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1 Introduction

In the last decade, scattering amplitudes have been at the forefront of theoretical research.
These developments have positioned scattering amplitudes at the vanguard of theoretical
research, unlocking profound insights across various applications. These range from the
obvious usage of making experimental predictions at the Large Hadron Collider (LHC)
to innovative strides in the field of gravitational wave physics [1, 2]. In this period of
prolific research, scientists have elucidated both basic tree-level and intricate multi-loop
amplitude expressions [3]. The hallmark of these formulations is their remarkable simplicity,
contrasting sharply with the complexity typically encountered in intermediate computations
of these structures. This observation has motivated researchers to produce explicit results,
thereby amassing a substantial repository of “theoretical data” on scattering amplitudes.
This endeavor aims to uncover numerous latent patterns and structures within scattering
amplitudes. Indeed, this approach has proven exceptionally fruitful, leading to seminal
developments, including the incorporation of positive geometry concepts and the pioneering
discovery of the double copy principle [4, 5].

Another area of significant interest in contemporary theoretical physics is the holographic
duality, particularly epitomized in the Anti-de Sitter/Conformal Field Theory (AdS/CFT)
correspondence [6, 7]. This duality intriguingly relates the boundary operators in a Conformal
Field Theory (CFT) to bulk fields in Anti-de Sitter (AdS) space, offering a novel perspective
to understand CFT correlation functions as scattering amplitudes in AdS space. Despite
plethora of momentum basis results in the flat space scattering, momentum basis correlators
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in AdS remain less explored, partly due to the complexities of bulk integrals unique to AdS
geometries. Nevertheless, the last decade has witnessed considerable progress in this domain,
as evidenced by a range of studies [8–30].1

This paper endeavors to make a contribution to the exploration of theories within the
AdS/CFT framework, specifically in momentum space. It offers comprehensive explicit
computations of correlators of several type of scalar and spinning fields, along with discussions
of the interconnections among these diverse theories. Drawing inspiration from scattering
amplitude studies, our exploration extends into various dimensions (see for instance [47]). We
then conclude the paper with thoughtful speculation on potential avenues for future research.

2 AdS perturbation theory in momentum space and classification of
spinning fields

A Poincaré patch of a maximally symmetric homogeneous curved space can be described
by the metric

ds2 = ρ2

z2

(
±dz2 + ηijdxidxj

)
(2.1)

where ρ (or iρ) is the curvature radius and η is the metric for the boundary at z → 0.
Depending on the signature of η and the sign of dz2, this metric describes Euclidean or
Lorentzian (A)dS. In the rest of the paper, we will mostly focus on AdS (hence +dz2) and
work with spacelike momenta, making all our computations agnostic to the signature of a
mostly positive η. In addition, we will set ρ = 1 for convenience.

The Poincaré coordinates are particularly advantageous due to the evident translational
invariance in the boundary coordinates, denoted by xi. This invariance simplifies analyses by
allowing us to directly employ momentum space techniques for these coordinates, a method
that aligns well with the established practices in the existing literature. Opting for this
coordinate system offers significant benefits, which we underline as follows: (a) flat space limit
is extremely simple [48], making comparison with flat space data rather straightforward; (b)
cosmological data is conventionally collected and stored in momentum coordinates, making
comparison with dS literature far more intuitive; (c) diagrammatic rules are quite analogous
with (and in some cases even exactly same to) the flat space diagrammatic rules, making
this coordinate system an appealing choice for perturbation theory.

The steps in the derivation of perturbation theory rules in (A)dS are same with those of
the flat space: we start with a weakly-coupled Lagrangian, derive the bulk to bulk propagator
from the quadratic action, and derive the vertex factors from the interaction pieces. We
will first illustrate these steps in case of scalars as a brief review, and then move on to the
discussion of the spinning fields.

2.1 Primer: scalar fields in curved background

Consider the following action

S =
∫

dd+1x
√

g

[1
2
(
gµν(∂µϕ)(∂νϕ) + µ2ϕ2

)
+ Lint(ϕ)

]
, (2.2)

1For some position, Mellin, embedding space approaches, see for instance: [31–46].
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where one is usually interested in polynomial interaction piece Lint for its relevance to the
cosmology though we will keep it generic.2 From the quadratic action, one can derive the
equation for the bulk-to-bulk propagator via the Green’s method [49]:3(

zd+1∂zz1−d∂z − z2k2 − µ2
)
G(k; z, z′) = iδ(z − z′)zd+1. (2.3)

For the right hand side, we can use the identity
∞∫

0

pdpJβ(pz)Jβ(pz′) = δ(z − z′)
z

, (2.4)

where Jβ is the Bessel function of the first kind. In the left hand side, we use the ansatz
G(k; z, z′) =

∫
pdp c(p)(zz′)αJβ(pz)Jβ(pz′). The differential operator then generates (d −

2α)Jβ−1(pz) on the left-hand side, which we kill by setting α = d/2. The rest of the
equation fixes the unknown β and the function c(p), leading to the following expression
of bulk-to-bulk propagator

G(k; z, z′) =
∞∫

0

−ipdp

p2 + k2 − iϵ
(zz′)d/2Jν(pz)Jν(pz′) (2.5)

where we define the parameter ν as4

ν :=
√

d2 + 4µ2

2 . (2.6)

One can now go ahead and derive bulk-to-boundary propagator G(k, z) by starting from
the bulk-to-bulk propagator and taking one of the points to the boundary. However, the
regularity in the bulk for spacelike momenta [49] and the compatibility with Ward identities
already bootstraps the expression

G(k, z) =
√

2
π

zd/2kνKν(kz) (2.7)

where Kν is the modified Bessel function of the second kind.5

2The parameter µ2 is the effective mass square, which is defined as µ2 := m2 + ξR for the Ricci scalar R

—in AdS, R = −d(d + 1)/ρ2 [11].
3We follow the same conventions as in [8–14]: k denotes the boundary spacelike momenta with k2 > 0, and

k its norm
√

k2.
4This parameter is actually related to the scaling dimension ∆ of the boundary operator that is dual to the

scalar field: ∆ = ν + d/2.
5When we move on to the spinning bulk fields dual to conserved non-scalar boundary operators, we will

work with the generalization of this formula as

Gi1...iℓ (k, z) = ϵi1...iℓ

√
2
π

zd/2−ℓkνKν(kz) (2.8)

for the appropriate ν. We would like to note that the bulk-to-bulk propagator actually uniquely fixes the
bulk-to-boundary propagator including the normalization. Nevertheless, our choice of normalization factor√

2
π

only has an overall factor of difference which is immaterial for our purposes and this convention is much
more consistent with the relevant literature, for instance [48, 49].
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With the bulk-to-bulk and bulk-to-boundary propagators given as (2.5) and (2.7), the
only ingredient left to crank the perturbation theory machinery is the vertex factor: in the
case of scalars with polynomial interactions (our focus in this paper), this is rather trivial

—the vertex factor is a simple constant. However, we will see non-trivial examples in the later
sections where vertex factor will have a tensor part and a monomial z-dependence.

