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1 Introduction

Q-balls are non-topological solitons which arise in various non-linear scalar field theories
possessing an unbroken continuous global symmetry [1–3]. They carry a Noether charge
associated with this symmetry, and are stationary localized field configurations with an
explicitly time-dependent phase. Typical examples of Q-balls in flat 3+1 dimensional
Minkowski spacetime are spherically symmetric solutions of a model with a single complex
scalar field and a suitable self-interaction potential [3], or solitons of the renormalizable
Friedberg-Lee-Sirlin two-component model with a symmetry breaking potential [2]. Physically,
they can be considered as a condensate of a large number of scalar quanta which, for a
fixed value of the charge Q, yields an extremum of the effective energy functional. In such
a context, the charge can also be interpreted as the particle number.

Q-balls have received considerable attention over the last three decades (for a review, see,
e.g., [4–6]). However, most works address the stability of stationary Q-balls and the domains
of their existence. There have only been a few studies of the dynamics of Q-balls [7–10],
which appears to be very different from the usual dynamics of topological solitons. The
reasons for this are related to phase-dependent force of interaction between the Q-balls,
their non-topological charge which can be transferred in collisions [10], and the complicated
spectrum of their excitations, which as we will show below may include both normal and
quasinormal (QNM) modes (for discussions of QNM see [11–13] in the context of black
holes, [14] in relation with excitations of a non-Abelian monopole, and [15]). Furthermore, in
some cases these excitations cannot be considered as linearized perturbations, since at least
second order corrections must be taken into account in order to understand them fully [16].
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There is some similarity between Q-balls and oscillons [17–19], extremely long-lived,
spatially localized, almost periodic non-linear field configurations. It was pointed out that a
Q-ball can be roughly viewed as a system of two interacting oscillons, associated with real
components of a complex scalar field [10]. However, while Q-balls are non-radiating stationary
solutions, oscillons slowly radiate energy [20–22]. A peculiar feature of the radiation of an
oscillon is its resonant character [23–25]: the radiating oscillon can pass through a sequence of
quasi-stable Q-ball-like configurations. The relation between Q-balls and oscillons is supported
by the existence of a so-called adiabatic invariant that is approximately conserved [26–28].

Important information about the properties of solitons can be obtained from the study
of their interactions with external perturbations. In particular, one can consider a small
amplitude incoming wave moving towards a soliton. It has been observed that in a large class
of models with kink solutions the radiation pressure exerted on the kink can be negative [29–
31]. Similar effects were found in Bose-Einstein condensates [32]. Scalar radiation may also
strongly influence the dynamics of soliton collisions [33], so a natural question arises as to
what the effect of the interaction of Q-balls with incoming scalar radiation might be.

In simple cases in (1+1) dimensions, analytical solutions for stationary Q-balls are known,
as discussed, for example, in [9]. The goal of this paper is to study perturbative excitations
of some of these Q-balls. In particular, we reconsider squashing perturbations of a single
Q-ball [9] and examine the effects of radiation pressure. The paper is organized as follows.
In section 2, we define the model and some important properties of the Q-balls. Section 3
is devoted to the linearization problem and spectral structure of the Q-balls. We analyze
scattering and bound modes, as well as the so-called half-propagating modes, investigating in
particular their connection with quasinormal modes. We analyze how the spectral structure,
and especially the bound and quasinormal modes, influences the long-term evolution of
a perturbed Q-ball. In section 4, we focus on the motion of Q-balls interacting with a
monochromatic wave. We find that for a certain set of parameters, it is possible for Q-balls
to accelerate towards the source of radiation, which is an indication of the negative radiation
pressure. After our conclusions in section 5, we comment in appendix A on the results
of [9] for a metastable Q-ball.

2 A class of Q-balls in 1+1 dimensions

2.1 The model

The (1+1)-dimensional scalar field theory we will study is defined by the following La-
grangian [7, 9]:

L = ∂µϕ∂µϕ∗ − V
(
|ϕ|2

)
, (2.1)

where the asterisk denotes complex conjugation and the rescaled potential of the self-
interacting complex scalar field ϕ is

V
(
|ϕ|2

)
= |ϕ|2 − |ϕ|4 + β|ϕ|6 . (2.2)

This potential is shown for various values of the parameter β in figure 1. There is a minimum
at ϕ = 0 which for β > 1/4 is the global minimum, while for β < 1/3 there is a second
minimum at |ϕ|2 = 1 +

√
1 − 3β .
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Figure 1. The field theory potential V (|ϕ|2) defined by (2.2) for various values of β. For the potentials
shown with dotted lines, the vacuum at |ϕ| = 0 is metastable.

