s1 or log s2 dependence in the double Regge limit, in agreement with eq. (4.4).

4.4 Regge (a) limits for n ≥ 6

To consider various Regge (a) limits of n ≥ 6 amplitudes, we may start with the conjectured

ansatz (3.16), in which the small m2 limit has already been taken.

For n = 4 and n = 5 we have seen that F
(1)
n , the IR-finite part of the one-loop

amplitude, has the same dependence on kinematic variables (up to an additive constant)

as the corresponding function in dimensional regularization. Any difference in the form of

F
(1)
n for n ≥ 6 between Higgs-regulated amplitudes and dimensionally-regulated amplitudes

should be dual conformal invariant, and therefore a function of dual cross-ratios. Any such

function remains finite in Euclidean Regge limits [40]. Similarly, the remainder function Rn

in either Higgs regularization or in dimensional regularization remains finite in Euclidean

Regge limits, as discussed in section 7 of ref. [40]. Therefore, the Regge (a) limits of

Higgs-regulated amplitudes are equivalent to the Euclidean Regge limits of dimensionally-

regulated amplitudes discussed in refs. [40, 41], but with the Regge trajectories given by

eq. (4.5). Similarly the Regge vertex functions will be analogous to those in ref. [40], but

will differ in detail due to the difference in the IR-regulator scheme.

It is possible that Rn could contribute to Regge limits in the physical region, as these

may involve contributions which do not remain finite. However, it is known that there are

difficulties in continuing Mn (n ≥ 6) from the Euclidean to the physical region [14, 41, 64].

These same difficulties would be present for Higgs-regulated amplitudes, so we do not

consider these latter limits further.

In conclusion, there are no important differences between the Regge (a) limits of Higgs-

regulated vs. dimensionally-regulated n-gluon amplitudes.

4.5 Regge limit (b) for n = 6

We have not attempted to compute the amplitudes for n ≥ 6 in any of the Regge (b)

limits defined in [40, 41] to ascertain whether they are equivalent to the Regge (a) limits

discussed in the previous subsection.

However, we would like to point out that the analysis of some of these limits could

be facilitated by considering Higgs-regulated amplitudes at various points on the Coulomb

branch. Let mi be the mass of the lines on the periphery of a diagram connecting external

lines pi−1 and pi, with vanishing masses in the interior. We consider points on the Coulomb

branch involving just two distinct mass assignments m and M (with m ≪ M).

There are four inequivalent configurations (for six-point amplitudes) that yield at most

single logarithmic dependence on the IR-regulator mass m. (These are configurations where

no two adjacent mi are equal to m.) We can classify these configurations according to the

number of lines with the small mass m.
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One line with small mass. If we set m1 = m and m2 through m6 equal to M , then

none of the massless external lines are attached to the line(s) on the periphery with mass

m. Hence there are no collinear divergences, and the amplitude only goes as log m.

Two lines with small mass. There are two possibilities involving two lines with small

mass. The first one consists in setting m1 = m3 = m, with the remaining masses given by

M . The second consist in setting m1 = m4 = m, with the remaining masses given by M .

The latter corresponds to the Mueller-Regge limit discussed in section 7.4 of ref. [41].

Three lines with small mass. If the external masses alternate between m and M (i.e.

m1 = m3 = m5 = m and m2 = m4 = m6 = M), one obtains the poly-Regge limit of

section 7.3 of ref. [41].

No two-mass set-up has been found to give the single Regge limit or helicity pole limit.

5 Summary

In this paper we have continued the program of computing higher-loop N = 4 SYM

planar n-gluon amplitudes and testing various conjectures using the Higgs regulator scheme

proposed in ref. [23] and further developed in ref. [30]. Specifically, we have extended the

analysis to four loops for the four-gluon amplitude, and to two loops for the five-gluon

amplitude, using Mellin-Barnes techniques to evaluate the integrals. We have assumed

that only scalar diagrams invariant under extended dual conformal symmetry contribute to

the amplitudes, and with the same numerical coefficients as in dimensional regularization.

