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1 Introduction

In QCD the wave functions of asymptotic states (hadrons) have to be gauge-invariant. For
a meson composed by a quark located at point x2 and an antiquark at point x1, the gauge
invariance can be enforced by introducing the path-ordered exponential operator

U(C(x1, x2)) ≡ P exp
(

ig

∫
C(x1,x2)

Aµ(x)dxµ

)
(1.1)

constructed from the gluon field Aµ ≡ taAa
µ, yielding the meson wave function

M(C(x1, x2)) = q̄(x1)U(C(x1, x2))q(x2). (1.2)

Here C denotes a path going from x1 to x2. For baryons, the unique way to construct a
gauge-invariant wave function is to join three string operators at a junction, as proposed in [1]:

B(C1, C2, C3) = ϵijk [U(C1(x, x1))q(x1)]i [U(C2(x, x2))q(x2)]j [U(C3(x, x3))q(x3)]k . (1.3)

The string operator U(C(x, xn)) acting on a quark field located at space-time point xn makes
it transform under gauge transformations as a field at point x. The antisymmetric tensor
then makes a color-singlet and gauge-invariant state out of the three quarks plus the junction.
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At strong coupling, the string operators describe strings connecting the quarks to a
common “baryon junction”, which thus becomes, along with the three quarks, a fourth
constituent of the baryon [1].1,2 Baryonic (anti)junctions (J̄)J give rise to new exotic hadrons,
including baryonium-like J − J̄ states with additional two, one, or no q − q̄ constituent
quark-antiquark pairs, penta-quarks, dibaryons, and other exotics [1, 5]. It was stressed
in [1] (see also [3]) that duality diagrams involving baryons and anti-baryons are ambiguous
unless the flow of the junction, indicating the flow of baryon number, is shown together
with the flow of flavor associated with the valence quarks. Regge trajectories containing
J − J̄ states provide new contributions to high-energy amplitudes of exclusive processes
involving baryons and antibaryons [1, 5].

In high energy inclusive processes involving baryons, the existence of junctions was
predicted to lead to the separation of flows of baryon number and flavor [6].3 The origin of
this phenomenon is easy to understand. At strong coupling, the string operators in (1.3)
describe strings inside the baryon. In high energy baryon collisions, the valence quarks that
carry large Bjorken momentum fraction x end up in the fragmentation region of the process,
but the gluonic junction can be more easily stopped in the central rapidity region. The
strings that connect the junction to the valence quarks then break by producing additional
quark-antiquark pairs, but the baryon is always reconstructed around the junction. Its valence
quark content is however not correlated with the one of the original baryon participating in the
collision — so the flows of baryon number and flavor are uncorrelated and separated in rapidity.
The computation of inclusive baryon stopping cross section was performed in [6] within the
Mueller-Kancheli generalized optical theorem approach [8, 9], using for the intercept of the
leading junction-antijunction quarkless J0 trajectory the value αJ0 = 0.5 originally proposed
in [1]. The produced baryons are distributed in the c.m.s. rapidity yf according to [6]:

dN

dyf
∝ e(αJ0 +αP−2)Y/2[e(αP−αJ0 )yf + e(αJ0−αP)yf ], (1.4)

where Y is the rapidity separation between the beams.
Recently baryon stopping was studied at RHIC in AA and γA (through ultraperipheral

processes) collisions [10]. The beam rapidity dependence of the number of stopped baryons
is shown in figure 1, reproduced from [10]. In eq. (1.4) the slope of the beam rapidity
dependence is given by (αJ0 + αP − 2) = (αJ0 + ∆ − 1) where we used ∆ = αP − 1 ≃ 0.08, as
fixed by the “soft” Pomeron intercept αP ≃ 1.08 [11]. If one uses the value of αJ0 ≃ 0.5, as
originally suggested in [1], the beam rapidity dependence becomes e−0.42 Y/2, to be contrasted
with e−0.65 Y/2 from the Beam Energy Scan at RHIC, see the right panel of figure 1. Thus,
the agreement between the data and the prediction made with the original value of αJ0 is
reasonable. However, with the increased precision of the data it is necessary to revisit the
prediction for the αJ0 intercept. This is what we attempt to do in this paper.

1We should stress that in such a constituent-parton picture the junction itself is in a non-trivial color
representation such as to compensate for the one of the three valence quark system.

2For heavy/static quarks the junction naturally emerges also in the context of the AdS/CFT correspon-
dence [2] and in lattice QCD at strong coupling [3]. Its appearence at the so-called Fermat-Torricelli point has
been nicely confirmed by lattice-QCD calculations [4].

3This phenomenon is somewhat analogous to the spin-charge separation in condensed matter physics (see
e.g. [7]), which also has a topological origin.
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Figure 1. Left panel: compilation of data from various experiments on the rapidity slope parameter
that is related to the intercept of J0 trajectory by the means of eq. (1.4). Right panel: rapidity
distribution of baryons from the Beam Energy Scan at RHIC. Evidently, the slope is almost independent
of centrality in agreement with baryons stopping mediated by J0 exchange. The centrality-averaged
fit to the slope is about 0.65 ± 0.1 [10]. In both panels δy = Y/2 is the beam rapidity in c.m.s. Both
figures are reproduced from [10] with kind permission of The European Physical Journal (EPJ).

Because the processes of baryon stopping are dominated by small or moderate momentum
transfer, they have to be described in the strong coupling domain where the topological
expansion of QCD [12, 13] can be used as a guiding principle. It is important to develop an
approach to high-energy baryon interaction that combines known general features of inclusive
processes with the properties of the topological expansion of QCD. For this purpose, it is
useful to refer to an approach to high energy multi-hadron production processes proposed
long time ago by Feynman and Wilson.

In the early seventies, after Feynman’s introduction of the concept of inclusive reac-
tions [14] (see also [15]) and his rediscovery of the Amati-Fubini-Stanghellini scaling in the
multiperipheral model [16] (see also [17]), Feynman himself and Ken Wilson ([18] and private
communication cited therein) introduced an interesting analog model of multiparticle interac-
tions assimilating the generating function(al) of inclusive cross sections to the grand-canonical
partition function of a gas in a finite volume.

One obstacle encountered in the Feynman-Wilson-gas (FWG) formulation was to define
and isolate the kind of inclusive cross section (including the simplest of them, the total cross
section) to which the FWG formulation could be applied. In particular, ref. [18] argues
that diffractive processes (diffractive scattering and dissociation) should be taken out before
defining the gas analog and its properties.