The global U(1) symmetry of the Lagrangian (2.1) corresponds to the conserved current

jµ = i(ϕ∗∂µϕ − ∂µϕ∗ϕ) , ∂µjµ = 0 . (2.3)

Variation of the Lagrangian (2.1) with respect to the scalar field leads to the equation
of motion

ϕtt − ϕxx + ∂V

∂|ϕ|2
ϕ = 0 (2.4)

A stationary (1+1)-dimensional Q-ball configuration with harmonic time dependence
can be parameterised as

ϕ(x, t) = eiωtf(x) (2.5)

where f(x) is a real profile function which satisfies the first order equation

df

dx
= ±

√
Ṽ (f2) (2.6)

with the boundary conditions f(±∞) = 0, and

Ṽ (f2) = V (f2) − ω2f2 (2.7)

is the effective potential for the Q-ball configuration. Further specifying fx(0) = 0 centres
the profile function on the origin.

The Noether charge of the stationary configuration is

Q =
∫

dxj0 = 2ω

∫
dxf2 = 2ωN , (2.8)

where N is the L2 norm of the scalar field. The total energy of the Q-ball can be written as

E =
∫

dx
{

(fx)2 + ω2f2 + V (f2)
}

=
∫

dx
{

(fx)2 + Ṽ (f2)
}

+ ωQ . (2.9)
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2.2 Stationary solutions

Equation (2.6) admits the analytic solution

f(x; ω) =
√

2ω′√
1 +

√
1 − 4βω′2 cosh(2ω′x)

, (2.10)

where ω′ =
√

1 − ω2 is the complementary frequency [9]. For the sake of simplicity, we
will drop ω and write a shorthand version f(x) in most cases, except for one paragraph
in section 3.2.

Localized soliton solutions of the model (2.1) exist only for a limited range of values
of the angular frequency, ωmin ≤ ω ≤ ωmax. Here the upper bound corresponds to mass
of the linearized scalar excitations, ωmax = V ′′(0)/2 = 1, and the lower bound depends on
the value of the parameter β as [9]

ωmin(β) =
√

1 − 1
4β

. (2.11)

Note that the potential (2.2) possesses a unique global minimum at ϕ = 0 if β > 1
4 .

If β < 1
4 , the local minimum at ϕ = 0 becomes a false vacuum. In such a case, the

configuration (2.10) will be metastable. Finally, in the marginal case β = 1
4 the vacuum

V
(
|ϕ|2

)
= 0 is two-fold degenerate between ϕ0 = 0 and |ϕ1| =

√
2 and the model supports

topological solitons, or kinks. In this limit, the minimal value of the angular frequency is zero.
More generally, as the angular frequency approaches the minimal value ωmin (2.11), the

effective potential Ṽ (f2) takes the form of the standard ϕ6 potential

Ṽ (f2) = βf2
(

f2 − 1
2β

)2
(2.12)

with minima at Ṽ (0) = Ṽ
(

1
2β

)
= 0 and the Q-ball splits into a pair of kink-like solutions

interpolating between these vacua [34]

ϕK(x, t) = eiωmint

2
√

β

√
1 ± tanh

(
x

2
√

β

)
. (2.13)

The energy of a kink is EK = 1
8β−3/2.

