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1 Introduction

1.1 Higher-spin gravity: promise and difficulties

Higher-spin (HS) gravity [1–3] is the putative interacting theory of an infinite tower of
massless gauge fields with increasing spin; in its minimal version, it has a single field of every
even spin s = 0, 2, 4, . . . . As such, it is simultaneously a larger version of supergravity, and
a smaller version of string theory. It shares some of string theory’s healthy features, such
as an AdS/CFT holographic formulation [4–7], and a relationship between BPS solutions
and fundamental objects [8, 9]. However, unlike string theory, it is “native” to 4 spacetime
dimensions, and is equally happy with either sign of the cosmological constant: in particular,
its AdS/CFT duality can be extended to Λ > 0, providing a working model of dS4/CFT3 [10].
The grain of salt here is that, in its simplest version (which is the one compatible with
dS/CFT), HS theory does not have a limit where the higher-spin fields decouple, or where
the graviton’s interactions are those of GR.
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The original formulation of HS theory, via the Vasiliev equations, is very indirect, and isn’t
manifestly local (its actual degree of non-locality is a subject of much work and debate [11–23];
the optimistic expectation is non-locality within a cosmological radius, while the pessimistic
one is non-locality at all length scales; the author is a cautious optimist). The formalism
is quite interesting in its own right. Here, we will highlight two of its aspects. The first is
the use of twistor coordinates alongside the usual spacetime ones. The second is the use of
master fields — a higher-spin version of superfields, which carry the fields of all spins together
with all their independent derivatives, i.e. essentially a Taylor expansion of the fields along
the lightcone of every spacetime point x. Since the entire solution is thus encoded at every x
separately, the master fields can simply be evolved from one point to the next, via “unfolded”
field equations. By construction, the unfolded equations are local in spacetime: they simply
specify the first derivative along x. From this perspective, the non-locality creeps in via the
twistor coordinates, which are subject to a manifestly non-local ⋆-product algebra.

Given such complications and exotic formalism, it’s tempting to sidestep the bulk HS
theory, and instead work with its boundary holographic dual (which is remarkably simple

— a free vector model). However, we must keep track of HS theory’s main promise (as the
author sees it): to be a tractable theory of 4d quantum gravity with Λ > 0. The all-important
physical consequence of Λ > 0 is that the boundary at infinity is unobservable. As a result,
we have no choice but to define and perform calculations within observable regions of the
bulk, such as the static patch of de Sitter space. The holographic description may still have a
role to play, but as an intermediate step rather than the final answer.

1.2 The self-dual sector and higher-spin self-dual GR

In both Yang-Mills and GR, the self-dual sector is famously much simpler than the full
theory, and can be used as a starting point for its construction (see e.g. the nice review [24]).
In asymptotically flat spacetime (Λ = 0), this self-dual sector describes MHV scattering
amplitudes [25–27]. With Λ ̸= 0, the relation between the self-dual sector and asymptotic
“observables” is much less clear, since self-duality is inconsistent with the standard boundary
conditions of AdS/CFT. However, in de Sitter space (Λ > 0), if we change our focus
from asymptotic correlators (which, in this context, are unobservable) to scattering in
the observable static patch [28, 29], then the self-dual sector again describes the simplest,
MHV-like, “scattering amplitudes” [30, 31].

In HS gravity, the self-dual sector turns out to be an even greater simplification than
in Yang-Mills and GR: while the full theory doesn’t have a known formulation in standard
local language, the self-dual sector does! Specifically, for Λ = 0, a lightcone formulation [32]
of the self-dual sector, with only cubic, local vertices with helicities (h1, h2, h3) constrained
as h1 + h2 + h3 > 0, was demonstrated [32–34] to be a complete, self-consistent theory
(though, like all self-dual theories, it is non-unitary). The cubic lightcone vertices for Λ ̸= 0
are also known [35] (following the general framework of [36]), but there the expectation is
that higher-order vertices will be required as well. Unfolded formulations of the self-dual
sector also exist [37–40].

The subject of the present paper is a certain restriction of the self-dual sector of HS
gravity, which is under even greater control. A number of such restrictions, keeping only the
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cubic vertices with 1 derivative (Yang-Mills-like) or 2 derivatives (GR-like) was first discussed
in the Λ = 0 lightcone formalism in [41]. Here we’ll be interested in a particular GR-like
restriction, known as HS self-dual GR. This theory contains only nonzero spins, and only
those cubic vertices with (+,+,−) helicity signs, where the helicities’ sum is constrained
as h1 + h2 + h3 = 2. This can be thought of as the minimal HS extension of self-dual
GR, the latter corresponding to (h1, h2, h3) = (+2,+2,−2). What is remarkable about this
theory is that (alone among interacting HS gravities) it can be described by a covariant local
action [42], in a straightforward extension of Krasnov’s chiral formulation of GR [43, 44] (see
also [45, 46]). This is in contrast with the full self-dual sector, where, to obtain a local action,
one must apparently sacrifice covariance in favor of the lightcone formalism. The covariant
action formalism for HS self-dual GR is known [42] for both Λ = 0 and Λ ̸= 0; in the latter
case, the cubic vertices must be supplemented by quartic ones.

Our goal will be to study HS self-dual GR and its solutions, while also exploring its
connections with the constructions relevant for full HS theory and its self-dual sector: lightcone,
unfolding, and the combination of spacetime with twistor-like coordinates. Our eventual
aim is twofold. First, we want to build the tools for computing bulk observables in de
Sitter space (such as static-patch scattering) within HS self-dual GR. Second, we want to
build bridges that would allow us to extrapolate from HS self-dual GR to full HS gravity,
or to its full self-dual sector.

1.3 Summary and structure of the paper

The results and structure of the paper are as follows. We work in the Λ ̸= 0 version of HS
self-dual GR. In section 2, we review its definition [42] as a non-Abelian gauge theory in 4d
spacetime with an unusual “generalized diffeomorphism” symmetry. We observe that, upon
restricting to even spins, one can interpret this theory as one of self-dual (and linearized
anti-self-dual) HS fields living, with no backreaction, on a standard 4d spacetime background
that solves the equations of self-dual GR. On the other hand, in section 3, we show how this
4d theory can be obtained as a gauge-fixing of a much simpler diffeomorphism-invariant gauge
theory in 6 dimensions, in which the 4d spacetime coordinates xa are combined on an equal
footing with 2d left-handed spinor coordinates yα. This construction is reminiscent of the
unfolded formulation of HS theory in terms of “master fields” depending on (xa, yα, ȳα̇), but
with several important differences: the right-handed ȳα̇ is absent, the theory is manifestly
local in both xa and yα, and almost no distinction exists between the roles of xa and yα (aside
from an orbifolding map yα → iyα, which singles out “the” 4d spacetime (xa, yα) = (xa, 0)
as its fixed submanifold). Our construction is also closely related to twistor formulations
of self-dual GR in Euclidean signature, especially as presented in [47].