Although one has no a priori guarantee that the set of diagrams contributing to the

amplitude in one IR-regulator scheme coincides with the set in another scheme, all the

results we obtained using this assumption are consistent with the universal IR-divergence

structure of massless gauge theories and also with the conjectured all-loop ansatz (1.7)

for the IR-finite part. For all cases considered, we have verified that the IR-finite parts

of the logarithm of the amplitudes have the same dependence on kinematic variables as

the corresponding functions in dimensionally-regulated amplitudes (up to overall additive

constants, which we determine).

We have also extended the study of the Regge behavior of Higgs-regulated amplitudes

which was begun in ref. [30]. The Regge (a) limits (in which the masses are first taken

much smaller than all kinematic invariants, and then the Regge limit of kinematic variables

is applied) can be understood by simply taking the kinematic limits of the ansatz (1.7),

in which O(m2) terms are already neglected. Various (a) type limits are discussed for

n ≥ 5 which give essentially the same results as those from the dimensionally-regulated

BDS ansatz, but with different expressions for the gluon trajectory and Regge vertices

resulting from the different regulator scheme.

To study Regge (b) limits (in which the kinematical limits are first taken with fixed

regulator masses, which are subsequently taken to be much smaller than the fixed kinematic

invariants) one must evaluate the Regge limits of the individual diagrams contributing to

the amplitudes. In the Regge (b) limit, certain classes of diagrams are dominant, whereas

in the Regge (a) limit no single class of diagrams dominates. In ref. [30], it was shown
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that the leading-log approximation of the four-gluon amplitude is dominated to all loop

orders by the sum of vertical ladder diagrams only. In this paper, we showed that the

next-to-leading-log approximation depends only on the vertical ladder diagrams, together

with the class of vertical ladder diagrams with a single H-shaped insertion.

One way of analyzing Regge (b) limits of diagrams is to go to a different point on the

Coulomb branch involving several different masses. Examples are given for several Regge

limits of n = 5 and n = 6 amplitudes using two different masses, although we have not

been able to obtain all Regge (b) limits using two-mass configurations on the Coulomb

branch. Although the Regge (a) and Regge (b) limits of individual diagrams differ, we

have found that the full amplitudes are independent of the order of limits in the cases that

we have considered.

The results of this paper show that the Higgs regulator for planar N = 4 SYM am-

plitudes continues to exhibit a number of practical and conceptual advantages compared

to other regulators, the first signs of which were observed in ref. [23, 30]. On the practi-

cal side, the Higgs regulated multi-loop integrals we have encountered so far have proven

quite a bit simpler to evaluate than their counterparts in dimensional regularization. One

consequence of this is that we have been able to compute the four-loop cusp anomalous

dimension with numerical precision five orders of magnitude greater than ref. [32] and two

orders of magnitude greater than ref. [33]. The crucial conceptual advantage of the Higgs

regulator is that it preserves the remarkable (extended) dual conformal symmetry which

has recently played such an important role in unlocking the hidden structure of SYM ampli-

tudes. While dimensional regularization seems completely at odds with modern (inherently

four-dimensional) twistor-space methods, it is greatly encouraging that the Higgs regulator

can be very naturally implemented in momentum twistor space, as seen for example in the

beautiful recent results of ref. [58, 59], which we suspect are just the tip of the iceberg.
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A Regge limits of four-loop four-point integrals

In this appendix, we list the results for the Regge (b) limit of the each of the four-loop

integrals that contribute to the four-loop amplitude. For compactness, we employ the

notation {a1, . . . , an} ≡
∑n

m=1 am logn−m v + O(v) .

I4a(s, t) = log u

{

8

315
, 0,

8

45
π2, 0,

56

135
π4, 0, 252.30 . . . , const

}

+ O(log0 u) . (A.1)

I4a(t, s) = log4 u

{

2

3
, 0, 0, 0

}

(A.2)

+ log3 u

{

−
8

3
, 0,−

8

3
π2,−8ζ3, 0, 0

}
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+ log2 u

{

214

45
, 0,

100

9
π2,

64

3
ζ3,

154

45
π4, 183.07 . . . , 11.55 . . .

