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1 Introduction

Scattering amplitudes are of wide interest in high-energy physics for their close connection
to observables and for their remarkable mathematical properties. Their study has led to
new fascinating discoveries, some of which are not at all obvious from the perspective of
Lagrangians or Feynman rules. One prominent example of such unexpected structure is
the relation between Yang-Mills (YM) and gravity theories, originally identified by Kawai,
Lewellen and Tye (KLT) as a mapping from open to closed string amplitudes [1]. In its
low-energy limit, this relation enables the calculation of tree-level graviton amplitudes from
the product of two, arguably simpler, gluon amplitudes convoluted with a matrix of kinematic
functions dubbed the KLT kernel. The basis independence of these double-copy relations
relies on the low-energy limit of string monodromy relations.

It was later found by Bern, Carrasco and Johansson (BCJ) that the KLT relations are
linked to a color-kinematics (CK) duality [2]. In a nutshell, Yang-Mills amplitudes can be
organized as sums over trivalent graphs, dressed by color and kinematic (or BCJ) numerators
that share common structural properties. The color numerators are built from group-theory
tensors (such as structure constants) and therefore satisfy linear algebraic relations (such
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as the Jacobi identities). The kinematic numerators are functions of the momenta and
polarization vectors which can be chosen to fulfill exactly the same linear relations [2]. This
implies in particular the aforementioned low-energy limit of the string monodromy relations,
known as BCJ relations. Finding BCJ numerators is typically non-trivial, but methods exist
to derive them from known amplitudes [3–6], or to construct them directly [7–18]. The CK
duality then permits to recover the KLT relations in an alternative way, namely through the
replacement of color numerators by kinematic ones [19, 20]. The linear relations verified by
all numerators then promote gauge invariance to diffeomorphism invariance.

After its discovery in YM amplitudes, a CK duality was shown to also be present in
several other theories, including the non-linear sigma model (NLSM) [21–23], theories with
matter particles [24–31], and the cubic theory of a bi-adjoint scalar (BAS) [5] (see also [32–34]).
In the BAS theory, BCJ numerators are built out of group-theory structure constants only,
and amplitudes generate the aforementioned KLT kernel. Multiplying the numerators of
two theories featuring a CK duality generates a whole web of double-copy theories, some
of which are non-gravitational (see [35] for a recent review).

The NLSM is a non-renormalizable theory, showing that the double copy applies to
effective field theories (EFTs). This is further confirmed by the terms of higher mass
dimensions, i.e. of higher orders in α′, in the low-energy expansion of the original KLT
relations between open and closed string amplitudes. Higher α′ corrections appearing in the
KLT kernel correspond to EFT operators in the cubic bi-adjoint theory [36]. This motivates
the study of the double copy in EFTs. The KLT formulation of the double copy was explored
in this context and generalized in [37–42]. On the other hand, the CK duality has been
studied for higher-derivative corrections to YM theory [43, 44], and bootstrap approaches
towards gluon EFT numerators exist [45, 46]. More recently, the notion of CK duality was
generalized by considering numerators which contain both kinematic and color information,
including rules to build them for scalar particles [47–52]. For instance, these new numerators
are needed for a CK-dual approach to a scalar EFT known as Z theory, which plays a
prominent role in the double copies of field theories to type I/II superstring theories, where
it encodes all the necessary α′ corrections [53–56].

EFTs are defined up to a cutoff scale Λ above which a UV completion kicks in. Calculations
are then performed up to a fixed (E/Λ)n order, for some integer n depending on the required
precision and with E the characteristic energy of a process. As n increases, EFT operators of
higher dimensions can contribute and should be included. In a bottom-up approach, agnostic
about the underlying UV theory, the coefficients of different operators are all independent
(and determined by measurements). However, assumptions about the UV completion or,
for example, on the soft behavior of the amplitudes [57–60] typically correlate the operator
coefficients. Similarly, enforcing the CK duality also constrains the operators of a theory and
their coefficients. An infinite tower of higher-dimensional operators is for instance required
for the tree-level double-copy consistency, to all EFT orders, of a YM theory including the
dimension-six F 3 operator [43, 61, 62]. An elegant way to capture this tower is through the
(DF )2+YM theory [63], which has been shown to supplement the Z theory in the double
copies of field theories to bosonic and heterotic string theories [64]. For the NLSM and
other theories, the interplay between the double-copy consistency and soft behaviors has
also been studied in [60, 65, 66].
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Figure 1. Illustration of the covariant-color-kinematics map from GBAS to YM tree-level EFT
amplitudes, for towers of higher-dimensional operators satisfying the traditional color-kinematics
duality. The solid arrows represent the new flavor-kinematic replacement rule of eqs. (3.7), (4.18),
and (5.10). It yields the all-multiplicity amplitude relations of eq. (3.8) for YM at dimension six (red
arrow), of eq. (4.19) for YM at dimension eight (blue arrow), and the conjectured relation of eq. (5.11)
for the full EFT expansion of the (DF )2+YM theory (green arrow and beyond). The dashed arrows
involve the replacement rule previously identified by Cheung and Mangan [67] for one of the flavor
traces. Beyond the dimension-four single-trace order which they considered (upper dashed arrow),
it leads to intricate cancellations between different GBAS amplitudes (lower dashed arrows), which
originate in the relation displayed in eq. (4.25) between dimension-six single-trace GBAS amplitudes
and dimension-four double-trace ones. The latter are therefore sufficient to generate dimension-eight
YM amplitudes, as expressed in eq. (4.29). This is also generalized to higher dimensions and up to six
points in eq. (5.12).

A different but closely related duality between color and kinematics was exposed by
Cheung and Mangan [67] at the level of classical equations of motion (EOMs) instead of
amplitudes (see also [68–71] for related works). Writing the NLSM EOM in terms of the
chiral current and the YM EOM in terms of the field strength, they uncovered maps to the
EOM of the BAS theory and to that of its gauged variant (the GBAS theory), respectively.
This so-called covariant color-kinematics (CCK) duality was further demonstrated to relate
the color and kinematic algebras of the dual theories, as well as their conserved currents
and, most importantly for the present work, their tree-level scattering amplitudes [67]. These
can indeed be extracted from (the functional derivatives of) perturbative solutions to the
EOMs with sources, and are therefore subject to the CCK duality. New relations were
derived between NLSM/BAS amplitudes as well as between YM/GBAS ones (upper dashed
arrow in figure 1), through a replacement rule mapping flavor structures into kinematic
ones. Closed-form expressions for the BCJ numerators of the NLSM and YM theories at
any multiplicity were also established.

In this paper, we study how the CCK duality extends to EFTs.1 More precisely, we
consider EFT corrections of increasing mass dimension to the YM and GBAS theories. This

1Following a different approach, the CK duality in off-shell currents of the YM EFT was previously studied
in [72]. Furthermore, ref. [73] which appeared while we were completing our paper also studies Yang-Mills
numerators with higher-derivative corrections from an algebraic perspective.
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analysis leads to a set of new relations between the tree-level amplitudes of the GBAS and
YM EFTs. These relations are summarized below.

In the YM EFT, the first higher-dimensional operator we consider involves three field-
strength tensors, F 3. We show that the dimension-six EOM it induces is mapped to the EOMs
of the dimension-four GBAS theory, at the level of single flavor traces.2 With this extended
CCK duality at hand, we derive a relation between the tree-level amplitudes of the YM+F 3

and GBAS theories (solid red arrow in figure 1), which is realized by an additional replacement
rule for flavor structures in terms of kinematic factors. This result (as well as the ones below)
have been confirmed by comparison against explicit Feynman diagram calculations of the
relevant amplitudes. Interestingly, the same single-trace dimension-four GBAS amplitudes
which map to dimension-four YM amplitudes also encode dimension-six ones.

This mapping moreover allows us to derive a closed-form formula for the BCJ numerators
of the YM+F 3 theory, at dimension six and any multiplicity. These numerators are valid in
D space-time dimensions and are manifestly gauge invariant on all legs.

At dimension eight, we focus on the operators that satisfy the traditional CK duality.
We show that they lead to EOMs that are CCK-dual to those of a dimension-six extension of
the GBAS theory, which is obtained by the dimensional reduction of the YM+F 3 theory from
D+n to D dimensions. The duality requires a correlated treatment of single and double traces
of flavor structures in the GBAS theory. Note that double-trace amplitudes were not involved
in the CCK duality below dimension eight. We also observe that the correlation between
dimension-six and dimension-eight coefficients demanded to satisfy the regular CK duality are
at the origin of cancellations that make the CCK duality possible (in the form we identified).

Leveraging this CCK duality, we obtain two different amplitude relations at any multiplic-
ity. One expresses dimension-eight YM amplitudes in terms of dimension-six single-trace and
dimension-four double-trace GBAS amplitudes (solid blue arrow in figure 1), while the other
relation requires only dimension-four double-trace GBAS amplitudes (after exploiting the
cancellation illustrated by the lower dashed arrows in figure 1). Remarkably, up to dimension
eight, all the tree-level amplitudes of this YM EFT satisfying the regular CK duality are thus
encoded in the renormalizable GBAS theory. This also yields a straightforward procedure
to derive dimension-eight BCJ numerators.

We conjecture a natural extension of the CCK duality beyond dimension eight, involving
an increasing number of flavor traces. In particular, explicit calculations up to six points show
that the new amplitude relations discussed above extend to the full towers of higher-derivative
operators defined by the (DF )2+YM theory and its GBAS analog (solid green arrow and
beyond in figure 1). Various other explicit checks are performed.

The rest of this paper is organized as follows. In section 2, we first review the computation
of tree-level scattering amplitudes from EOMs before turning to the CCK duality of Cheung
and Mangan [67]. We then extend this duality to the EFT domain: section 3 addresses
YM+F 3 at dimension six, while the dimension-eight order is investigated in section 4. In
section 5, we then study the CCK duality for the (DF )2+YM theory. We conclude in section 6.

