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1 Introduction

We consider special class of gravitational wave (GW) space-times whose metric is written
in Brinkmann coordinates [1] as,

ds2 = dX2 + dY 2 + 2dUdV − 2H(U,X) dU2 . (1.1)

Here U and V are light-cone coordinates, X and Y represent the transverse plane and H(U,X)
is the wave profile. Brinkmann space-times are smooth Lorentz manifolds endowed with a
covariantly constant null Killing vector field ξ = ∂V [2]. Such structures arised before in the
study of the one-parameter central extension of the Galilei group [3] called the Bargmann
group [4]. In the proposed Kaluza-Klein-type “Bargmann” framework [2, 4–6] the motions
in ordinary space are obtained by projecting out the “vertical” null direction along the
coordinate V and identifying the other null coordinate, U , with Newtonian time. The profile
H(U,X) is the Newtonian potential [2, 5, 6].

An insight is provided by the so-called memory effect [7–11] which amounts to studying
test particles initially at rest by using the symmetries of the corresponding background
space-time. It is particularly convenient to use conformal symmetries [12–17], generated
by conformal Killing vectors (CKV),

LW gab = 2ψgab , (1.2)

where ψ is a smooth function of the coordinates [18–21, 23]. In flat Minkowski space-time,
the conformal Lie algebra of CKVs is 15 dimensional. The same number of dimensions
arises for conformally flat space-times, which include, in addition to Minkowski space-time,
also that for oscillator and for a linear potential [2, 5, 24–28, 60] . The maximal number of
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symmetries of a non-conformally-flat space-time depends on the signature of the metric. In
the usual case of (−,+,+,+) it is 7 [20–23].1 The research of symmetries is simplified when
the space-time is conformally related to one whose symmetries are known, and therefore
the CKVs are interchanged. This happens, in particular, for the time redefinition (2.1)
below, proposed in [23, 29].

In this paper we study special time-redefined conformal transformations of simple rational
form (2.7) referred to as Möbius transformations. They can (i) either interchange two vacuum
GWs (as illustrated by linearly polarized plane GWs (LPP) and circularly polarized vacuum
plane GWs (CPP) [30–32], or (ii) leave the wave form-invariant (sections 3 and 4) as illustrated
by a wave inspired by the anisotropic polar molecule [34–36].

The U -dependence brought in by Möbius transformation is “mild”, though, because of
the simple rational form of (2.7). Realistic GWs are however “sandwich waves” [38] with
a short wave zone [Ui, Uj ] outside of which the space-times is flat [14, 15, 38–44]. Their
study is postponed to a next publication.

Some entertaining historical facts are recounted in section 6.

2 Conformal transformations of gravitational waves

The GW space-time, ds2 in (1.1), can be transformed into another GW, ds̃2, by a special
conformal transformation with redefined time f(Ũ) [23, 29] ,

U = f(Ũ), X =
√

◦
f X̃, V = Ṽ − 1

4

◦◦
f
◦
f

X̃2 , (2.1)

where (◦·) means d/dŨ . The corresponding conformal relation is,

ds2 = Ω2ds̃2 =
◦
f ds̃2 , (2.2)

ds̃2 = dX̃2 + 2dŨdṼ − 2H̃(Ũ , X̃)dŨ2 , (2.3)

H̃(Ũ , X̃) =
◦
f H

X̃

√
◦
f, f(Ũ)

+ 1
4SŨ

(f) X̃2, (2.4)

where S
Ũ

(f) is the Schwarzian derivative,

S
Ũ

(f) =
◦◦◦
t
◦
t

− 3
2

◦◦
t
◦
t

2

. (2.5)

The vacuum condition for a pp-wave space-time (1.1) requires the Ricci tensor to vanish,
Rµν = 0, which implies that

∆H = H,XX +H,Y Y = 0 . (2.6)
1In the complexified, or split signature setup the maximal number of symmetries is 9, with the metric given

by the anti-self-dual pp wave with constant ASD Weyl tensor g = dwdx + dzdy + y2dw2. See [22] for details.

– 2 –



J
H
E
P
0
7
(
2
0
2
4
)
1
6
4

This condition involves only the spatial behavior of the wave profile. Assuming that H is that
of a vacuum, H̃ in (2.4) will satisfy also the vacuum condition if the Schwarzian derivative term
vanishes [28, 32], which yield in turn a special Möbius conformal transformation (SMCT),2

U = f(Ũ) = AŨ +B

CŨ +D
, (2.7a)

V = Ṽ + 1
2

C

CŨ +D
X̃2 , X = Ω X̃ , where Ω =

√
AD −BC

CŨ +D
. (2.7b)

A, B, C and D here are arbitrary constants such that AD − BC ̸= 0. Under such a
redefinition the metric (2.3) becomes,

ds2 = Ω2 ds̃2 = dX̃2 + 2dŨdṼ − 2Ω2H
(
f(Ũ) ,Ω X̃

)
dŨ2 . (2.8)

The new wave profile is in general different from the initial one. An initially U -independent
profile (as e.g. for Brdicka (3.10)) becomes indeed U -dependent. Examples will be seen in
section 3.

However it might happen also that the wave is invariant under Möbius redefinition —
i.e., (2.7) acts as a symmetry studied in some detail in section 4 and illustrated by the pp
wave inspired by molecular physics and studied in section 5.