Next, in section 4.1, we return to the 4d spacetime formulation, and gauge-fix it further
to obtain a lightcone ansatz for solutions to the covariant field equations. This generalizes
the ansatz found in [31] for self-dual GR, which extended Plebanski’s “second heavenly
equation” [48] (see also [49]) to Λ ̸= 0. The lightcone ansatz forms a bridge between the
covariant formulation [42] of HS self-dual GR and the lightcone formulation [32, 33, 35] of the
full self-dual sector of HS gravity. In section 4.2, we point out some differences between our
lightcone ansatz and Metsaev’s lightcone formalism [36, 50], which was utilized in [32, 33, 35].
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In particular, we note that our ansatz allows for more general (and less symmetric) lightlike
foliations of spacetime, based on the lightcones of bulk points rather than boundary ones.

In section 5.1, we pivot into a conceptual discussion of the lightcone formalism with
Λ ̸= 0, independent of the specifics of HS self-dual GR. While the Λ ̸= 0 lightcone formalism
is more technically involved than its Λ = 0 version, we point out that this comes with an
advantage: as we’ll show, the Λ ̸= 0 lightcone formalism is not “trapped” in a fixed lightlike
foliation, but has a built-in mechanism for “changing the reference frame” and evolving along
arbitrary lightlike directions in spacetime. Together with the previous remark vis. using
lightcones of bulk points, this observation elevates the lightcone formalism into something
akin to the unfolded language, where a master-field that encodes the fields’ Taylor series
along the lightcone of a spacetime point can be evolved to an arbitrary adjacent point. This
analogy with unfolding is discussed in section 5.2. In section 5.3, we apply section 5.1’s
general discussion of the lightcone formalism to the particularities of our lightcone ansatz
for HS self-dual GR. Section 6 is devoted to discussion and outlook.

Throughout the paper, we use “right-handed”/“left-handed” as synonymous with “self-
dual”/“anti-self-dual”.

2 Review of higher-spin self-dual GR

In this section, we review the definition [42] of HS self-dual GR, along with some context
and notations. We begin by reviewing Krasnov’s chiral formalism [24, 43, 44] for self-dual
and full GR.

2.1 GR in Krasnov’s formalism

We work in a curved 4d spacetime with coordinates xa. Indices (α, β, . . . ) and (α̇, β̇, . . . )
are used respectively for left-handed and right-handed Weyl spinors. These are raised and
lowered with the flat spinor metrics ϵαβ and ϵα̇β̇, according to the rules:

ζα = ϵαβζ
β ; ζα = ζβϵ

βα; ζ̄α̇ = ϵα̇β̇ ζ̄
β̇ ; ζ̄α̇ = ζ̄β̇ϵ

β̇α̇ . (2.1)

With these ingredients, one can construct Cartan’s formulation of GR, whose fundamental
variables are 1-forms: the vielbein eαα̇

a and the (left-handed and right-handed halves of) the
spin-connection ωαβ

a = ω
(αβ)
a and ωα̇β̇

a = ω
(α̇β̇)
a . Here, we are using spinor indices for vectors

and tensors in the “internal” flat spacetime. Now, from e.g. the left-handed connection ωαβ
a

we can construct its curvature 2-form:

Fαβ = 1
2F

αβ
ab dx

a ∧ dxb; Fαβ
ab = 2∂[aω

αβ
b] + ωαγ

[a ω
β
b]γ . (2.2)

From there, using the inverse vielbein ea
αα̇, we can extract the left-handed Weyl tensor (in

internal spinor indices), as Ψαβγδ = Ψ(αβγδ) = 1
2e

a(α|α̇eb|β
α̇F

γδ)
ab .

Now, the remarkable observation by Krasnov is that one can define GR with Λ ̸= 0 using
an action whose fundamental variables are the 1-form ωαβ

a and the 0-form Ψαβγδ, without
their right-handed counterparts. The metric, the vielbein, and the right-handed spinor indices
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are all absent from the theory’s basic formulation, and only appear as derived objects on
solutions to the equations of motion. Explicitly, in form notation, the action reads:

S = i

32πG

∫ (
1 − 1

2Ψ
)−1

αβγδ
Fαβ ∧ F γδ , (2.3)

where
(
1 − 1

2Ψ
)−1

denotes the geometric series:((
1 − 1

2Ψ
)−1

)αβ

γδ

= δα
(γδ

β
δ) + 1

2Ψαβ
γδ + 1

4Ψαβ
ζξ Ψζξ

γδ + . . . . (2.4)

Here, we fixed the cosmological constant to Λ = 3, i.e. that of de Sitter space with unit
curvature radius; more generally, Λ/3 would appear as a coefficient in front of the identity
in
(
1 − 1

2Ψ
)−1

. The statement now is that on solutions to the equations of motion of
the action (2.3), there exists a vielbein eαα̇

a (unique up to rotations of the right-handed
spinor index) that solves the vacuum Einstein equations with cosmological constant, whose
corresponding left-handed spin-connection and left-handed Weyl curvature are ωαβ

a and
Ψαβγδ respectively.

The gauge symmetry of the action (2.3) consists of diffeomorphisms and left-handed
Lorentz rotations of the spinor indices (α, β, . . . ). Infinitesimally, a left-handed Lorentz
rotation is parameterized by θαβ = θ(αβ), and takes the form:

δωαβ
a = ∂aθ

αβ + θ(α
γ ω

β)γ
a ; δΨαβγδ = 2θ(α

ζΨβγδ)ζ . (2.5)

An infinitesimal diffeomorphism is parameterized by a vector ξa, and takes the form:

δωαβ
a = ξbFαβ

ba ; δΨαβγδ = ξa
(
∂aΨαβγδ − 2ωa

(α
ζΨβγδ)ζ

)
. (2.6)

Here, we made the diffeomorphism covariant under the left-handed Lorentz symmetry (2.5)
by combining it with a rotation θαβ = −ξaωαβ

a .

2.2 Self-dual GR

The chiral formulation (2.3) of full GR contains self-dual GR as a simple subsector. Self-dual
GR is characterized by the Einstein equations together with the vanishing of the left-handed
Weyl curvature Ψαβγδ. To descend into this sector, we pick out the lowest non-trivial power
of Ψαβγδ in the geometric series (2.4). The zeroth power is trivial, leading to a topological
action S ∼

∫
Fαβ ∧ Fαβ. Self-dual GR is in fact obtained by picking out the first power:

S = i

64πG

∫
Ψαβγδ F

αβ ∧ F γδ . (2.7)

Varying this action with respect to Ψαβγδ, we obtain the non-linear field equation:

F (αβ ∧ F γδ) = 0 , (2.8)

in which the only fundamental variable is ωαβ
a . On solutions of this equation, there again exists

a vielbein eαα̇
a compatible with ωαβ

a , which solves the Einstein equation and has vanishing
left-handed Weyl curvature. In fact, the two are related simply via:

Fαβ
ab = 2eαα̇

[a e
β
b]α̇ . (2.9)
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The variable Ψαβγδ in (2.7) is no longer the left-handed Weyl curvature of eαα̇
a and ωαβ

a (which
vanishes). Instead, it represents a linearized anti-self-dual perturbation on the non-linear
self-dual background defined by ωαβ

a . The field equation for its linearized propagation is
obtained by varying (2.7) with respect to ωαβ

a . The gauge symmetry of the action (2.7) is
once again given by the left-handed Lorentz rotations (2.5) and diffeomorphisms (2.6).