2In this paper, we do not make use of the ordering with respect to the color indices shared by the scalar
and the gluon. Therefore, in what follows, “traces” always implicitly refer to the flavor structures whose
indices are only carried by the scalar.
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2 Review of the covariant color-kinematics duality

We start by reviewing how to solve EOMs perturbatively and how to extract tree-level scatter-
ing amplitudes from the resulting solutions [74]. After that, we review the renormalizable-level
CCK duality of [67].

2.1 Tree-level scattering amplitudes from equations of motion

For simplicity, let us consider a massless real scalar field φ with a quartic potential. The
discussion below readily generalizes to other theories. The corresponding Lagrangian reads

L = 1
2∂µφ∂µφ − λ

4!φ
4 + Jφ , (2.1)

from which the following EOM is obtained,

□φ + λ

3!φ
3 = J . (2.2)

The source J(x) is non-dynamical and probes the response of the theory to an external
perturbation. At a given order O(Jn) in the source, one can recursively compute the solution
φ(n) to the EOM in perturbation theory:

φ(1)(x) =
( 1
□

J

)
(x) = −

∫
d4y

d4p

(2π)4
eip·(x−y)

p2 J(y) ,

φ(2)(x) = 0 ,

φ(3)(x) = − λ

3!

( 1
□

φ(1)3
)

(x) = λ

3!

∫
d4y

d4p

(2π)4
eip·(x−y)

p2 φ(1)3(y)

= − λ

3!

∫ ( 3∏
i=1

d4yi
d4pi

(2π)4

)
1

(p1 + p2 + p3)2

( 3∏
i=1

eipi(x−yi)

p2
i

J(yi)
)

,

(2.3)

and so on. In Fourier space, φ(p) ≡
∫

d4x e−ip·xφ(x) and one finds

φ(1)(p) = −J(p)
p2 ,

φ(2)(p) = 0 ,

φ(3)(p) = − λ

3!

∫ ( 3∏
i=1

d4pi

(2π)4

)
δ(4)(p − p1 − p2 − p3)

p2
J(p1)

p2
1

J(p2)
p2

2

J(p3)
p2

3
,

. . .

(2.4)

These perturbative solutions can be represented in terms of Feynman graphs, as shown in
figure 2. The tree-level scattering amplitudes of the theory are then obtained using the LSZ
reduction formula. At n points and for all particles incoming,

A(p1, . . . , pn) =
∫ n∏

i=1

(
d4xi

ie−ipi·xi □xi

(2π)3/2

)
⟨0|Tφ(x1) . . . φ(xn)|0⟩ . (2.5)
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Figure 2. Diagrammatic representation of the perturbative solution to the EOM in the λ φ4 theory.

The n-point correlator computed without source is obtained from the one-point function
with a source, ⟨0|φ(xn)|0⟩J , by taking functional derivatives:

⟨0|Tφ(x1) . . . φ(xn)|0⟩ = (−i)n−1
(

δn−1

δJ(x1) . . . δJ(xn−1)⟨0|φ(xn)|0⟩J

) ∣∣∣∣
J=0

, (2.6)

where, at tree-level, ⟨0|φ(xn)|0⟩J is simply the solution to the EOM with the source, evaluated
at the point xn. Following the terminology of [67], we refer to φ(xn) as the root leg of the
corresponding diagrams, and to φ(x1,...,n−1) as the leaf legs. For illustration,

⟨0|Tφ(x1) . . .φ(x4)|0⟩= (−i)3
(

δ3

δJ(x1) . . . δJ(x3)⟨0|φ(x4)|0⟩J

)∣∣∣∣
J=0

= (−i)3 δ3φ(3)(x4)
δJ(x1) . . . δJ(x3)

=−iλ

∫ 4∏
i=1

(
d4pie

−ipi·xi

(2π)4p2
i

)
(2π)4δ(4)

(∑
i

pi

)
,

(2.7)
and

A(p1, . . . , p4) =
∫ 4∏

i=1

(
d4xi

−ieipi·xi □xi

(2π)3/2

)
⟨0|Tφ(x1) . . . φ(x4)|0⟩ = −i

λ

(2π)2 δ(4)
(∑

i

pi

)
,

(2.8)
consistently with the Feynman rules of the Lagrangian in eq. (2.1). In the rest of this paper,
we write the amplitudes without momentum-conserving delta function and powers of 2π or i.

Before closing this section, let us emphasize a point used later on: non-linear terms
depending on the source in the EOMs are irrelevant on shell. For concreteness, let us add
the term Jφ to the right-hand side (r.h.s.) of the EOM in eq. (2.2). This has the effect
of turning on φ(2),

φ(2)(x) = 1
□

(
Jφ(1)

)
(x) =

∫
d4y

d4p

(2π)4
eip·(x−y)

p2 J(y)
∫

d4z
d4q

(2π)4
eiq·(y−z)

q2 J(z) . (2.9)

Differentiating with respect to J(x2) and J(x3) and applying the LSZ formula, one finds

−iA(p1, p2, p3) = p2
2 + p2

3 = 0 , (2.10)

i.e. the new term in the EOM has no effect on the on-shell scattering amplitudes. More
generally, terms of the form Jφn in the EOM would generate subdiagrams like that of figure 3,
which are proportional to the (vanishing) square of the momentum flowing through the source.
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pµ

Figure 3. Portion of diagram arising from a non-linear term Jφ3 involving the source J in the
equation of motion of φ. It leads to diagrams proportional to p2, where pµ is the momentum flowing
through the source.

2.2 Covariant color-kinematics duality between GBAS and YM

We now turn to a review of the CCK duality introduced by Cheung and Mangan [67]. It
establishes maps between EOMs of different theories and, therefore, between their tree-level
scattering amplitudes.

Let us consider the Yang-Mills theory example, which will be most useful for our purposes.
Starting from the Yang-Mills (YM) Lagrangian with a source Ja

µ(x),

Lym = −1
4F a

µνF aµν + AaµJa
µ , (2.11)

where the field-strength tensor is F a
µν ≡ ∂µAa

ν − ∂νAa
µ + g fabcAb

µAc
ν , one derives the usual

YM EOM,

DµF a
µν = −Ja

ν , (2.12)

where DµF a
νρ ≡ ∂µF a

νρ + g fabcAb
µF c

νρ and fabc are group structure constants which verify the
Jacobi identity. Upon differentiating the EOM above and using the Bianchi identity, [67]
showed that the following equation can be derived:

D2F a
µν + g fabcF b

ρ[µF cρ
ν] = −D[µJa

ν] , (2.13)

where we defined X[µν] ≡ Xµν − Xνµ, and where DJ could be replaced by ∂J without
affecting the on-shell scattering amplitudes, as explained above. This equation has the crucial
property that the space-time indices of the gluon field strength are not contracted with
those of covariant derivatives. Since D2 = □+non-linear interaction terms dependent on
Aµ and Fµν , given a solution Aµ and Fµν at a given order in the source, one can solve for
Fµν at the next order by simply inverting □, without making the relation between Fµν and
Aµ explicit. Consequently, one can reinterpret eq. (2.13) as describing the propagation of
six flavors of colored scalars

λ ϕaA ↔ F a
µν , (2.14)

with a cubic interaction. (We have included a factor of λ in accordance with dimensional
analysis.) Moreover, that cubic interaction can be expressed in terms of a structure constant
fABC , to be constructed below, which verifies the Jacobi identity. Therefore, the scalars
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form a bi-adjoint multiplet whose first symmetry group has been gauged. Below, we refer
to those two groups as color and flavor, respectively. This theory is known as the gauged
bi-adjoint scalar theory (GBAS). Its Lagrangian reads

Lgbas = Lym + 1
2DµϕaADµϕaA − g λ

3 fabcfABCϕaAϕbBϕcC + JaAϕaA (2.15)

where λ has mass dimension one and leads to the following EOM

D2ϕaA + g λ fabcfABCϕbBϕcC = JaA , (2.16)

from which we can read off the map of the scalar source into the gluon one,

λ JaA ↔ −D[µJa
ν] , (2.17)

as well as the map for the flavor structure constant in terms of the space-time metric,

fA1A2A3 ↔ −1
4 ην3][µ1ην1][µ2ην2][µ3 . (2.18)

Having connected the EOMs of the two theories, we can also connect their one-point functions
with sources, and therefore their scattering amplitudes. This is however nontrivial given
i ) that the bi-adjoint scalar still interacts with gluons, and ii ) that the sources for both
fields are correlated according to eq. (2.17).

The complication i ) arises since we artificially separated the gluon field and its field
strength. In order to compute scattering amplitudes as sketched in section 2.1, we could
use ⟨0|Aa

µ|0⟩J or ⟨0|F a
µν |0⟩J . Both fields interpolate single-gluon states and can be related

after gauge fixing. So using either of them simply changes the differential operators that
act on the nth field in the LSZ reduction formula. For instance, in an axial gauge where
qµAa

µ = 0 for an arbitrary reference vector q,

|ga(p, h)⟩ = ϵν
hAa

ν(p)|0⟩ =
iq

[µ
ϵ
ν]
h F a

µν(p)
2 q · p

|0⟩ , (2.19)

for a gluon of momentum p, helicity h and color a. Reference [67] proposes to use the field
strength, related to ⟨0|ϕaA|0⟩J in the dual theory through the CCK replacement rule,

λ
[
⟨0|ϕaA|0⟩J

]
GBAS CCK

[
⟨0|F a

µν |0⟩J

]
YM

, (2.20)

which we make explicit below. Differentiating with respect to sources, this implies a duality
between GBAS scattering amplitudes involving at least one scalar and YM amplitudes. Impor-
tantly, one should note that the computation of ⟨0|ϕaA|0⟩J is affected by the fact ii ): in the
perturbative solution for ϕaA, the same source generates both gluons and scalars. Therefore,
n-point scattering amplitudes of gluons in the YM theory are mapped to combinations of
amplitudes with different numbers of scalars in the GBAS theory; specifically 2 ≤ m ≤ n

scalars and n − m gluons (where we used the fact that tree-level GBAS amplitudes with
a single scalar are zero).