Large-N expansions, either in the context of the hadronic string or of QCD, can help
precisely in formulating the FWG model on a much firmer theoretical basis. However, since
multiparticle production is an essential element of the FWG model, the large-Nc expansion
by ’t Hooft [19], in which quark loops are suppressed, cannot be used. Rather, one can
appeal to the topological expansion (TE) formulated by one of us, either in the context
of the dual resonance model [13] or, even better, of QCD [20], where the large-N limit is
taken at fixed Nf /Nc. Also instrumental for justifying some assumptions is the use of the
Mueller-Kancheli approach [8, 9] to compute the high-energy behavior of inclusive cross
sections through appropriately generalized optical theorems.
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The plan of the paper is as follows. In section 2 we concentrate our attention on the planar
approximation and its non-linear, exact bootstrap constraints, obtaining a relation between
the qq̄ leading Reggeon intercept and the “pressure” of a one-species FWG. In section 3 we turn
our attention to the cylinder topology which is supposed to describe the bare soft Pomeron
appearing at the next to leading order in the TE. Its description is in terms of a two-species
FWG. We are thus able to connect the distance of the Pomeron intercept αP from 1 to the cross
correlations between the two species. In section 4 we move to the case of BB̄ annihilation into
mesons which is suitably described in terms of a three-species FWG. We provide estimates of
the intercepts of Regge trajectories corresponding to mesons with a junction-antijunction pair
that control different inclusive annihilation cross sections. In section 5 we use the estimated
J0 Regge trajectory to predict the spectrum of J0 glueballs that can be looked for in lattice
QCD calculations and we propose an expression of the glueball operator that can be used for
that purpose. Section 6 discusses the main observable consequences of our framework: it deals
first, separately, with flavor and baryon-number transport in various processes (meson-meson,
meson-baryon, baryon-baryon, baryon-antibaryon scattering), it then extends the treatment
to the combined flavor-baryon-number rapidity distribution, and finally ends with a discussion
of the inclusive distribution of BB̄ pair production, as a function of their relative rapidity.
In section 7 we propose several independent experimental tests to further examine the role
of baryon junctions in high-energy processes. In appendix A we outline (our understanding
of) the FWG model in the case of inclusive cross sections as functions of rapidity (i.e. after
having integrated over the transverse phase space).

2 The planar Feynman-Wilson gas (FWG) and the Reggeon intercept

In the planar limit for meson-meson scattering the FWG model consists of just one species of
mesons for which one can define the grand-canonical partition function

Σpl(z) = 1
σpl

t

∑
n≥2

znσpl
n ⇒ Σpl(1) = 1 (2.1)

where we have normalized the individual exclusive cross sections σpl
n to the total planar cross

section σpl
t and we omitted to indicate that all these quantities depend on the center-of-mass

energy
√

s. Assuming short-range correlations we may also write (see appendix A):

Σpl(z) ≡ exp (Y p(z)) = exp

Y
∑
m≥1

cm
(z − 1)m

m!

 ;

p(1) = 0, p′(1)Y = c1Y = ⟨n⟩, p′′(1)Y = c2Y = ⟨n(n − 1)⟩ − ⟨n⟩2,

p′′′(1)Y = c3Y = ⟨n(n − 1)(n − 2)⟩ − ⟨n⟩3 − 3c1c2Y 2,

p′′′′(1)Y = c4Y = ⟨n(n − 1)(n − 2)(n − 3)⟩ − ⟨n⟩4 − 6c2
1c2Y 3 − 4c1c3Y 2 − 3c2

2Y 2, . . .

where p(z) plays the role of the pressure,4 as a function of fugacity z, and Y ∼ log(s/⟨p2
⊥⟩)

is the rapidity (i.e. after having integrated over the transverse momenta, assumed to be
4As explained in appendix A, p(z) is insensitive to any Y -independent prefactor needed to make Σ approach

a finite limit as z → 0. Also, we will only be interested in pressure differences which do not depend on the
overall normalization of Σpl. This is why our pressure goes to zero at z = 1 while in a real gas it would make
more sense to have it vanish at z = 0.
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MM -planar MM -cylinder BB̄-annihilation
σpl

excl ∼ s2αR−2 σann
excl ∼ s2αB−2

σcyl(n, 0) ∼ sαR−1 σann(n1, 0, 0) ∼ sαJ4−1

σann(n1, n2, 0) ∼ sαJ2−1

σpl
t ∼ sαR−1 σcyl

t ∼ sαP−1 σann
t = σann(n1, n2, n3) ∼ sαJ0−1

Table 1. Leading Regge behavior of cross-sections in different processes.
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b b
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R

Figure 2. From left to right: optical theorem for the total planar cross section
∑

X σ(a + b → X)
and its high-energy limit described by the leading qq̄ Regge-pole exchange.

strongly cut-off) “volume” occupied by the gas. It is a crucial fact, implied by Regge-
pole factorization/dominance, that in (2.1) a single power of Y can be factored out, which
corresponds to the assumption of short range correlations.

From standard Regge-pole dominance at high energy (see table 1), and from the planar
optical theorem (see figure 2), it follows that, as z → 0:

Σpl(z) → σpl
excl

σpl
t

∼ sαR−1 ⇒ −p(0) = 1 − αR(0) =
∑
m

cm
(−1)m+1

m! = ⟨n⟩
Y

− c2
2 + . . . (2.2)

This planar bootstrap result connects the Reggeon intercept to multiparticle correlations. In
the case of vanishing correlations (i.e. of a Poisson distribution) one recovers a very old result
by Chew and Pignotti [21] based on the simplest multiperipheral model, namely

αR(0) = 1 − ⟨n⟩
Y

(2.3)

Hereafter, to simplify the notation, we will just indicate by αi the intercept αi(0) of a
generic Regge trajectory.

3 FWG at the cylinder level

At the cylinder level the FWG consists of two species that we shall call “right”(R) and “left”
(L) according to the picture in figure 3. We define accordingly:

Σcyl(zR, zL) = 1
σcyl

t

∑
nR+nL≥2

znR
R znL

L σcyl(nR, nL) ⇒ Σcyl(1, 1) = 1 (3.1)

where we chose to normalize the individual exclusive cross-sections σcyl(nR, nL) by the total
cylinder cross-section σcyl

t . Assuming short-range correlations we now have, in place of (2.2):

– 5 –
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Figure 3. Total cylinder cross section seen as a two-species FWG and its high energy limit described
by the (bare) Pomeron exchange.

Σcyl(zR, zL) ≡ exp (Y p(zR, zL)) = exp

Y
∑

mR+mL≥1
c(mR, mL)(zR − 1)mR(zL − 1)mL

mR!mL!

 ;

c(1, 0)Y = ⟨nR⟩, c(0, 1)Y = ⟨nL⟩ , c(1, 1)Y = ⟨nRnL⟩ − ⟨nR⟩⟨nL⟩ , . . . (3.2)

It is convenient to separate out in (3.2) the terms with nR = 0 and nL = 0 and write:

p(zR, zL) = pR(zR) + pL(zL) + CRL(zR, zL)

pR(zR) =
∑

mR≥1
c(mR, 0)(zR − 1)mR

mR! , pL(zL) =
∑

mL≥1
c(mL, 0)(zL − 1)mL

mL!