With all the ingredients derived, we can now consider the simplest computation: three-
point Witten diagram of three generic scalar fields dual to scalar operators of arbitrary
scaling dimensions ∆a. The amplitude is simply the product of bulk to boundary propagators
integrated over the bulk point:

A3 =
∫ ∞

0

dz

zd+1

3∏
a=1

[
z

d
2

√
2
π

kνa
a Kνa(kaz)

]
(2.9)

as seen for instance in [50]. By taking into account the appropriate normalization factors,
one could also derive the three-point correlation function of the boundary CFT from this
amplitude.6

In extending our analysis to tree-level Witten diagrams with a four and higher number
of points, the approach remains largely unchanged. the process still involves multiplying all
the relevant propagator and vertex factors. Furthermore, an integration over all points in the
bulk is necessary, incorporating the volume factor z−(d+1). However, it is important to note
that these higher-point functions might necessitate renormalization, as detailed in the work
of Bzowski et al. [18]. Moving forward, we encounter additional complexities when dealing
with spinning fields, which will be the focus of the subsequent section.

2.2 Classifications of spinning fields in AdS

In the preceding discussion, we outlined a methodology that can be adapted for the analysis of
spinning fields within the AdS framework. This adaptation involves a series of systematic steps:

1. Derive the propagators from the quadratic action

2. Derive vertex factors from the interaction pieces

3. To compute any given tree-level Witten diagram, contract propagators and vertex
factors and integrate them over the bulk points

Although the almost-same prescription is well used for decades in the Minkowski space
scattering amplitudes computations, there is actually a technical complication in AdS ampli-
tudes that is absent in the flat space. We will discuss this novelty (and its implications) in
this section, and turn to the physically relevant spinning fields in the next section.

In flat space, the unitarity ensures that the internal legs of a Feynamn diagrams takes
the form

G(x1, x2) =
∫

ddp

∑
j

ϵjϵ†j

p2 + m2 + iϵ
eip·(x1−x2) (2.10)

6In principle, ⟨O1O2O3⟩ = bO1O2O3A3 where bO1O2O3 contains the information of the conformal weights
of the boundary operators, see eq. 4.20 and 4.21 of [51] as an example.
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Kinematic factor of gluon cubic
self-interaction in AdSd−1

⇐⇒
Kinematic factor of graviton cubic

self-interaction in AdSd−3

⇐⇒ ⇐⇒

The Witten diagrams for an AdSd+1 scalar with cubic interactions

Figure 1. An example map of connections between the web of theories.

upto an overall phase, whereas the external legs are

G(x) =
∫

ddp ϵjeip·x. (2.11)

Here ϵj is a polarization vector with j going from 1 to the number of physical degrees of
freedom. Thus, any tree-level Feynman diagram can be brought to the form

FD =
∫ ∏

i

ddpi

[∏
i,j ci,jeipi·xj∏
i(p2

i + m2
i )

]
contraction

(
V, ϵ(1), ϵ(2), . . .

)
(2.12)

for some scalars ci,j , whereas V denotes the interaction vertex.
A crucial property of the flat space is that the functional form of the kinematic factor of

the Feynman diagram, the term within square brackets above, does not explicitly depend
on the spin of the fields or the dimension of the spacetime. However, this property does not
extend to AdS: we can quickly check this by analyzing the form of the bulk-to-boundary
propagator for a spin-l gauge field in AdSd+1 –see eq. (2.8).

This novelty in AdS brings a new challenge that is absent in the flat space computations:
case by case calculation of kinematic factors for the Witten diagrams. Fortunately, one can
actually classify these kinematic factors into universality classes: not only does this simplify
the explicit computations, but can this also help with making connections between CFT
correlators of various operators in different dimensions.

In what follows, let us restrict to theories with cubic interactions. We will take the
interaction to be rather generic by inducing it via a piece in the Lagrangian that includes
three arbitrary conserved fields of spin l1 ≥ l2 ≥ l3 and n derivatives.7 The vertex factor due
to such an interaction should have l1 + l2 + l3 contravariant indices to contract with three
legs (each with l1, l2, and l3 indices) that enter into the vertex. In our position-momentum
coordinate system in the Poincaré patch, n of such indices are induced by the boundary
momenta ki whereas remaining indices by (l1 + l2 + l3 − n)/2 many inverse boundary metrics
gij = z2ηij . But since each momenta ki needs one inverse metric as well, we end up with the
requirement of (l1 + l2 + l3 + n)/2 many inverse boundary metrics for such an interaction,
which leads to the correspondence

cubic interaction with n derivatives between Ol1 , Ol2 , Ol3

⇐⇒

zl1+l2+l3+n factor in bulk-point integration

(2.13)

7In AdS4, l is the standard spin, i.e. the only representation label of so(3) group in the stabilizer subgroup
of the AdS isometries. In higher dimensions, we refer the length of the first row of the Young tableaux of the
so(d) representation as the spin.
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This argument extends to scalars as well; in fact, we can immediately write down

cubic interaction ∼
∫

dzz
d−2

2 +nEν1(k1z)Eν2(k2z)Eν3(k3z)

νi =

li − 2 + d/2 conserved l > 0 operators√
d2 + 4µ2/2 scalars

(2.14)

where Eν is Bessel Kν or Jν . This is a generalization of several case studies in the literature.8

We can summarize this observation as follows:

The kinematic factors of two theories in AdSd and AdSd′ are the same if their
perturbative spectrum and interaction Lagrangian are appropriately related!

The simplest implication of the result above is the correspondence in figure 1. Unsurpris-
ingly, this shows that gluon and graviton kinematic factors can be re-interpreted as scalar
Witten diagrams. But perhaps surprisingly, this also indicates that we can find an equivalence
between gauge and graviton kinematic factors if we focus on appropriate spacetime dimensions.

By analyzing (2.2) we can obtain further correspondences; for instance,

l1 − l2 − l3 interaction with n-derivative in AdSd+1

⇐⇒

(l1 + 1)− (l2 + 1)− (l3 + 1) interaction
with (n + 1)−derivative in AdSd−1

(2.15a)

and
l1 − l2 − l3 interaction with n-derivative in AdSd+1

⇐⇒

all scalars of ∆i = d− 2 + li + n with
polynomial interaction in AdSd+2n+1

(2.15b)

Although we present such relations, we will not dwell on their utility in detail in this
paper. Indeed, higher spin theories are of particular importance in several contexts, most
importantly in the Vasiliev theories; nevertheless, analysis of such theories would take us too
far from our main point so we will stick to spin 0, 1, and 2 fields in the rest of the paper.9

2.3 Pure Yang-Mills and Einstein gravity

Consider Yang-Mills action in curved background

S = −1
4

∫
dd+1x

√
gF a

µνF µν,a (2.16a)

8For instance, graviton cubic self-interaction, gluon cubic self-interaction, scalar-scalar-graviton interaction,
and scalar cubic nonderivative-interaction have z# consistent with the general formula above, since these cases
have respective (n, l1, l2, l3, #) as (2, 2, 2, 2, 8), (1, 1, 1, 1, 4), (2, 2, 0, 0, 4), and (0, 0, 0, 0, 0).