3 Conformally related vacuum gravitational waves

Hence we focus our attention at vacuum plane GWs with line element

ds2 = dX2 + dY 2 + 2dUdV −
[
α(U)(X2 − Y 2) + 2γ(U)XY

]
dU2, (3.1)

where the arbitrary functions α(U) and γ(U) correspond to the “+” and “×” polarization
modes. These waves are taken conformally into an approximate sandwich form (2.8) by (2.7a)–
(2.7b) [14, 15, 41, 43, 45] with new profile function

−2H̃ = Ω4
[
α̃(Ũ)(X̃2 − Ỹ 2) + 2γ̃(Ũ)X̃Ỹ

]
, (3.2)

where α̃(Ũ) = α[f(Ũ)] and γ̃(Ũ) = γ[f(Ũ)]. The new GWs include two classes which
correspond to different choices of the coefficients A, B, C and D. C = 0 means a dilation
and an U -translation of the original GWs which does not bring any new insight and will
therefore not considered further.

C ̸= 0 introduces in turn a new, rationally-redefined scale factor. In terms of the redefined
parameters ρ = C/

√
AD −BC and δ = D/C which determine the width and the center of

the new GW shown in figure 1, the conformal factor can be presented as

Ω4 = 1
[ρ(U + δ)]4

. (3.3)

Apart of focusing and shifting, the parameters ρ and δ do not change the trajectory. Choosing
2The Möbius approach goes actually back to a short note of Donald Lynden-Bell [33].
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(a) (b)

Figure 1. The conformal factor (3.4) determines the width and position of the wave (3.5): 1(a) is for
parameters ρ = 1 and δ = 0 and figure 1(b) is for ρ = 10 and δ = 1, respectively.

ρ = 1 and δ = 0 for the sake of simplicity,

Ω4(U) = 1
U4 (3.4)

generates the special rational transformation [23],

U = − 1
Ũ
, X = X̃

Ũ
, V = Ṽ + X̃2

2Ũ
. (3.5)

Eqs. # (2.10) and # (2.11) of Andrzejewski and al. [45, 46] are also similar, except for
that their profiles tend, unlike ours, to a Dirac delta.

The Möbius mapping SMCT (2.7a)–(2.7b) shown in figure 1 shrinks a globally defined
GW into one concentrated around a single point which then behaves as an approximate
sandwich wave [14, 15, 41, 43, 45].

Eq. (3.5) is in fact the oscillator counterpart of the conformal transformation applied to
planetary motion with a time-dependent gravitational constant, proposed by Dirac [2, 47].

Keane and Tupper [23] noted in particular that (3.5) allows us to obtain a conformally
related “dual” space-time. Our Möbius-redefined time and SMCT (2.7a)–(2.7b) have this
property also, since the inverse transformation is identical to the original one.

The general vacuum GWs in (3.1) admit Killing vectors of the form

β̂ = β ∂X − β̇iX
i∂V , (3.6)

where the two-vector β = (βi) satisfies the vectorial Sturm-Liouville equation [48, 49]:

β̈i(U) = Kijβj(U), with Kij =
(
α(U) γ(U)
γ(U) −α(U)

)
, (3.7)

where ˙(·) means d/dU . The transformation (2.7) then carries the Killing vector (3.6) into:

̂̃
β = g̃(Ũ)∂X̃ − X̃·

◦
g̃ ∂

Ṽ
, where g̃(Ũ) = Ω−1g

(
f(Ũ)

)
. (3.8)

– 4 –



J
H
E
P
0
7
(
2
0
2
4
)
1
6
4

g̃ here satisfies the redefined Sturm-Liouville equation,

◦◦
g̃ j +K̃ij g̃

i, with K̃ij = Ω4
(
α̃(Ũ) γ̃(Ũ)
γ̃(Ũ) −α̃(Ũ)

)
. (3.9)

Below we illustrate our point by two vacuum GWs, one linearly polarized, and the
other circularly polarized. Both are globally defined and have a 7-dimensional symmetry
algebra. Then we study how their symmetries and geodesics change under the Möbius
transformation (3.5).

3.1 Conformally related linearly polarized vacuum GWs

1. The simplest globally defined linearly polarized vacuum GW (LPP) of Brdicka [51],
whose metric is,

ds2 = dX2 + dY 2 + 2dUdV − (X2 − Y 2) dU2 . (3.10)

Its CKVs are obtained by solving the conformal Killing equations,

WL = η∂U +
(

2ρV + ϵ− X · dgL

dU

)
∂V + (ρX + gL) · ∂X , (3.11)

where
gL(U) = (δ1 sinU + β1 cosU)eX + (δ2 coshU − β2 sinhU)eY . (3.12)

Here η, ϵ, ρ, δi and βi are arbitrary constants which generate time-translations, Ê,
vertical-translations, N̂ , dilations, D̂, space-translations, P̂i, and boosts Ĝi, respectively.
These symmetries span the 7-dimensional homothetic algebra E7,

[P̂i, P̂j ] = 0, [Ĝi, Ĝj ] = 0, [P̂i, Ĝj ] = δijω̄N̂ , [D̂, N̂ ] = −2N̂ ,
[D̂, Ĝi] = −Ĝi, [D̂, P̂j ] = −P̂j , [D̂, Ê] = 0, [Ê, Ĝi] = −P̂i,

[Ê, P̂1] = Ĝ1, [Ê, P̂2] = −Ĝ2 . (3.13)

The gL-terms in (3.11) can be collected into

gL · ∂X − ġLX · ∂V , (3.14)

which is (3.6).