Although the GBAS scalar EOM of eq. (2.16) is in one-to-one correspondence with the
YM field strength EOM of eq. (2.13), the gluon EOMs in the two theories are different. The
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YM gluon propagates according to eq. (2.12), whereas the GBAS gluon EOM in principle
includes a scalar current of the form ϕDϕ. However, this term can be ignored when restricting
to single-trace GBAS amplitudes calculated from ⟨0|ϕaA|0⟩J , in which case the two gluon
EOMs effectively become identical. The CCK duality can thus be phrased as a map from
GBAS amplitudes with only a single trace of flavor group generators to YM amplitudes.

What happens in practice is best described through an example, so let us focus on the
three-point gluon amplitude Aym(1, 2, 3). It can be computed from the three-point correlator
⟨0|TAa

µ(x)Ab
ν(y)F c

ρσ(z)|0⟩, using the usual LSZ reduction formula with the exception that
the third polarization should be replaced by iq

[ρ
ϵ
σ]
3 /(2 q · p3). That correlator can itself be

derived from ⟨0|F c
ρσ(z)|0⟩J , upon differentiation with respect to Ja

µ(x) and Jb
ν(y), before

fixing all sources to zero. By the CCK duality of the EOMs, this is equivalent to acting on
⟨0|ϕcC |0⟩J . Now, which amplitudes of the regular gauged bi-adjoint theory are generated
by ⟨0|ϕcC |0⟩J? We have that

(−i) δ

δJbν(y)⟨0|ϕ
cC(z)|0⟩J =∫

d4y′
[

δJb′ν′(y′)
δJbν(y) ⟨0|Ab′

ν′(y′)ϕcC(z)|0⟩J + δJb′B(y′)
δJbν(y) ⟨0|ϕb′B(y′)ϕcC(z)|0⟩J

]
(2.21)

where, ignoring non-linear terms involving the source,

δJb′ν′(y′)
δJbν(y) = δb′

b δν′
ν δ(4)(y − y′) ,

δJb′B(y′)
δJbν(y) = −δb′

b δB,ρσ∂[ρησ]νδ(4)(y − y′) . (2.22)

The second equation here arises from the relation between the sources in eq. (2.17) and
results in an external polarization of the scalars given by −ip[µϵν]. Differentiating once more,
using the LSZ formula and matching to GBAS amplitudes, one finds

Aym(g1, g2, g3) =
iδαβ

A3
q[αϵ3β]

2 q · p3

[
δµν

A1
δρσ

A2

(
−ip1[µϵν]1

) (
−ip2[ρϵσ]2

)
Agbas(ϕA1

1 , ϕA2
2 , ϕA3

3 )

+
{

δρσ
A2

(
−ip2[ρϵσ]2

)
Agbas(g1, ϕA2

2 , ϕA3
3 ) + (1 ↔ 2)

}
+ Agbas(g1, g2, ϕA3

3 )
]

,

(2.23)

where the last amplitude on the r.h.s. actually vanishes.
In general, an explicit restriction to single traces has to be performed on the GBAS

side. However, the amplitudes on the r.h.s. of eq. (2.23) only involve a single trace of flavor
generators and can therefore be kept. Actually, one obtains simpler formulae by making those
flavor factors explicit, i.e. using flavor-ordered GBAS amplitudes. Let us look at the first line
of eq. (2.23) above: A(ϕA1

1 , ϕA2
2 , ϕA3

3 ) comes with a factor of λ fA1A2A3 defined in eq. (2.18).
Contracting with the momentum and polarization factors, one finds −4i Tr(F1F2F̃3) where

Fµν
i ≡ p

[µ
i ϵ

ν]
i , F̃µν

i ≡ − q
[µ

ϵ
ν]
i

2 pi · q
, Tr(Oµν) ≡ 1

2ηµνOµν . (2.24)
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Using the antisymmetry of
(∼)
F , one can rewrite −4i Tr(F1F2F̃3) = −2i Tr(F1F2F̃3−F2F1F̃3) and

compare with the usual relation, fA1A2A3 = −2i Tr(T A1T A2T A3 − T A2T A1T A3). The flavor
factor of the term on the second line of eq. (2.23) is δA2A3 = −1

4ην3][µ2ην2][µ3 , so that we find
2 Tr(F2F̃3), to be compared with δA2A3 = 2 Tr(T A2T A3). We can therefore rewrite eq. (2.23) as

Agbas(ϕA1
1 , ϕA2

2 , ϕA3
3 ) +

{
Agbas(g1, ϕA2

2 , ϕA3
3 ) + (1 ↔ 2)

}
CCK

Aym(g1, g2, g3), (2.25)

where the CCK replacement rule on the flavor factors is

λn−2 Tr(T A1T A2 . . . T An)
CCK

Tr(F1F2 . . . F̃n) . (2.26)

In terms of flavor-ordered amplitudes, this means

Aym
3 = Aϕϕϕ[123] F[123̃] + Aϕϕϕ[213] F[213̃] + Aϕgϕ[13] F[13̃] + Agϕϕ[23] F[23̃] , (2.27)

where we used the shorthand notation F[σñ] ≡ Tr(Fσ1 . . . Fσ|σ| F̃n) with σ being the per-
mutation of the ϕ-scalar subset of the (1, . . . , n − 1) particles. The flavor-ordered GBAS
amplitudes on the r.h.s. have [σn] arguments specifying the flavor traces that have been
isolated (along with powers of λ), and have subscript making explicit which of the particles
are scalars and gluons.

Diagrammatically, the CCK map for this three-point amplitude (or one-point function
expanded to O(J2)) is thus the following:

ϕϕ
+

D2ϕ FF
+

D2F
CCK

GBAS YM

, (2.28)

where the vertices are schematically labeled by the terms which generate them in the YM-
field-strength and GBAS EOMs of eq. (2.13) and eq. (2.16). Dashed lines represent ϕ scalars,
solid ones represent the YM field strength F , while wavy ones are gluons. Note that on the
r.h.s. only pure-gluon amplitudes are generated (external gluons are interpolated by both Aµ

and Fµν), while on the left-hand side (l.h.s.) we start from pure-scalar and mixed scalar-gluon
amplitudes. The EOM evolution of the fields is pictured in these diagrams from left to right,
from the initial root leg to the final leaf legs (or sources). Starting from a scalar root leg, the
restriction to the single-trace sector of the GBAS theory is achieved by allowing scalar legs
to branch into scalars and gluons, while forbidding gluons to branch back into scalars.

Extending the above to n-point scatterings, [67] found

Aym,n =
∑

Φ∈P+(1...n−1)

∑
σ∈S(Φ)

Agbas[σn] F[σñ] , (2.29)

where the first sum runs over all different choices of m − 1 scalars (with 2 ≤ m ≤ n),
captured by the non-empty power set P+(1 . . . n−1), which is the set of all non-empty subsets
of (1, . . . , n−1), while the S(Φ) set captures all permutations of Φ. We stress once more
that factors of the dimensionful coupling λ are taken out of the above formula through the
definition of the flavor-ordered amplitude, as required for a correct matching of amplitude
dimensions. The same applies to all formulae of that sort in what follows.
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2.3 Derivation of Yang-Mills numerators

The CCK duality as presented in eq. (2.29) derives YM amplitudes from GBAS ones with
fewer gluons and more scalars, but not quite from pure-scalar amplitudes yet. Conversely, it
is also known how to relate amplitudes in the opposite direction: namely to obtain GBAS
amplitudes with fewer gluons and more scalars, or to get GBAS amplitudes from YM ones,
through the so-called transmutation operators of ref. [75]. Combining both techniques, Cheung
and Mangan [67] derived a closed-form expression for the BCJ numerators of YM at any
multiplicity in the trace basis. These allow for an explicit decomposition of gluon amplitudes
in terms of single-trace pure-scalar GBAS (i.e. BAS) amplitudes,

Aym,n =
∑

σ∈S(1...n−1)
Abas

ϕn [σn] K(4)[σn] . (2.30)

The numerator superscript (4) distinguishes it from analogous objects derived below at
higher EFT order. From these trace-basis numerators K(4)[σn] with any ordering σ, one can
straightforwardly obtain BCJ numerators for the YM theory (in the adjoint basis).3 They are
therefore directly relevant for the regular CK duality and the BCJ approach to the double copy.

Because we will follow the same procedure to derive numerators in the EFT below, we now
review this at three points. Let us consider the expression of the three-point YM amplitude in
terms of the polarization vector ϵi of the gluon i. It has been shown in [75] that acting with the
operator ∂ϵ1·ϵ3 on that amplitude generates a GBAS amplitude according to the transmutation
relation −2 ∂ϵ1·ϵ3Aym,3 = Agbas

ϕgϕ [13]. Acting now with this operator on both sides of eq. (2.27),
we can solve for the mixed scalar-gluon amplitude in terms of a pure-scalar amplitude,

Agbas
ϕgϕ [13] = Abas

ϕ3 [123] G[1, 2, 3] , (2.31)

where

G[σ, τ, ρ] ≡ −(pσ)µ(Fτ )µν qν

(pσρ)α qα
, (2.32)

with q an arbitrary reference momentum, pσ = pσ1 + . . . + pσ|σ| and

(Fσ)µν = (Fσ1)µ
µ1(Fσ2)µ1

µ2 . . . (Fσ|σ|)
µ|σ|−1ν . (2.33)

Inserting this back into eq. (2.27), we obtain the YM amplitude in terms of pure-scalar GBAS
amplitudes and, hence, the three-point numerator:

K(4)[123] = F[123̃] + G[1, 2, 3] F[13̃] . (2.34)

The other numerator, K(4)[213], can be derived in a similar way, or it can simply be obtained
as a permutation of the particle labels in the above numerator.