}

+ log u

{

−
1352

315
, 0,−

736

45
π2,−

68

3
ζ3,−

608

45
π4,−580.84 . . . ,−1536.93 . . . , const

}

+ O(log0 u).

I4b(s, t) = log2 u

{

4

15
, 0,

8

9
π2, 0,

28

45
π4, 0, 0

}

(A.3)

+ log u

{

−
257

630
, 0,−

101

45
π2,−

16

3
ζ3,−

424

135
π4,−88.16 . . . ,−940.02 . . . , const

}

+ O(log0 u) .

I4b(t, s) = log u

{

8

63
, 0,

16

45
π2, 0,

8

27
π4, 0, 65.11 . . . , const

}

+ O(log0 u) . (A.4)

I4c(s, t) = log u

{

16

315
, 0,

8

45
π2, 0,

32

135
π4, 0, 105.80 . . . , const

}

+ O(log0 u) . (A.5)

I4c(t, s) = log3 u

{

8

9
, 0,

8

9
π2, 0, 0, 0

}

(A.6)

+ log2 u

{

−
121

45
, 0,−

56

9
π2,−

32

3
ζ3,−

32

15
π4,−56.52 . . . , 0

}

+ log u

{

1963

630
, 0,

539

45
π2,

62

3
ζ3,

1478

135
π4, 622.32 . . . , 1619.96 . . . , const

}

+ O(log0 u) .

I4d(s, t) = log u

{

8

315
, 0,

8

45
π2, 0,

56

135
π4, 0, 252.30 . . . , const

}

+ O(log0 u) . (A.7)

I4d(t, s) = log3 u

{

8

9
, 0,

8

9
π2, 0, 0, 0

}

(A.8)

+ log2 u

{

−
44

15
, 0,−

52

9
π2,−8ζ3,−

22

9
π4,−49.77 . . . , 0

}

+ log u

{

1132

315
, 0, 12π2,

56

3
ζ3,

428

45
π4,−191.36 . . . , 863.63 . . . , const

}

+ O(log0 u) .

I4e(s, t) = log u

{

8

105
, 0,

16

45
π2, 0,

56

135
π4, 0, 130.22 . . . , const

}

+ O(log0 u) . (A.9)

I4e(t, s) = log2 u

{

8

15
, 0,

8

9
π2, 0,

16

45
π4, 0, 0

}

(A.10)

+ log u

{

−
223

210
, 0,−

143

45
π2,−

16

3
ζ3,−

22

9
π4,−49.77 . . . ,−258.40 . . . , const

}

+ O(log0 u) .

I4f (s, t) = log u

{

16

45
, 0,

32

45
π2,−

4

3
ζ3,

2

5
π4,−39.93 . . . , 41.35 . . . , const

}

+ O(log0 u) .

(A.11)
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I4f (t, s) = log2 u

{

8

9
, 0,

16

9
π2, 0,

8

9
π4, 0, 0

}

(A.12)

+ log u

{

−
484

315
, 0,−

268

45
π2,−12ζ3,−

734

135
π4,−103.20 . . . ,−907.47 . . . , const

}

+ O(log0 u) .

I4d2(s, t) = log u

{

0, 0, 0,−
4

3
ζ3,

2

45
π4,−39.93 . . . , 41.34 . . . , const

}

+ O(log0 u) . (A.13)

I4d2(t, s) = log u

{

0, 0, 0,−
4

3
ζ3,

2

15
π4,−9.84 . . . , 28.48 . . . , const

}

+ O(log0 u) . (A.14)

I4f2(s, t) = log2 u

{

8

9
, 0,

16

9
π2, 0,

8

9
π4, 0, 0

}

(A.15)

+ log u

{

−
124

105
, 0,−

236

45
π2,−16ζ3,−

136

27
π4,−109.95 . . . ,−935.95 . . . , const

}

+ O(log0 u) .