2. The conformal transformation (3.5) carries the Brdicka wave (3.10) into a rational LPP
with damped profile,

ds̃2 = dX̃2 + dỸ 2 + 2dŨdṼ − 1
Ũ4

(X̃2 − Ỹ 2)dŨ2, (3.15)

whose CKVs can be obtained either directly or by the conformal transformation (3.5),

W̃L = ηŨ2∂
Ũ

+
(

2ρṼ + ϵ− η
1
2X̃2 − X̃·

◦
g̃L

)
∂

Ṽ
+
(
ρX̃ + ηŨX̃ + g̃L

)
· ∂

X̃
, (3.16)

where

g̃L(Ũ) = Ũ

(
−δ1 sin 1

Ũ
+ β1 cos 1

Ũ

)
eX + Ũ

(
δ2 cosh 1

Ũ
+ β2 sinh 1

Ũ

)
eY . (3.17)
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Note for further reference that the g̃L-terms in (3.16) combine into a solution of (3.8).

The parameters represent the same symmetries as in the Brdicka case except for η,
which becomes a special Killing vector (SCKV) identified as an expansion K̂,

K̂ = U2∂U − 1
2X2∂V + UX · ∂X , (3.18)

which acts as a redefined-time translation Ê = ∂U . The commutation relations are,

[P̂i, P̂j ] = 0, [Ĝi, Ĝj ] = 0, [P̂i, Ĝj ] = δijω̄N̂ , [D̂, N̂ ] = −2N̂ ,

[D̂, Ĝi] = −Ĝi, [D̂, P̂j ] = −P̂j , [D̂, K̂] = 0, [K̂, Ĝi] = −P̂i ,

[K̂, P̂1] = Ĝ1, [K̂, P̂2] = −Ĝ2 . (3.19)

Thus the algebra E7 ⊃ G6 for the Brdicka GW (3.10) is transformed, for the rational-time
LPP GW (3.15), into

S7 ⊃ E6 ⊃ G5 . (3.20)

Here S, E , G are the special conformal algebra, homothetic algebra and isometric
algebra generators, respectively. The subscripts indicate the dimension of the algebra.
The commutation relations do not change even if the CKVs do [23, 52].

3. The circularly polarized (CPP) GW has line element

ds2 = dX2 + dY 2 + 2dUdV −
[

cos(2ωU)(X2 − Y 2) + 2 sin(2ωU)XY
]
dU2, (3.21)

where ω is an arbitrary constant frequency. The corresponding CKVs were studied, e.g.,
in [16, 31]:

WC = η [∂U + ω (X∂Y − Y ∂X)] + (2ρV + ϵ− X · ġC) ∂V + (ρX + gC) · ∂X , (3.22)

where

gC(U) = gC1(U) eX + gC2(U) eY , (3.23)

gC1(U) = β2DU (sinωU · sinω−U) + δ2DU (sinωU · cosω−U)

+ β1DU (cosωU · sinω+U) − δ1DU (cosωU · cosω+U) , (3.24)

gC2(U) = −β2DU (cosωU · sinω−U) − δ2DU (cosωU · cosω−U)

+ δ1DU (sinωU · cosω+U) − β1DU (sinωU · sinω+U) , (3.25)

where ω± =
√
ω2 ± 1 and DU is the bilinear derivative DU (f · g) = g df

dU − f dg
dU . These

formulae represent also analytic geodesics in the CPP GW space-time, as said before.

The parameters η, ρ, ϵ, δi and βi generate “screw” symmetries Ŝ [31], namely dilations
D̂, vertical-translations N̂ , space-translations P̂i, and boosts Ĝi, respectively, span a
7-d homothetic algebra E7 ⊃ G6 [16].
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4. Inserting (3.5) into (3.21) yields the rational CPP GW whose line element is,

ds̃2 = dX̃2 + dỸ 2 + 2dŨdṼ

− 1
Ũ4

[
cos

(2ω
Ũ

)
(X̃2 − Ỹ 2) + 2 sin

(2ω
Ũ

)
X̃Ỹ

]
dŨ2. (3.26)

Its CKVs are obtained as in the rational-time LPP case,

W̃C = η
[
∂

Ũ
+ ŨX̃ · ∂

X̃
+ ω

(
X̃∂

Ỹ
− Ỹ ∂

X̃

)]
+
(

2ρṼ + ϵ− X̃·
◦
g̃C

)
∂

Ṽ
+ (ρX̃ + g̃C) · ∂

X̃
, (3.27)

where

g̃C(Ũ) = g̃C1(Ũ)e
X̃

+ g̃C2(Ũ)e
Ỹ
, (3.28)

g̃C1 = −β2
Ũ

ω+
D

Ũ

(
Ũ cos ω+

Ũ
· Ũ cos ω

Ũ

)
− δ2

Ũ

ω+
D

Ũ

(
Ũ sin ω+

Ũ
· Ũ cos ω

Ũ

)

+ β1
Ũ

ω
D

Ũ

(
Ũ cos ω−

Ũ
· Ũ sin ω

Ũ

)
− δ1

Ũ

ω
D

Ũ

(
Ũ sin ω−

Ũ
· Ũ sin ω

Ũ

)
, (3.29)

g̃C2 = −β2
Ũ

ω+
D

Ũ

(
Ũ cos ω+

Ũ
· Ũ sin ω

Ũ

)
− δ2

Ũ

ω+
D

Ũ

(
Ũ sin ω+

Ũ
· Ũ sin ω

Ũ

)

+ β1
Ũ

ω
D

Ũ

(
Ũ cos ω−

Ũ
· Ũ cos ω

Ũ

)
− δ1

Ũ

ω
D

Ũ

(
Ũ sin ω−

Ũ
· Ũ cos ω

Ũ

)
, (3.30)

are also analytical geodesics in the rational CPP GW space-time.