3The procedure is identical to the one through which one generates adjoint color structures from traces of
color generators [6, 40, 76]. In this analogy, K(4) plays the role of a trace and the resulting BCJ numerators
have the required adjoint-like properties. Note that the trace-basis numerators K(4) are more redundant than
regular BCJ ones, since certain trace-like structures give rise to vanishing adjoint-like objects.
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3 Effective-field-theory extension to dimension six

The derivation above relies on the precise form of the EOMs, i.e. of the interactions. It is
therefore natural to ask whether these can be modified while maintaining the CCK duality.
One possible modification is to deform the action by the addition of higher-dimensional
operators, while keeping the spectrum untouched. It is known that a regular CK duality exists
at least for some of those deformations, including the lowest-order dimension-six correction
to the Yang-Mills theory consisting of a trace of three field-strength tensors [43].

In this section, we thus consider the O(1/Λ2) amplitudes of such a YM+F 3 theory:4

L(6)
ym = −1

4F a
µνF aµν − g

3 Λ2 fabcF a ν
µ F b ρ

ν F c µ
ρ + Aa

µJa µ
A . (3.1)

where Λ is an energy scale. We will find that a CCK duality is still present, which will be
expressed in terms of scattering amplitudes at the end of section 3.1. In terms of one-point
functions in the presence of sources, it reads[

⟨0|Aa
µ|0⟩

(4,1)
J

]
GBAS CCK

[
⟨0|Aa

µ|0⟩
(6)
J

]
YM

, (3.2)

where
[
⟨0|χ|0⟩(m[,n])

J

]
Th. denotes the one-point function of the field χ computed in the theory

Th. at mass dimension m, in the n-trace sector (only for the GBAS theory). This duality
therefore relates the renormalizable GBAS to the dimension-six YM+F 3 effective field theory.
The subscript J indicates that the one-point function is computed in the presence of sources
and, in the GBAS theory, the two sources are correlated as in eq. (2.17). Finally, the CCK
map is extended to a new treatment of flavor traces, different from that of eq. (2.27), which
is presented below.

3.1 Covariant color-kinematics duality between GBAS and YM+F 3

To establish this CCK duality, we inspect the EOM of the YM+F 3 theory,

DµF a
µν + g

Λ2 fabc F b
µρDνF c µρ = −Ja

ν , (3.3)

derived using the Bianchi identity, dropping non-linear terms where sources multiply other
fields, and truncating to O(1/Λ2) by using the renormalizable YM EOM of eq. (2.12) in
terms that are already suppressed by 1/Λ2.

As field-strength and covariant-derivative indices are not contracted together in the
second term of the l.h.s., this EOM can be obtained from the gluon EOM in the GBAS theory,

DµF a
µν + g fabc ϕbADνϕcA = −Ja

ν , (3.4)

through the same replacement as in the previous section, λ ϕaA → F a
µν . That is, the scalar field

ϕ of the GBAS EOMs is mapped to field strengths F in the YM theory, while the field-strength
tensor in the GBAS theory is mapped to itself. This is similar to the dimension-four map of
the previous section: both the gluons emitted from the scalars in the GBAS theory and gluons

4To avoid confusion with the terminology used there, we stress that the F 3 operator is not related to the
F 3 replacement rule of [67], where higher-derivative interactions are not considered.
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emitted from field strengths in the YM theory evolve according to the EOM DµF a
µν = −Ja

ν ,
in which the relevant field is Aµ, and not Fµν . This EOM was implicitly left untouched in the
CCK map at dimension four. For consistency, this required to restrict to single-trace GBAS
amplitudes. In this case, once a gluon is emitted from a scalar (or field strength), it does not
re-emit a scalar (or field strength) but instead continues propagating as a pure-YM gluon.

In reverse, when mapping eq. (3.3) to (3.4), this means that the field strength in the first
term, DµF a

µν , maps to itself, while the other field strength tensors are mapped to scalars,
F a

µν → λ ϕaA. To generate consistent dimension-six YM amplitudes, this again requires to
restrict to single-trace GBAS amplitudes, while now starting from a gluon root leg. This
implies that the field-strength tensor which is mapped onto itself describes a gluon which
emits a pair of scalars in the GBAS theory or a pair of field strengths in the dimension-six
YM theory, whereas gluons subsequently emitted by scalars/field strengths do not re-emit
scalars/field strengths.

This procedure is controlled by the EFT power counting when solving the EOM per-
turbatively in J and in 1/Λ2, as follows. Denoting F (d) the solution at order O

(
1/Λd−4

)
,

the EOM of eq. (3.3) can be rewritten as

DµF (6)a
µν + g

Λ2 fabc F
(4)b
αβ DνF (4)c αβ = 0 ,

DµF (4)a
µν = −Ja

ν .
(3.5)

We do not consider F (d>6) since we have dropped terms of order O
(
1/Λ4) when deriving

eq. (3.3). Following the steps of the previous section, we can therefore interpret F (4) as a
scalar propagating in a gluon background, while considering F (6) as the field-strength tensor
of that gluon.5 The EOM of F (4) can then be rewritten as

D2F (4)a
µν + g fabcF

(4)b
ρ[µ F

(4)cρ
ν] = −D[µJa

ν] , (3.6)

just as in the renormalizable case discussed in section 2.2.
Thanks to this duality between the gluon EOM in YM+F 3 and the gluon EOM in GBAS

(eq. (3.3) and eq. (3.4)), YM+F 3 amplitudes are therefore encoded in GBAS ones. To be
precise and as anticipated in eq. (3.2), the EFT power counting implies that the relevant
GBAS amplitudes are those obtained from the single-trace part of ⟨0|Aa

µ|0⟩J with at least
two scalars. This means that n-gluon amplitudes in YM+F 3 are mapped to combinations
of amplitudes with 2 ≤ m ≤ n − 1 scalars and n − m ≥ 1 gluon(s). We stress here the
difference with section 2.2, where the relevant GBAS object is the single-trace part of the
scalar one-point function ⟨0|ϕaA|0⟩J , and where the relevant amplitudes have 2 ≤ m ≤ n

scalars and n − m ≥ 0 gluons.
5Let us stress that there may be other consistent prescriptions at dimension six (and beyond) than the

one presented in this paper, which is merely the simplest we could identify. For instance, one may wonder
whether the field strength can be interpreted as a scalar at dimension six. It turns out that manipulating the
dimension-six gluon EOM of eq. (3.3) as done to obtain eq. (2.13) leads to the following EOM for F (6),

D2F a
µν + g fabcF b

ρ[µF cρ
ν] − g

Λ2 fabc
(
gf bdeF d

µνF e
ρσF cρσ + D[µF cρσDν]F

b
ρσ

)
= −D[µJa

ν] ,

which cannot easily be recast as a scalar EOM because of the presence of covariant derivatives with uncon-
tracted indices.
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GBAS: ;

YM: ;

Figure 4. Diagrammatic representation of the perturbative solution to the gluon EOM in the YM+F 3

theory at three and four points, using the field-strength tensor as an independent function. Blue
lines correspond to EOM solutions at dimension six and end at blue vertices, indicating dimension-six
interactions.

To relate the GBAS amplitudes to pure-gluon ones, the external polarizations are again
determined by eq. (2.17) in the same way as in the previous section. Similarly to eq. (2.26),
the flavor traces are replaced by combinations of momenta and polarization vectors,

λn−2 Tr(T A1T A2 . . . T An)
CCK

1
Λ2 Tr(F1F2 . . . Fn) , (3.7)

but F̃ no longer appears since the generating correlator ⟨0|Aa
µ|0⟩J now features the gluon field.

The explicit factor of 1/Λ2 clearly shows that this CCK duality generates higher-derivative
interactions.

It thus follows that the n-point dimension-six YM+F 3 amplitude is encoded in single-
trace GBAS amplitudes through

A(6)
ym,n = 1

Λ2

∑
Φ∈P++(1...n−1)

∑
σ∈S(Φ)/Z|Φ|

Agbas[σ] F[σ] . (3.8)

where F[σ] ≡ Tr(Fσ1 . . . Fσ|σ|). This equation is similar to eq. (2.29), with important differences
arising from the fact that the nth particle is now a gluon. (Note that no new GBAS amplitude
is needed beyond those appearing in eq. (2.29), particle relabeling is sufficient.) Since at
least two scalars are required in the GBAS amplitudes, there appears the set of all subsets
of (1 . . . n−1) containing at least two elements, denoted P++(1, . . . , n−1). In addition, the
set S(Φ)/Z|Φ| contains all permutations that result in inequivalent traces (using cyclicity).
The three-point CCK map at dimension-six is for instance the following:

ϕDϕ FDFCCK

GBAS YM

dim-4 gluon and vertex
dim-6 gluon and vertex

dim-4 gluon field strength
dim-4 bi-adjoint scalar

.

(3.9)
We emphasize the remarkable fact that the higher-derivative amplitudes of YM+F 3 are

captured by the GBAS amplitudes without higher-derivative interactions. For example, at
three and four points, eq. (3.8) is written as

A(6)
ym,3 = 1

Λ2 Agbas
ϕϕg [12] F[12] , (3.10)
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and

A(6)
ym,4 = 1

Λ2

(
Agbas

ϕϕϕg[123] F[123] + Agbas
ϕϕϕg[132] F[132]

+ Agbas
ϕϕgg[12] F[12] + Agbas

ϕgϕg[13] F[13] + Agbas
gϕϕg[23] F[23]

)
. (3.11)

The diagrams that enter the GBAS calculation at these orders and their YM analogues
are illustrated in figure 4.

3.2 Derivation of YM+F 3 numerators

Equation (3.8) derives YM+F 3 amplitudes from a sum of GBAS amplitudes. Exactly
as in section 2.3, the transmutation operation can be used to reduce the latter to BAS
amplitudes (i.e. pure-scalar single-trace tree-level GBAS amplitudes) and hence isolate the
BCJ numerators in the trace basis.