9We note that AdS does allow consistent models with higher spin fields as the flat-space no-go theorems
are no longer valid here [52].
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where F a
µν = ∇µAa

ν −∇νAa
µ + efabcAb

µAc
ν with the coupling constant e. Likewise, the usual

Einstein-Hilbert bulk action with a cosmological constant term reads as

S =
∫

dd+1x
√

g(R[g]− 2Λ). (2.16b)

Since we are interested in doing a well-defined perturbation expansion in AdS background,
we will take e small, Λ = −d(d+1)

2 , and g = gAdS + h for small h: this leads to the following
well-known bulk-to-boundary propagators

Ga
i (k, z) =

√
2
π

ϵa
i (k)zd/2−1kd/2−1Kd/2−1(kz) (2.17a)

Gij(k, z) =
√

2
π

ϵij(k)zd/2−2kd/2Kd/2(kz) (2.17b)

which are compatible with the general result in (2.8). We only present the boundary
components of Gµ and Gµν as we are working in the axial gauge, see [49] for further details.
This also means that the polarization tensors ϵi and ϵij are practically identical to their
flat space counterparts in Rd: they are transverse, null, and traceless. Whenever there
is no room for confusion, we will drop their explicit momentum dependence —same with
the color indices of Ga

i .
The derivation of bulk-to-bulk propagators of gluon and graviton is analogous to our

derivation of scalar propagator in section 2.1: after some computation, we end up with

Gij(k; z1, z2) =
∫ ∞

0

−ipdp(z1z2)ν

p2 + k2 − iϵ
Jν(pz1)Jν(pz2)Hij(k, p) (2.18a)

Gij,kl(k; z1, z2) =
∫ ∞

0

−ipdp(z1z2)ν−2

p2 + k2 − iϵ
Jν(pz1)Jν(pz2)Hij,kl(k, p) (2.18b)

where ν = d/2 − 1 for gluon and ν = d/2 for graviton. Here, the tensor structures H

are defined as

Hij(k, p) := ηij + kikj

p2 (2.19a)

Hij,kl(k, p) := Hik(k, p)Hjl(k, p) + Hil(k, p)Hjk(k, p)

− 2
(d− 1)Hij(k, p)Hkl(k, p). (2.19b)

From the non-quadratic part of the actions in (2.16), one can derive the vertex factors
for the color ordered YM amplitude and the cubic gravitational interaction:

V ijk
k1,k2,k3

:= iz4
√

2

(
ηij(k1 − k2)k + ηjk(k2 − k3)i + ηki(k3 − k1)j

)
(2.20a)

V ijkl := iz4

2
(
2ηikηjl − ηijηkl − ηilηjk

)
, (2.20b)

V ijklmn
k1,k2,k3

:= z8

4
[(

ki
2kj

3ηkmηln − 2ki
2kk

3ηjmηln
)

+ permutations
]

(2.20c)

See [12] for further details.
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2.4 Orthogonal decomposition of gauge and gravity propagators

The tensor structures of gauge and gravity propagators are constructed from the object H,
as defined in (2.19a). This object can be elegantly decomposed into the projectors P̂⊥

ij and
P̂

∥
ij , adhering to standard projection rules: P⊥ + P ∥ = δ and P α · P β = δαβP α. Explicitly,

P̂⊥
ij (k) := ηij −

kikj

k2 , P̂
∥
ij(k) := kikj

k2 . (2.21)

Clearly, the tensor Hij of gluon decomposes as

Hij(k, p) = P̂⊥
ij (k) + (k2 + p2)

p2 P̂
∥
ij(k) (2.22a)

whereas the decomposition of Hij,kl(k, p) of graviton is best written as10

Hij,kl(k, p) = (k2 + p2)
p2

(
P̂

(⊥,∥)
ij,lm (k) + P̂

(∥,⊥)
ij,lm (k)

)
+ P̂

(⊥,⊥)
ij,lm (k) +

(
k2 + p2

p2

)2

P̂
(∥,∥)
ij,lm(k),

(2.22b)

where we have defined

P̂
(α,β)
ij,lm := P̂

(α)
il P̂

(β)
jm + P̂

(α)
im P̂

(β)
jl −

2
d− 1 P̂

(α)
ij P̂

(β)
lm . (2.23)

One can now decompose the gauge and gravity propagators into their transverse and longitu-
dinal parts. For brevity, we choose the convention of defining P̂

(⊥,⊥)
ij,lm part of the graviton

propagator as its transverse part, and the rest as its longitudinal part.

2.5 Interactions among scalars, gluons, and gravitons

In preceding discussions, we methodically derived the propagators pertinent for gluons,
gravitons, and scalars with an arbitrary effective mass; we also presented the vertex factors
for gluon and graviton-only interactions in (2.20) (recall that the vertex factor for scalar-only
interaction is simply a constant). This section aims to delve into the intricate dynamics of
inter-particle interactions, thereby laying a foundational framework for the ensuing discourse
in this paper.

Consider the simplest self-consistent theory with non-trivial interaction pieces, i.e. scalar-
QCD (and its special case scalar-QED) with the action

S =
Nf∑
i=1

∫
dd+1x

√
g

(
gµν (DµΦi)†DνΦi + µ2

i Φ†
i Φi + 1

2tr (FµνF µν)
)

(2.24)

for the gauge covariant derivative D and the field stress tensor Fµν := [Dµ,Dν ]/(ie). The action
is written for Nf flavors of scalars with a diagonalized mass matrix —hence (µ2)ijΦ†

i Φj =
µ2

i Φ†
i Φi; we also suppressed the color indices in Φi, which can be in any representation of the

10See [9] for further details on this decomposition. A similar decomposition with a different set of conventions
can also be seen in [53].
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color group. Finally, we note that A†B refers to the singlet in the branching of the product
representation A† ⊗B; usually, one considers the fundamental representation (hence a vector
Φ) or the adjoint representation (hence a matrix Φ).