CRL(zR, zL) =
∑

mR,mL≥1
c(mR, mL)(zR − 1)mR(zL − 1)mL

mR!mL! (3.3)

One readily finds

p(1, 1) = pR(1) = pL(1) = CRL(1, zL) = CRL(zR, 1) = 0 . (3.4)

3.1 The Pomeron intercept

In order to express the (bare)-Pomeron intercept αP in terms of the Reggeon intercept αR
and the above correlators we note that

p(1, 0) + p(0, 1) − p(0, 0) + CRL(0, 0) = 0 , (3.5)

where we have used the equations (3.3) as well as the relations in (3.4). On the other
hand, recalling the results summarized in table 1, we have p(1, 0) = p(0, 1) = αR − αP while
p(0, 0) = 2αR − 1 − αP. Inserting these values in (3.5) gives

0 = 2(αR − αP) − (2αR − 1 − αP) + CRL(0, 0), i.e. (3.6)

αP = 1 + CRL(0, 0) = 1 +
∑

mR,mL≥1

c(mR, mL)
mR!mL! (−1)mR+mL = 1 + ⟨nRnL⟩ − ⟨nR⟩⟨nL⟩

Y
+ . . .

– 6 –
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The last equation reproduces the claim of [12] yielding a unit intercept for the (bare) Pomeron
when R−L correlations are negligible (so that the total pressure is the sum of the pressures of
the two species according to Dalton’s law)5 and extends it to the case in which they are not.

Comparing the Regge behavior of σexcl, σpl
t and σcyl

t , we can say that sαR−αP =
exp(−Y (αP − αR)) is the price one has to pay for a valence quark (and its corresponding
flavor) to be exchanged between the two initial mesons. An additional price exp(−Y (1−αR))
has to be paid if one exchanges a valence quark both in the initial and in the final state,
which is what occurs in the 2 → 2 exclusive cross section.

In the following we shall assume |CRL(0, 0)| ≪ |p(1, 0)| ∼ 1 which leads directly to
|αP − 1| ≪ 1. Phenomenologically, the Pomeron intercept is (αP − 1) = 0.08 ± 0.01 [11].
Justifications for a small value of the R − L correlator can be given using both dynamical
and diagrammatic arguments. The short-range correlators within a single species are due, to
a large extent, to the fact that the final stable particles very often result from the decay of
resonances. However, the most prominent qq̄ resonances can only occur in planar channels
involving sets of “adjacent” (w.r.t. the planar diagram ordering) final particles. No such
resonances can appear in “mixed” channels, i.e. those containing final particles of both species.
The (not completely unrelated) diagrammatic argument consists of the observation that final
particles belonging to different species are far away in high order Feynman diagrams that
dominate the large distance QCD dynamics. Thus, intuitively, their momentum distributions
should be weakly correlated. We can rephrase this last observation by saying that the two
excited strings resulting from having separated two qq̄ pairs in momentum and position phase
space should fragment independently. These consideration will also apply to the processes
discussed in the forthcoming sections.

4 Feynman-Wilson gas with baryons

In this section we discuss processes with either one or two (anti)baryons in the initial state.
For pedagogical reasons it is easier to describe first the process BB̄ → mesons. We will
then see that quantities related to that process also appear in other contexts, including
baryon transport in meson-baryon scattering, baryon transport in BB and BB̄ scattering,
and BB̄ pair creation in generic processes.

4.1 FWG for baryon-antibaryon annihilation

We will discuss the physically relevant case with Nc = 3 and for now, as explained in the
introduction, limit our considerations to diagrams with the simplest topology consistent with
the picture of baryons as a Mercedes star with quarks at the ends and the three (Nc = 3)
Wilson lines joining in a point (junction) to make a gauge invariant operator. This structure,
developed in ref. [1] as a natural extension of the notion of topological expansion in the
presence of baryons, was corroborated by the results of ref. [3].

In that approximation the FWG for BB̄ → mesons consists of a gas with three distinct
species (associated with each “page” of the baryon “book” topology), so that, in analogy

5The prediction αP = 1 was also derived by H. Lee [22] under the stronger assumption of no correlations
even within each species.

– 7 –
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with (3.1), we define:

Σann(z1, z2, z3) = 1
σann

t

∑
n1+n2+n3≥2

zn1
1 zn2

2 zn3
3 σann(n1, n2, n3) ⇒ Σann(1, 1, 1) = 1 (4.1)

where σann
t is the total annihilation cross section. With a straightforward generalization

of (3.2) we rewrite Equation (4.1) in the form:

Σann(z1, z2, z3) ≡ eY p(z1,z2,z3) =

= exp

Y
∑

m1+m2+m3≥1
c(m1, m2, m3)(z1 − 1)m1(z2 − 1)m2(z3 − 1)m3

m1!m2!m3!

 (4.2)

and then split p(z1, z2, z3) in terms of correlations with one species, two species and all
the three species:

p(z1, z2, z3) = p1(z1) + p2(z2) + p3(z3) + C12(z1, z2) + C13(z1, z3) + C23(z2, z3)
+C123(z1, z2, z3),

pi(zi) =
∑

mi≥1
c(mi, 0, 0)(zi − 1)mi

mi!
, i = 1, 2, 3

C12(z1, z2) =
∑

m1,m2≥1
c(m1, m2, 0)(z1 − 1)m1(z2 − 1)m2

m1!m2! ; + cyclic

C123(z1, z2, z3) =
∑

m1,m2,m3≥1
c(m1, m2, m3)(z1 − 1)m1(z2 − 1)m2(z3 − 1)m3

m1!m2!m3! (4.3)

Three equations come out of (4.3) after using pi(1) = Cij(1, zj) = C123(1, zj , zk) = 0, namely

p(1, 1, 0) − pann(0) = 0;
0 = p(1, 1, 0) + cycl − p(1, 0, 0) − cycl + p(0, 0, 0) − C123(0, 0, 0);
0 = p(1, 0, 0) + cycl − 2p(0, 0, 0) +

∑
ij

Cij(0, 0) + 2C123(0, 0, 0) (4.4)

where we have defined pi(0) = pann(0). Equations (4.4) then lead to the following relations
among the different intercepts relevant to BB̄ annihilation (see figure 4 and table 1):

αJ0 − αJ2 = −pann(0);
αJ0 − (2αB − 1) = 3(αJ2 − αJ4) − C3(0, 0, 0);

(αJ0 − αJ4) = 2(αJ0 − αJ2) − C2(0, 0) (4.5)

These relations, illustrated in figure 5, show how the equal splitting of the intercepts gets
broken by the two and three-species correlations. However, without further input, they simply
give the three intercepts αJ0 , αJ2 , αJ4 in terms of the (known) value αB ∼ 0 and the three
unknown parameters pann(0), Cij(0, 0) and C123(0, 0, 0). In the following and in the figures
we will simplify notations and write Cij(0, 0) ≡ C2, C3(0, 0, 0) ≡ C3.

An interesting open question is whether one can relate the jumps in pressure at the
cylinder or planar level to those encountered in BB̄ annihilation. In the case in which
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Figure 4. First two pictures from the left: total BB̄ annihilation cross section and the Regge-pole J0
controlling its high-energy limit. Last two pictures: BB̄ annihilation cross section with a s-channel qq̄

annihilation and the Regge-pole J2 controlling its high-energy limit.