2.3 Higher-spin self-dual GR

Let us now introduce the main topic of this paper — the higher-spin generalization [42] of
the self-dual GR action (2.7). We define HS versions of the fundamental variables ωαβ

a ,Ψαβγδ

and gauge parameters θαβ , ξa as:

ωa(x, y) =
∑

s

yα1 . . . yα2s−2

(2s− 2)! ωα1...α2s−2
a (x); Ψ(x, y) =

∑
s

yα1 . . . yα2s

(2s)! Ψα1...α2s(x); (2.10)

θ(x, y) =
∑

s

yα1 . . . yα2s−2

(2s− 2)! θα1...α2s−2(x); ξa(x, y) =
∑

s

yα1 . . . yα2s−4

(2s− 4)! ξa
α1...α2s−4(x).

(2.11)

Here, alongside the dependence on spacetime coordinates xa, our fields ωa,Ψ and gauge
parameters θ, ξa depend on a left-handed spinor yα, which compactly packages an infinite
tower of spins. The spin s in (2.10)–(2.11) takes positive even values s = 2, 4, 6, . . . , where
s = 2 corresponds to the GR fields and gauge parameters from sections 2.1–2.2. In this, we
depart from [42], where odd spins were included as well.

We define the curvature 2-form F of the connection ωa as:

F = 1
2Fab(x, y)dxa ∧ dxb; Fab = 2∂[aωb] −

1
2∂γω[a∂

γωb] , (2.12)

where ∂α ≡ ∂/∂yα denotes differentiation with respect to the spinor coordinates, and
∂α ≡ ϵβα∂β is its raised-index version. The curvature (2.12) can again be decomposed
into spins as:

Fab(x, y) =
∑

s

yγ1 . . . yγ2s−2

(2s− 2)! F
γ1...γ2s−2
ab (x) , (2.13)

with s = 2 corresponding to the GR curvature (2.2).
The action of HS self-dual GR is now given by:

S = i

16πG

∫
Ψ
(
x,

∂

∂y

)
F (x, y) ∧ F (x, y)

∣∣∣∣
yα=0

, (2.14)

which reduces to (2.7) if we restrict all fields to s = 2. Varying the action w.r.t. Ψ again
gives a non-linear field equation for ωa:

F ∧ F = 0 , (2.15)

while varying w.r.t. ωa gives a linear equation for the propagation of Ψ over the non-linear
background defined by ωa.
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The action (2.14) is invariant under internal gauge transformations parameterized by
θ(x, y):

δωa(x, y) = ∂aθ + 1
2 ∂βθ ∂

βωa; δΨ(x, y) = yα

2 (∂αθ)
(
x,

∂

∂y

)
Ψ(x, y) ≡ θ ◦ Ψ , (2.16)

as well as under HS diffeomorphisms parameterized by ξa(x, y):

δωa(x, y) = ξbFba; δΨ(x, y) = ξa
(
x,

∂

∂y

)
(∂aΨ − ωa ◦ Ψ) . (2.17)

In words, the definition of θ ◦ Ψ in (2.16) is to take the derivative ∂αθ(x, y), then substitute
yβ → ∂β, then act with the resulting operator on Ψ(x, y), and finally multiply by yα/2.

2.4 Two observations

We now make two simple observations concerning the theory (2.14), which are absent from
the original paper [42].

2.4.1 No quintic vertex

Our first observation concerns the degree of the interaction vertices in (2.14). Naively, we
have up to quintic vertices, since each factor of F in (2.14) is quadratic in the fundamental
field ωa, via (2.12). However, the quintic vertex, or, equivalently, the quartic term in the
field equation (2.15), vanishes identically. The reason is that these terms contain a wedge
product ∂αω[a∂

βωb∂
γωc], which vanishes because the spinor space is only 2-dimensional (and

therefore ∂αωa denotes only two linearly independent 1-forms on the spacetime). Explicitly,
we can expand F ∧ F as:

F ∧ F =
(
∂aωb ∂cωd + 1

2∂aωb∂
αωc ∂αωd

)
dxa ∧ dxb ∧ dxc ∧ dxd . (2.18)

Thus, the action (2.14) has only cubic and quartic terms.

2.4.2 No backreaction on self-dual GR spacetime

Our second observation is that the theory describes a standard self-dual GR spacetime,
encoded by ωαβ

a with curvature (2.2) subject to the field equation (2.8), on which all other
fields (i.e. the connections ωα1...α2s−2

a for s > 2 and the left-handed field strengths Ψα1...α2s

for all s) propagate and interact with no backreaction. Moreover, the self-dual GR spacetime
described by ωαβ

a is unaffected by the s > 2 components of the gauge transformations
θα1...α2s−2 and ξa

α1...α2s−4 . In more detail, our observation consists of the following points:

1. In (2.12), the s = 2 curvature Fαβ
ab depends solely on the s = 2 connection ωαβ

a .

2. When expanding the field equation (2.15) in powers of yα, the lowest non-vanishing
power is 4, and its coefficient is just the self-dual GR field equation (2.8).

3. In (2.16)–(2.17), the components of θ, ξa with a given spin only affect the components
of ωa with the same spin or higher. As a corollary, the s > 2 gauge transformations do
not affect the s = 2 connection ωαβ

a .

Note that points 2 and 3 fail to hold if we allow odd spins.
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3 Diffeomorphism-invariant formulation in 6d

In this section, we present a new formulation of HS self-dual GR, which is diffeomorphism-
invariant not just in 4d spacetime, but in the 6d space coordinatized by XI ≡ (xa, yα). There
are two main hints that such a formulation should exist:

• Already in the original formulation [42], the curvature (2.12) and field equation (2.15)
are manifestly local not only in spacetime, but also in the space of spinors yα.

• The y-dependence of the generalized diffeomorphisms ξa(x, y) looks as if they are
“trying” to be embedded into full 6d diffeomorphisms ΞI(X).

In fact, such a 6d formulation was already attempted [52], but in the end didn’t produce
an interpretation of ξa(x, y) in terms of 6d diffeomorphisms. Our construction will be
somewhat different.

3.1 Construction

We begin by Fourier-transforming Ψ(x, y) with respect to yα:

Ψ̃(x, y) ≡
∫

d2u

(2π)2 e
iuαyαΨ(x, u) , (3.1)

, where the measure d2u is defined as:

d2u ≡ 1
2ϵαβ du

α ∧ duβ = 1
2du

α ∧ duα . (3.2)

This converts the non-local yα-space structure of the action (2.14) into a local integral:

S = i

16πG

∫
Ψ̃(x, y)F (x, y) ∧ F (x, y) ∧ d2y , (3.3)

where the integration is now over the 6d space (xa, yα). Note that, when only a finite number
of spins are activated, i.e. when the original Ψ is polynomial in yα, the Fourier-transformed
Ψ̃ will be distributional. On the other hand, if infinitely many spins are activated in e.g.
a Gaussian function of yα (such as in a black-hole-like solution [51] of the full higher-spin
theory, or in the bulk dual of a boundary bilocal [8]), then Ψ and Ψ̃ will belong to the
same functional class.