Let us proceed with a scalar field Φi in the fundamental representation of the color
group; we can then immediately write down

(DµΦi)a = ∇µΦi,a + ie(Aµ) b
a Φi,b (2.25)

for the color indices a & b, where A is in the adjoint representation as usual and ∇ is the
standard spacetime covariant derivative. By inserting this in the action above and expanding
in the small parameter e, we can extract several leading-order interaction Lagrangians from
which the relevant vertex factors for the perturbation theory can be derived; for instance,
gluon emission of a scalar can be derived from

Sint = ie

Nf∑
i=1

∫
dd+1x

√
g
(
Φ∗

i,a

←→
∇µΦi,b

)
(Aµ)ab. (2.26)

where A
←→
∂ B ≡ A∂B − (∂A)B as usual. Furthermore one can also derive higher point

interactions by inserting g = gAdS + h and expanding for small h.
The next theory we will analyze is that of a scalar in a dynamical background; as a

simple model, consider the action

S =
∫

dd+1x
√

g

(
− 1

2
(
gµν(∂µϕ)(∂νϕ) + m2ϕ2

)
+ 2− ξϕ2

2 R[g]− 2Λ
)

(2.27)

and expand it around AdS, i.e. g = gAdS + h for small h; as before, we can get interesting
interaction Lagrangians. As an example, graviton emission of a scalar can be derived from

Sint =
∫

dd+1x
√

ghµν
(

(∂µϕ)(∂νϕ)− 1
2gµνgαβ(∂αϕ)(∂βϕ)

)
(2.28)

where the metric g is taken to be the background metric in the leading order.
In the following sections, we will discuss such interactions in greater depth.11

3 Explicit computations in AdSd+1

In this section, our investigation expands into various AdS theories of physical significance,
and compute contributions to the four-point correlation functions at leading order in the
perturbation theory. Our analysis is distinguished by its breadth, covering purely scalar
theories, scalar-QED, scalar gravity, as well as the pure Yang-Mills gauge theory. We will

11We would like to note that the name of this subsection is not meant to imply a complete discussion of all
possible interactions: we only introduced the cases which we will utilize in the rest of the paper. For instance,
one could add a cubic interaction between two different flavors of scalars with different U(1) charges in a
scalar-QED, i.e.

Sint = λ

∫
dd+1x

√
g ΦΦ(Φ′)∗

for q(Φ′) = 2q(Φ) where q denotes the U(1) charge.
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present analytical formulas of the correlators for general odd dimensions d ≥ 3. These
formulas are compactly written using the “seed amplitudes” defined in this section and
can be evaluated in a straightforward manner; in particular, we will explicitly present the
evaluated results for a number of physically important correlators in AdS4 and AdS6 as
examples. We leverage the orthogonal decomposition formalism, delineated in section 2.4,
as our computational framework.

3.1 Scalar-scalar interaction

Let us start by considering the following two-derivative scalar interaction action

SΦ,Ψ
int =

∫
AdS

dd+1x
√

g(∇Φ)2Ψ (3.1)

where Ψ is viewed as a perturbative scalar field (e.g., Ψ absorbs the weak coupling constant).
The contribution to the correlation function of external Φ’s due to the exchange of an
internal Ψ, denoted as

〈
Φ(x1)Φ(x2)Φ(x3)Φ(x4)

〉
Ψ, is equivalent to the four-point Feynman

diagram in leading order:

〈
Φ(x1)Φ(x2)Φ(x3)Φ(x4)

〉
Ψ =

∫
dzdz′dxddx′d

zd+1z′d+1

×
(
gµν∂µGΦ(z,x;x1)∂νGΦ(z,x;x2)

)
GΨ(z,x;z′,x′)

×
(
gδλ∂δGΦ(z′,x′;x3)∂λGΦ(z′,x′;x4)

) (3.2)

where gµν is the AdS Poincaré metric and the volume factor z−(d+1) comes from the metric
determinant g. Note that GΦ are the bulk-to-boundary propagators of scalar Φ with points
xa on AdSd+1 boundary, while GΨ is the bulk-to-bulk propagator of scalar Ψ.

Although it is rather straightforward to generate the leading order correlator in the
position space, we are usually interested in momentum-space expressions, not least because
of their relevance for the observational data. The translational invariance at the boundary
dictates an overall momentum conservation. Furthermore, note that (3.2) contains two
distinct structures

gzz(∂zGΦ)(∂zGΦ)→ z2rνΦ(ka, kb, z)GΦ(z, ka)GΦ(z, kb) (3.3a)
gij(∂iGΦ)(∂jGΦ) → − z2ka · kbGΦ(z, ka)GΦ(z, kb), (3.3b)

where the function rν on the first line is(
d− 2ν

2z
− ka

Kν−1(kaz)
Kν(kaz)

)(
d− 2ν

2z
− kb

Kν−1(kbz)
Kν(kbz)

)
. (3.4)

Therefore, we have a mixture of terms with different z-powers, and the highest z-power
term comes from (3.3b) as well as from the ratio of Bessel K functions within rν . In the
final expression of the correlator, the highest z-power term contributes to the leading order
total-energy structure, which is relevant in the flat-space limit, while the lower z-power terms
contribute only to the subleading total-energy structures.
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Let us first consider the contribution of (3.3b) in (3.2). We can conveniently extract
a pair of momentum inner product (ka · kb) appropriate for the channel we are interested
in: this leads to the following s-channel expression

(2π)dδd
( 4∑

a=1
ka

)
× (k1 · k2)(k3 · k4)MνΦ,νΦ,νΦ,νΦ;νΨ

⊥; 2 (3.5)

for the “seed” amplitudes

Mν1,ν2,ν3,ν4;i
⊥; n :=

∫ ∞

0

pdp

s2 + p2KKJ
(n)
ν1,ν2,i(k1, k2, p)KKJ (n)

ν3,ν4,i(k3, k4, p) (3.6a)

Mν1,ν2,ν3,ν4;i
∥; n

:=
∫ ∞

0

dp

p
KKJ (n)

ν1,ν2,i(k1, k2, p)KKJ (n)
ν3,ν4,i(k3, k4, p), (3.6b)

where s = |k1 + k2| and the function KKJ is defined in accordance with (2.14) and (2.8):

KKJ (n)
νa,νb,i := 2kνa

a kνb
b

π

∫ ∞

0
z

d−2
2 +ndzKνa(kaz)Kνb

(kbz)Ji(pz) . (3.7)

Note that the number of derivatives is n = 2 in the action (3.1). Although the second
line (3.6b) does not appear in the scalar four-point function (3.5), it is shown here for
completeness, and as we will show later that it appears in the longitudinal components of
four-point functions in scalar-QED and other theories (as the subscript already indicates,
the first line (3.6a) would appear in the corresponding transverse components).