JJ̄ states

(c)
2αB − 1

αJ4

αJ2

αJ0

−pann(0)

−pann(0)− C2

−pann(0)− 2C2 − C3

Glueballs

(b)

−pcyl(0)

2αR − 1

αR

αP

−pcyl(0)− CR/L(0, 0)

qq̄ states

(a)

2αR − 1

αR

−ppl(0)

Figure 5. Intercepts of the Regge poles controlling the different cross sections discussed in sections 2
and 3. The same intercepts will appear in the rapidity dependence of flavor and baryon-number
transport discussed in section 6. In this figure for uniformity we have introduced the following
notations. We have denoted by ppl(0) the “planar” pressure p(0) defined in Equation (2.2), by pcyl(0)
the “cylinder” pressure pL(0) = pR(0) defined in Equation (3.3) and by pann(0) the pressure pi(0)
defined in Equation (4.3).

inter-species correlations are neglected it is reasonable to assume that they are all the same
and this leads to the predictions made in [1]. However, in the presence of inter-species
correlations there is some ambiguity on how to connect the pressures in different processes.

One possibility is to identify pann(0) in (4.4) with the individual pressure at the cylinder
level, pcyl(0) = αR − αP, defined in figure 5, and C2 of (4.3) with CRL(0, 0) in (3.3) i.e. with
(αP − 1). In this case we predict:

αJ4 = (2αB − 1) + (1 − αP) + (1 − αR) − C3 ∼ −0.5 − CRL − C3

αJ2 = (2αB − 1) + (1 − αP) + 2(1 − αR) − C3 ∼ 0 − CRL − C3

αJ0 = (2αB − 1) + 3(1 − αR) − C3 ∼ 0.5 − C3 (4.6)

Interestingly, with this identification the value of αJ0 turns out to be the same as the original
one [1] up to the three-species correlation C3. It is reasonable to expect that such high-order
correlation is even smaller than CRL ∼ (αP − 1).

Another possibility is to identify pann(0) in (4.4) with the pressure at the planar level,
p(0) in (2.2) i.e. with αR − 1 ∼ −0.5 while still associating C2 with (αP − 1). In this case
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we would predict instead of eq. (4.6):

αJ4 = (2αB − 1) + 2(1 − αP) + (1 − αR) − C3 ∼ −0.5 − 2CRL − C3

αJ2 = (2αB − 1) + 3(1 − αP) + 2(1 − αR) − C3 ∼ 0 − 3CRL − C3

αJ0 = (2αB − 1) + 3(1 − αP) + 3(1 − αR) − C3 ∼ 0.5 − 3CRL − C3 (4.7)

The data favors this option; if we take CRL = 0.08, and C3 = 0, we reproduce the data.
Indeed, we get αJ0 ≃ 0.26 yielding the beam rapidity dependence e(αJ0 +αP−2)Y/2 = e−0.66 Y/2

in eq. (1.4), to be compared to the STAR experimental result e−0.65 Y/2 [10].
Note that if the CRL and C3 correlations were negligible, the two predictions outlined

above in eq. (4.6) and eq. (4.7) would agree and give back the original estimates of [1].

5 Regge trajectories and spectra of the junction-antijunction glueballs

Here we will try to relate the J0 trajectory to the spectroscopy of potential junction-
antijunction glueballs. We will assume the usual linear Regge trajectory

α(M2) = α(0) + α′M2, (5.1)

relating the spin and mass of hadrons on the trajectory. Thus, the intercept α(0) can
be extracted if one knows the spin and mass of any particle on the trajectory, as well as
the slope α′.

The QCD operator corresponding to the junction-antijunction J0 glueball is given by
a contraction of three Wilson lines [1] (see eq. (1.1)):

GJJ̄(x, y) = ϵijkϵi′j′k′ [U(C1(x, y))]i′
i [U(C2(x, y))]j

′

j [U(C3(x, y))]k′
k , (5.2)

where the integrations are along three different paths, C1, C2 and C3. Note that this operator
does not go into ± itself under charge conjugation C. Indeed it goes to a similar operator
where junction and antijunction are exchanged and, at the same time, the directions of the
three Wilson lines are reversed. On the other hand it is clear that the new state has the same
mass spectrum as the original one because QCD respects C-invariance.6 The above argument
suggests that the J0 Regge pole actually corresponds to two degenerate C-related Regge poles
of opposite signature, denoted by fJ

0 and ωJ
0 in ref. [1]. Their degeneracy ensures that they

combine to give a purely real amplitude in BB scattering corresponding to the absence of an
annihilation channel there. Obviously this degeneracy will be lifted if the two C-eigenstates
mix with other states with the same C, such as P for fJ

0 and ω for ωJ
0 . However, this mixing

should be suppressed by the JOZI rule (see [5] for a discussion of the JOZI rule).
Let us see how the C parity of the J0 states can be described in a perturbative language.

We will start by performing the expansion of the operator (5.2) up to the 2-gluon order,
O(g2). With each Wilson line expanded to 0, 1 or 2 orders the following contributions
are present in the expansion:

• O(g) ×O(g) ×O(1) : Ggg1 = g2 tr
(∫

C1
A
∫

C2
A + 2 permutations

)
6Under C the states J2 and J4 get transformed into their antiparticles.
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Figure 6. A possible lattice operator that can be used to search for the J0 glueball. The color is
antisymmetrized at each of the junctions. Directions on the lattice are introduced in accordance with
eq. (5.3).

• O(g2) ×O(1) ×O(1) : Gg211 = −g2 tr
(
P (
∫

C1
A)2 + 2 permutations

)
.

Here we used the shorthand notation:∫
C1

A ≡
∫

C1(x,y)
dzµAµ(z); P

(∫
C1

A

)2
≡
∫

C1(x,y)
dzµAµ(z)

∫
C1(x,z)

dz′νAν(z′).

Under the C-conjugation the gluon field (which is a SU(3) matrix) transforms like
A → −AT as can be seen from its coupling to the quark fields in the QCD Lagrangian.7
Therefore, both terms in the 2-gluon expansion are C-even.

Let us now discuss the properties of the corresponding Regge trajectories. The 2-gluon
state in the S-wave (corresponding to the lowest-lying state on the Regge trajectory) is
P-even. Since we are interested in the leading J0 Regge trajectory, we need to identify the
S-wave two gluon state with the highest spin. This is a spin 2 state.