Here the parameters ρ, ϵ, δi, βi represent the same symmetries as for the CPP wave, —
except for η, which is a new special symmetry denoted by ŜK ,

ŜK = Ũ2∂
Ũ
− 1

2X̃2∂
Ṽ

+ ŨX̃ · ∂X̃ + ω(X̃∂
Ỹ
− Ỹ ∂

X̃
) , (3.31)

which corresponds to eq. # (147) of Keane and Tupper in ref. [23]. Its geometric
meaning is obtained by integrating the Killing vector (3.31). Its space part,


X = − U

U0

[
X0 cos

(
ω(U−U0)

UU0

)
+ Y0 sin

(
ω(U−U0)

UU0

)]
Y = U

U0

[
Y0 cos

(
ω(U−U0)

UU0

)
−X0 sin

(
ω(U−U0)

UU0

)] , (3.32)

where X0, Y0 and U0 are initial positions, describes a “growing screw” whose size
increases linearly with U while its frequency decreases as shown in figure 2. A similar
“screw” has also been found for planetary motions with for time-dependent gravitational
constant in Newtonian gravity [2, 47].
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(a) (b)

Figure 2. 2(a): the “screw” (3.32) of the rational CCP GW (3.26) expands linearly with U .
Figure 2(b) shows its projection onto the Y − U plane.

3.2 Gedesics, found numerically and analytically

Analytic solutions are readily derived from the results in section 3. Our clue is that the
Sturm-Liouville equation (3.7) for symmetries is indeed identical to the equations of motion
satisfied by the transverse coordinates X(U) [50],

Ẍi(U) = KijXj(U), (3.33)

(while the 3rd component V (U) is then obtained by horizontal lift [2, 4]).
Thus once we know the Killing vectors (3.6), we get the geodesic for free and vice versa.

Below we derive the analytic formulae by spelling out this remarkable correspondence. The
numerical solutions shown in figure 3 for the LPP GW of Brdicka, (3.10), and for the rational
LPP, (3.15), are matched by the analytic solutions deduced from (3.12) and a piecewise
continuous solutions deduced from (3.17),

X̃(Ũ) =
{
Ũ sin Ũ−1 Ũ < 0
Ũ cos Ũ−1 Ũ > 0 ,

(3.34)

Ỹ (Ũ) =

0, Ũ ≤ 0 ,

Ũ
(
sinh Ũ−1 − cosh Ũ−1

)
, Ũ > 0.

(3.35)

These analytical solutions are plotted in figure 4.
The geodesics of both the CPP GW (3.21) and the rational-time CPP GW (3.26) perform

screw-like motions. Figure 5 compares these two numerically-obtained geodesics. Eq. (3.23)
is an analytically found geodesic in the CPP GW space-time (3.21) which, choosing the
parameters as ω = 1.5, δ1 = 0, δ2 = 0, β1 = 0 and β2 = 5, matches the numerical one
in figure 5(a).

– 8 –
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(a) (b)

Figure 3. 3(a): a particle in the LPP GW space-time (3.10) of Brdicka (drawn in steel blue) oscillates.
It should be compared with what happens in the rational LPP GW (3.15), obtained by squeezing
the wave as in (3.5) and drawn in dark orchid in figure 3(b), for which the particle initially in rest is
shaken by the GW and then escapes with straightened-out velocity due to the damping factor U−1

after the wave has passed.

(a) (b)

Figure 4. 4(a) shows analytically found geodesics for the LPP (Brdicka) (3.10), and 4(b) for the
rational LPP in (3.34)–(3.35), metric respectively. These plots should be compared with the numerical
ones in figure 3.
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(a) (b)

Figure 5. 5(a): in the usual CPP GW (depicted in steel blue) the particle performs a “gear wheel-like”
motion. 5(b): in the rational CPP GW (in dark orchid) the particle which is at rest before the GW
arrives escapes along an expanding screw after the GW has passed. For large U its velocity becomes
approximately constant due to the damping factor Ũ−4 in (3.26).

The rational CPP GW (3.26) admits special piecewise solutions,

X̃(Ũ) =


0, Ũ ≤ 0,

Ũ

ω
D

Ũ

(
Ũ cos ω−

Ũ
· Ũ sin ω

Ũ

)
, Ũ > 0.

(3.36)

Ỹ (Ũ) =


0, Ũ ≤ 0,

Ũ

ω
D

Ũ

(
Ũ cos ω−

Ũ
· Ũ cos ω

Ũ

)
, Ũ > 0 ,

(3.37)

plotted in figure 6 which should be compared with the numerical solution in figure 5(b).
Figure 7 shows the variations of the velocities in figure 6 on X and Y directions.

4 O(2, 1)-conformally invariant gravitational waves

In the previous section we discussed vacuum GWs that are carried into another vacuum GW
by the special Möbius transformation (2.7a)–(2.7b). In this section we consider a special
vacuum GWs which are invariant.

We start by completing (2.7a) by the well-known ξ-preserving conformal transformations
of the conformal Killing equations in the free Minkowski metric in 2 + 1 dimensions, (1.1)

– 10 –
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Figure 6. The analytic rational CPP solution (3.36)–(3.37), to be compared with the numerically
found one in 5(b).