I4f2(t, s) =I4f2(s, t) . (A.16)

B Regge limit of the L-loop ladder with H-insertion

In this appendix, we evaluate the leading log contribution (in the limit of large s) of the

dual conformal invariant L-loop vertical ladder diagram with one H-shaped insertion, ILH ,

described in section 2.2.

We begin by considering an (L − 1)-loop vertical ladder diagram, with the external

regions labeled by x1 through x4 (where s = x2
13 and t = x2

24), and the loops labeled by xi,

with i = 5, · · · , L + 4 (see figure 5(i)). We replace the jth loop with a horizontal double

loop, converting it into an L-loop diagram, as shown in figure 5(ii). By dual conformal

invariance, this diagram must be accompanied by a factor of

x2
13 x

2(L−1)
24 x2

j−1,j+1. (B.1)

We now perform the integration over the double box. Its Feynman parameterization is

Idouble box =

∫ 1

0
dα0 dα1 dα2 dβ1 dβ2 dγ1 dγ2

2A δ(α0 + α1 + α2 + δ1 + δ2 − 1)

(D + m2σA)3
(B.2)

where

D = D24t+Dj−1,j+1Pj−1,j+1+Dj−1,2Pj−1,2+Dj+1,2Pj+1,2+Dj−1,4Pj−1,4+Dj+1,4Pj+1,4

A = α0α1 + α0α2 + α1α2 + α0δ1 + α1(δ1 + δ2) + α2δ2 + δ1δ2

σ = α0 + α2

δi = βi + γi (B.3)

with Pij ≡ x2
ij ≡ (xi − xj)

2.
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x1x1

x2x2

x3x3

x4x4

(i) (ii)

..
.

..
.

..
.

..
.

xj

xj−1xj−1

xj+1 xj+1

Figure 5. (i) Vertical ladder diagram and (ii) vertical ladder with H-shaped insertion (with nu-

merator factor indicated by a dotted line) whose leading log contributions are computed in this

appendix.

The coefficients of Pik in eq. (B.3) are given by

D24 = α0α1α2, Dj−1,j+1 = (α2 + δ2)β1γ1 + (α0 + δ1)β2γ2 + α1(β1 + β2)(γ1 + γ2),

Dj−1,2 = α0(α1β1 + α2β1 + α1β2 + δ2β1), Dj+1,2 = α0(α1γ1 + α2γ1 + α1γ2 + δ2γ1),

Dj−1,4 = α2(α1β2 + α0β2 + α1β1 + δ1β2), Dj+1,4 = α2(α1γ2 + α0γ2 + α1γ1 + δ1γ2) .

(B.4)

If the double box is inserted at one of the ends of the vertical ladder, the expression for σ

in eq. (B.3) will contain additional terms β1 + β2 or γ1 + γ2, but the results below will be

unaffected by this change.

We assume, following section 8 of ref. [65], that the asymptotic behavior of multiloop

integrals is dominated by a region in the space of the loop momenta that can be described

by a set of nested inequalities. In our specific case, those inequalities imply that the

leading s → ∞ behavior of ILH comes from the region where Pj−1,j+1 is large (i.e. a

nonzero fraction of s) with the other Pik appearing in eq. (B.3) remaining finite. This in

turn implies that the main contribution to the subintegral (B.2) arises from the part of

parameter space where Dj−1,j+1, the coefficient of Pj−1,j+1, is small. This region may be

identified by parameterizing [66]

β1 = ρ1ζ1, β2 = ρ1ζ̄1, γ1 = ρ2ζ2, γ2 = ρ2ζ̄2 (B.5)

where ζi runs from 0 to 1, and ζ̄i ≡ 1 − ζi. In terms of these parameters, the main

contribution to the subintegral comes from the region where ρ1 and ρ2 are both small.
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Retaining only the lowest order terms in A and D,

A = α0α1 + α0α2 + α1α2 + O(ρi), (B.6)