A glueball state with JPC = 2++ was reported in a quenched lattice calculation [23].
Even though it has the right quantum numbers, we do not expect it to be a J0 glueball since
the operator used in the computation did not include the junction-antijunction color structure.
We thus propose to perform a lattice calculation of the J0 masses using, for instance, the
operator (5.2) with the three paths as depicted in figure 6:

OJ0 = ϵi1j1k1U i1
i2

(x, µ̂)U i2
i3

(x + µ̂, ν̂)U i3
i4

(x + µ̂ + ν̂, λ̂)U j1
j2

(x, ν̂)U j2
j3

(x + ν̂, λ̂)
U j3

j4
(x + ν̂ + λ̂, µ̂)Uk1

k2
(x, λ̂)Uk2

k3
(x + λ̂, µ̂)Uk3

k4
(x + λ̂ + µ̂, ν̂)ϵi4j4k4 , (5.3)

where U i
j(x, µ̂) denotes a gauge link operator originating at point x in the direction µ̂, see

figure 6 for notations.
7Since C-conjugation acts on the fermion field as CψC = −i(ψ̄γ0γ2)T , Cψ̄C = −i(γ0γ2ψ)T , the transfor-

mation CAi
µjC = −Aj

µi ensures that the quark-gluon interaction term in the QCD Lagrangian is invariant
under C:

Cψ̄iγ
µAi

µjψ
jC = Aj

µi(γ
0γ2ψi)T γµ(ψ̄jγ

0γ2)T = −Aj
µiψ̄jγ

0γ2(γµ)T γ0γ2ψi = Aj
µiψ̄jγ

µψi.
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Figure 7. Leading J0 Regge trajectories corresponding to the various values of the intercept. The
predicted mass range of spin-two and spin-three glueballs is highlighted.

To predict the mass of the JPC = 2++ J0 glueballs, we need to know the slope of the J0
Regge trajectory. One can relate this slope to the slope of the Pomeron trajectory. Since the
Pomeron exchange corresponds to a closed string, we can estimate the J0 trajectory slope to be

α′
J0 ≃ 2

3α′
P ≃ 0.10 − 0.17 GeV−2, (5.4)

where the numerical value is obtained by using the Pomeron slope in the range α′
P ≃ 0.15 −

0.25 GeV−2 corresponding to various estimates [11, 24]. Using the intercept of the leading J0
Regge trajectory αJ0 ≃ 0.25 − 0.5, we obtain the prediction for the JPC = 2++ J0 glueball
mass in the range of MJ0 = 3.0− 4.1 GeV. These values of the mass are highlighted in figure 7
together with the Regge trajectories constraining the mass range as discussed above.

It is also instructive to repeat this analysis in the case of the 3-gluon terms in the
expansion of (5.2). One obtains the following O(g3) terms:

• O(g) ×O(g) ×O(g) : Gggg = −i g3 tr
(∫

C1
A
∫

C2
A
∫

C3
A +

∫
C1

A
∫

C3
A
∫

C2
A
)
,

• O(g2) ×O(g) ×O(1) : Gg2g1 = i g3

2 tr
(
P (
∫

C1
A)2 ∫

C2
A + 5 permutations

)
,

• O(g3) ×O(1) ×O(1) : Gg311 = − i g3

3 tr
(
P (
∫

C1
A)3 + P (

∫
C2

A)3 + P (
∫

C3
A)3

)
,

where the following additional notation was introduced:

P

(∫
C1

A

)3
≡
∫

C1(x,y)
dzµAµ(z)

∫
C1(x,z)

dz′νAν(z′)
∫

C1(x,z′)
dz′′λAλ(z′′).
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Along the lines of the previous C-parity discussion, the Gggg term is C-odd. Indeed, it is
easy to see that the operator Gggg includes only terms containing the symmetric structure
constants, dabc ∝ tr(λaλbλc + λaλcλb). Such symmetric 3-gluon combinations are indeed
C-odd, see e.g. [25]. On the other hand, Gg2g1 and Gg311 are a mixture of C-even and C-
odd operators because under C-conjugation P (

∫
C1

A)n → (−1)nP̄ (
∫

C1
A)n, where P̄ denotes

inverse path-ordering.
The 3-gluon state in the S-wave is P-odd, therefore the highest-spin 3-gluon component

of the J0 can be JPC = 3−− and JPC = 3−+. Estimate for the masses of these glueballs
similar to those provided by eq. (5.4) yield values that fall in the range of 3.8 − 5.2 GeV
as displayed in figure 7.

The large uncertainty in the range of J0 glueball masses thus predicted is mainly due
to the uncertainty of the Pomeron trajectory slope (5.4) that we use to estimate the slope
of the J0 trajectory. In section 7 we suggest a way to extract the slope of the J0 trajectory
directly from doubly-diffractive baryon-antibaryon pair creation in pp or ep collisions. Such
a measurement would allow to further narrow down the range of the glueball masses that
we expect to be found in the lattice simulations.

6 Transport of flavor and baryon number

In this section we extend the arguments of the previous sections to the study of inclusive
spectra as a function of rapidity (i.e. after integration over the transverse momenta). The
main point we wish to make is that, in the topological expansion approach, flavor and baryon
number transport over large rapidity intervals are very weakly correlated. Furthermore, the
exponents that control the exponential decay of the various inclusive cross sections as a
function of rapidity intervals are not independent and the relations between them can be
predicted theoretically and checked against the data.

The tools that we will employ in this part of the paper are those discussed in the
sections 2, 3 and 4 up to two important extensions:

• We shall need the more detailed description of the inclusive cross sections. This could
in principle include information about the transverse momenta of the detected final
particles but for our purposes it will be sufficient to discuss distributions in rapidity
y i.e. after integration over the (assumed strongly cut-off) transverse momenta, see
appendix A for details. We will therefore deal with single particle distribution of the
type:

ρ(yf ) = 1
σcyl

t

dσcyl(1 + 2 → yf + X)
dyf

(6.1)

and with their generalization to the multiparticle distributions defined in appendix A.

• We will also use Mueller and Kancheli’s extension [8, 9] of the optical theorem and
Regge pole analysis to evaluate the inclusive cross sections.

We stress again that, as in the previous sections, all this will be done in the context of
the TE of QCD [20].
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Figure 8. Flavor transport in rapidity in MM scattering and its corresponding Mueller-Kancheli
diagram leading to (6.2).

6.1 Quark/flavor transport in meson-meson scattering

Let us first consider, at the bare-Pomeron level, the rapidity dependence of quark transport
from the fragmentation regions y ∼ ±Y/2 to some y such that | ± Y/2 − y| ≫ 1. If the
valence quark to be transported is the one initially at y ∼ Y/2, one can analyze the single
particle distribution (6.1) using the Mueller-Kancheli generalized optical theorem [8, 9].

The Mueller-Kancheli diagram describing this inclusive cross section is dominated by
the leading qq̄ Regge trajectory from y = Y/2 down to y = yf and by the bare-Pomeron
pole from y = yf to y = −Y/2 (see right panel in figure 8). In drawing the Mueller-Kancheli
diagram we use the convention of showing in each t = 0 channel, the quark and or junction
lines that flow through the corresponding rapidity gap.

For instance, in figure 8 we are considering the regime: | ± Y/2 − yf | ≫ 1. If the valence
quark to be transported is initially at y ∼ Y/2 then the leading trajectory in the interval
[Y/2 − yf ] contains a qq̄ pair whereas the trajectory determining the leading behaviour at
large [yf + Y/2] is the vacuum (Pomeron) trajectory. As a result one predicts the single
particle distribution (6.1) to behave as

ρ(yf ) ∼ exp(−Y αP) exp(∆y αR) exp((Y − ∆y)αP)
= exp(−∆y(αP − αR)); ∆y ≡ (Y/2 − yf ) (6.2)

where the first exponential comes from the normalization factor σcyl
t in the definition (6.1).