Substitution of the ansatz (2.10) into expressions (2.8) and (2.9) for the energy and
the charge of the configuration gives [9]

E = 4ωω′ + Q(4β − 1 + 4βω2)
8ωβ

; Q = 4ω√
β

arctanh

1 −
√

1 − 4βω′2

2ω′√β

 . (2.14)

Note, it is possible to consider Q-balls for β < 1
4 , but in such cases they are excitations

of a false vacuum and are only metastable solutions. Large perturbations can lead to a
collapse to a true vacuum. In [9] the authors considered a relaxation process of a weakly
perturbed Q-ball for β = 0. In this paper we will mostly assume that β > 1

4 , although some
results for β = 0 will be discussed in the appendix.
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3 Spectral structure

3.1 Linearization

Our aim now is to analyse the spectrum of linearized perturbations of these Q-balls. By
analogy with the analysis of stability of the solutions in [16, 35], we consider a perturbative
expansion of the scalar field

ϕ(x, t) = f(x)eiωt + Aξ(x, t) + · · · , (3.1)

where the real parameter A is the amplitude of the small perturbation of the Q-ball, and
substitute it into the field equation (2.4). In the linear approximation in A we obtain

ξ̈ − ξ′′ +
[
V ′(f2) + V ′′(f2)f2

]
ξ + V ′′(f2)f2ξ∗ = 0 . (3.2)

For oscillating modes it is consistent to consider perturbations ξ of the form

ξ(x, t) = ei(ω+ρ)tη1(x) + ei(ω−ρ)tη2(x) , (3.3)

where the parameter ρ encodes the possible eigenfrequencies of the perturbation. The
linearized equation (3.2) can then be written as a set of two coupled second order ordinary
differential equations for the components η1 and η∗

2:

L

[
η1
η∗

2

]
= 0 (3.4)

L = −
[
(ω + ρ)2

(ω − ρ)2

]
+

[
D S

S D

]
(3.5)

where
D = − d2

dx2 + U + S (3.6)

and the potentials of perturbations U(x) and S(x) are (see figure 2)

U = V ′(f2) = 1 − 2f2 + 3βf4 (3.7)

S = f2V ′′(f2) = f2(−2 + 6βf2) (3.8)

Note that U(x) → 1 and S(x) → 0 as |x| → ∞. In these limits the equations for η1 and
η2 decouple.

Assuming ω > 0, we consider the following cases:

• ρ ∈ (0, 1−ω): there are no traveling waves, however, bound modes may exist, depending
on the form of the potential.

• ρ ∈ (1 − ω, 1 + ω): only the component η1 is asymptotically propagating, with e−ik1x

the right-moving mode and eik1x the left-moving mode, where the wavenumber is
k1 =

√
(ω + ρ)2 − 1 > 0. The second component η2 remains exponentially localized on

the Q-ball, k2
2 = (ω − ρ)2 − 1 < 0. Throughout this paper we will refer to this state

as the half-propagating mode. Such modes are crucial for understanding quasinormal
modes in other models, including the ’t Hooft-Polyakov monopole [14].

– 5 –
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Figure 2. Potentials of linearized perturbations U(x) and S(x), defined in equations (3.7) and (3.8),
for selected values of ω and β = 1

4 .

Figure 3. Example solution to the linearized problem for β = 1
4 , ω = 0.8 and ρ = 2 with a wave

travelling to the right in the second channel.

• ρ > 1 + ω: both components are propagating, but the component η2 oscillates with
negative frequency, which means that for k2 > 0 the term eik2x describes a wave moving
to the right, k2 =

√
(ω − ρ)2 − 1 > 0. An example of such a mode is presented in

figures 3 and 4.

3.2 Zero modes

There are two zero modes that satisfy the equation (3.4) with ρ = 0. One of them is the
translational mode, which shifts the position of the Q-ball,

η
(tr)
0 (x) = ∂xf(x); (f(x) − x0η

(tr)
0 (x))eiωt ≈ f(x − x0)eiωt . (3.9)

The other one is the phase shifting zero mode

η
(ph)
0 (x) = f(x); (f(x) + iαη

(ph)
0 (x))eiωt ≈ f(x)eiωt+iα , (3.10)

which corresponds to the global U(1) symmetry of the model (2.1).
However, apart from these two modes, there are two more solutions of the linearized

equation (3.2), of the form ξ(x, t) = η(x, t)eiωt with the η factor also time dependent: a
stationary mode η(Q)(x, t), which transforms the frequency of the Q-ball ω as ω + δω, and

– 6 –
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Figure 4. Decomposition of the wave into scattered components for β = 1
4 , ω = 0.8 and ρ = 2 with a

wave travelling right boundary conditions.

a mode corresponding to Lorentz symmetry. Recall that the profile function f(x; ω) (2.10)
depends on the frequency, therefore excitation of this mode affects both the frequency and
the profile of the Q-ball, thus

η(Q)(x, t) = ∂ωf(x; ω) + itf(x; ω); (f(x; ω) + δωη(Q)(x, t))eiωt ≈ f(x; ω + δω)ei(ω+δω)t .