(a) (b)

Figure 7. For the rational CPP GW (3.26) the velocities become approximately constant after the
wave has passed due to the damping factor Ũ−4: we get the velocity effect [9, 16].

with H = 0. We get three special transformations, namely,

time−translation : U = Ũ + ϵ, X = X̃ , V = Ṽ , (4.1a)

dilatation : U = e2δŨ , X = eδX̃ , V = Ṽ , (4.1b)

special conformal transformation :

U = Ũ

1 + κ Ũ
, X = X̃

1 + κ Ũ
, V = Ṽ + κ

2(1 + κ Ũ)
X̃2 , (4.1c)

– 11 –
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where ϵ, δ and κ are arbitrary real constants. The corresponding infinitesimal generators,

time−translation : Ê = ∂U , (4.2a)

dilation : D̂ = U∂U + 1
2 (X∂X + Y ∂Y ) , (4.2b)

expansion : K̂ = U2∂U + U
(
X∂X + Y ∂Y

)
− 1

2(X2 + Y 2)∂V , (4.2c)

span an o(2, 1) algebra,

[D̂, Ê] = −Ê, [D̂, K̂] = K̂, [Ê, K̂] = 2D̂ (4.3)

which generate an O(2, 1) conformal group.
Systems with O(2, 1) symmetry were considered in various physical instances:

• For a free particle [2, 4, 53–55] or in Chern-Simons field theory [56–59] it extends the
Galilei to the Schrödinger algebra [53–55]. All Schrödinger-symmetric systems are
derived, in d ≥ 3 space dimensions, from the vanishing of the Weyl [59] or in d = 1
from that of the Cotton tensor [60], respectively.

• An inverse-square potential could be added [4, 53–63]. Applications include the interac-
tion of a polar molecule with an electron [34, 36] (which will be discussed further in
subsection 5), the Efimov effect [36, 64], near-horizon fields of black holes [35, 36, 65]
and the vacuum AdS/CFT correspondence [36, 66, 67];

• A Dirac-monopole and a magnetic vortex [68, 69] .

Hence we focus our attention at vacuum gravitational waves with O(2, 1) symmetry. For
symplicity, we focus our investigations to the planar case with coordinates X, Y . Substituting
the three vectors in (4.2a)–(4.2c) into the conformal Killing equation (1.2) for the Brinkmann
metric (1.1) leaves us with,

time−translation : H,U = 0 , (4.4a)
dilatations : UH,U +XH,X + Y H,Y + 2H = 0 , (4.4b)
special conformal transformation : 2UH,U +XH,X + Y H,Y + 2H = 0 . (4.4c)

Note that (4.4b) and (4.4c) differ only in the coefficients of their first terms — which involves
the generator of time translation symmetry, (4.4a).

Solving these equations with the vacuum condition (2.6) yields, for an exact plane wave,
the line element,

ds2
O21 = dX2 + dY 2 + 2dUdV − 2

(
C1(X2 − Y 2) + 2C2XY

R4

)
dU2 , (4.5)

where R2 = X2 +Y 2; C1 and C2 are arbitrary constants. The proof follows at once from that
dilatation symmetry (4.4b), combined with time-translation-invariance (4.4a) imply indeed,
by Euler’s formula, that the potential is homogeneous of order (−2).
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The potential (4.5) breaks the rotational symmetry, however still allows for the conformal
O(2, 1) symmetry of the inverse-square potential [2, 4, 62] to the anisotropic case. It should be
compared to the statement [59, 60] which says that the profiles of the only Bargmann manifolds
with Schrödinger symmetry correspond, in 3+1 dimensions, to an (i) isotropic oscillator, to
an (ii) inverse-square potential with constant coefficient, to a (iii) uniform force field.

The special GW (4.5) satisfies, for an arbitrary linear combination of Ê, D̂, K̂ in (4.2a)–
(4.2c), the conformal Killing equations (1.2) with,

W = aÊ + bD̂ + cK̂ = (a+ bU + cU2)∂U − c
1
2X2∂V +

(
cU + b

2

)
X · ∂X , (4.6)

where a, b and c are arbitrary constants. By integrating the U component of (4.6), the
associated SKV reduces to the Möbius-redefined time (2.7a) with X, A, etc replaced by,
X̃ and by,

Ã = −

 b2 +
√

4ac− b2

2 tan
(

η
√

4ac−b2

2

)
 , B̃ = −c, C̃ = a, D̃ = −

 √
4ac− b2

2 tan
(

η
√

4ac−b2

2

)
 , (4.7)

where η is the parameter of the integral curve. In conclusion, the special gravitational
wave (4.5) is form-invariant under the SMCT (2.7b).

The metric (4.5) is conveniently presented in cylindrical coordinates (R, θ),

ds2
O21 = dR2 +R2dθ2 + 2dUdV − 2

(
C1 cos 2θ + C2 sin 2θ

R2

)
dU2 , (4.8)

reminiscent of the potential for the interaction between a polar molecule and an elec-
tron [34, 35],

H ≡ H(r, θ) = C cos θ
r2 , (4.9)

where the constant C is proportional to the product of the electric charge and the dipole
momentum, and θ is the polar angle in the X − Y plane.

5 A molecular physics-inspired gravitational wave

In this section, we study a vacuum spacetime inspired by polar molecules represented by
the anisotropic inverse-square potential [34, 35],

H = C1 cos 2θ + C2 sin 2θ
R2 , (5.1)

where C1 and C2 are real constants, cf. (4.8). Postponing the 3-dimensional problem to
further study, we limit our attention at the plane. For simplicity, we put also the NR mass
M = 1. The conformal Killing vectors in (4.2a)–(4.2b)–(4.2c) preserve the vertical vector
ξ = ∂V and therefore project to conformal symmetries of the underlying non-relativistic
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system providing us with three conserved quantities [4, 53–55, 61, 62],

Ê → E = P2

2 + C1 cos 2θ + C2 sin 2θ
R2 , (5.2a)

D̂ → D = 2EU − P · X , (5.2b)

K̂ → K = −EU2 + DU + 1
2R

2 . (5.2c)

To explain in simple terms what happens, consider first dilations, (4.2b), which leave the
Lagrange density L0dU of a free NR particle invariant provided the time scales with the square
of the factor as the position does [53–55]. Then adding a potential H changes the Lagrange
density by −HdU , which is also invariant if H is inverse-square in the radius [4, 62, 63].