In analogy with what we discussed at the end of section 3.1 we see that the price to be paid
for transporting a quark from y = Y/2 to y = yf is given by (recall the second line of eq. (3.6))

exp(−|Y/2 − yf |(αP − αR)) = exp(−|Y/2 − yf |(1 + CRL(0, 0) − αR)) (6.3)

In the liming case in which yf = −Y/2 we recover the penalty exp(−Y (αP − αR)) discussed
in section 3.1 for annihilating a quark between the two initial mesons. Furthermore, one
expects quark transport to be accompanied by a reduced multiplicity (by about a factor 2)
in the rapidity interval [Y/2 − yf ] compared to the complementary interval [yf − (−Y/2)],
because in one case we cut a Reggeon/plane and in the other a Pomeron/cylinder.
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It is interesting theoretically to discuss the total transfer in rapidity of a given conserved
flavor Q(i) (i = u, d, s, . . . ) carried by the initial mesons. In order to compute such a quantity
we would have to sum the contribution to Q(i) coming from each individual meson’s inclusive
cross section. This is quite a hard task that we leave to further investigations. However,
we can use some sort of completeness argument (often used in jet-physics or heavy quark
fragmentation) to connect directly the rapidity distribution of the valence quark in the final
state as tracing the total transfer of the particular charge it carries. The idea is that somehow
that charge will have to be deposited in some meson sitting at the quark’s rapidity.

With this proviso, we can readily give the (Y, yf ) dependence of the charge distribution in
the final state in a form similar to the one given in eq. (1.4) for the baryon-number distribution:

dQ(i)

dyf
∝ e(αi+αP−2)Y/2[giae(αP−αi)yf + gibe

(αi−αP)yf ], (6.4)

where αi stands for (the intercept of) the leading qiq̄i trajectory (αi = αρ for i = u, d; αi = αϕ

for i = s, . . . ) and gia, gib are the couplings of that trajectory to the two initial particles.
Note that, unlike the case of the inclusive single particle cross section (6.2), we are not
normalizing the distribution to the total cylinder cross section.

One can consider linear combinations of the above expressions in order to describe, for
instance, the transport of electric-charge Q ∼ 2

3Q(u) − 1
3Q(d) − 1

3Q(s) that can be directly
measured in experiment. On the other hand is easy to check that no net charge transport
occurs for the combination B ≡ 1

3
∑

i Q(i)corresponding to baryon number. For this to happen
one needs at least one baryon in the initial state as discussed in the following sub-sections.

6.2 Baryon and flavor transport in meson-baryon scattering

The case of meson-baryon scattering is very similar to the one of meson-meson scattering
as far as flavor transport is concerned. In particular, eqs. ((6.2)), (6.4) are still valid. The
process is analogous to the one shown in figure 8 with particle a being now a baryon.

However, a new feature now appears, namely baryon-number transport. In other words,
if we fix the initial baryon’s rapidity to be +Y/2, we can ask what is the inclusive rapidity
distribution of a final baryon sitting at some yf . Proceeding in analogy with our treatment
of conserved-charge transfer in meson-meson scattering we may first consider the inclusive
cross section for a given final baryon and get, in analogy with ((6.2)),

ρB(yf ) ∼ exp[−|Y/2 − yf |(αP − αJ0)] ∼ exp(−0.82 |Y/2 − yf |), (6.5)

where we have used the value of αJ0 from eq. (4.7). The corresponding Mueller-Kancheli
diagram is shown in figure 9.

As in the case of flavor transport in meson-meson scattering we can consider the “super-
inclusive” baryon-number distribution, i.e. summed over the individual single baryons. The
resulting distribution (not normalized to the total cross section) will have the following
rapidity dependence:

dN

dyf
∝ e(αJ0 +αP−2)Y/2e(αP−αJ0 )yf , (6.6)
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Figure 9. Baryon-number (without valence quarks) transport in MB scattering and its corresponding
Mueller-Kancheli diagram leading to equation (6.5).

with much similarity with eq. (1.4).
Quite exceptionally, one or more of the initial quarks may end up in the final baryon.

The corresponding rapidity distribution would be dominated by the J2 and J4 trajectories
according to

ρB(yf ) ∼ exp[−|Y/2 − yf |(αP − αJ2)],
ρB(yf ) ∼ exp[−|Y/2 − yf |(αP − αJ4)], (6.7)

for one and two transported quarks, respectively. We postpone the discussion of joint
baryon-number-charge transfer to the case of baryon-baryon scattering presented in the
following subsection.

6.3 Baryon and flavor transport in baryon-(anti)baryon scattering

We now move to baryon-(anti)baryon scattering which, together with its extension to heavy-
ion collisions, is of course the most interesting case. The difference with respect to the
MB case discussed in the previous subsection is that we now have either two junctions or a
junction-antijunction pair in the initial state. We have already discussed, in section 4.1, the
case of BB̄ (i.e. junction-antijunction) annihilation. Here we will consider instead the case in
which the baryon-number connected with an initial junction (or antijunction) is transported
towards small rapidities. We will do so while still neglecting baryon-antibaryon pair creation,
a topic discussed at the end of this section.

As discussed in the previous subsection, the leading contribution will come from J0
exchange:

ρB(yf ) ∼ exp[−|Y/2 − yf |(αP − αJ0)] ∼ exp(−0.82|Y/2 − yf |). (6.8)
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Figure 10. Left panel: baryon-number (without flavor) transport in BB scattering via the junction of
B1 and its corresponding Mueller-Kancheli diagram. Right panel: the same but with baryon-number
transport via the junction of B2. The two contributions are added up in (6.9).
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Figure 11. Left panel: baryon-number plus one-quark transport from B1 and its corresponding
Mueller-Kancheli diagram leading to (6.10). Right panel: baryon-number transport from B1 together
with a one-quark-transport from B2 and its corresponding Mueller-Kancheli diagram leading to
eq. (6.11).

Actually, the only difference with respect to MB scattering is that now the transported
baryon number can come from either one of the two initial baryons. Therefore, a term with
Y/2 → −Y/2 has to be added to (6.8). The single-baryon inclusive cross section is thus

ρB(yf ) ∼ e−( Y
2 −yf )(αP−αJ0 ) + e−( Y

2 +yf )(αP−αJ0 ) = 2e−
Y
2 (αP−αJ0 ) cosh[y(αP − αJ0)] (6.9)

This situation is illustrated in figure 10. Once more it makes more sense, experimentally,
to trace baryon-number transport “super-inclusively” i.e. without reference to the specific
baryon detected in the final state. Arguing as in the cases of meson-meson and meson-baryon
scattering, eq. (6.9) leads precisely to eq. (1.4).