On the other hand, the contribution of (3.3a) in (3.2) depends on the specific value of
νΦ. Let us thus examine a simple scalar interaction theory in which the two scalars σ and
ϕ, with their own quadratic actions given as (2.2), have effective mass squares µ2

σ = 1− d

and µ2
ϕ = 0, respectively. The interaction of the form

∫
(∇σ)2ϕ has a distribution of z-powers

specified by the rν function. For examples,

rνσ

∣∣
d=3 =

(
ka −

1
z

)(
kb −

1
z

)
(3.8)

rνσ

∣∣
d=5 =

(
ka −

1
z
− ka

1 + kaz

)(
kb −

1
z
− kb

1 + kbz

)
. (3.9)

And therefore the z−1 and z−2 terms would decrease the powers of integration variable z in
KKJ structure (3.7), yielding modified versions of the seed amplitudes (3.6a), meanwhile
the leading z0 term retains the same KKJ and M⊥; 2 structures and simply adds scalar
products (kakb) next to the vector products (ka ·kb) in (3.5). Overall, by combining all terms,
we find the following s-channel expression of the four-point scalar-exchange correlator12

〈
σ(k1)σ(k2)σ(k3)σ(k4)

〉(s)
ϕ

= (2π)dδd
( 4∑

a=1
ka

)
× (k1k2 − k1 · k2)(k3k4 − k3 · k4)Mνσ ,νσ ,νσ ,νσ ;νϕ

⊥; 2 + l.z,

(3.10)

where “l.z.” denotes contributions from the lower z-power terms in the function rνσ , and note
that these contributions produce lower-order total-energy poles compared to the leading pole

12Other channels can be obtained by a simple permutation of the momenta.
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contained in M⊥; 2. The explicit expressions of these l.z. terms are dimensionally dependent,
and we emphasize their existence in the above formula as they are unique to the scalar-
exchange correlators — as we will see later in the expressions of gluon- and graviton-exchange
correlators that these l.z. terms can be conveniently dropped by the choice of “axial gauge”.

Let us look at two specific dimensions as examples. At d = 3, the interaction of the
form

∫
(∇σ)2ϕ would then lead to

KKJ (2)
νσ ,νσ ,νϕ

(k1, k2, p) =
√

2
π

2p
3
2

(k2
12 + p2)2 , (3.11)

where we have used a shorthand notation kab := ka + kb. At this dimension, σ and ϕ

are commonly referred to as conformally coupled scalar and massless scalar in literature,
respectively, with ∆σ = 2 and ∆ϕ = 3. Using the above KKJ expression and explicitly
evaluating the l.z. terms for d = 3, we then obtain the following evaluation in AdS4,13

⟨σσσσ⟩(s)
ϕ

∣∣∣∣
d=3

= (2π)3δ3
( 4∑

a=1
ka

)[
s2 + k12k34

2E3 − 1
2E

+ 4k12k34
s3

(
u− tanh−1(u)

)(
v − tanh−1(v)

)] (3.13)

where u := s/k12 and v := s/k34.14 In particular, it is a straightforwardly check that we
have the correct flat-space limit as well, which amounts to obtaining the coefficient of the
leading total-energy pole when E approaches zero [48, 54], with which we arrive at S for
four-dimensional Mandelstam variable S := (k1 + k2)2− s2.15 For the same pair of interactive
scalars, we can repeat the process to obtain the correlator expression in AdS6, which yields
the same flat-space amplitude as the AdS4 correlator (up to a pre-factor of k1k2k3k4). The
full expression of the correlator is more complex and we include it in a Mathematica file
in the supplementary material attached to this paper.

3.2 Scalar-QED

The procedure of obtaining the contributions to the correlation functions at the leading order
in perturbation theory remains the same when we move from scalar-only interaction to the

13We used the following identity in derivation

k1 · k2 = s2 − k2
1 − k2

2
2 , k3 · k4 = s2 − k2

3 − k2
4

2 . (3.12)

14In addition, in this paper we adopt the convention such that “EL,R” denote the left/right partial energy
sum and “E” denotes the total energy. In terms of momenta, these variables read as

E = k1 + k2 + k3 + k4 , EL = s + k1 + k2 , ER = s + k3 + k4.

15The other two Mandelstam variables are

T := (k1 + k4)2 − t2, U := (k1 + k3)2 − u2 (3.14)

where t = |k1 + k4| and u = |k1 + k3| (and s = |k1 + k2|) are the exchange momenta in respective channels.
Therefore, the total four-point amplitude A = S + T + U is a constant.
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scalar-QED. We start with the relevant interaction action, which in this case is

SsQED
int = e

∫
AdS

dd+1x
√

g
(
Ψ̃∇µΨ−Ψ∇µΨ̃)Aµ, (3.15)

where Ψ and Ψ̃ are real and imaginary parts of the complex scalar field respectively.16 We
will now proceed with the actual computation of the Feynman diagrams; however, we would
like to specialize in two physically relevant cases in what follows, namely

conformally coupled scalar: νφ = 1
2 → ∆φ = d + 1

2 (3.16a)

vectorlike scalar: νσ = d− 2
2 → ∆σ = d− 1 (3.16b)

where ν is the index that appears in the propagators, and ∆ is the scaling dimension of
the boundary operator that is dual to the relevant bulk field. Although these two cases
collapses into one at d = 3, the most commonly analyzed dimension in the literature, they
physically describe different scalars in general dimensions: ν = 1/2 (along with the additional
masslessness condition) makes the theory (2.2) perturbatively invariant under conformal
transformations, whereas ν = (d− 2)/2 makes the scalar mimic the scaling behavior of the
spin−1 bulk fields as we already discussed within scalar-scalar interactions.

Conformally coupled scalars have received extensive attention in the literature, owing
to their relevance and inherent simplicity. Indeed, their straightforward nature not only
facilitates deeper understanding but also allows them to serve as a foundational basis for
computing more complex theories, as discussed in [11, 53]; in fact, their computations are
almost identical to ordinary field theoretical computations in half flat spacetime.17 On
the contrary, vectorlike scalars with ∆ = d − 1 which are not conformally invariant are
not analyzed as much;18 nevertheless, due to the common scaling dimension, it becomes
rather interesting to study the interaction of vectorlike scalars and spin-1 gauge fields, an
interesting special case of scalar QED.

For both conformally coupled and vectorlike scalars, we can immediately write down the
perturbative expression for the correlation function in the leading order; explicitly,

〈
Ψ(x1)Ψ̃(x2)Ψ(x3)Ψ̃(x4)

〉
A

=
∫

dzdz′dxddx′d

zd+1z′d+1 Gil(z, x; z′, x′)

×
(

gijGΨ̃(z, x; x1)∂jGΨ(z, x; x2)− (Ψ↔ Ψ̃)
)

×
(

glmGΨ̃(z′, x′; x3)∂mGΨ(z′, x′; x4)− (Ψ↔ Ψ̃)
) (3.17)

16Explicitly, we define

Ψ =
(
Φ + Φ∗)
√

2
, Ψ̃ =

(
Φ − Φ∗)

i
√

2
where Φ and Φ∗ are complex scalar fields.