However dilations act only on the radial variable, therefore the potential (5.1) is left
invariant. Then an easy calculation shows that the two other transformations in (4.2) remain
also unbroken. Remarkably, the associated “Noether” quantities were found by Jacobi [61]
. . . 60 years before Emmy Noether was born!

The Casimir operator of O(2, 1) is,

C2 = R2 − G2
− − G2

+, (5.3)

where
R = 1

2

(1
τ
K̂ + τÊ

)
, G− = 1

2

(1
τ
K̂ − τÊ

)
, G+ = D̂ (5.4)

generate a compact SO(2) group of rotations, augmented with two non-compact two dimen-
sional boosts. Here τ is a positive fixed parameter with the dimension of time. See ref. [69]
for details. The Casimir operator can also be written as,

C2 = J2 + 2 (C1 cos 2θ + C2 sin 2θ) , (5.5)

where J = R×V is the orbital angular momentum. (The angular momentum in 2 dimensions
is just a scalar, namely the 3rd component of the 3-dimensional one, Jz. The conserved
quantity generated by translations along the V coordinate and interpreted as the mass of
the underlying non-relativistic system [2, 4, 6] was scaled to unity).

A lightlike particle in the special GW background (4.5) (viewed, in the Bargmann
framework, as a massive non-relativistic particle in one dimension less) moves along null
geodesics. In cylindrical coordinates,

d2R

dU2 −R

(
dθ

dU

)2
− 2 [C1 cos 2θ + C2 sin 2θ]

R3 = 0 , (5.6)

d2θ

dU2 + 2
R

dR

dU

dθ

dU
− 2 [C1 sin 2θ − C2 cos 2θ]

R4 = 0 . (5.7)

Let us assume, for simplicity, that C1 = 0 so that the planar metric (4.8) has only
one polarization state,

ds2 = dR2 +R2dθ2 + 2dUdV − 2
(
C2 sin 2θ
R2

)
dU2 , (5.8)
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(a) (b)

Figure 8. 8(a): the potential (5.8) alternates between repulsive (NE-SW) and attractive (NW-
SE), changing sign at every quadrant. The apparent doubling of the “chimneys and sinks” in figure 8a
are computer artifacts as confirmed by figure 8b: the only singularity is at the origin.

For C2 = 0 we get Minkowski-space which has no interest for us. Then C2 > 0 can be
achieved by shifting θ. Henceforth we set C2 = 1.

The metric (5.8) is the “Bargmannian” form [2, 4, 6] of the anisotropic version of a
NR particle in an inverse-square potential

H(R, θ) = sin 2θ
R2 , (5.9)

shown in figure 8. Its anisotropy is manifest by realizing that for fixed R = R0, H(R, θ) is
proportional to sin 2θ. A long-distance view is shown in figure 9.

The nature of the potential (5.8) is determined by the sign of the coefficient of dU2

— the potential of the underlying non-relativistic dynamics [2, 4] — which alternates at
every quadrant. Its behavior is conveniently studied by plotting the force, figure 10: It is
repulsive for 0 < θ < π/2 and for π < θ < 3π/2, and attractive for π/2 < θ < π and for
3π/2 < θ < 2π. The force is maximal on the separation “crosslines” at θ = kπ/2, k = 0, 1, 2, 3,
where the repulsive potential becomes attractive and vice versa, cf. (5.9). It is obviously
symmetric w.r.t. θ → θ + π.

A qualitative insight into the possible motions can be obtained by using the conformal
o(2, 1) symmetry. For simplicity we restrict our attention at what happens to a particle that
we simply put at U = U0 to some position (R0, θ0) with vanishing initial velocity. Then
the conserved quantities (5.2) generated by o(2, 1) reduce, putting M = 1, C1 = 0, C2 = 1
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Figure 9. A long-distance view of the wave (5.8) shows a “spike” whose sign alternates at every
quarter of the circle.

Figure 10. The force −∇H alternates at every quarter-of-circle between repulsive (NE – SW)
and attractive (NW – SE) regions. The force is maximally repulsive along the “crests” at π/4 and
5π/4 and maximally attractive in the “valley bottoms” at 3π/4 and 7π/4, respectively.
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for simplicity, to

E0 = sin 2θ0
R2

0
, (5.10a)

D0 = 2E0U0 , (5.10b)

K0 = −E0U
2
0 + D0U0 + 1

2R
2
0 . (5.10c)

From (5.10a) we deduce that the conserved energy, which is initially just the potential, may
be positive, negative or zero, corresponding to the repulsive or attractive quadrant or to
the separation line between them, as depicted in figures 8 and 10.

1. In the repulsive quadrants 0 < θ < π/2 or π < θ < 3π/2 the energy is positive,

E = E0 = P2

2 + sin 2θ
R2 > 0 ⇒ P2

2 >

∣∣∣∣sin 2θ
R2

∣∣∣∣ . (5.11)

Thus the motion is outgoing. When the particle crosses the separation line and enters
into the attractive area, the absolute value of negative potential is less than that of the
initial potential: the particle will be pushed out to infinity.

2. In the attractive quadrants, π/2 < θ < π or 3π/2 < θ < 2π the energy is negative,

E = E0 = P2

2 + sin 2θ
R2 < 0 ⇒ P2

2 <

∣∣∣∣sin 2θ
R2

∣∣∣∣ . (5.12)

Thus the kinetic energy is dominated by the potential energy, and we get incoming
motion with the particle falling into the hole.