(3.11)
The Lorentz symmetry mode is

η(Lor)(x, t) = t∂xf(x) + iωxf(x) , (3.12)

which follows from the expansion of a boosted Q-ball solution expanded up to O(v) terms:

f(γ(x − vt))eiγω(t−vx) ≈ [f(x) − v (t∂xf(x) + iωxf(x))] eiωt . (3.13)

Note that translational, phase shifting and Lorentz zero modes preserve the charge of the
Q-ball while the frequency transforming mode changes it.

3.3 Half-propagating and quasi-normal modes

For ρ within the range (1−ω, 1+ω) only one component of the linearized solution propagates,
k2

1 > 0, whereas the other component cannot, k2
2 < 0. In such a case, the second component

η2 has to decay as x → ±∞, as e∓|k2|x.
In our numerical calculations we fixed

η′
1(0) = η′

2(0) = 0 (3.14a)

for a symmetric solution, normalised by setting

η2(0) = 1, (3.14b)

– 7 –
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Figure 5. An example of symmetric half-propagating mode for β = 1
4 and ω =

√
3

2 , ρ = 1.54.

and then adjusted the value of η1(0) so as to satisfy the remaining boundary condition

η′
2(xf ) + |k2|η2(xf ) = 0 (3.14c)

at some large distance xf > 0. As a result of these conditions, far from the Q-ball the profile
of the first, propagating, component has the form

η1(x) = Arad cos(k1|x| + δ) . (3.15)

An example of such a symmetric half-propagating solution is presented in figure 5.
The consequences of the excitation of the half-propagating mode are twofold. First, the

non-propagating part η2(x) has an impact on the profile of the Q-ball. Second, the propagating
component of this mode η1(x) radiates away the energy of the perturbed configuration. We
can expect that the modes with the largest amplitude would decay faster, and conversely, the
modes with the smallest amplitude would stay longer. In figure 6 we show the amplitude
Arad of the propagating component as a function of ρ for β = 1

4 and ω =
√

3
2 . There are

two important features. First, around ρ = 1.57 this amplitude grows almost to infinity,
which indicates that our boundary conditions (3.14) cannot be simultaneously fulfilled, which
basically means that η2(0) should vanish. Second, before this discontinuity, the amplitude
of the propagating mode becomes very small, Arad = 0.0034979 for ρ = 1.538789. Such a
minimal radiation tail can, and in this case does, indicate the presence of a quasinormal
mode [20]. Quasinormal modes satisfy purely outgoing boundary conditions, which break the
Hermiticity of the operator L in (3.4). This allows the eigenfrequency to be complex. And
indeed, we have found a quasinormal mode at ρ = 1.538789 + 1.180 · 10−5i. The half-life of
this mode is T1/2 = 1

Im ρ log(2) ≈ 58700 which explains the longevity of the oscillations. The
profile of the half-propagating mode with minimal radiation tail is shown in figure 7.

3.4 Bound modes

For perturbation frequencies ρ ∈ (0, 1 − ω) neither of the components can propagate, and
the profiles have only exponential tails. The corresponding normalizable modes are bound

– 8 –
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Figure 6. Radiation tails of the symmetric half-propagating modes as a function of ρ for β = 1
4 and

ω =
√

3
2 .

Figure 7. profile of the half-propagating mode with minimal radiation tail for β = 1
4 and ω =

√
3

2
and ρ = 1.538789.

to the Q-ball. We found various examples of these modes, including1 in the case β = 0
analysed in [9]. As mentioned above, there always is a translational zero mode and one
bound mode for ρ = 0.1336, which is very close to the frequency of one of the peaks in the
spectrum. The component for ω − ρ is localized at x = 0, the other ω + ρ is very close to
the threshold, but η2(0) is much smaller than η1(0), which explains why there is no peak
near the threshold in the power spectrum of ϕ(0, t).