For example, at three points, we use eq. (3.10) and a symmetrized version of eq. (2.31),
namely

Agbas
ϕϕg [12] = 1

2Agbas
ϕ3 [231] G[2, 3, 1] + 1

2Agbas
ϕ3 [321] G[3, 2, 1] , (3.12)

to conclude that

K(6)[123] = 1
2Λ2 F[21]G[2, 3, 1] . (3.13)

The derivation of BCJ numerators at any multiplicity also follows that of [67], with an extra
symmetrization that relates to the fact that the root leg is a gluon rather than a scalar in
the CCK duality at dimension six. The resulting closed-form expression is

K(6)[12 . . . n] = 1
Λ2

n−2∑
ℓ=1

∑
τ

1
|τ1| + 1 F[τ1ℓ]

|τ |∏
i=2

G
[
(τ1 . . . τi−1)<τi , τi, (τ1 . . . τi−1)>τiℓ

]
, (3.14)

and permutations thereof, with the second sum running over τ ∈ part(ℓ+1, . . . , n, 1, . . . , ℓ−1).
This expression relies on the notation of [67] with small modifications that we discuss now.
The function part(σ) is defined as the set of all ordered partitions of the set σ into subsets
whose elements follow the ordering of σ. For example, 1 should appear on the right of n

if both appear in the same subset of a partition. We also require that the first subset of
every partition (i.e. τ1) contains the first element of σ but never n. Finally, the greater-than
symbol > and less-than symbol < also refer to the ordering (ℓ+1, . . . , n, 1, . . . , ℓ−1). Namely,
(τ1 . . . τi−1)<τi are the elements in τ1 ∪ . . . ∪ τi−1 on the left of the first element of τi in
(ℓ + 1, . . . , n, 1, . . . , ℓ − 1), and (τ1 . . . τi−1)>τi are the elements in τ1 ∪ . . . ∪ τi−1 on the right
of the first element of τi.

At lowest orders, the part function is

part(23) = {2, 3}
part(234) = {{23, 4}, {2, 34}, {2, 3, 4}, {2, 4, 3}}
part(341) = {{31, 4}, {3, 41}, {3, 4, 1}, {3, 1, 4}} , (3.15)
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such that eq. (3.14) for n = 4 yields

Λ2 K(6)[1234] = 1
3F[231]G[23, 4, 1] + 1

3F[312]G[3, 4, 12]

+1
2F[21] (G[2, 34, 1] + G[2, 3, 1]G[23, 4, 1] + G[2, 4, 1]G[2, 3, 41])

+1
2F[32] (G[3, 41, 2] + G[3, 4, 2]G[34, 1, 2] + G[3, 1, 2]G[3, 4, 12]) ,

(3.16)

where we remind the reader that F[σ] ≡ Tr(Fσ1 . . . Fσ|σ|) and G is defined in eq. (2.32). We
have cross-checked eq. (3.8) and eq. (3.14) against explicit Feynman diagram calculations
in amplitudes with up to seven external particles.

4 Effective-field-theory extension to dimension eight

The YM+F 3 theory of eq. (3.1) does not satisfy the traditional CK duality up to dimension
eight, i.e. O(1/Λ4). However, the duality can be restored at that order by including a specific
dimension-eight interaction [43], resulting in

L(8)
ym = −1

4F a
µνF aµν − g

3Λ2 fabc F a ν
µ F b ρ

ν F c µ
ρ − g2

4 Λ4 fabef ecdF a
µνF b

ρσF cµνF dρσ + Aa
µJa µ

A .

(4.1)

In this section, we derive a CCK duality up to O(1/Λ4) between this theory and the following
GBAS theory:

L(6)
gbas = L(6)

ym + 1
2DµϕaADµϕaA − g λ

3 fabcfABCϕaAϕbBϕcC + JaAϕaA

− g2

4 fabef ecdϕaAϕbBϕcAϕdB − g2

2 Λ2 fabef ecdF a
µνF c µνϕbAϕdA , (4.2)

which (except for the ϕ3 interaction) results from the dimensional reduction of L(6)
ym after

projection on the massless modes, where the flavors of bi-adjoint scalars correspond to the
space-time components of the gauge field along the compact manifold. This theory therefore
satisfies the BCJ relations for all flavor structures [77], i.e. beyond the single-trace order (see
also [78, 79]). However, we have dropped all double-trace operators appearing at dimension
six in the Lagrangian of eq. (4.2), consistently with the EFT power counting of the CCK
replacement rule in eq. (3.7). We will show that this rule generalizes to dimension eight, so that
the CCK duality combines double-trace dimension-four and single-trace dimension-six GBAS
amplitudes to generate pure-gluon dimension-eight amplitudes. The resulting CCK relation,
expressed in terms of one-point functions and using the notation introduced in eq. (3.2), reads[

⟨0|Aa
µ|0⟩

(6,1)
J + ⟨0|Aa

µ|0⟩
(4,2)
J

]
GBAS CCK

[
⟨0|Aa

µ|0⟩
(8)
J

]
YM

. (4.3)

The corresponding relation in terms of scattering amplitudes and the explicit treatment of
double traces is detailed in section 4.2.

– 16 –



J
H
E
P
0
7
(
2
0
2
4
)
2
0
6

4.1 Covariant color-kinematics duality between GBAS and YM+F 3+F 4

At O(1/Λ2), it was found in the previous section that the gluon EOM of the YM EFT can be
mapped onto the gluon EOM of the GBAS theory. To extend this duality one order higher,
we compare the following EOM in the pure-gluon theory at O(1/Λ4),

DµF a
µν + g

Λ2 fabcF b
µρDνF cµρ + 4 g2

Λ4 fabef ecdF c
µνDµF b

ρσF dρσ = −Ja
ν , (4.4)

with the EOMs in the GBAS theory up to O(1/Λ2),

DµF a
µν + gfabcϕbADνϕcA + g

Λ2 fabcF b
µρDνF cµρ

+4 g2

Λ2 fabef ecdF c
µνDµϕbAϕdA = −Ja

ν , (4.5)

D2ϕaA + λ g fabcfABCϕbBϕcC − g2fabef ecdϕbBϕcBϕdA

− g2

Λ2 fabef ecdF b
µνF cµνϕdA = JaA . (4.6)

To derive the EOMs in this form, which is suggestive of the CCK duality, we used the
lower-order EOMs iteratively in combination with the Jacobi identity. In particular, the
dimension-eight term in eq. (4.4) receives contributions from iterations at dimension six,
indicating an intricate interplay between different mass dimensions. We comment further
on this point in section 4.5.

At the order we are considering, we can decompose the field strength of the pure-gluon
theory as F = F (4) + F (6) + F (8), where, as previously, F (d) refers to the field strength solving
the gluon EOM at O(1/Λd−4). As in section 3.1, we expand F (6) and F (8) in terms of gluons,
whereas only F (4) is interpreted as a scalar and taken to evolve through the field-strength
EOM of eq. (2.13), which we repeat here:

D2F (4)a
µν + g fabcF

(4)b
ρ[µ F

(4)cρ
ν] = −D[µJa

ν] . (4.7)

We start by inspecting the dimension-eight term in the pure-gluon EOM in eq. (4.4),

DµF a
µν = −4 g2

Λ4 fabef ecdF c
µνDµF b

ρσF dρσ + . . . . (4.8)

For solutions up to O(1/Λ4), the field strengths on the r.h.s. need only satisfy the renor-
malizable YM EOM. So, at this order, we can actually solve

DµF a
µν = −4 g2

Λ4 fabef ecd F c
µν DµF (4)b

ρσ F (4)dρσ + . . . , (4.9)

where F (4) satisfies the renormalizable YM EOM with source J given in eq. (2.13). We
could have added a superscript (4) to the remaining field strength on the r.h.s. as well,
but as it stands the above has a clear correspondence with the last term (FDϕϕ) of the
GBAS EOM in eq. (4.5). Indeed, when interpreting the flavor structures in terms of Lorentz
indices as in F a

µν ↔ λ ϕaA, we know that F (4) maps to ϕ(4) which solves the GBAS EOM
at dimension four with source DJ or, importantly, any EOM like eq. (4.6) which reduces
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to it at O(1/Λ0) and in the single-trace sector. Therefore, the solution to the pure-gluon
theory also solves the following EOM,

DµF a
µν = −4g2λ2

Λ4 fabef ecd F c
µν DµϕbA ϕdA + . . . (4.10)

This reproduces the last term of the l.h.s. of eq. (4.5), up to a factor of λ2/Λ2 which we
set to one, keeping in mind the CCK rule of eq. (3.7). At the diagrammatic level, this
implies that any GBAS diagram in which a gluon evolves with this dimension-six FDϕϕ

interaction can be mapped to a dimension-eight diagram in the pure-gluon theory, where
the scalar is interpreted as a field strength,

FDϕϕ FDFFCCK

GBAS YM

dim-4 gluon and vertex
dim-6 gluon and vertex
dim-8 gluon and vertex

dim-4 gluon field strength
dim-4 bi-adjoint scalar

.