3. An intermediate behaviour is observed for vanishing energy when the initial position is
on one of the a separation line between repulsive and attractive quadrants, i.e., for
θk = k π

2 , k = 0, 1, 2, 3: by (5.10a) and (5.10b) we have,

E = E0 = 0 and D = D0 = −P · X = 0, (5.13)

so that (5.10c) implies that

R = R0 = const. and P ⊥ X . (5.14)

In conclusion, a particle put on the “rim” will follow a circular trajectory inside the
attractive region. Moreover, the vanishing of the energy,

2E0 = P2 + 2sin 2θ
R2 = 0, (5.15)

implies that the particle oscillates between the “rims” of the attractive quadrants,

π

2 ≤ θ ≤ π or
3π
2 ≤ θ ≤ 2π . (5.16)
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Figure 11. Particles which start in the repulsive zone are pushed to infinity both in the repulsive
quadrant, and, after crossing over, also in the attractive quadrant. Particles which start from the
attractive zone are in turn sucked into the hole. This behavior corresponds to the sign of the non-
relativistic energy (5.10a).

(a) (b)

Figure 12. Numerically obtained periodic trajectories 12(a) in the o(2, 1) symmetric but non-isotropic
gravitational wave (5.8). 12(b) shows their projections onto the X − Y plane, as seen also in figure 13.
The curves show two particles which start from (1, 0) resp. at (−1, 0) with zero initial velocity. The
trajectories oscillate along quarters-of-a-circle.

Numerical investigations indicate that the eqs. (5.6)–(5.7) admit all three types of
outgoing/infalling/bounded solutions. The first two are shown in figure 11, and the circularly
oscillating one in figure 12. The general behavior is summarised in figure 13.

Analytic solutions can be found also.
We first inquire about radial motions. Putting θ = θ0 = const. into (5.6)–(5.7) yields,

d2R

dU2 − 2 sin 2θ0
R3 = 0 and

2 cos 2θ0
R4 = 0 .
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Figure 13. In the NE and SW quadrants the particle is pushed outwards to infinity whereas it is
sucked into the origin in the NW and SE quadrants. Bounded zero-energy motions arise which
oscillate in the attractive quadrant between the separation lines of the attractive and repulsives zones.

The 2nd eq. implies,

θ0 = (2ℓ+ 1)π4 , ℓ = 0, 1, 2, 3 , (5.17)

leaving us with the familiar inverse-square-potential equation,

d2R

dU2 = ± 2
R3 , (5.18)

where the sign is positive in the repulsive, ℓ = 0, 2 case and is negative in the attractive,
ℓ = 1, 3 one. Thus for ℓ pair the particle is repulsed to infinity along the “crest”, and for ℓ
odd it is sucked into the origin along the “valley bottom” which correspond to the maximally
repulsive or maximally attractive directions in figures 8 and 10.

For motion along the diagonals the solution is [4, 59, 62, 63],

R(U) =
√

(V0U +R0)2 ± 2U2

R2
0
, (5.19)

where R0 > 0 and V0 are the initial position and velocity at U = 0, respectively. We choose
V0 = 0 for simplicity. Then starting in the repulsive quadrants with θ = π/4 or θ = 5π/4
we have the plus sign and

R(U) ≥
√
R2

0 + 2U2

R2
0

≥ R0 (5.20)

increasing with U : the particle is expelled.

– 19 –



J
H
E
P
0
7
(
2
0
2
4
)
1
6
4

In the attractive quadrants with θ = 3π/4 or θ = 7π/4 we have the minus sign and
the motion is directed towards the origin:

R(U) =
√
R2

0 −
2U2

R2
0

≤ R0 , (5.21)

which says that the particle moves inwards, however after the critical value

Ucrit = R2
0√
2

(5.22)

R(U) would become imaginary, indicating that the particle has fallen into the hole.
The equations (5.6)–(5.7) admit also exact circular, analytic solutions. Let us indeed

fix the radius, R(U) = R0 = const. which reduces (5.6)–(5.7) to,(
dθ

dU

)2
+ 2
R4

0
sin 2θ = 0 , d2θ

dU2 + 2
R4

0
cos 2θ = 0 . (5.23)

Deriving the first eq. by U we get dθ
dU

(
d2θ
dU2 + 2C2

R4
0

cos 2θ
)

= 0, which is an identity when the
2nd equation is satisfied. The first equation in (5.23) then implies that

dθ

dU
=
( 2
R2

0

)1/2 √
− sin 2θ = 0 , (5.24)

which admits real solutions when the sin is negative i.e. in the quadrants π/2 ≤ θ ≤ π and
3π/2 ≤ θ ≤ 2π and is then solved in terms of elliptic integrals [70],

θ(U) = −1
2 arcsin

{
JacobiCN2

[
2
R2

0
(U +D),

√
2

2

]}
, (5.25)

where D is an integration constant. This formula can also be verified directly and is plotted
in figure 14 (to be compared with the numerical solution in figure 12).

This solution has zero-energy. Conversely [71], for vanishing energy E = 0 the conserved
quantity generated by dilations, (5.10b) implies R = R0 = const., (5.14). Then (5.2a)
becomes (5.15) which for R = R0 is (5.24) that we have just solved. In conclusion, the o(2, 1)
symmetry implies, for zero energy, motion on (part of) a circle.