17This follows from the nice behavior of the conformally coupled scalar under a Weyl transformation that
relates the metrics ds2 = dz2+dxidxi

z2 and ds2 = dz2 + dxidxi.
18The exception is d = 3 at which vectorlike scalars coincide with the conformally coupled scalars and hence

have been extensively studied.
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which is the contribution to the four-point correlator due to the photon exchange.19 We will
be explicitly working in the s-channel, but the t- and u- channels can be obtained via an
appropriate permutation of the indices. We can now go ahead and decompose this correlator
into transverse and longitudinal parts. In momentum space, the correlator expression for
conformally coupled scalars reads as

〈
φ(k1)φ̃(k2)φ(k3)φ̃(k4)

〉(s)
A,α

= (2π)dδd
( 4∑

a=1
ka

)
× (k1 − k2)i(k3 − k4)jP̂ α

ij(k1 + k2)Mνφ,νφ,νφ,νφ;νA

α; 1

(3.18)

where α =⊥, ∥ and the projectors P̂ α
ij are defined in eq. (2.21), while the seed amplitudes

Mα are defined in (3.6). Note that one can obtain the same set of expressions for vectorlike
scalars by simply switching the index νφ to νσ in the above expressions.

We now present the explicit evaluation for d = 3 and d = 5 below. Even though one can
also write down implicit results in general dimensions, explicit results are harder to obtain as
the expression in generic dimensions is an integral of products of hypergeometric functions.
After a little bit algebra, we can show that the full correlator in AdS4 reads

⟨φφ̃φφ̃⟩(s)
A,⊥

∣∣∣∣
d=3

= (k1 − k2) · (k3 − k4) + s−2(k2
1 − k2

2)(k2
3 − k2

4)
ELERE

⟨φφ̃φφ̃⟩(s)
A,∥

∣∣∣∣
d=3

= −(k1 − k2)(k3 − k4)
s2E

,

(3.19)

upto the prefactor (2π)3δ3(∑4
a=1 ka

)
.20 It is straightforward to check that the full correlator

expression above is consistent with the corresponding flat-space amplitude. This expression is
consistent with the calculation using weight-shifting operators and bootstrap formalism [53, 55].
Indeed, in the flat-space limit E → 0, the coefficient of the total-energy pole in the correlator
⟨φφ̃φφ̃⟩(s)

A becomes the corresponding flat-space scattering amplitude

A(s)
φφ̃φφ̃

∣∣∣∣
d=3

= lim
E→0

(k1 − k2) · (k3 − k4)− (k1 − k2)(k3 − k4)
ELER

, (3.20)

which is simply 2S−1(U −T ), where we have imposed conservation of momentum and S, T, U

are the four-dimensional flat-space Mandelstam variables defined earlier. The same set of
momentum-space expressions can be derived similarly in AdS6. For the conformally coupled
scalar, we have

⟨φφ̃φφ̃⟩(s)
A,⊥

∣∣∣∣
d=5

= (k1 − k2) · (k3 − k4) + s−2(k2
1 − k2

2)(k2
3 − k2

4)
E2

LE2
R

×
2
(
ELER + sE

)
E3 (3.21a)

⟨φφ̃φφ̃⟩(s)
A,∥

∣∣∣∣
d=5

= − 2(k1 − k2)(k3 − k4)
s2E3 (3.21b)

19We remind the reader that we choose the axial gauge throughout the paper, hence Az = A0 = 0 and there
is no gzz contribution.

20We remind the reader that these results are applicable both for conformally coupled and vectorlike scalars
as they coincide in AdS4.
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with the prefactor (2π)5δ5(∑4
a=1 ka

)
; and for the vectorlike scalar we have21

⟨σσ̃σσ̃⟩(s)
A,⊥

∣∣∣∣
d=5

=(k1 − k2) · (k3 − k4) + s−2(k2
1 − k2

2)(k2
3 − k2

4)
(k12 − s)2E2

LE2
R

×
( 3∑

n=0

Bn

En

)
(3.26a)

⟨σσ̃σσ̃⟩(s)
A,∥

∣∣∣∣
d=5

=− 2k1k2k3k4 + (k12k3k4 + k1k2k34)E + k12k34E2

s2

× (k1 − k2)(k3 − k4)
E3 (3.26b)

with the prefactor (2π)5δ5(∑4
a=1 ka

)
. As expected, the flat-space limit of both correlators give

the same form of amplitude as in (3.20), expressable in terms of six-dimensional Mandelstam
variables (up to a pre-factor of k1k2k3k4 for σ).

3.3 Scalar-gravity

In the previous subsection, we analyzed the conformally coupled and the so-defined vectorlike
scalars, which are dual to boundary CFT operators with scaling dimensions d+1

2 and d− 1,
respectively. In this section, however, we will instead consider a new type of scalar that
we will dub as “tensorlike”, i.e.

tensorlike scalar: ν = d

2 → ∆ = d. (3.27)

This class of scalars has trivial effective mass µ2 = 0, in which the minimally coupled scalar
with m = 0 is often referred to as the massless scalar in literature. Besides the obvious
observation that tensorlike scalars share the scaling dimension of the graviton with which they
mix in the scalar-gravity interaction (making the resultant theory rather interesting), such
scalars are also relevant as they may be numerically indistinguishable from the contributions
of conserved vector fields in the boundary CFT.22

For the four-point correlation function of the external tensorlike scalars with graviton
exchange, the leading-order perturbative contribution can be written down using the scalar-

21The functions Bn in the transverse expression are defined as

B3 = +2k1k2k3(k1 + k2 + k3)(k12 − s)ELE2
R (3.22)

B2 = +
[
2k1k2k3(s2 + k3k12) − (k12 − s)ELk12k13k23

]
E2

R (3.23)

B1 = +
[
k4

12 − s2(k2
1 + k2

2 + k2
3) + (k2

12 + 2k1k2)k2
3
]
E2

R (3.24)

B0 = −
[
2k1k2 + EL(k12 − s)

][
(s + k3)sk3 + (s2 + k2

3)ER

]
. (3.25)

22More specifically, traditional numerical conformal bootstrap techniques cannot distinguish a “fake” scalar of
scaling dimension of d from a conserved vector with the scaling dimension d−1, as they induce indistinguishable
contributions [56].
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gravity interaction in (2.28). In the position space, the correlator reads as

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩G =
∫

dzdz′dxddx′d

zd+1z′d+1

×
(
ḡi1i2 ḡj1j2Ti1j1(z,x;x1,x2)

)
Gi2j2,l2m2(z,x;z′,x′)

×
(
ḡl1l2 ḡm1m2Tl1m1(z′,x′;x3,x4)

) (3.28)

where we define

Tµν(z, x; xa, xb) := ∂µGϕ(z, x; xa)∂νGϕ(z, x; xb)

− 1
2 ḡµν ḡαβ∂αGϕ(z, x; xa)∂βGϕ(z, x; xb)