(4.11)
Besides contributions from this dimension-eight interaction, the solution for ⟨0|Aa

µ|0⟩J in
the pure-gluon theory also involves diagrams with two dimension-six F 3 insertions. Therefore,
the remaining terms in eqs. (4.4)–(4.6) need to be compared as well. However, the F 3

interaction of the pure-gluon theory, which leads to a FDF term in the EOM, seems to have
two counterparts in the gluon EOM of the GBAS theory, namely

gfabcϕbADνϕcA and g

Λ2 fabcF b
µρDνF cµρ . (4.12)

Two consecutive6 insertions of FDF in the pure-gluon theory have an immediate analog
in the GBAS theory. At the order we consider, the first insertion of FDF can be written
as an insertion of F (6)D(4)F (4) + F (4)D(4)F (6) + F (4)D(6)F (4), where by definition F (6) or
D(6) creates the ‘branch’ in the diagram which contains the second FDF interaction.7 As
in section 3, this branch is in one-to-one correspondence with a GBAS one where FDF is
replaced by ϕDϕ. Therefore, the two FDF insertions in the pure-gluon theory are equivalent
in the GBAS theory to an insertion of FDF followed by that of ϕDϕ,

FDF

ϕDϕ

FDF

FDF

CCK

GBAS YM

. (4.13)

At four points, eqs. (4.11) and (4.13) capture all possibilities and therefore establish a
map between the amplitudes. However, in general, the GBAS theory contains other diagrams

6Since the diagrams to calculate ⟨0|Aa
µ|0⟩J from the EOM are read from left to right, there is a clear

ordering in the interactions that occur on the same branch starting from the root leg towards the leaf legs (i.e.
towards the sources).

7By D(6), we refer to the piece of the covariant derivative containing a gluon at order O(1/Λ2).
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involving the following terms of the scalar EOM of eq. (4.6),

− g2

Λ2 fabef ecdF b
µνF cµνϕdA and − g2fabef ecdϕbBϕcBϕdA . (4.14)

These have no direct interpretation in the pure-gluon EOM. However, we find that the
tree amplitudes they give rise to, respectively at the dimension-six and double-trace levels,
are related and can cancel each other. This possibility is suggested by the form of the
terms in eq. (4.14). In the first dimension-six FFϕ term, the field strengths can again be
taken to be dimension-four ones F (4) which are equivalent to λ ϕ scalars under the CCK
duality. Up to a factor of λ2/Λ2, which we set to one, the two terms therefore become
identical. By including an additional relative sign between the single- and double-trace CCK
replacement rules (made explicit in the next section), these two contributions can therefore
be canceled against each other,

FFϕ
+

ϕϕϕ
∅

CCK

GBAS YM

. (4.15)

This pattern of cancellations between certain dimension-six single-trace and dimension-
four double-trace contributions turns out to be general. They then also occur in diagrams
where a gluon is emitted from a scalar and branches through the term g

Λ2 fabcF b
µρDνF c,µρ in

its EOM. As seen in section 3, this is equivalent to using the term gfabcϕbADνϕcA, leading
to a double-trace diagram,

D2ϕ

FDF

+
D2ϕ

ϕDϕ

∅
CCK

GBAS YM

. (4.16)

Furthermore, when the interactions appear on different ‘branches’ emerging from the
root-leg gluon, all outgoing particles satisfy the dimension-four single-trace EOM at the order
that we consider. The double-trace diagrams then cancel an overcounting that arises from
exchanging the distinguishable vertices of the ϕDϕ and FDF interactions of the pure-gluon
EOM, leading to an exact equivalence with the pure-gluon diagrams involving a double
insertion of the g

Λ2 fabcF b
µρDνF c,µρ term,

ϕDϕ

FDF

2× +

ϕDϕ

ϕDϕ

FDF

FDF

CCK

GBAS YM

.

(4.17)
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Eventually, using eq. (4.3) and the appropriate extension of the CCK duality to double
traces, one can effectively retain diagrams in which one branch contains first the interaction
g

Λ2 fabcF b
µρDνF cµρ and then gfabcϕbADνϕcA as in eq. (4.13), as well as diagrams in which the

two interactions occur on different branches as in eq. (4.17), without degeneracy.
The different cases discussed above correspond to all possibilities at any multiplicity,

proving the validity of our CCK procedure at dimension eight. For illustration, we display all
the five-point diagrams of both the YM+F 3+F 4 and GBAS theories in appendix A.

4.2 Explicit CCK replacement rules for scattering amplitudes

As argued above, the CCK duality at dimension eight requires the cancellation of contributions
from the O(1/Λ0) double-trace sector against some of the O(1/Λ2) single-trace ones. At
the level of amplitudes, a relative factor of −1/Λ2 is therefore necessary between the single-
and double-trace replacements rules,

λn−2 Tr(T A1 . . .T An)
CCK

1
Λ2 Tr(F1 . . .Fn) ,

λn+m−4 Tr(T Ai1 . . .T Ain )Tr(T Aj1 . . .T Ajm )
CCK

− 1
Λ4 Tr(Fi1 . . .Fin)Tr(Fj1 . . .Fjm) ,

(4.18)
This generalizes the dimension-six rule of eq. (3.7) to dimension eight and leads to the
following formula for YM+F 3+F 4 amplitudes:

A(8)
ym,n = 1

Λ2

∑
Φ∈P++(1...n−1)

∑
σ∈S(Φ)/Z|Φ|

A
(6)
gbas[σ] F[σ]− 1

Λ4

∑
Φ,Φ̄

∑
σ,σ̄

A
(4)
gbas[σ|σ̄] F[σ] F[σ̄], (4.19)

where the sums in the second term run over (Φ, Φ̄) ∈ P++(1 . . . n − 1) with Φ ∩ Φ̄ = ∅, Φ < Φ̄
(in some ordering to avoid double counting) and σ ∈ S(Φ)/Z|Φ| and similarly for σ̄. In
words, these simply span all different double-trace amplitudes with the nth particle being
a gluon. It is then relevant to note that the double-trace amplitudes A

(4)
gbas[σ|σ̄] require a

minimum of four scalar particles. Similarly, the amplitudes A
(6)
gbas[σ] are zero when there is

only one external gluon. We have explicitly confirmed eq. (4.19) up to six points against
Feynman diagram calculations.

This formula is best exemplified at lowest multiplicities:

A(8)
ym,4 = 1

Λ2

(
A

(6)
ϕϕgg[12] F[12] + A

(6)
ϕgϕg[13] F[13] + A

(6)
gϕϕg[23] F[23]

)
(4.20)

A(8)
ym,5 = 1

Λ2

(
A

(6)
ϕϕggg[12] F[12] + . . . + A

(6)
ggϕϕg[34] F[34]

+ A
(6)
ϕϕϕgg[123] F[123] + . . . + A

(6)
gϕϕϕg[243] F[243]

)
(4.21)

− 1
Λ4

(
A

(4)
ϕϕϕϕg[12|34] F[12] F[34] + . . . + A

(4)
ϕϕϕϕg[14|23] F[14] F[23]

)
,

where we have suppressed some permutations of the displayed terms, noting again that the
nth particle is always a gluon. We also emphasize that the orderings refer to the flavor
structures: no color ordering is taken.
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4.3 Dimension eight from dimension four

Although high-multiplicity expressions become lengthy, the strategy is simple: compute all
GBAS amplitudes with 2, . . . , n − 1 scalars and replace the flavor traces by traces of the
linearized field-strength tensors F. In fact, we can further leverage a CCK duality, implied
by eq. (4.15) and eq. (4.16), between dimension-four double-trace GBAS amplitudes and
dimension-six single-trace ones. After making this duality more precise, we will show that
it allows for the derivation of dimension-eight Yang-Mills amplitudes from dimension-four
GBAS amplitudes.

Let us consider a single-trace dimension-six GBAS amplitude. All relevant terms can
be found in eq. (4.6). In particular, the amplitude is computed from

D2ϕaA + λfabcfABCϕbBϕcC − g2

Λ2 fabef ecdF b
µνF cµνϕdA = JaA , (4.22)

where, in GBAS theory, the source JaA is independent of the gluon source Ja
µ . At the order

considered, it suffices that the gluon field strength F solves the dimension-four pure-gluon
EOM. Then, CCK for the dimension-four YM theory implies that the EOM of eq. (4.22)
is equivalent to

D2ϕaA + λfabcfABCϕbBϕcC − g2λ̃2

Λ2 fabef ecdϕ̃bB̃ϕ̃cB̃ϕdA = JaA ,

D2ϕ̃aÃ + λ̃fabcf̃ ÃB̃C̃ ϕ̃bB̃ϕ̃cC̃ = J̃aÃ ,

(4.23)

where f̃ and J̃ are given by eq. (2.17) and eq. (2.18), respectively. The amplitude which now
arises is “twice single-trace”, i.e. it features one trace of ϕ flavor and one trace of ϕ̃ flavor.
Now, since ϕ̃ verifies the same EOM as ϕ, we notice that the diagrams relevant for a given
amplitude would precisely be found in the double-trace sector arising from the following EOM,

D2ϕaA + λfabcfABCϕbBϕcC − g2fabef ecdϕbBϕcBϕdA = JaA , (4.24)

which is nothing but the double-trace part of in eq. (4.6). The resulting CCK duality is
such that the replacement rule of eq. (3.7) should only be applied on the trace that does
not involve the root leg.

At the level of the GBAS amplitudes, this implies

A(6)
gbas,n[Φ ∈ P++(1 . . . n)] = 1

Λ2

∑
Φ̄ ∈ P++(1 . . . n)

Φ ∩ Φ̄ = ∅

∑
σ̄∈S(Φ̄)/Z|Φ̄|

A
(4)
gbas,n[Φ|σ̄] F[σ̄] ,

(4.25)

where the amplitudes can be computed from diagrams with any of the scalars in the set
Φ as the root leg. For example,

A
(6)
ϕϕgg[12] = A

(4)
ϕϕϕϕ[12|34] F[34] (4.26)

A
(6)
ϕϕϕgg[123] = A

(4)
ϕϕϕϕϕ[123|45] F[45] (4.27)

A
(6)
ϕϕggg[12] = A

(4)
ϕϕϕϕg[12|34] F[34] + A

(4)
ϕϕϕgϕ[12|35] F[35] + A

(4)
ϕϕgϕϕ[12|45] F[45]

+ A
(4)
ϕϕϕϕϕ[12|345] F[345] + A

(4)
ϕϕϕϕϕ[12|354] F[354] (4.28)

where we again emphasize that only flavor orderings are explicitly shown.
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Such relations, together with the results of previous sections, lead to two new ways of
generating A(8)

ym from GBAS amplitudes. In the first relation, we conclude that any amplitude
of the considered YM EFT up to mass dimension eight can be obtained from renormalizable
GBAS amplitudes using the CCK duality. The general formula, which we explicitly confirmed
through Feynman diagrammatic computations up to six points, reads

A(8)
ym = 1

Λ4

∑
Φ,Φ̄

∑
σ,σ̄

A
(4)
gbas[σ|σ̄] F[σ] F[σ̄] , (4.29)

where the sums run over Φ, Φ̄ ∈ P++(1 . . . n) with Φ ∩ Φ̄ = ∅, Φ < Φ̄, σ ∈ S(Φ)/Z|Φ| and
σ̄ ∈ S(Φ̄)/Z|Φ̄|. In words, we sum over all different double-trace amplitudes where, in contrast
to before, the nth particle can be of any type.