D24 = α0α1α2, Dj−1,j+1 = ρ1ρ2(α1 + α2ζ1ζ2 + α0ζ̄1ζ̄2) + O(ρ3),

Dj−1,2 = ρ1α0(α1 + α2ζ1) + O(ρ2
1), Dj+1,2 = ρ2α0(α1 + α2ζ2) + O(ρ2

2),

Dj−1,4 = ρ1α2(α1 + α0ζ̄1) + O(ρ2
1), Dj+1,4 = ρ2α2(α1 + α0ζ̄2) + O(ρ2

2)

we may approximate the term in the denominator of eq. (B.2) as

D + m2σA ≈ Γ0ρ1ρ2 + Γ1ρ1 + Γ2ρ2 + Γ3 (B.7)

with

Γ0 = (α1 + α2ζ1ζ2 + α0ζ̄1ζ̄2)Pj−1,j+1

Γ1 = α0(α1 + α2ζ1)Pj−1,2 + α2(α1 + α0ζ̄1)Pj−1,4

Γ2 = α0(α1 + α2ζ2)Pj+1,2 + α2(α1 + α0ζ̄2)Pj+1,4

Γ3 = α0α1α2t + (α0α1 + α0α2 + α1α2)(α0 + α2)m
2 . (B.8)

In the large s limit, Γ0 ≫ Γ1 ∼ Γ2 ∼ Γ3. Inserting eq. (B.7) into eq. (B.2), we may

approximate the integral as [51]

Idouble box ≈

∫ 1

0
dα0 dα1 dα2 δ(α0 + α1 + α2 − 1) (α0α1 + α0α2 + α1α2)

∫ 1

0
dζ1dζ2 J (B.9)

with

J =

∫ η1

0
dρ1

∫ η2

0
dρ2

2ρ1ρ2

(Γ0ρ1ρ2 + Γ1ρ1 + Γ2ρ2 + Γ3)3
(B.10)

where the factors of ρi in the numerator result from the Jacobian in the change of variables.

To capture the dominant behavior of the integral, we only need integrate ρ1 and ρ2 over a

small region near the origin; the exact values of the upper limits η1, η2 are unimportant but

are both taken to be ≪ 1 to justify the neglect of higher order terms in ρi in the integrand

and the dropping of δi from the argument of the Dirac delta function. The integral over

ρi yields

J ≈
Γ3

(Γ0Γ3 − Γ1Γ2)2
log

(

(Γ0η1η2 + Γ1η1 + Γ2η2 + Γ3)Γ3

(Γ1η1 + Γ3)(Γ2η2 + Γ3)

)

≈
1

Γ2
0Γ3

log Γ0 (B.11)

where in the last step we used the approximation Γ0 ≫ Γ1 ∼ Γ2 ∼ Γ3. Inserting eq. (B.11)

into eq. (B.9), we find

Idouble box ≈
K ′(v)

t

log Pj−1,j+1

P 2
j−1,j+1

(B.12)

where v = m2/t and

K ′(v) =

∫ 1

0
dα0 dα1 dα2 (B.13)

×

∫ 1

0
dζ1dζ2

δ(α0 + α1 + α2 − 1) (α0α1 + α0α2 + α1α2)

(α1 + α2ζ1ζ2 + α0ζ̄1ζ̄2)2 [α0α1α2 + (α0α1 + α0α2 + α1α2)(α0 + α2)v]
.
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Thus in the s → ∞ limit, integrating out the double box is equivalent to inserting eq. (B.12)

into the remaining integral.

We observe that K ′(v) may be identified as the coefficient of (log s)/(s2t) in the two-

loop horizontal ladder diagram in the asymptotic s → ∞ regime. When v is small, K ′(v)

can be explicitly evaluated to give [30]

K ′(v) = −
4

3
log3 v −

4

3
π2 log v + O(v) . (B.14)

Next we consider an (L − 1)-loop vertical ladder integral IL−1,a, supplemented with

a numerator factor of x13x
L−1
24 to make it dual conformal invariant. Consider just the

subintegral over the jth loop

Isingle box =

∫ 1

0
dα0 dα1 dβ1 dγ1

δ(α0 + α1 + β1 + γ1 − 1)