One may also consider the (unlikely) case in which the observed final baryon transports
to rapidity yf both the junction and one quark of B1. This will give

ρB(yf ) ∼ e−( Y
2 −yf )(αP−αJ2 ) (6.10)

as illustrated in figure 11 (left panel), while the case in which the observed baryon transports

– 17 –



J
H
E
P
0
7
(
2
0
2
4
)
2
6
2

the junction of B1 and one valence quark of B2, yields

ρB(yf ) ∼ e−( Y
2 −yf )(αP−αJ0 )e−( Y

2 +yf )(αP−αR) (6.11)

This case is illustrated in figure 11 (right panel). These processes are suppressed with respect
to J0 exchange (no valence quark transport), described by eq. (6.9).

6.4 Combined charge-baryon-number rapidity distribution

Let us finally come to the very interesting topic of the combined baryon-number/ charge
transport in baryon-baryon collisions, a quantity which is expected to neatly differentiate
between the junction and the valence-quark pictures for the tracing of baryon number. To
this purpose we have to consider a two-particle inclusive cross section or, even better, a joint
distribution of charge and baryon number. In the junction picture it is unlikely for one of the
initial junctions and one of the initial valence quarks to end up in the same baryon sitting
at small yf . Much more frequently, the valence quark will end up in a meson. Consider
then the combined baryon-number-charge distribution:

d2σ(B,Q)
dyBdyQ

≡ F(B,Q)(Y, yB, yQ) , (6.12)

as an extension of the separate flavor and baryon-number distributions discussed so far.
With arguments basically identical to those used for each separate distributions it is

straightforward to discuss the dependence of F(B,Q) both on the total rapidity Y and on
the rapidity differences |(±Y

2 − yB)|, |(±Y
2 − yQ)|, |yB − yQ| all taken to be sufficiently large.

The number of distinct cases is a bit larger than in the single-distribution case, but still
quite manageable. Up to a trivial exchange of the two incoming baryons, we can identify
four distinct cases whose Mueller-Kancheli diagrams are given in figures (12) and (13). The
corresponding distributions are given by:

F
(1)
(B,Q) ∝ e(αP+αJ2−2) Y

2 e(αR−αJ2 )yB e(αP−αR)yQ ,

F
(2)
(B,Q) ∝ e(αP+αJ2−2) Y

2 e(αJ0−αJ2 )yQ e(αP−αJ0 )yB ,

F
(3)
(B,Q) ∝ e(αR+αJ0−2) Y

2 e(αP−αR)yQ e(αJ0−αP)yB ,

F
(4)
(B,Q) ∝ e(αR+αJ0−2) Y

2 e(αJ0−αJ2 )yQ e(αJ2−αR)yB . (6.13)

As one can see from figures (12) and (13), the terms F
(1)
(B,Q) and F

(4)
(B,Q) contribute in the

case of the rapidity ordering −Y/2 < yQ < yB < Y/2 while F
(2)
(B,Q) and F

(3)
(B,Q) correspond to

the ordering −Y/2 < yB < yQ < Y/2. Of course, for a given yB, yQ all relevant contributions
(including those related by some trivial symmetry to the ones of figures (12) and (13)) have
to be included. Note that both J0 and J2 play an important role in the above formulae.
Therefore, if it is possible to measure those double rapidity distributions with sufficient
accuracy, one can extract not only the leading intercept αJ0 , but also αJ2 and thus check
the consistency of the framework.

Eq. (6.13) can be normalized by the total cross section σcyl
t ∼ e(αP−1)Y to yield the

combined flavor-baryon probability distributions of a kind similar to eq. (6.1):

ρ
(i)
(B,Q) ∝ e(1−αP)Y F

(i)
(B,Q). (6.14)
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(1)

Figure 12. Diagrams contributing to charge-baryon-number separation and the corresponding
Mueller-Kancheli diagram leading to the first of eqs. (6.13). The single quark and junction lines stand
for a sum over all the hadrons containing those lines.
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Figure 13. The Mueller-Kancheli diagrams leading, in the order, to the last three eqs. (6.13). The
single quark and junction lines stand for a sum over all the hadrons containing those lines.

Finally, we can consider the baryon-flavor correlation function:

C(B,Q)(Y, yB, yQ)) ≡
ρ(B,Q)(Y, yB, yQ)
ρB(yB) ρQ(yQ) − 1 , (6.15)

study its dependence upon the flavor-baryon separation ∆y ≡ |yB − yQ|, and contrast it with
expectations in the valence-quark picture. We have checked that this correlation quickly
vanishes as one increases ∆y while keeping |yB + yQ| small, but leave a detailed study of
this important topic to future work.

6.5 Rapidity distribution of BB̄-pair creation

We may finally turn to a process we have so far ignored (since it should only provide small
corrections for the cases we have previously considered) i.e. BB̄-pair production. This process
can be thought of as a process M∗M∗ → BB̄ + mesons in which the initial mesons are
off-shell and spacelike. The process occurs through the creation of a junction-antijunction
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Figure 14. B − B̄ pair creation and the corresponding Mueller-Kancheli diagram leading to (6.16).

pair (presumably from a purely gluonic process). As long as the pair is not much separated
in rapidity, this is a low-energy non-perturbative process we cannot say much about.

However, as one takes the pair to be well separated in rapidity, the two-particle (meaning
BB̄) distribution will fall off exponentially in |∆y|. The corresponding exponent is controlled
again by the intercept of JJ̄ trajectories. If we do not veto meson production in the rapidity
interval ∆y, αJ0 will provide the leading contribution for large |∆y|, giving

ρB,B̄(∆y) ∼ e−|∆y|(αP−αJ0 ) , (6.16)

with subleading contributions coming from αJ2 , αJ2 . If, instead, meson production is com-
pletely vetoed, the 2-baryon cut intercept (2αB − 1) will replace αJ0 in (6.16). The case
corresponding to (6.16) is illustrated in figure 14. We stress again that no new input is needed
in order to make these predictions. The universality and factorization of Regge poles ensures
that the same trajectories control the asymptotic behavior of different measurable processes.

Let us now come back to the question of the role of BB̄-pair production in determining
the physical Pomeron intercept discussed in section 3 where BB̄-pair production was not
included (although it is certainly in the data). It is quite obvious from figure 14 that from
a Mueller-Kancheli point of view adding BB̄-pair production will amount to introducing a
P− J0 coupling and mixing which will eventually renormalize upwards the Pomeron intercept.
This is allowed if we remember that J0 has a positive C, positive signature component which
will mix with the Pomeron and thus contribute equally to BB and BB̄ total cross sections.
However, this mixing should be suppressed by the JOZI rule.

7 Predictions and experimental tests

Our suggestions and predictions for experiment and lattice calculations can be summarized
as follows.
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Figure 15. Double-diffractive production of BB̄ pair that can be used to extract the slope of the J0
trajectory.

• The cleanest example of baryon-number — flavor separation is the stopping of Ω
hyperons in pp or ep collisions. Observing it would represent a clear signature of the
baryon-number — flavor separation phenomenon.

• At a more inclusive and quantitative level one should develop further the idea of
computing and measuring the joined charge-baryon-number rapidity distribution as a
function of their rapidity separation. This where the junction picture should drastically
differ from the conventional one associating the flow of baryon number to that of the
valence quarks.