For β = 1
4 + ϵ the Q-ball frequency can be small and the Q-ball profile looks like

two weakly bound kinks. In the spectrum there are two modes that can be interpreted
as symmetric and antisymmetric combinations of translational modes of the kinks. The
symmetric combination, which has frequency ρ = 0, is the translational mode of the Q-ball.

1For most of our analysis we consider stable Q-balls with β ≥ 1
4 , but we devote appendix A to the relaxation

problem for β = 0.

– 9 –
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Figure 8. Bound modes for β = 1
4 and ω =

√
3

2 .

Figure 9. Eigenfrequencies of bound modes for β = 1/4 as a function of ω.

Figure 10. Bound modes of a small frequency Q-ball β = 1/4, ω = 0.01.

The antisymmetric combination, with ρ > 0, represents the oscillation of the width of the
Q-ball. Moreover, as seen on the right-hand side of figure 9, more modes appear as ω → 0,
since the potential generated by the Q-ball has a wide well, which can support many modes.
An example of such a case is shown in figure 10.

– 10 –
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Figure 11. Evolution of the amplitude of the perturbed Q-ball |ϕ(0, t)| at the centre of the
configuration for β = 1

4 , ω =
√

3
2 and λ = 1.05.

3.5 Mode decay

Considering perturbations of the Q-ball we repeat the same procedure as in [9], i.e. we
examine a one-parameter squashing/stretching perturbation of the form

ϕ → ϕλ =
√

λeiωtf(λx) , (3.16)

where λ is a positive parameter. Note that these deformations do not affect the charge of
the Q-ball. Hereafter we consider the most interesting case of a twofold degenerate vacuum
and take β = 1

4 , λ = 1.05 and ω =
√

3
2 . The decay of the perturbation is shown in figure 11.

In the appendix we present and comment on a similar plot for the β = 0 case studied
in [9]. Considering the longer time evolution of the initially squashed Q-ball, we see that
the perturbation decays with time, although the decay rate slows down. However, there
is a pattern, which is similar to the Manton-Merabet law [36] for the decay of the shape
mode of the ϕ4 kink: A(t) ∼ t−1/2.

In figure 12 we show the power spectra of the field ϕ at the centre and at x = 10, and,
following [9], the power spectrum of the magnitude of the field |ϕ(0, t)|. Both the spectra of
the field values and of their absolute values carry valuable information. Below we examine
explicitly what are the differences between these two approaches.

Let us suppose that the field can be represented as a sum of modes oscillating with
frequencies νn:

ϕ(0, t) ≈
∑

n

cneiνnt. (3.17)

This yields

|ϕ(0, t)|2 = ϕϕ∗ ≈
∑
n,m

cnc∗mei(νn−νm)t . (3.18)

Thus, there are configurations with the same absolute value of the field |ϕ(0, t)| but dif-
ferent frequencies.

– 11 –
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Figure 12. Power spectra of the fluctuations of the field ϕ (blue solid line) and of its absolute value
|ϕ| (black dashed line) at the origin x = 0, and of the field ϕ at x = 10 (dash-dotted red line), all
with β = 1

4 .

First, we consider the features of the power spectrum of perturbations at the center of
the Q-ball, see the blue curve in figure 12. The most prominent peaks in the spectrum
correspond to the frequencies (in ascending order) −0.673, 0.734, 0.866 and 2.405.

• Clearly, the highest peak at ν = 0.866 corresponds to the frequency of the stationary
Q-ball, ω =

√
3/2.

• The peak at ν = 0.734 corresponds to the oscillational mode with ν = ω − ρ1 with
ρ1 = 0.1336.

• At ν = ω + ρ1 = 0.9996 < 1 there is a peak (barely visible at x = 0 but quite prominent
at x = 10 — red dashed line) corresponding to the second frequency of the mode.
Although ν = ω + ρ1 is very close to 1 it is easy to verify numerically that it is still
below the threshold, see figure 8.

• The peak at ν = −0.673 corresponds to the lower real part of the quasinormal mode
with the real part of the frequency ρ2 = 1.539.

• The second frequency of the quasinormal mode, corresponding to the propagating
component, is visible at ν = ω + ρ2 = 2.405.