Our next step towards 6d covariance is to extend the 4-dimensional 1-form ωa into a
6-dimensional 1-form:

Ω ≡ ΩIdX
I ≡ ωa(x, y)dxa + yαdy

α , (3.4)

whose exterior derivative reads:

dΩ = ∂aωb dx
a ∧ dxb + ∂αωa dy

α ∧ dxa − 2d2y , (3.5)

with d2y defined as in (3.2). From this, we can construct a 6d top form dΩ ∧ dΩ ∧ dΩ.
Computing it from (3.5), we get two kinds of contributions: one with two dxa ∧ dxb factors
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and one d2y factor, and another with one dxa ∧ dxb factor and two dyα ∧ dxa factors.
Altogether, we get simply:

dΩ ∧ dΩ ∧ dΩ = −6F ∧ F ∧ d2y , (3.6)

where we used the cubic expression (2.18) for F ∧ F . The action (3.3) thus becomes:

S = − i

96πG

∫
Ψ̃ dΩ ∧ dΩ ∧ dΩ . (3.7)

This is manifestly invariant under internal gauge transformations parameterized by θ(X)
and 6d diffeomorphisms parameterized by ΞI(X) ≡ (ξa, ξα):

δΩI = ∂Iθ + 2 ΞJ∂[JΩI]; δΨ = ΞI∂IΨ . (3.8)

With respect to these gauge transformations, our ansatz (3.4) for Ω, i.e. the constraint that
its dyα components are given by yα, can be viewed as a partial gauge fixing. Indeed, for a
generic Ω, one can first use a diffeomorphism to fix the d2y component of dΩ to −2 as in (3.5),
and then use an internal gauge transformation to fix the dyα components of Ω completely.

Conversely, we can ask which 6d gauge transformations (3.8) preserve the ansatz (3.4).
This can be found by setting the dyα components of the variation δΩ to zero, which fixes
ξα in terms of ξa and θ:

ξα = 1
2(ξb∂αωb − ∂αθ) . (3.9)

Under this condition, the 6d gauge transformations (3.8) take the form:

δωa = ∂aθ + 1
2 ∂βθ ∂

βωa + ξbFba ; (3.10)

δΨ̃ = 1
2 ∂αθ ∂

αΨ̃ + ξa
(
∂aΨ̃ − 1

2 ∂βωa ∂
βΨ̃
)
. (3.11)

This reproduces the gauge transformations (2.16)–(2.17) in the original formulation, with
the transformations δΨ from (2.16)–(2.17) replaced by the simpler (and y-local) eq. (3.11)
thanks to the Fourier transform (3.1). Thus, the original gauge symmetries (2.16)–(2.17) are
precisely the subset of the 6d gauge symmetries (3.8) that preserves the ansatz (3.4).

The final ingredient in our construction is to make explicit the restriction to nonzero
even spins in (2.10)–(2.11). This can be implemented in the 6d picture by imposing an
orbifolding map:

(xa, yα) → (xa, iyα) =⇒ Ω → −Ω ; Ψ̃ → −Ψ̃ ; θ → −θ ; (ξa, ξα) → (ξa, iξα) . (3.12)

This reproduces the allowed spins in (2.10)–(2.11), with one exception: it fails to rule out
a spin-0 component in Ψ. However, this is harmless: such a component will not contribute
to the action (2.14), since F vanishes at yα = 0 (note that this last point relies on the
restriction to even spins).

The orbifolding (3.12) is essential to section 2.4.2’s observation that the HS theory “lives
on” a standard 4d self-dual GR spacetime. Indeed, the 4d spacetime itself is the singular
manifold (xa, yα) = (xa, 0) of the map (3.12). On this 4d manifold, Ω itself vanishes; the 4d
geometry ωαβ

a (x) is then encoded in the leading non-trivial derivatives of (the 4d pullback
of) Ω along the transverse directions yα.
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3.2 Comparison to the Euclidean twistor picture of self-dual GR

The 6d construction presented above is closely related to the famous “non-linear graviton”
formulation of self-dual GR in twistor space [47, 53, 54]. Indeed, in Euclidean signature,
twistor space can be identified with the left-handed spinor bundle on spacetime, i.e. precisely
the space (xa, yα). Moreover, if we restrict ωa(x, y) to only its spin-2 component 1

2yαyβω
αβ
a (x),

then our 1-form Ω from (3.4) becomes precisely the 1-form denoted as τ in the twistor literature.
As usual, in theories with fixed spin it makes sense to work in projective twistor space, i.e. to
quotient out the rescalings yα → ρyα, whereas in HS theory it makes sense to stay in the
non-projective space, with different weights under yα → ρyα encoding different spins.

Perhaps not surprisingly, as we saw in eq. (3.8), our HS construction in section 3.1 has a
higher degree of gauge symmetry than the spin-2 “non-linear graviton”:

1. It admits arbitrary 6d diffeomorphisms, which treat xa and yα on an equal footing
(subject to the orbifolding map (3.12)).

2. It has an internal Abelian gauge symmetry δΩ = dθ, which elegantly replaces the
non-Abelian internal gauge symmetry (2.16) of the 4d formulation. In particular, this
symmetry is manifest in the 6-form dΩ ∧ dΩ ∧ dΩ that appears in our action (3.7), as
opposed to the 5-form τ ∧ dτ ∧ dτ that appears in the spin-2 theory.

On the flipside, this higher degree of symmetry means that our construction lacks some
familiar structures from the spin-2 story:

1. The freedom of 6d diffeomorphisms means that our space (xa, yα) is no longer a bundle
of spinors yα over spacetime xa. In other words, the HS symmetries do not respect the
bundle projection (xa, yα) → xa, which gets replaced by the (much weaker) orbifolding
map (3.12).

2. This lack of separation between xa and yα prevents us from treating xa as real and yα

as complex, as should be the case in Euclidean signature. In this paper, we’ll simply be
content with treating both xa and yα as complex; this makes sense from the perspective
of Lorentzian signature, where any self-dual theory is always complexified. One could
also consider both xa and yα real, as in (2, 2) signature; however, we then lose the
elegant encoding (3.12) of the restriction to even spins.

The loss of these bundle and reality structures means that the space (xa, yα) can no longer be
identified with Euclidean-signature twistor space. This accounts for the differences between
our 6d construction and the one in [52], which insisted on maintaining this identification
and the requisite structures.

4 Lightcone ansatz for HS self-dual GR

In this section, we present our lightcone ansatz for HS self-dual GR. This generalizes our
previous spin-2 result [31], which in turn was an extension of Plebanski’s “second heavenly
equation” [48] to Λ ̸= 0. Here and for the remainder of the paper, we revert to the original
4d definition [42] of HS self-dual GR, as introduced in section 2.3.
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4.1 Ansatz and field equations

Our goal is to write a lightcone ansatz for the right-handed solutions ωa(x, y) to the field
equation (2.15). Such an ansatz reduces the covariant field ωa(x, y) to a single (scalar)
physical degree of freedom for each spin, subject to appropriate scalar field equations. We
can then plug the ansatz back into the action (2.14), and obtain similar scalar field equations
for the linearized left-handed degrees of freedom encoded in Ψ(x, y).