• One needs to confirm the energy and rapidity dependence of single baryon stopping,
and extract the precise value of the slope of net baryon distribution in rapidity, at a
fixed energy of the pp collison, or in semi-inclusive deep-inelastic scattering [26].

• We suggest to measure the energy and rapidity dependences of double baryon stopping
in pp collisions. We expect that if the stopped baryons are close in rapidity, the rapidity
distribution of the pair is flat [6].

• It will be useful to measure the rapidity distribution of B̄B pairs, as a function of
rapidity separation between baryon and antibaryon. We expect that as a function of
rapidity difference ∆y between the baryon and antibaryon, the distribution will behave
as exp(−0.82 ∆y) at large ∆y due to the J0 exchange. The corresponding associated
hadron multiplicity (per unit rapidity) in the rapidity interval ∆y will be about 3/2 of
the average multiplicity in inclusive events. At smaller ∆y, J2 and J4 trajectories will
contribute, and provide terms proportional to exp(−1.32 ∆y) and exp(−1.74 ∆y), with
associated multiplicity densities that are about 1 and 1/2 of the inclusive multiplicity,
correspondingly.

• It would be very important to measure the slope of the J0 trajectory. One way of doing
so is measuring the double-diffractive production of a baryon-antibaryon pair, as shown
in figure 15. In a high-energy pp collision, this would amount to detecting a baryon
and an antibaryon at mid-rapidity that are separated by rapidity gaps from both of
the final-state protons (or their excited states). In this process, the JOZI rule will
suppress the contribution of two Pomerons that usually dominate the double-diffractive
processes, and enhance the Pomeron - J0 fusion amplitude, see figure 15. Measuring
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the double differential cross section of this process would thus allow to extract the slope
of the J0 trajectory.

• Based on our prediction of degenerate C-even and C-odd J0 trajectories we expect the
existence of a heavy tensor JPC = 2++ JJ̄ glueball with mass M ≃ 3.0 − 4.1 GeV,
which is heavier than the M ≃ 2.4 GeV tensor glueball measured on the lattice [23]. We
also predict JJ̄ glueballs with JPC = 3−+ and JPC = 3−− with masses in the range
3.8 − 5.2 GeV. We suggest using correlations of junction-carrying lattice operators, such
as the one in (5.3), in order to enhance the sensitivity to these new states.

In conclusion, the phenomenon of baryon-number-flavor separation points to the funda-
mental role played by the string junction in transporting the baryon number. It is important
to explore this fascinating QCD phenomenon further, both experimentally and theoretically.
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A Derivation of equation (2.2)

In order to justify our starting point (2.2) it is better to begin, as in [18], from more
differential (i.e. unintegrated) exclusive and inclusive cross sections and their generating
functionals. This will also be useful to describe rapidity distributions, as well as flavor and
baryon-number transport over large rapidity intervals. We shall then recover (2.2) upon
integration over phase space.

We define the generating functional of exclusive cross sections by:

Σ[z(x)] =
∑

n

∫ n∏
j=1

(dxjz(xj)) 1
σt

dσ(a + b → x1, x2 . . . xn)
dx1dx2 . . . dxn

(A.1)

where xj is a collective notation for the “coordinates” of the jth final particle (i.e. whatever
we want to measure about it: transverse momentum, rapidity, flavor, baryon number, etc.)
and dσ(x1, x2 . . . xn) denotes the corresponding n-particle differential exclusive cross section,
normalized to a suitably defined “total” cross section σt so that, by definition, Σ[z(x) = 1] = 1.

Clearly, individual exclusive differential cross section are given by partial functional
differentiation of Σ evaluated at z(x) = 0. Instead, the m-particle inclusive cross section:

ρm(x1, x2 . . . xm) = 1
σt

∑
X

dσ(a + b → x1, x2 . . . xm + X)
dx1dx2 . . . dxm

(A.2)

is given by an order m functional differentiation of Σ evaluated at z(x) = 1.
A standard cluster-decomposition argument expresses those inclusive differential cross

sections in terms of connected correlators defined via the expansion of:

log Σ[z(x)] =
∑
m

1
m!

∫ m∏
j=1

[dxj(z(xj) − 1)]cm(x1, x2 . . . xm) ≡ p[z(x)]V (A.3)
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around z(x) = 1. Σ, as defined in (A.1), is the analog of the grand-canonical partition
function in statistical mechanics, whose logarithm is identified with P V

kBT after having taken
a large-V thermodynamic limit.

In our context we may consider kBT to be fixed in terms of the average transverse
momentum of the final particles while in (A.3) V is a fixed “volume factor” associated with
the (log of the) total energy (see below) and p[z(x)] plays the role of the pressure. Since we
are interested in the high-energy limit, also in our case a large-V limit is understood. Indeed
it is important to define p[z(x)] as the coefficient of V in a large-V expansion of log Σ[z(x)] at
fixed z. This implies that p[z(x)] is insensitive to a V -independent (but possibly z-dependent)
rescaling of Σ. For instance, one may like to add a z−2 overall factor in order to make Σ
approach a finite limit for z → 0, without affecting p[z(x)].

The first few terms of the expansion give:

ρ1(x) = c1(x)
ρ2(x1, x2) = c1(x1)c1(x2) + c2(x1, x2)

ρ3(x1, x2, x3) = c1(x1)c1(x2)c1(x3) + c2(x1, x2)c1(x3) + perm. + c3(x1, x2, x3)
ρ4(x1, x2, x3, x4) = c1(x1)c1(x2)c1(x3)c1(x4) + c1(x1)c1(x2)c2(x3, x4) + perm.

+ c3(x1, x2, x3)c1(x4) + perm. + c2(x1, x2)c2(x3, x4) + perm.
+ c4(x1, x2, x3, x4) . . . (A.4)

Let us now comment on the relation between (A.4) and some equations in the main text.
The first point is that, on the basis of a Mueller-Kancheli analysis [8, 9] one can argue
that the correlators cm(x1, x2 . . . xm) are short range in the sense that they fall of rapidly
whenever any two subsets of the xi get separated by a large distance in rapidity. Assuming
also, that there is a finite transverse momentum cut off, integrating any cm over it arguments
will produce just single power of the total rapidity interval Y . This is to be contrasted
with the integral of total correlators ρm which will typically grow as Y m. So a term in the
expansion (A.4) of ρm with a number q of connected correlators c will give a contribution of
order Y q (this is how the various contributions are ordered in (A.4) ). The second observation
is the well known fact (see e.g. [27]) that the total integral of ρm gives the expectation value
⟨n(n − 1) . . . (n − m + 1)⟩ explaining why we get such factors in the integrated form (2.2)
of (A.4). We remark that the numerical coefficients appearing in (2.2) correspond exactly
to the number of distinct permutations of each structure appearing in (A.4).

The extension of this procedure to the case of several species is rather straightforward
and leads to results similar to those of (A.4). The main difference is that now we want to
distinguish correlation within one species from correlation among different species. Then
each term in the cluster decomposition will appear with the appropriate weight coming
from the number of distinct ways to group the particles in separate clusters within and
across different species.
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