The second relation is practically less useful, but conceptually appealing, because it
unifies the CCK amplitude relations across mass dimensions. It makes use of the fact that
eq. (4.25) leaves one flavor trace untouched, so it is still true when this trace is replaced
according to the dimension-four replacement rule of eq. (2.26). This results in the following
more symmetric amplitude relation,

∑
Φ

(
A(4,1)

Φ + A(4,2)
Φ + A(6,1)

Φ

)
CCK

A(4)
ym,n + A(6)

ym,n + A(8)
ym,n (4.30)

where the sum now runs over all subsets of the external particles, including the nth one, i.e.
Φ ∈ P++(1 . . . n). The superscripts of the GBAS amplitudes refer to mass dimension and
number of flavor trace factors, respectively, while their subscripts indicate which external
particles are scalars (all others being gluons). Following the CCK replacement rule, flavor
traces are replaced according to λ|σ|−2 Tr(σ) → F[σ]/Λ2 if the root leg is a gluon (n /∈ σ)
and according to λ|σ|−1 Tr(σn) → F[σñ] if it is a scalar (n ∈ σ), with an overall minus sign
for the double-trace contribution.

It is now tempting to speculate that the relations between the GBAS and YM theories
extend to even higher orders in their EFT expansions, although the cancellations between
single- and higher-trace are not a priori obvious. We explore this in the next section.

4.4 Derivation of YM+F 3+F 4 numerators

As done in sections 2.3 and 3.2, the r.h.s. of eq. (4.29) can also be expressed in terms of
(single-trace) BAS amplitudes, allowing for a derivation of the BCJ numerators. In fact,
with the closed form of Yang-Mills numerators at hand [67], the procedure is straightforward.
Starting from the dimension-eight amplitude,

A(8)
ym = 1

Λ4

(
A

(4)
ϕϕϕϕ[12|34] F[12] F[34] + A

(4)
ϕϕϕϕ[13|24] F[13] F[24] + A

(4)
ϕϕϕϕ[14|23] F[14] F[23]

)
,

(4.31)
and using the fact that [75]

A
(4)
ϕϕϕϕ[12|34] = 4 ∂ϵ1·ϵ2∂ϵ3·ϵ4 A

(4)
ym,4 , (4.32)
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it follows that

K(8)[1234] = 4
Λ4

(
F[12]F[34] ∂ϵ1·ϵ2∂ϵ3·ϵ4

+F[13]F[24] ∂ϵ1·ϵ3∂ϵ2·ϵ4

+F[14]F[23] ∂ϵ1·ϵ4∂ϵ2·ϵ3

)
K(4)[1234] .

(4.33)

We leave the derivation of a closed form formula for arbitrary multiplicity at dimension
eight for future work.

4.5 Comments on restricting to dimension eight only

From eq. (4.11), and the associated study at the level of the EOMs, it might seem that the
CCK duality can be applied separately to the dimension-eight vertex, even though this vertex
does not satisfy the traditional CK duality by itself. It is however important to realize that
the dimension-eight interaction in the EOM of eq. (4.4) is not in one-to-one correspondence
with the dimension-eight operator in the Lagrangian of eq. (4.1). Instead, iterations of the
dimension-six terms in the EOM are necessary to bring the interaction in this form. It would
therefore not be consistent to consider the dimension-eight term separately at the level of the
EOM. This suggests that CK dualities sufficiently constrain the structure of the two theories
to enable a CCK duality between them. Beyond this empirical observation, we have not
formally established any a stronger relation between the CK and CCK dualities.

5 Effective-field-theory extension beyond dimension eight

The EFT analysis above suggests that gluon amplitudes at higher mass dimensions can be
obtained from lower-order GBAS amplitudes using the CCK duality. This also suggests
a map from the GBAS EFT onto the YM EFT, where both theories consist of towers of
operators that satisfy the traditional CK duality. It was previously demonstrated that such
CK-dual towers of operators are encoded in the so-called (DF )2+YM and (DF )2+YM+ϕ3

theories [63, 64]. (The traditional double copy involving these theories has been studied
in [80, 81].) In fact, refs. [61, 62] argue that the tower of operators which resums into the
(DF )2+YM theory is obtained by imposing double-copy consistency at all mass dimensions
on the YM+F 3 effective theory of section 3. In the present section, we integrate out the
massive degrees of freedom of the (DF )2+YM(+ϕ3) theories reproducing, at lowest orders,
the higher-dimensional operators studied in the previous sections. For this reason, we will
test in what form the amplitude relations that we derived up to mass dimension eight extend
to relations between the full (DF )2+YM(+ϕ3) theories with a finite mass.

(DF )2+YM. In four space-time dimensions, the (DF )2+YM Lagrangian can be writ-
ten as [63]

L(DF )2+YM = − 1
4(F a

µν)2 + 1
2 m2 (DµF a

µν)2 + 1
2(Dµφα)2 − m2

2 (φα)2

+ m g

3! dαβγφαφβφγ + g

2 m
CαabφαF a

µνF bµν − g

3 m2 fabcF a ν
µ F b ρ

ν F c µ
ρ , (5.1)
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where φα is a real scalar with mass m in a real representation of the SU(N) gauge group.
The Clebsch-Gordan coefficients Cαab and dαβγ satisfy the following relations [63],

CαabCαcd = facef edb + (c ↔ d) (5.2)
Cαabdαβγ = (T a)βα(T b)αγ + CβacCγcb + (a ↔ b) , (5.3)

where (T a)αβ are the generators of the representation of φα. The (DF )2 term gives corrections
to the gluon propagator, which (after gauge fixing) can be written as

p
µ ν = −i ηµν

p2 − p4

m2

= −i ηµν

( 1
p2 − 1

p2 − m2

)
, (5.4)

indicating the presence of a ghost of mass m. It was found in [63] that the (DF )2+YM
theory satisfies the traditional CK duality at tree level for any value of the mass m.

To compare with the dimension-eight YM Lagrangian of eq. (4.1), we take the heavy-mass
limit and integrate out the scalar at tree level by replacing it recursively by its classical
solution, which solves the EOM,

φα
cl = g

2 m3 CαabF a
µνF bµν − g

2 m5 CαabD2(F a
µνF bµν) + O

(
1/m7

)
. (5.5)

This yields the EFT Lagrangian

LEFT
(DF )2+YM

fr= − 1
4(F a

µν)2 − g

3 m2 fabcF a ν
µ F b ρ

ν F c µ
ρ − g2

4 m4 fabef ecdF a
µνF b

ρσF cµνF dρσ

− g2

m6 fabef ecdF a
µνDτ F b

ρσDτ F cµνF dρσ + O
(
1/m8

)
. (5.6)

We emphasized that we have also performed a field redefinition (FR) in order to replace
(DF )2 by operators involving more fields and higher mass dimensions. Indeed, (DF )2 can
be treated perturbatively in the EFT limit of small 1/m. In other words, we integrate out
the massive ghost at tree level. Besides exhibiting the correspondence with eq. (4.1), the
above Lagrangian includes an operator satisfying the CK duality at the next order in 1/m.
This is a natural candidate operator for the CCK duality as well.

(DF )2+YM+ϕ3. The (DF )2+YM+ϕ3 theory is defined by the Lagrangian

L(DF )2+YM+ϕ3 = L(DF )2+YM + 1
2(DµϕaA)2 − g λ

3 fabcfABCϕaAϕbBϕcC + m g

2 CαabφαϕaAϕbA,

(5.7)
and also satisfies the traditional CK duality at tree level [63]. As before, the heavy scalar
can be integrated out, to give the EFT Lagrangian

LEFT
(DF )2+YM+ϕ3

fr=LEFT
(DF )2+YM + 1

2(DµϕaA)2

− g λ

3 fabcfABCϕaAϕbBϕcC − g2

4 fabef ecdϕaAϕbBϕcAϕdB

− g2

2 m2 fabef ecdF a
µνF c µνϕbAϕdA − g2

m2 fabef ecdϕaADµϕbBDµϕcAϕdB

− 2 g2

m4 fabef ecdF a
µνDρϕbADρF cµνϕdA + O

(
1/m6

)
, (5.8)
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where we have neglected all terms that contribute beyond the dimension-six double-trace
and dimension-eight single-trace orders, because these only contribute to YM amplitudes
of dimension twelve and higher after application of the CCK replacement rule and are
therefore not relevant to map to eq. (5.6). This Lagrangian follows from the dimensional
reduction of eq. (5.6).8

How can these two massive theories be related by the CCK duality? At large m, they
generate the EFTs we encountered before and extend them to arbitrary mass dimension.
Due to our power counting (see e.g. eq. (4.18)), we expect that an increasing number of
flavor traces be needed in the CCK replacement rule when considering higher-and-higher
EFT orders. To relate the (DF )2+YM and (DF )2+YM+ϕ3 amplitudes for general m, the
treatment of an arbitrary number of trace factors should therefore be needed. Deriving the
associated complete set of rules is however beyond the scope of this paper. Nevertheless,
restricting to low-multiplicity amplitudes, we can test the CCK duality at the level of these
two massive theories without having to treat large numbers of flavor traces. In particular,
up to six points, the amplitudes featuring at least one external gluon do not involve triple
flavor traces. Therefore, the CCK map already derived could potentially extend to all orders
in the EFT expansion at that multiplicity.