The mode ω−ρ1 is bounded while the mode ω−ρ2 is half-propagating. Indeed, considering
the power spectrum of fluctuations at x = 10, see the red dash-dotted curve in figure 12,
we can clearly identify the Q-ball frequency ω and threshold frequencies ±1. Also, small
peaks at ω ± ρ2 are visible there.

– 12 –
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The power spectrum of fluctuations of absolute value of the field at the origin is displayed
in figure 12, black curve. The most prominent peak is at ω = 0 which corresponds to the
net contribution of all frequencies, ωn − ωn=0. Another peak, at ±0.132, corresponds to
±(ω3 − ω2) and the peaks at ±1.541 correspond to ±(ω3 − ω1).

4 Radiation pressure

In this section, we investigate how Q-balls move when exposed to scalar radiation. We expect
that for small amplitudes (much smaller than the amplitude of the Q-ball) the waves would
scatter according to linearized equations. The scattered waves can have different momenta
than the initial wave, and the excess of the momentum carried by waves can be related to
the force acting on the Q-ball. In particular, we will show that the radiation can both push
(positive radiation pressure, PRP) or pull (negative radiation pressure, NRP) the Q-ball
depending on the composition of the incoming wave.

Following [31, 32], let us consider a field within a finite interval x ∈ [−L, L], where
L ≫ 1, containing a Q-ball and a wave scattered off the Q-ball. The total momentum of
the field in this interval is given by

P =
∫ L

−L
P dx = −

∫ L

−L
Ttx dx = −

∫ L

−L
(ϕtϕ

∗
x + ϕ∗

t ϕx)dx , (4.1)

where P is the momentum density, and T is the energy-momentum tensor. A moving Q-ball
then has momentum P = Eγv. A wave scattered off the Q-ball carries momentum which
can be obtained from the conservation law ∂µT µν = 0

∂tP = −∂xTxx = −∂x

[
∂tϕ∂tϕ

∗ + ∂xϕ∂xϕ∗ − V
(
|ϕ|2

)]
. (4.2)

Integrating the left-hand side of the above expression and averaging over a period gives the
rate of change of the momentum within the interval. The right hand is a total derivative, so
integration gives only boundary terms. Assuming that the wave asymptotically (for x ≈ ±L)
has the form ϕ = A(x)ei(νt−kx), where A(x) is a slowly changing function, we find that the
rate of change of the momentum inside of the interval is equal to the flux of momentum
through the boundaries of the interval:

dP

dt
=

∫ L

−L
∂tPdx = 2k2

[
A2(−L) − A2(L)

]
. (4.3)

Assuming that the amplitudes of the waves are small compared to that of the Q-ball, we
can identify dP

dt as a force F acting on the Q-ball.
A single mode consists of two components with frequencies ν1 = ω + ρ and ν2 = ω − ρ.

Therefore, the asymptotic form of the field for which the incident wave propagates in
channel j is

ϕ(x → −∞) = A
∑

l=1,2
(δlj + rj) ei(νlt+klx) (4.4)

ϕ(x → ∞) = A
∑

l=1,2
tle

i(νlt−klx) (4.5)

The rate of momentum transfer to the Q-ball is the sum of contributions coming from all
scattered waves:

Fj = 2A2 ∑
l=1,2

k2
l (δlj + Rl − Tl) (4.6)

– 13 –
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Figure 13. Force (divided by A2) exerted on Q-balls for β = 1
4 as a function of ν2 and ω in the case

of incident wave in the second sector.

Figure 14. Motion of Q-balls under the influence of a wave in a) first channel and b) second channel.
β = 0.26, ω = 0.6, ρ = 2.1, A = 0.01. Colour intensity indicates the amplitude of the field.

where Rl = |rl|2 and Tl = |tl|2 are reflection and transmission coefficients in each channel and
kl are wave numbers. Negative radiation pressure can occur if the transmission coefficient
from a smaller to larger wave number channel is large enough. The only such scenario is when
the incident wave corresponds to a frequency ν2 = ω − ρ < −1. The other frequency is equal
to ν1 = 2ω − ν2, so |k2| < |k1|. Figure 13 shows the force calculated from the solution of the
linearized equation exactly in such a case. For values of |ν2| close to the threshold positive
radiation pressure is expected, while for larger |ν2| there are regions where negative radiation
pressure should be visible. The red colour represents PRP and the blue, NRP. In the other
case, with an incident wave in the first component, the radiation pressure was always positive.
An example of both positive and negative radiation pressure for β = 0.26 and ω = 0.4 is shown
in figure 14. The accelerations predicted from the effective force (4.6) agree well with the
accelerations computed from numerical simulations of the full PDE, as presented in figure 15.