(3.29)

for brevity.23

We proceed to decompose the correlator into its transverse and orthogonal components,
as in section 2.4. This analysis is conducted in momentum space, paralleling our prior
approach. Our primary focus is on the s-channel, with the understanding that the t- and
u-channels can be derived through suitable permutations. A modest amount of algebra yields
the transverse and longitudinal parts of the four-point graviton-exchanging function as

⟨ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4)⟩(s)
G,⊥ = ki

1kj
2kl

3km
4 P̂

(⊥,⊥)
ij,lm (k1 + k2)Mνϕ,νϕ,νϕ,νϕ;νG

⊥; 2 (3.30a)

and

⟨ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4)⟩(s)
G,∥ =

2∑
b=1
M̄νϕ,νϕ,νϕ,νϕ;νG

∥,b; 2 (3.30b)

upto an overall factor (2π)dδd
(∑4

a=1 ka

)
.24 The modified longitudinal seed amplitude above

is defined as

M̄νϕ,νϕ,νϕ,νϕ;νG

∥,b; 2 = 2ki1
1 kj1

2 kl1
3 km1

4 P̂
b
i1j1,l1m1

∫ ∞

0
dpKKJ (2)

νϕ,νϕ,νG
(k1, k2, p)

×f bKKJ (2)
νϕ,νϕ,νG

(k3, k4, p)

+ki
1kj

2P̂
b
ij,ll

∫ ∞

0
dpKKJ (2)

νϕ,νϕ,νG
(k1, k2, p)

×f bKKJ (2)
νϕ,νϕ,νG

(k3, k4, p)

+kl
3km

4 P̂b
ii,lm

∫ ∞

0
dpKKJ (2)

νϕ,νϕ,νG
(k1, k2, p)

×f bKKJ (2)
νϕ,νϕ,νG

(k3, k4, p)

+1
2 P̂

b
ii,ll

∫ ∞

0
dpKKJ (2)

νϕ,νϕ,νG
(k1, k2, p)

×f bKKJ (2)
νϕ,νϕ,νG

(k3, k4, p),

(3.31)

23We remind the reader that the overall metric decomposes as gµν = gAdS + hµν with perturbative hµν ,
and for clarity we use ḡ = gAdS in the expressions. Note also that we work in the axial gauge for the metric
perturbation (hzz = 0, hzi = 0), and thus there is no ḡzz contribution.

24Remember that the projectors and the transverse seed amplitude are defined in (2.23) and (3.6a) respec-
tively.
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where the KKJ functions contain z-derivatives of the Bessel K functions,25 and where P̂
and f b are abbreviations for brevity.26

This direct perturbative approach of the computation of this four-point correlation
function can be compared to many other existing techniques in literature. In particular,
similar decomposition for d = 3 is considered in [57], which follows from the decomposition of
the 3d action into the transverse and longitudinal parts [58]. Our final numerical evaluations
of the correlator agree for d = 3 and also share the same formal expression of the transverse
part, and it would be interesting to explore if their decomposition also generalizes to arbitrary
d in the same way our decomposition does. Other techniques include: Arnowitt-Deser-Misner
(ADM) and in-in formalism [59, 60], bootstrap formalism with weight-shifting operators [55],
lifting formalism from flat space [61, 62], bootless bootstrap formalism [61],27 and double-copy
formalim with correction terms [26]. The final evaluation of the correlator ⟨ϕϕϕϕ⟩G from all
these techniques, including our version and the previous version of orthogonal decomposition,
have been numerically cross-checked and have been found to match for AdS4.

Unlike AdS4, there are not so many formalisms within which the scalar gravity correlation
functions have been computed for AdS6. To complement this, we provide the explicit
evaluation of ⟨ϕϕϕϕ⟩G in AdS6 (together with the evaluation in AdS4) in a Mathematica
file in the supplementary material attached to this paper. We have explicitly checked that
our correlators at d = 3, 5 satisfy the manifestly local test (MLT) [63]; interestingly, our
transverse and longitudinal components pass the MLT separately.

25We define KKJ (n)
νϕ,νϕ,νG

(ka, kb, p) as

KKJ (n)
νϕ,νϕ,νG

(ka, kb, p) := − ka · kbKKJ (n)
νϕ,νϕ,νG

(ka, kb, p)

+
∫ ∞

0

dz

zd−3 ∂z

[√
2
π

(kaz)
d
2 K d

2
(kaz)

]
∂z

[√
2
π

(kbz)
d
2 K d

2
(kbz)

][
z

d
2 −2J d

2
(pz)

]
for νϕ = νG = d

2 .
26The projector sums here are defined as P̂b=1

ij,lm = P̂(⊥,∥)
ij,lm + P̂(∥,⊥)

ij,lm + P̂(∥,∥)
ij,lm and P̂b=2

ij,lm = P̂(∥,∥)
ij,lm; using

definition (2.23), we can compute the sums whose indices are partially or fully contracted

P̂b=1
ij,ll = − 2

d − 1ηij , P̂b=1
ii,lm = − 2

d − 1ηlm (3.32)

P̂b=2
ij,ll(k) = +2(d − 2)

(d − 1)
kikj

k2 , P̂b=2
ii,lm(k) = +2(d − 2)

(d − 1)
klkm

k2 (3.33)

P̂b=1
ii,ll = − 2d

(d − 1) , P̂b=2
ii,ll = +2(d − 2)

(d − 1) . (3.34)

In addition, the f b functions are defined as f1 = 1
p

and f2 = k2

p3 .
27At d = 3, we identify our transverse and longitudinal parts with the following structures in the bootstrap

computation

12
(
ki

1kj
2kl

3km
4
)
P̂(⊥,⊥)

ij,lm Mνϕ,νϕ,νϕ,νϕ;νG

⊥;2 = s4Π(s)
2,2f

(s)
2,2 (3.35)

12
2∑

b=1

M̄νϕ,νϕ,νϕ,νϕ;νG

∥,b; 2 =
[
s2Π(s)

2,1f
(s)
(2,1) + (ELER − sE)Π(s)

2,0f
(s)
(2,0) + fc

]
(3.36)

where the polarization tensors Π2,i as well as functions f(2,i) and fc are defined in [61]. In particular, we find
f

(s)
2,2 = Mνϕ,νϕ,νϕ,νϕ;νG

⊥;2 .
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3.4 Pure Yang-Mills

As an important example of using perturbation theory to compute external spinning correlators
in momentum space, let us examine the tree-level four-point gluon correlator ⟨JJJJ⟩ in
AdSd+1. The full tree-level four-point gluon correlator ⟨JJJJ⟩ in AdSd+1, associated with
action (2.16), consists of three pieces, the s-channel expression, the t-channel expression
and a contact-diagram expression28

⟨JJJJ⟩ = ⟨JJJJ⟩(s) + ⟨JJJJ⟩(t) + ⟨JJJJ⟩(c) , (3.37)

where the channels are exchanging a gluon in the bulk. In particular, the formal expression
of the gluon-exchanging contribution here directly generalizes the scalar-gluon version (3.17),
with the external bulk-to-boundary scalar propagators replaced by their gluon counterparts.
As usual, we use the Poincaré coordinates and choose the axial gauge, and we will be
suppressing the color indices.