We have indeed explicitly confirmed that the CCK replacement rule of eq. (4.18) maps
(DF )2+YM+ϕ3 amplitudes to (DF )2+YM ones for any value of the mass m.9 The cor-
responding formula reads

A(DF 2)+YM−A(4)
ym =

∑
Φ,σ

A(DF 2)+YM+ϕ3 [σ]F[σ]
m2 −

∑
Φ,σ,Φ̄,σ̄

A(DF 2)+YM+ϕ3 [σ|σ̄]F[σ]
m2

F[σ̄]
m2 , (5.9)

which is valid for n ≤ 6 and where the sums are taken with a root-leg gluon as in eq. (4.19).
We remind the reader of the fact that λ has been implicitly set to 1 on the r.h.s.. This
result implies that the CCK relations extend to all orders in the EFT expansion, up to
six-point amplitudes at least.

Beyond six points, we expect that eq. (5.9) would receive triple-trace contributions.
Indeed, at seven points, we have confirmed that the dimension-ten EFT amplitudes generated
from LEFT

(DF )2+YM+ϕ3 and LEFT
(DF )2+YM are related by the following generalization of eq. (4.18):

n∏
i=1

λ|σi|−2 Tr(σi)
CCK

(−1)n+1
n∏

i=1

F[σi]
m2 , (5.10)

for products of n traces. We conjecture that this CCK replacement rule is valid at all mass
dimensions and multiplicities.

It is then also possible to generalize the unified treatment of all amplitudes, regardless of
their nth root leg, beyond the dimension-eight relation of eq. (4.30). Schematically, one obtains∑

all permutations
A(DF 2)+YM+ϕ3,n

CCK
A(DF 2)+YM,n , (5.11)

8As before, the ϕ3 vertex does not follow from dimensional reduction but needs to be included by hand. An
ambiguity could arise if it were to matter whether this interaction would be included before or after performing
field redefinitions. However, we find that the difference between these two treatments is a term of the form
fabxfycdfyexfABCϕaAϕbBϕcCF d

µνF eµν , which vanishes due to the Jacobi identity.
9As we are interested in comparing the EFTs of these theories, we did not consider amplitudes with external

heavy scalars φ. We leave the discussion of such amplitudes to future work.
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where the sum runs over the permutations of all (DF 2)+YM+ϕ3 amplitudes with 2 ≤ m ≤ n

external scalars ϕ. The replacement rule for flavor traces is λ|σ|−2 Tr(σ) → F[σ]/m2 if the
root leg is a gluon (n /∈ σ) and λ|σ|−1 Tr(σn) → F[σñ] if it is a scalar (n ∈ σ), with a crucial
minus sign for multiple traces as in eq. (5.10). This relies on the CCK duality between
GBAS amplitudes of different mass dimensions, which we exploited already in section 4.3
at dimension eight. We have explicitly confirmed eq. (5.11) up to six points.

Finally, we have tested the extension of eq. (4.29), which relates dimension-four GBAS
to dimension-eight YM amplitudes, to the full tower of EFT operators. We find that such
a relation does indeed hold for general m up to at least six points. At six points, beyond
dimension eight, there are contributions from triple-trace amplitudes, because eq. (4.29) does
not require a root-leg gluon. These are captured by the formula,

A(DF 2)+YM −A(4)
ym −A(6)

ym = 1
m4

∑
Φ,Φ̄

∑
σ,σ̄

A(DF 2)+YM+ϕ3 [σ|σ̄] F[σ] F[σ̄]

− 2
m6

∑
Φ1,Φ2,Φ3

A(DF 2)+YM+ϕ3 [Φ1|Φ2|Φ3] F[Φ1] F[Φ2] F[Φ3]

(5.12)

where the sums in the first line are the same as in eq. (4.29), while the triple trace sums
satisfy Φ1, Φ2, Φ3 ∈ P++(1 . . . 6) with Φi ∩ Φj = ∅ and Φ1 < Φ2 < Φ3, referring again to
some ordering to avoid overcounting. The fact that the (DF )2+YM amplitudes can be
decomposed in multiple different ways, namely according to eqs. (5.9), (5.11) and (5.12),
requires an intricate self-duality of the (DF )2+YM+ϕ3 amplitudes which deserves to be better
understood. Comparing the EOMs of these theories for general mass would certainly shed
light on this mapping and clarify how to extend it. We leave such explorations to future work.

6 Conclusions

We extend the CCK duality between the GBAS and YM theories to the higher-derivative
regime, focusing on EFTs which satisfy the traditional color-kinematics duality. We first
investigate the operators of lowest mass dimensions, before proposing generalizations to an
infinite tower of operators. We find that a pure-gluon theory with operators of mass dimension
≤ 2k can be generated from a theory of gluons and bi-adjoint scalars featuring operators of
mass dimension ≤ 2(k − 1). Remarkably, the latter GBAS EFT can be obtained from the
dimensional reduction of a pure-gluon theory including operators of mass dimension ≤ 2(k−1),
up to a cubic scalar interaction added a posteriori. Starting from the dimension-four YM
theory, recursively applying dimensional reduction (or, more precisely, the transmutation
operator of ref. [75]) followed by a CCK mapping, we generate the full expansion of the
(DF )2+YM and (DF )2+YM+ϕ3 theories, which refs. [61, 62] argued are resummations of the
unique CK-dual extensions of the YM and GBAS theories to higher derivatives. Therefore,
the CCK mapping which we introduced uplifts the CK-dual nature of YM theory to an
infinite tower of effective operators.

The established higher-derivative CCK duality follows from a clear correspondence
between all terms in the equations of motion of the two theories. Expressed at the level
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of amplitudes, it proceeds through the replacement of traces of scalar flavor structures by
kinematic factors. Remarkably, the CCK duality requires intricate cancellations between
GBAS amplitudes featuring different numbers of flavor traces. These for instance occur
between the double-trace dimension-four and single-trace dimension-six GBAS sectors needed
to generate dimension-eight YM amplitudes. With this insight, we establish simple all-
multiplicity relations between GBAS and YM amplitudes up to dimension eight.

Specifically, dimension-six YM+F 3 amplitudes are derived from single-trace dimension-
four GBAS amplitudes through the replacement of flavor traces by local gauge-invariant
functions of the kinematics. We leverage this relation to derive closed-form expressions for
the BCJ numerators of the dimension-six YM theory, at any multiplicity and with manifest
gauge invariance on all legs.

Beyond the minimal higher-derivative correction, we focus on towers of EFT operators
which are compatible with the traditional CK duality. We find two ways of constructing
the CK-dual dimension-eight YM amplitudes from GBAS inputs. Firstly, the same CCK
replacement rule, applied to dimension-four double-trace — with a crucial minus sign —
and dimension-six single-trace GBAS amplitudes, results precisely in pure-gluon amplitudes.
Alternatively, the dimension-eight YM amplitudes are derived from dimension-four double-
trace GBAS ones only, when more permutations of the external particles are included. These
relations again lead to a simple procedure to construct the BCJ numerators of the YM
theory at dimension eight. This serves as a new proof for the standard CK duality up to
dimension eight, at any multiplicity and tree level. By confirming our CCK relations in
the (DF )2+YM (+ϕ3) theories at low multiplicity, we have obtained strong evidence that
they extend to all orders in the EFT expansion.

Several directions would deserve to be investigated further. Relations conjectured between
the (DF )2+YM(+ϕ3) theories at all EFT orders and multiplicities ought to be (dis)proved.
By identifying CCK relations between the two CK-dual towers of operators, we find evidence
that the existence of CK dualities in higher-derivative extensions of the GBAS and YM
theories is sufficient to ensure a CCK duality. However, we do not know whether it is a
necessary condition. In addition, by taking CK-dual towers of operators as a starting point,
we are unable to disentangle the constraints imposed by the CK and CCK dualities on
the parameter space of EFTs.10 Hence, it would be very interesting to explore further the
equations of motion generated by gluon operators which are not those considered in this work.
Similarly, staying in the realm of CK-dual theories, there may be BCJ-compatible operators
at high mass dimensions beyond those encoded in (DF )2+YM theory. If so, understanding
how they enter a CCK duality would be insightful.

Beyond the ideas touched upon in this paper, we have not studied the double copy to
gravity. We have derived BCJ numerators for the YM EFT up to dimension eight, which can
directly be used in the traditional double copy, but it would be a natural extension of our work
to make manifest a CCK duality for higher-derivative corrections to gravity, as done in [67]
at dimension four. This reference also identified a CCK duality at the level of the EOMs

10However, one striking feature of the CCK duality, being phrased at the level of the EOMs, is that
all-multiplicity relations follow after it is established up to a finite number of external particles. In contrast,
for the CK duality this typically requires additional arguments.
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of the BAS and NLSM theories, which is another direction of investigation that we plan to
explore in the future. We anticipate that the NLSM+ϕ theories found in [56, 82] are likely
to play an important role. Another insight of [67] which we have not extended yet to EFTs
concerns the relation between conserved currents, which is possibly affected by our enlarged
CCK dualities. Finally, the ultimate amplitude relations that we find are simpler than could
be expected from a first inspection of the equations of motion, due to intricate cancellations
between multi-trace replacements. It would be worth exploring whether such relations extend
to the level of loop integrands. The same applies to the CCK duality more generally.
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A Diagrammatic map at five points and dimension eight

In figure 5, we exemplify the CCK duality between the GBAS theory at mass dimension four
(double trace) and six (single trace) and the YM theory at mass dimension eight. Blue and
green lines correspond to EOM solutions at dimension six and eight, respectively.
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Figure 5. Diagrammatic representation of the CCK map from GBAS up to dimension six to
Yang–Mills at dimensions eight.
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