We will use Poincare coordinates xa = (t,x), as well as the Pauli matrices σαα̇
a , σa

αα̇,
which satisfy:

σαα̇
a σbαα̇ = −2ηab; σαα̇

a σb
αα̇ = −2δb

a; σa
αα̇σ

bαα̇ = −2ηab , (4.1)

with ηab the Minkowski metric ηabdx
adxb = −dt2 + dx2, and ηab its inverse.

Our lightcone ansatz has two more ingredients: an arbitrary fixed spinor qα that defines
the preferred lightlike direction, and a generating function ϕ(xa, u) with scalar variable u
that encodes the dynamical right-handed degree of freedom for each spin:

ϕ(x, u) =
∑

s

us−1ϕ(s)(x) . (4.2)

In terms of these ingredients, our ansatz for the connection ωa reads:

ωa(x, y) = −1
2σ

αα̇
a ωαα̇(x, y) ; (4.3)

ωαα̇(x, y) = −yαy
β∂βα̇ ln t+ qαq

β∂βα̇ϕ(x, u)
∣∣
u = ⟨qy⟩2/t

, (4.4)

where we defined the shorthands ∂αα̇ ≡ σa
αα̇∂a and ⟨qy⟩ ≡ qαy

α, and we substitute u = ⟨qy⟩2/t

after taking the spacetime gradient ∂βα̇. Note that for later convenience, there is a factor of 2
between the spin-2 scalar ϕ(2) as defined in (4.2)–(4.4) and the corresponding definition in [31].

The first term in (4.4) is the (purely spin-2) left-handed spin-connection of pure de Sitter
space, with metric ηab/t

2 [43]. The second term then describes the deviation (of all spins
s ≥ 2) from this pure de Sitter solution. We note the elegant algebraic similarity between
the two terms. The curvature (2.12) of the connection (4.3)–(4.4) reads:

Fab(x, y) = 1
4σ

αα̇
a σββ̇

b

(
ϵα̇β̇Fαβ(x, y) + ϵαβFα̇β̇(x, y)

)
;

Fαβ(x, y) = 2yαyβ

t2
− qαqβ□ϕ+

2q(αyβ)q
γqδ

⟨qy⟩
∂γ

β̇ ln t ∂δβ̇(u∂uϕ) ;

Fα̇β̇(x, y) = qαqβ

(
−∂α

α̇∂
β

β̇ϕ+ 2∂α
(α̇ ln t ∂β

β̇)(u∂uϕ)
)
.

(4.5)

Here, □ is the flat d’Alembertian □ ≡ ηab∂a∂b; the operator u∂u ≡ u(∂/∂u) acts on each
spin-s component of ϕ as multiplication by s− 1; and, as before, we substitute u = ⟨qy⟩2/t

after taking all the derivatives. Note that, while the curvature formula (2.12) is quadratic
in the potential ωa, the result (4.5) is linear in the deformation ϕ. This happens because
the ϕ term in (4.4) depends on yα only through the product ⟨qy⟩; as a result, the would-be
quadratic contribution to ∂αω ∂

αω takes the form ∼ qαq
α, which vanishes.
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Let us now plug (4.5) into the l.h.s. of the field equation (2.15). In Poincare coordinates,
we can write the 4-form F ∧ F as:

F ∧ F = i

4(Fα̇β̇F
α̇β̇ − FαβF

αβ)d4x; d4x ≡ 1
24ϵabcddx

a ∧ dxb ∧ dxc ∧ dxd , (4.6)

where Fα̇β̇F
α̇β̇ − FαβF

αβ evaluates in our ansatz as:

Fα̇β̇F
α̇β̇ − FαβF

αβ = 4
t
□(uϕ) + qαqβqγqδ ∂αα̇∂ββ̇ϕ

(
∂γ

α̇∂δ
β̇ϕ− 4 ∂γ

α̇ ln t ∂δ
β̇(u∂uϕ)

)
. (4.7)

The field equation (2.15) thus becomes:

□(uϕ) = qαqβqγqδ ∂αα̇∂ββ̇ϕ

(
− t

4 ∂γ
α̇∂δ

β̇ϕ+ ∂γ
α̇t ∂δ

β̇(u∂uϕ)
)
. (4.8)

Crucially, all the yα-dependence is packaged as dependence on the scalar u = ⟨qy⟩2/t. We
thus have one scalar field equation for each spin, as desired. Explicitly, we can obtain field
equations for the scalar fields ϕ(s)(x) of different spins by expanding (4.8) in powers of u:

□ϕ(s) = qαqβqγqδ
∑

s1+s2=s+2
∂αα̇∂ββ̇ϕ

(s1)
(
− t

4 ∂γ
α̇∂δ

β̇ϕ(s2) + (s2 − 1)∂γ
α̇t ∂δ

β̇ϕ(s2)
)
. (4.9)

For s = 2, this reproduces the lightcone field equation for self-dual GR found in [31] (up to
the overall factor of 2 mentioned above). Finally, we can plug (4.6)–(4.7) into the covariant
action (2.14), to obtain a lightcone action:

S = 1
16πG

∫
d4x

∑
s

ψ(s)

□ϕ(s)

+ qαqβqγqδ
∑

s1+s2=s+2
∂αα̇∂ββ̇ϕ

(s1)
(
t

4 ∂γ
α̇∂δ

β̇ϕ(s2) − (s2 − 1)∂γ
α̇t ∂δ

β̇ϕ(s2)
) ,

(4.10)

where the non-linear right-handed degrees of freedom ϕ(s)(x) are now joined by linearized
left-handed ones ψ(s)(x):

ψ(s)(x) = −q
α1 . . . qα2s

ts+1 Ψα1...α2s(x) . (4.11)

Just like in the spin-2 case [31], the lightcone action (4.10) has only cubic interaction vertices.
Its variation w.r.t. ψ(s) yields the quadratic field equation (4.9) for □ϕ(s). Similarly, the
variation w.r.t. ϕ(s) yields a field equation for □ψ(s), whose r.h.s. is bilinear in ϕ(s1) and ψ(s2).
The main difference is that the r.h.s. for □ϕ(s) gets contributions from s1 + s2 = s+ 2, i.e.
from a finite collection of spins s1, s2 ≤ s, whereas the r.h.s. for □ψ(s) gets contributions
from s2 − s1 = s − 2, i.e. from an infinite tower of spins.

Let us conclude with a note on the dependence of the lightcone action (4.10) on the
cosmological constant Λ (which we set to Λ = 3 in the above). In all our action formulas
starting with the self-dual GR action (2.7), Λ has been implicitly carried around as an overall
prefactor (3/Λ)2. This makes a naive Λ → 0 limit obviously singular. However, one can
extract the flat limit of (4.10) by zooming in on a small spacetime region, in which the de
Sitter scale factor t can be treated as constant, and its gradient as negligible. In such a
limit, only the first of the two cubic terms in the action (4.10) survives, and the factor of
t in this term becomes a coupling constant.
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4.2 Comparing to Metsaev’s lightcone formalism

The cubic lightcone action (4.10) is very similar in spirit and structure to the general ones
described by Metsaev in [36], and applied to HS gravity in [35]. However, there are several
differences, which we pause to discuss here. Our comments will apply equally to self-dual GR
as analyzed in [31], and to HS self-dual GR as analyzed in section 4.1 above.