In the same way as we calculated the force from the energy and momentum conservation
law, we can calculate the rate of change of the charge of a Q-ball by integrating (2.3)

dQ

dt
=

∫
dx ∂xjx = 2A2 ∑

l=1,2
|kl|(δlj − Rl − Tl) (4.7)

Numerically we found this value to be of order 10−15, which means that to linear order
the wave does not change the charge of the Q-ball. The result is not surprising because it
follows from the unitarity of the S matrix.

– 14 –
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Figure 15. Comparison of measured acceleration (dots) with theoretical prediction (lines).

5 Conclusions

In this paper we have discussed how external perturbations affect Q-balls in (1+1) dimensions.
Two examples are considered: (i) squashing perturbations of the Q-ball and (ii) interaction
with incoming radiation. Considering the power spectrum of linearized perturbations about
the Q-ball we find that there are both translational and phase shifting zero modes, as well
as bounded, half-propagating and quasi-normal modes. We have shown that, depending on
the nature of the incoming wave, the Q-ball can be pulled towards the source of the incident
radiation, or it can be pushed away from it.

An interesting extension of this work would be to study perturbative excitations of
Q-balls in (3+1) dimensions. Another interesting question, which we hope to be addressing
in the near future, is to investigate the decays of Q-balls caused by external perturbations.

We note, finally, that stationary rotating Q-balls can induce superradiant amplification for
scattered outgoing waves [37]. An important assumption in [37] is that the incoming wave does
not excite the translational mode of the Q-ball. As a result its position does not change during
the process of superradiant emission of radiation, related to the resonance energy transfer
from the stationary Q-ball to the scattered wave. However, since, as we have seen, radiation
pressure on the Q-ball pushes it to move, one may wonder whether this will affect the criteria
for superradiance to occur, and it would be interesting to investigate this question further.
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Figure 16. Evolution of the amplitude of the perturbed Q-ball |ϕ(0, t)| at the centre of the
configuration for β = 0, ω =

√
3

2 and λ = 1.05.
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A Metastable Q-balls

In the main part of this paper we studied the behavior of Q-balls for models with β ≥ 1
4 ,

when potentials have one (ϕ = 0 for β > 1
4) or two vacua (|ϕ| = 0,

√
2 for β = 1

4). For β < 1
4

the minimum at ϕ = 0 is just a local minimum, and therefore it is a false vacuum. However,
certain restricted configurations, if not excited too much, can exist around the false vacuum,
at least in the classical theory. In [9] the decay of such a configuration for the model with
β = 0 was discussed. We have repeated the same analysis as in section 3.5 but for β = 0.
In this appendix we report on these results.

We present the decay in figure 16, while the power spectra are presented in figure 17.
A direct comparison with figure 12 shows a very similar spectral structure with a single
bound and one quasi-normal mode. The bound mode is for ρ1 = 0.1317 and the QNM is for
ρ2 = 1.5150692 + 9.96 · 10−5i. Measured peaks: -0.650, 0.731, 0.997, 2.383 are consistent with
the bound mode ω + ρ1 = 0.9977, ω − ρ1 = 0.7343 and the QNM ω + Re ρ2 = 2.3811 and
ω − Re ρ2 = −0.64904. In [9] the authors claim that the persisted oscillations are due to the
bound state of two Q-balls, some form of a breather. However, since the frequencies match
so well with the bound and the quasinormal mode, we believe that their claim is overstated.

– 16 –



J
H
E
P
0
7
(
2
0
2
4
)
1
9
6

Figure 17. Power spectra of the fluctuations of the field ϕ (blue solid line) and of its absolute value
|ϕ| (black dashed line) at the origin x = 0, and of the field ϕ at x = 10 (dash-dotted red line), all
with β = 0.
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