(Γ0β1γ1 + Γ1β1 + Γ2γ1 + Γ3)2
(B.15)

where

Γ0 = Pj−1,j+1

Γ1 = α0 Pj−1,2 + α1 Pj−1,4

Γ2 = α0 Pj+1,2 + α1 Pj+1,4

Γ3 = α0α1t + m2(α0 + α1) . (B.16)

As before, the leading s → ∞ behavior of the vertical ladder integral comes from the

region of loop momentum space where Pj−1,j+1 is much larger than the other Pik, i.e.,

where Γ0 ≫ Γ1 ∼ Γ2 ∼ Γ3. This in turn implies that the main contribution to the

subintegral (B.15) arises from the region of parameter space where β1 and γ1 are both

small. We may therefore approximate eq. (B.15) as

Isingle box ≈

∫ 1

0
dα0 dα1δ(α0 + α1 − 1)

∫ η1

0
dβ1

∫ η2

0
dγ1

1

(Γ0β1γ1 + Γ1β1 + Γ2γ1 + Γ3)2
.

(B.17)

The integral over β1 and γ1 yields

1

Γ0Γ3 − Γ1Γ2
log

(

(Γ0η1η2 + Γ1η1 + Γ2η2 + Γ3)Γ3

(Γ1η1 + Γ3)(Γ2η2 + Γ3)

)

≈
1

Γ0Γ3
log Γ0 (B.18)

where in the last step we have used the approximation Γ0 ≫ Γ1, Γ2, Γ3. Hence we obtain

for the subintegral

Isingle box ≈
K(v)

t

log Pj−1,j+1

Pj−1,j+1
where K(v) =

∫ 1

0
dα0 dα1

δ(α0 + α1 − 1)

α0α1 + v
. (B.19)

Thus, in the s → ∞ limit, integrating out a single box is equivalent to the insertion of

eq. (B.19) in the remaining integral. Here K(v) is just the coefficient of (log s)/(st) in

the one-loop box diagram in the asymptotic s → ∞ regime. When v is small, it can be

explicitly evaluated to give

K(v) = −2 log v + O(v) . (B.20)
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We note that eqs. (B.12) and (B.19) are quite similar, except that the powers of

Pj−1,j+1 in the denominators differ. This reflects the fact that the two d-lines (described in

section 2.2) for the double box have length two whereas those for the single box only have

unit length. Recall, however, that dual conformal invariance implies that the ILH diagram

comes with a factor of Pj−1,j+1 in the numerator (B.1), which cancels one of the factors in

the denominator of eq. (B.12), “promoting” the d-lines to length one. (This in turn raises

the number of powers of log s in the asymptotic behavior of the integral by two.)

Taking into account all the numerator factors, we see that the quotient of ILH and

IL−1,a is given by

ILH

IL−1,a
=

K ′(v)

K(v)
. (B.21)

We know however from ref. [30, 51] that

lim
u≪v

IL−1,a =
(−1)L−1

(L − 1)!
K(v)L−1 logL−1 u + · · · (B.22)

from which we conclude that

lim
u≪v

ILH =
(−1)L−1

(L − 1)!
K(v)L−2 K ′(v) logL−1 u + · · · (B.23)

which is used in the main body of the paper in eq. (2.26).

C Five-point integrals

In this appendix, we give small-m2 expansions for the Higgs-regulated one- and two-loop

five-point integrals shown in figure 3.

The one-loop box integral I
(1)
5 has the small m2 expansion

s1s5I
(1) = log2 m2 − 2 log

(

s1s5

s3

)

log m2

+2 log s1 log s5 − log2 s3 − 2Li2

(

1 −
s3

s1

)

− 2Li2

(

1 −
s3

s5

)

−
π2

3
. (C.1)

Assembling everything into dimensionless ratios si/m
2, the result can be stated more suc-

cinctly as

s1s5I
(1)
5 ≈ 2 log

( s1

m2

)

log
( s5

m2

)

− log2
( s3

m2

)

−2Li2

(

1−
s3

s1

)

−2Li2

(

1−
s3

s5

)

−
π2

3
+O(m2).