4.2.1 Cubic-exactness

The first point to emphasize is that our cubic action (4.10) is exact, i.e. it doesn’t require
any higher-order interactions for its consistency. This should be contrasted with both the
covariant action (2.14), which explicitly contains quartic vertices, and also with the general
analysis of [36], where only cubic-order consistency was considered, with the expectation
that consistency at higher orders will require higher-order vertices. Note that for Λ = 0, the
situation is simpler: there, both the covariant action for HS self-dual GR [42] and the exact
lightcone action for self-dual HS gravity [32–34] require only cubic vertices.

4.2.2 Lightcones of bulk points are allowed

Another observation is that our lightcone formalism from section 4.1 is, in a sense, more
general than that of [35, 36]. Specifically, the Poincare/lightcone coordinates in [35, 36] are
constructed so that the preferred lightlike vector qαq̄α̇ (∂− in the notations of [35, 36]) is
orthogonal to the gradient ∂αα̇t of the metric’s scale factor (∂z in the notations of [35, 36]).
Geometrically, this means that the Poincare-coordinate “null hyperplanes” qαq̄α̇x

αα̇ = const
are the lightcones of points on the spacetime’s conformal boundary (just like actual null
hyperplanes in Minkowski space). In contrast, in our section 4.1, we never made the
assumption qαq̄α̇∂αα̇t = 0; in fact, we’ve been working with Λ > 0, where ∂αα̇t is timelike,
and so is not orthogonal to any lightlike vector (unless the vector is complex). The geometric
significance of qαq̄α̇∂αα̇t ̸= 0 is that the “null hyperplanes” qαq̄α̇x

αα̇ = const are now the
lightcones not of boundary points, but of bulk points (specifically, of points on the cosmological
horizon that forms the “lightlike infinity” of the Poincare coordinates).

In the general analysis of [36], this more general option was avoided for good reason:
the lightcones of boundary points break fewer of the (A)dS symmetries, allowing more of
the symmetry generators to be treated as “kinematical”. Nevertheless, we see that the
specific lightcone action (4.10), constructed in a “top-down” manner from a specific covariant
theory (2.14), works equally well in the more general setup qαq̄α̇∂αα̇t ̸= 0. This can be
attributed to the fact that we’re working with a self-dual theory. Indeed, self-duality means
that our equations depend on qα but not on q̄α̇. As a result, the condition qαq̄α̇∂αα̇t = 0,
or equivalently qα∂αα̇t ∼ q̄α̇, simply never arises.

We will elaborate on these geometric comments in section 5.

4.2.3 Different scaling of the lightcone scalars under boosts

For the moment, to further compare our lightcone formalism with that of [35, 36], let us
place the two on similar footing by setting qαq̄α̇∂αα̇t = 0. We then note one further difference
between the formalisms, in the behavior of the lightcone fields ϕ(s), ψ(s) under Lorentz boosts
that rescale (qα, q̄α̇) → (ρqα, ρq̄α̇) while leaving t unaffected. In the language of [36], such
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boosts are enacted by the kinematical generator J+−. In [36], this operator acts on the
lightcone fields strictly as a diffeomorphism, without any additional intrinsic rescaling. In
contrast, in our formalism, it’s easy to see from (4.4), (4.11) that ϕ(s) and ψ(s) rescale
intrinsically under qα → ρqα as ϕ(s) → ρ−2sϕ(s) and ψ(s) → ρ2sψ(s) (the same is true in
e.g. [49]). This shows that our encoding of the physical degrees of freedom in terms of scalar
fields is slightly different from the one in [35, 36]. One can account for this difference by
positing that our scalars and those of [35, 36] are related via derivatives (qαq̄α̇∂αα̇)s along
the lightlike generators.

5 Hidden Lorentz covariance of the Λ ̸= 0 lightcone formalism

In this section, we take a look at the geometric meaning of the lightcone ansatz (4.3)–(4.4),
and of the lightcone formalism for Λ ̸= 0 more generally. In particular, we will argue that the
added complexity of the Λ ̸= 0 setup carries a hidden virtue: the Λ ̸= 0 lightcone formalism
contains within itself the tools for changing the lightlike frame, and thus reclaiming Lorentz
covariance. In section 5.1, we will detail this argument. Then, in section 5.2, we’ll discuss
the surprising similarities between the resulting picture and Vasiliev’s unfolded formalism.
In section 5.3, we’ll connect the general discussion to the specifics of our ansatz (4.3)–(4.4)
for HS self-dual GR.

5.1 Changing the lightlike reference frame

Generally speaking, the lightcone formalism for field theory is a bargain with upsides and
downsides. In particular, we get rid of gauge symmetry and focus on physical degrees of
freedom, at the cost of sacrificing Lorentz covariance by singling out a special lightlike direction.
In the original context of Minkowski spacetime (i.e. Λ = 0), this is straightforwardly true.
Working in lightlike coordinates:

ds2 = 2dx+dx− + dxidxi , (5.1)

the special lightlike direction induces a foliation of spacetime into parallel null hyperplanes
x+ = const; initial data for the field equations is then defined on one of these hyperplanes,
e.g. x+ = 0, and can be evolved to the next hyperplane through a first-order differential
equation (note that the d’Alembertian □ = 2∂+∂−+∂i∂i is first-order in x+). Since we cannot
escape the chosen lightlike foliation, Lorentz covariance is lost. This becomes significant when
working with gauge fields, as we do in any gravity theory (higher-spin or otherwise). Indeed,
for gauge theories, the choice of null hyperplane is accompanied by a lightcone gauge on that
hyperplane, e.g. A− = 0 for the simplest case of a spin-1 gauge field. The fact that we can only
evolve onto parallel hyperplanes means that this Lorentz-breaking gauge choice is rigidly fixed.

It is instructive to consider this Λ = 0 situation from the point of view of the lightlike
conformal boundary I of Minkowski space. Every null hyperplane in Minkowski is just the
lightcone of a point on I. In particular, a foliation of Minkowski space into parallel null
hyperplanes consists of the lightcones of points that sit on a lightray R ⊂ I. Starting with
initial data on a particular hyperplane, i.e. on the lightcone of a particular point P ∈ R, we
evolve onto the next hyperplane, i.e. onto the lightcone of the next point along R. Again,
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Lorentz covariance is lost, since we can only evolve along a single lightlike direction: since I
is itself a null hypersurface, every origin point P ∈ I belongs to a unique lightray R ⊂ I,
along which we must advance to the next origin point.