The perturbative expression of correlator in the leading order can be derived with the
gluon bulk-to-boundary propagator (2.17a) and the gluon bulk-to-bulk propagator (2.18a).
After some algebra, we find the following s-channel contribution in momentum space

⟨JJJJ⟩(s) =
∫ ∞

0
dpKKJ (1)

νA,νA,νA
(k1,k2,p)ϵi(k1)ϵj(k2)V ijm

k1,k2,−k

×
(−ipHmn(k,p)

s2+p2

)
ϵk(k3)ϵl(k4)Vkln

k3,k4,kKKJ (1)
νA,νA,νA

(k3,k4,p),
(3.38)

where the KKJ function is defined in (3.7), νA is d
2 − 1, and the momentum conservation

gives k = k1 + k2 = −k3 − k4. In addition, the vertex operator here V ijm
k1,k2,k = z−4

1 V ijm
k1,k2,k

is stripped off of z-powers (see full vertex definition in (2.20)). As before, we express the
correlator as a sum of transverse and longitudinal components

⟨JJJJ⟩(s) = (2π)dδd
( 4∑

a=1
ka

)
ϵi(k1)ϵj(k2)ϵk(k3)ϵl(k4)

V ijm
k1,k2,−k1−k2

Vkln
k3,k4,k1+k2

(
P̂⊥

mnM
νA,νA,νA,νA;νA
⊥; 1 + P̂ ∥

mnM
νA,νA,νA,νA;νA

∥; 1

) (3.39)

where the projectors are defined in (2.21), and the transverse as well as the longitudinal seed
amplitudes are defined in (3.6a) and (3.6b), respectively. The t-channel expression can be
extracted from the above result via the usual permutation

⟨JJJJ⟩(t) = ⟨JJJJ⟩(s)
∣∣∣∣
1→2→3→4→1

. (3.40)

On the other hand, the contact diagram is simply given by

⟨JJJJ⟩(c) =
∫ ∞

0

dz1

zd+1
1

z4
1V ijklGiGjGkGl, (3.41)

where Gi in this expression are the gluon bulk-to-boundary propagators (2.17a), and (z4
1V ijkl) =

V ijkl is the relevant vertex factor defined in (2.20).
28Note that in a color-ordered correlator, there is no u-channel.
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We show two examples of evaluation as usual. For AdS4, the transverse and the
longitudinal seed amplitudes in the s-channel are

MνA,νA,νA,νA;νA
⊥; 1

∣∣∣∣
d=3

= 1
ELERE

, MνA,νA,νA,νA;νA

∥; 1

∣∣∣∣
d=3

= 1
k12k34E

; (3.42)

and the contact-diagram expression becomes

⟨JJJJ⟩(c)
∣∣∣∣
d=3

= (ϵiϵjϵkϵlV ijkl)
E

. (3.43)

In fact, the above seed amplitudes are identical to those in (3.19), which are the seed
amplitudes of ⟨σσ̃σσ̃⟩(s)

A = ⟨φφ̃φφ̃⟩(s)
A , because the vectorlike scalar has the same scaling

dimension as the spin-1 gauge field.
The AdS6 seed amplitudes of ⟨JJJJ⟩ in the s-channel are

MνA,νA,νA,νA;νA
⊥; 1

∣∣∣∣
d=5

= 1
(k12 − s)2E2

LE2
R

( 3∑
n=0

Bn

En

)
, (3.44)

MνA,νA,νA,νA;νA

∥; 1

∣∣∣∣
d=5

= 2k1k2k3k4 + (k12k3k4 + k1k2k34)E + k12k34E2

k12k34E3 (3.45)

which are identical to the seed amplitudes of ⟨σσ̃σσ̃⟩(s)
A in (3.26); in comparison, the contact-

diagram expression reads29

⟨JJJJ⟩(c)
∣∣∣∣
d=5

= (ϵiϵjϵkϵlV ijkl)
( 3∑

n=0

gn

En

)
. (3.47)

The equivalence of the seed amplitudes between ⟨JJJJ⟩ and ⟨σσ̃σσ̃⟩A reflects the value of
studying vectorlike scalars when it comes to computing correlation functions for spin-1 gauge
fields. A reasonable extension of such observation is the equivalence of the seed amplitudes
between ⟨TTTT ⟩, the graviton four-point function, and ⟨ϕϕϕϕ⟩G which we computed in (3.30).
It is then of considerable interest to directly generate spinning correlators from the associated
scalar functions. Recent progress in this direction include [61, 64, 65], which rely on the
bootstrap techniques and/or the application of weight-shifting operators. From another
perspective, one can also take advantage of the dimensional map we introduced in section 2.2
and observe that the two-derivative seed amplitudes of ⟨ϕϕϕϕ⟩ϕ in AdSd−1 are equivalent
to those of ⟨JJJJ⟩ in AdSd+1 and ⟨TTTT ⟩ in AdSd−1.

29The gn functions here are defined as

g3 = −2k1k2k3(k1 + k2 + k3)
g2 = −(k2

1 + k2k3)k23 + k1(k2
2 + k2

3)
g1 = −(k2

1 + k2
2 + k2

3)
g0 = −k4.
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4 Conclusion

In this study, we have concentrated on momentum space AdS correlators across multiple
dimensions, with a specific focus on QED, Yang-Mills, and exchange graviton correlators in
(Anti-)de Sitter space. We have provided explicit examples of correlators for scalar QED in
both three and five boundary dimensions. Furthermore, our venture into five-dimensional
analysis reveals concrete cases of exchange graviton correlators, which are meticulously
detailed in the accompanying Mathematica files. Despite their complexity, these expressions
align seamlessly with the expected flat space limits, thus underscoring the robustness of
our approach. Additionally, our observations on the interrelation of scalar factors across
different dimensions potentially offer robust computational and organizational tools for future
studies in the field.

In terms of the interrelation of theories, our explicit computations across various theories
in different dimensions are set to also expand the application scope of the double copy
concept within curved spacetime [13, 26, 27, 37, 64, 66–71]. The double copy methodology
proves to be instrumental in determining amplitudes in complex theories by utilising simpler
theories as foundational inputs, and we hope that our results can be leveraged as valuable
input for this research.

The extension and application of loop-level AdS computations represent a natural
progression, as underscored by recent advances in the field [12, 72–76]. Furthermore, there
is a compelling prospect in broadening our classification to include a more diverse range of
theories. This expansion is particularly pertinent to the cosmological bootstrap initiative and
the computation of de Sitter space correlators, as referenced in several recent studies [53, 55, 77–
80]. Efforts in this direction are currently in progress.
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