(C.2)
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The double-box integral I
(2)a
5 has the small m2 expansion

s1s
2
2I

(2)a = −
1

4
log4 m2 + log

(

s1s2

s4

)

log3 m2

+

[

−
3

2
log2

(

s1s2

s4

)

− 2Li2

(

1 −
s2

s4

)

−
π2

6

]

log2 m2

+

[

log3

(

s1s2

s4

)

−
π2

3
log

(

s1

s2s4

)

+ 4 log

(

s1

s4

)

Li2

(

1 −
s1

s4

)

+4 log

(

s1s2

s4

)

Li2

(

1−
s2

s4

)

−4Li3

(

1−
s2

s4

)

+8H011

(

1−
s1

s4

)

−4ζ3

]

log m2

+ O(log0 m2),

(C.3)

where we use the harmonic polylogarithm function [67]

H011(1 − x) =
1

2
log(1 − x) log2 x + log xLi2(x) − Li3(x) + ζ3. (C.4)

Finally, the pentagon-box integral I
(2)b
5 has the small m2 expansion

s2s3s5I
(2)b = −

3

4
log4 m2 +

[

log(s1s2s3s4) −
1

3
log(s2s3s5)

]

log3 m2

+

[

−
3

2
log2 s1 − 2 log s2 log s1 − log s3 log s1 + 2 log s4 log s1

+ log s5 log s1 +
3

2
log2 s2 + log2 s3 − log2 s4 +

3

2
log2 s5

+ log s2 log s3 − 2 log s2 log s4 − 2 log s3 log s4

−2 log s2 log s5 − 2 log s3 log s5 + log s4 log s5

−Li2

(

1 −
s1

s3

)

+ Li2

(

1 −
s2

s4

)

− 2Li2

(

1 −
s2

s5

)

− 2Li2

(

1 −
s3

s5

)

+
5π2

6

]

log2 m2

+

[

−2H011

(

1 −
s3

s1

)

+ 8H011

(

1 −
s4

s1

)

− 6H011

(

1 −
s4

s2

)

− 4H011

(

1 −
s3

s5

)

−8H011

(

1 −
s5

s2

)

− 4Li3

(

1 −
s3

s1

)

+ 4Li3

(

1 −
s4

s2

)

− 4Li3

(

1 −
s3

s5

)

+4Li3

(

1 −
s5

s2

)

+ 2 log

(

s1s2s3

s4s5

)

Li2

(

1 −
s1

s3

)

+ 4 log

(

s1

s4

)

Li2

(

1 −
s1

s4

)

+2 log

(

s1s4s5

s3
2s3

)

Li2

(

1 −
s2

s4

)

− 4 log

(

s2
2

s4s2
5

)

Li2

(

1 −
s2

s5

)

+4 log

(

s1s5

s3

)

Li2

(

1 −
s3

s5

)

+
8

3
log3 s1 + 2 log s2 log2 s1 − 6 log s4 log2 s1

− log s5 log2 s1 + log2 s2 log s1 + 5 log2 s4 log s1 − log2 s5 log s1

−2 log s2 log s4 log s1 + 2 log s3 log s5 log s1 −
1

3
π2 log s1 −

17

3
log3 s2

− log3 s3 + 3 log3 s5 − log s2 log2 s3 − 4 log s2 log2 s4 + log s3 log2 s4

−8 log s2 log2 s5 − 2 log s3 log2 s5 − log s4 log2 s5 −
2

3
π2 log s2
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−2 log2 s2 log s3 −
2

3
π2 log s3 + 6 log2 s2 log s4 + 2 log s2 log s3 log s4

−
1

3
π2 log s4 + 9 log2 s2 log s5 + 2 log2 s3 log s5 + 2 log s2 log s3 log s5

+
1

3
π2 log s5 + 12ζ3

]

log m2 + O(log0 m2) (C.5)

When we sum over cyclic permutations to obtain the full one- and two-loop amplitudes, the

polylogarithm functions cancel, resulting in the relatively simple expressions (3.3) and (3.8).
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