Now, consider the AdS (i.e. Λ < 0) lightcone formalism developed in [36, 55, 56]. There,
we work with lightcone Poincare coordinates on AdS:

ds2 = dz2 + dx+dx− + (dx1)2

z2 , (5.2)

and again consider the foliation into x+ = const lightlike hypersurfaces. In the curved AdS
metric (5.2), these are no longer flat hyperplanes. Nevertheless, just like in the Minkowski
case, they are the lightcones of origin points P that sit on a lightray R on the spacetime’s
conformal boundary. In the coordinates (5.2), these points are doubly singular: in addition to
being on the AdS boundary z → 0, they are also at lightlike infinity with respect to the flat
boundary coordinates (x+, x−, x). However, this second singularity is a coordinate artifact —
in reality, all points P and all lightrays R on the AdS boundary are equivalent.

Now, the key point is that, in the AdS case, the boundary is not lightlike, but Lorentzian.
As a result, the boundary point P has not one, but many lightrays R passing through it.
These correspond to different choices of Poincare coordinates (5.2), each with its own lightlike
direction ∂+ along which to evolve onto the next lightcone. In the terminology of [36], these
different choices are related via the “kinematical” subgroup of the AdS isometries (i.e. the
subgroup that preserves P and its lightcone) — specifically, via the generator K1. Thus,
the greater complexity of the AdS lightcone coordinates (5.2) as opposed to the Minkowski
ones (5.1) encodes genuine geometric content: while the Minkowski lightcone coordinates
just choose a boundary point P , the AdS ones choose also a preferred boundary lightray
R passing through it. This choice of a preferred lightlike direction at P can be called a
“lightlike reference frame”.

We arrive at the following picture. In the Minkowski lightcone formalism, we are forced
to evolve from (the null hyperplane originating at) P in a predetermined direction, following
the predetermined boundary lightray R. In AdS, on the other hand, we can also apply
kinematical generators to “change the lightlike reference frame”, i.e. choose a new boundary
lightray R along which to evolve. In this way, Lorentz covariance is essentially restored: by
rotating our reference frame and advancing along different boundary lightrays, we can evolve
our fields from the lightcone of P to the lightcone of any other boundary point P ′, without
being bound by the original preferred lightlike direction ∂+.

This picture gets further upgraded if the lightcone formalism generalizes to non-orthogonal
∂− and ∂z, as is the case for HS self-dual GR in section 4. As discussed in section 4.2.2,
this places the origin point P and the lightray R in the bulk. The lightcone formalism’s
“kinematical subgroup” is then just the bulk Lorentz group at P , which can be used to set
the “lightlike reference frame”, i.e. the preferred lightray R, to any lightlike direction at P .
With this freedom, we can use the lightcone formalism to evolve our fields from the lightcone
of P to the lightcone of any other bulk point P ′.
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5.2 Comparison with the unfolding formalism

The above perspective on the Λ ̸= 0 lightcone formalism is surprisingly similar to Vasiliev’s
unfolded formalism for field theory. At first glance, these two formalisms are polar opposites:

• The lightcone formalism encodes initial data on a null hyperplane, while the unfolded
formalism encodes it at a single point, via master fields such as C(xa; yα, ȳα̇).

• The lightcone formalism removes most of the components of a massless spin-s field,
leaving only the two “physical” ones (left-handed and right-handed). In contrast, the
unfolded master fields contain not only all components, but every possible Lorentz
representation that encodes a given spin s. For instance, the 0-form master field C(x; y, ȳ)
contains all representations of the form Cα1...α2s+kα̇1...α̇k

(x) = C(α1...α2s+k)(α̇1...α̇k)(x) and
Cα1...αkα̇1...α̇2s+k

(x) = C(α1...αk)(α̇1...α̇2s+k)(x).

On a closer look, though, these seemingly profound differences become rather superficial.
As we discussed in section 5.1, a null hyperplane is nothing but the lightcone of a point —
in the most general lightcone formalism, an ordinary bulk point. As for the infinite tower
of Lorentz tensors Cα1...α2s+kα̇1...α̇k

(x), Cα1...αkα̇1...α̇2s+k
(x) for each spin s, it was understood

long ago by Penrose [57] that these are nothing but the Taylor coefficients of the left-handed
and right-handed field components along the lightcone of x — the very same components
to which the spin-s field is reduced in the lightcone formalism.

Another similarity is that in both formalisms, evolution is defined by a first-order
differential equation. Indeed, in the lightcone formalism, the field equation is first-order in
∂+ (i.e. in derivatives that point towards the next null hyperplane or lightcone), whereas
unfolded equations are always first-order in the exterior derivative d. The main difference is
that unfolded equations evolve the master field in any direction from the spacetime point
x, whereas in the lightcone formalism, we can only move the lightcone’s origin point along
lightlike directions. This is reflected in the fact that the unfolded formalism requires a 1-form
master field Ωa(x; y, ȳ) alongside the 0-form C(x; y, ȳ), whereas the lightcone formalism
requires a “lightlike reference frame” (encoded above in the choice of Poincare coordinates).

5.3 Application to our lightcone ansatz for HS self-dual GR

So far in this section, we’ve been discussing the Λ ̸= 0 lightcone formalism somewhat abstractly.
In particular, we talked about “field data” on lightcones, without much attention to the fields’
tensor structure. Here, we will make some brief comments to fill this gap, in the context of
our lightcone ansatz (4.3)–(4.4) for HS self-dual GR, which expresses the covariant connection
ωa(xa, yα) in terms of the lightcone scalars ϕ(xa, u). Once again, our comments will also
apply to the pure spin-2 sector, i.e. to self-dual GR itself.

The first comment concerns what is meant by “lightcone”: are we talking about lightcones
in pure (A)dS, or in the perturbed geometry defined by the spin-2 connection ωαβ

a ? To
be concrete, let us write down explicitly the vielbein, inverse vielbein and metric [31] that
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correspond to ωαβ
a in the ansatz (4.3)–(4.4):

eαα̇
a (x) = 1

t

(
σαα̇

a + σββ̇
a qαqβq

γqδ
(
t

2 ∂γ
α̇∂δβ̇ϕ

(2)(x) − ∂γ
α̇t ∂δβ̇ϕ

(2)(x)
))

; (5.3)

ea
αα̇(x) = t

(
σa

αα̇ − σa
ββ̇
qαq

βqγqδ
(
t

2 ∂γα̇∂δ
β̇ϕ(2)(x) − ∂γα̇t ∂δ

β̇ϕ(2)(x)
))

; (5.4)

gab(x) = 1
t2

(
ηab − σαα̇

(a σ
ββ̇
b) qαqβq

γqδ
(
t

2 ∂γα̇∂δβ̇ϕ
(2)(x) − ∂γα̇t ∂δβ̇ϕ

(2)(x)
))

. (5.5)

In each of these, the first term describes pure dS4, while the second term is the deformation
due to the right-handed spin-2 degree of freedom ϕ(2)(x) (again, a flat limit can be obtained
by setting t to a constant and neglecting its gradient, which brings the metric deformation
into the form hab ∼ σαα̇

a σββ̇
b qαqβq

γqδ∂γα̇∂δβ̇ϕ
(2); to make this perhaps more familiar, in null

Minkowski coordinates (x+, x−, z, z̄) such that σa
αα̇q

αq̄α̇ points along x−, the non-vanishing
components of this perturbation read hz̄z̄ ∼ ∂2

−ϕ
(2), h+z̄ ∼ ∂−∂zϕ

(2) and h++ ∼ ∂2
zϕ

(2)).
Now, our observation is that the “null hyperplanes” (actually, lightcones) qαq̄α̇x

αα̇ =
const remain largely unchanged by the deformation terms in (5.3)–(5.5). This is because
the deformation terms are always along qα. Specifically, the following properties remain
unchanged:

• The hypersurface qαq̄α̇x
αα̇ = const remains null.

• The vector ℓa ≡ t2σa
αα̇q

αq̄α̇ remains an affine lightlike generator of this hypersurface.

• The complex vector ma ≡ tσa
αα̇q

αχ̄α̇ (for any χ̄α̇ not along q̄α̇) remains a left-handed
null vector within the hypersurface, i.e. orthogonal to itself and to ℓa.

Thus, we can equally well use the pure (A)dS metric ηab/t
2 or the exact one (5.5) to define

the lightcones on which our field data lives.
Next, let’s consider the different components and gauge conditions satisfied by the

connection (4.3)–(4.4). We observe the following:

1. For higher spins s > 2, the connection components satisfy ea
β1α̇ω

β1β2...β2s−2
a = 0, i.e.

ea
αα̇ω

β1...β2s−2
a is totally symmetric in its 2s− 1 left-handed spinor indices (again, this is

true regardless of whether we use the exact inverse vielbein (5.4), or its pure (A)dS
version tσa

αα̇). As explained in [42], this fixes the gauge freedom of HS diffeomorphisms.

2. The component ℓaωa(x, y) remains undeformed from its pure (A)dS value. This fixes
the internal gauge freedom within the null hypersurface.

3. The component maωa(x, y) also remains undeformed from its pure (A)dS value. This
isn’t a further gauge condition, but rather an expression of self-duality.

4. The component m̄aωa(x, y) is non-trivial, and is the one that carries the field data on
the lightcone.

5. The component naωa(x, y), where na ≡ σa
αα̇χ

αχ̄α̇, is also non-trivial. However, since
na points outside our null hypersurface, this isn’t further dynamical field data. Rather,
it encodes the evolution of the internal gauge parameter from one null hypersurface to
the next.
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Now, consider a change of lightlike reference frame in the sense of section 5.1. Namely,
consider staying on the same lightcone hypersurface, but switching to different Poincare
coordinates so as to change the preferred lightlike direction, i.e. the direction of evolution
towards the “next” lightcone. This will change the basis vectors (ℓa,ma, m̄a, na) at each point
of our lightcone, but will not affect the key gauge properties 1-3 above:

1. The HS-diffeomorphism-fixing condition ea
β1α̇ω

β1β2...β2s−2
a = 0 is Lorentz-invariant, and

thus unaffected.

2. The direction of the lightlike generator ℓa at each point of our lightcone is unaffected,
though its scaling will change. Thus, the fixing of internal gauge symmetry via ℓaωa(x, y)
remains unaffected.

3. The direction of the left-handed totally-null bivector ℓ[amb] is again unaffected. To-
gether with the non-deformation of ℓaωa(x, y), this means that maωa(x, y) also remains
undeformed.

The upshot is that within a given lightcone, changing the “lightlike reference frame” does
not require any gauge transformation. However:

4. The encoding of the non-trivial initial data component m̄aωa(x, y) in terms of the
scalars ϕ(x, u) will change, i.e. ϕ(x, u) will transform non-trivially under a change in
the lightlike frame.

5. The component naωa(x, y), which encodes the gradient of the internal gauge between
our lightcone and the “next” one, will also change. This makes sense, since changing
the lightlike frame specifically affects the direction of evolution, i.e. the choice of which
lightcone is “next”.

To sum up, the details of the lightcone ansatz (4.3)–(4.4), namely the values of ϕ(x, u), are
sensitive to changing the lightlike frame, whereas the gauge choice imposed on the lightcone
by (4.3)–(4.4) is insensitive.

6 Outlook

In this paper, we explored HS self-dual GR with cosmological constant. We pointed out that
the restriction to even spins leads to a standard 4d spacetime described by self-dual GR. On the
other hand, we found a simple 6d-covariant formulation, of which the original 4d formulation
is a gauge-fixing. Conversely, by gauge-fixing further, we found a lightcone ansatz for the
covariant fields, which leads to a lightcone action with only cubic interactions. Finally, we
made some conceptual observations about the geometric meaning of the lightcone ansatz with
Λ ̸= 0, noting its hidden Lorentz covariance and startling similarity to the unfolded formalism.

The paper can be fairly described as a collection of loose ends, which lends itself to many
open questions. Can we find an application for the 6d-covariant formalism from section 3?
The most striking aspect of that formalism is the extent to which the spacetime coordinates
xa and spinor coordinates yα are placed on an equal footing. Can this somehow extend
into the full theory of HS gravity, with the left-handed spinor yα joined by its right-handed
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counterpart ȳα̇? Presumably, such a picture would be non-local w.r.t. all of (xa, yα, ȳα̇), just
as the HS self-dual GR sector is local w.r.t. both xa and yα.

Turning to the lightcone ansatz of section 4, it would be interesting to investigate its
integrability (note that the spin-2 sector, i.e. self-dual GR with Λ ̸= 0, was suggested to be
integrable in [58]). It would also be interesting to try and extend our ansatz to cover the
full self-dual sector of HS gravity. In this context, the key feature of our ansatz would be its
cubic-exactness, i.e. the absence of quartic or higher-order interactions. The full self-dual
HS theory in the lightcone formalism is known to be cubic-exact for Λ = 0 [32–34]. Might
the same be true for Λ ̸= 0? The precise properties of our lightcone ansatz, especially the
differences from Metsaev’s lightcone formalism (section 4.2), may be relevant to this question.

It would be nice to find an application for the picture of section 5, in which the Λ ̸= 0
lightcone formalism allows us to evolve from any lightcone hypersurface to any other, by
evolving along different lightlike directions. In particular, one could apply it to the problem
of scattering in the de Sitter static patch [28–31], where the challenge is to evolve the fields
from one lightcone (a de Sitter observer’s past cosmological horizon) to another lightcone
(the future horizon). It would also be interesting to clarify to what extent the picture of
section 5 relies on Λ ̸= 0. Specifically, is there a variation on the Λ ̸= 0 lightcone formalism
that would apply to lightcones of bulk points in Minkowski space, for which there is no single
predetermined lightlike direction along which to evolve?

Finally, it would be interesting to further explore the similarity between the Λ ̸= 0
lightcone formalism and the unfolded language (section 5.2). One difference between the
two is that the unfolded formalism doesn’t involve a choice of “lightlike reference frame”.
However, the full Vasiliev equations famously involve an extra pair of spinor coordinates
(zα, z̄α̇), on top of those prescribed by unfolding. Might there be a relation between (zα, z̄α̇)
and lightlike reference frames?

Overall, our hope is that HS self-dual GR may point towards useful perspectives on the
more complicated full theory of HS gravity, and ultimately on its physics in de Sitter space.
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