Restoring the radius in the equations shows that the period increases proportionally
to the its square, R2

0,

∆U = R2
0

4K√
2C2

⇒ ∆U ∝ R2
0 , (5.26)

as seen in figure 15. Inserting θ(U) from (5.25) into the conserved Casimir (5.5) we get,
for C1 = 0,

J2 = 2 JacobiCN2
[

2
R2

0
(U + C),

√
2

2

]
+ const. (5.27)

On the other hand, the angular momentum for (5.25) is

J = R⃗× V⃗ = JacobiCN
[

2
R2

0
(U + C),

√
2

2

]
, (5.28)

whose square fixes the constant in (5.27) to vanish. The length of (5.28) thus oscillates as
shown in figure 16, consistently with the breaking of the axial symmetry.
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Figure 14. The analytic solution obtained in terms of elliptic integrals describes periodic motion
along a circular arc confined into the attractive quadrant π/2 < θ < π, consistently with the numerical
solutions in figures 12 and 15.

(a) (b) (c)

Figure 15. Figure 15(a) shows the trajectories of two particles initially at rest on the separation
line of the repulsive and attractive quadrants at (1,0) and at (2,0), respectively. The projections in
figure 15(b) into the X − Y plane follow quarter-of-circle arcs with radiuses R0 = 1 and R0 = 2. The
projection into the Y − U plane in figure 15(c), shows that the period for R0 = 2 is four times that
for R0 = 1, consistently with (5.26).

6 History: from Arnold through Newton, back to Galilei

The zero-energy motions which oscillate along quarter-of-circles in the attractive zone between
the separation lines of the attractive and repulsive quarters have indeed quite remarkable
ancestry. Let’s proceed backwards in time.

We start with noting that our equations (5.23) are reminiscent of the study of planetary
motion by making use of the Bohlin-Arnold duality between harmonic oscillators and the
Kepler problem [72, 73]. It is worth noting that the Bohlin-Arnold duality can be put directly
in the projective geometry framework [74].

Eqs. #(8.3) in [75] which assume circular trajectories are consistent when the force is
inversely proportional to the fifth power of the distance from the sun,

force ∝ − 1
r5 . (6.1)
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Figure 16. In the anisotropic metric (5.8) in figure 8, the orbital angular momentum J in (5.28) is
not conserved: for the circular periodic motion found for zero energy, for example, its length oscillates.
The direction of the oscillations seen in figures 12 and 15 corresponds to the sign of the angular
momentum, with the turning point corresponding to the zeros of the angular momentum.

This fact was known already by Newton, who, in his Principia, inquired: – What force laws
do allow for circular trajectories? — and he found, using geometrical techniques that in
addition to r−2 one can have also (6.1), see [76] vol. I Proposition VII. Problem II, where
the proof is left as an exercise.

Yet another intriguing feature is that both our circular solution in section 5 and the
parabolic trajectory of the 1680 comet (discussed by Newton in Book III Proposition XLI,
Problem XXI of [76]), has also zero energy. These solutions separate bounded and unbounded
motions.

Even more incredibly, figure4 in Galilei’s Dialogo [77], written before Newton was even
born, suggests circular motion which would pass through the center of the Earth.

Returning to our circularly oscillating motions found in section 5 we note that they do
not enter into the Bohlin-Arnold framework. Let us explain. The Bohlin-Arnold trick [72, 73]
is based on a duality between two central potentials proportional to ra and rA, respectively,
which are dual when the constraint(

1 + a

2

)(
1 + A

2

)
= 1 (6.2)

is satisfied; then motion in the ra and in the rA potentials can be swapped into each other.
The newtonian potential corresponds, for example, to a = −1; its dual has therefore

A = 2 i.e., is an isotropic harmonic oscillator.
The duality swaps also the celebrated dynamical symmetries of the oscillator with the

Runge-Lenz vector-induced one of planetary motion. Working for simplicity in the plane
using complex coordinates, ζ = ξ+ iη for the oscillator and z = x+ iy for the Kepler problem,
the corresponding Levi-Civita-Bohlin-Arnold map [72–75, 78, 79],

z =
(
ζ + 1

ζ

)2
(6.3)
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interchanges also those two (oscillator and Kepler) dynamical symmetries, as discussed in
this context [80].

The potential of the inverse-5 force (6.1) is in turn self-dual, a = A = −4.
However the inverse square potential, which is precisely what we are interested in this

paper, has no Bohlin-Arnold dual: the constraint (6.2) can not be satisfied for a = −2. It is
therefore a remarkable tour de force that Sundaram et al. [71] could extend the Bohlin-Arnold
duality to that case.

7 Summary and discussions

In this paper we study conformally related vacuum gravitational waves and their associated
symmetries by using a special Möbius conformal transformation (2.7a)–(2.7b). The vacuum
condition is preserved by eliminating the additional non-vacuum oscillator term (2.4) [28, 32].
The resulting GW is in general different from the original one. The transformation (2.7a)–
(2.7b) carries a global GW into an (approximate) sandwich wave, as illustrated by LPP GW
and CPP GW which exemplify also the memory effect [7–15].

A vacuum GW can also be invariant under the special Möbius conformal transfor-
mation (2.7a)–(2.7b) when it has an O(2, 1) symmetry. The remarkable efficiency of this
symmetry comes from that its generators act on the radial variable only, therefore they
apply equally well to anisotropic systems.

The particularly interesting example originating in molecular physics [34] but applied
here in the gravitational context by using the Bargmann framework [2, 4, 6] is studied in
some detail. It has the form of an anisotropic inverse-square potential [62].

For the polar-molecular application, (5.1), the familiar rotational symmetry is broken by
an angle-dependent coefficient which makes it anisotropic: it alternates between repulsive
and attractive at every quarter-of-a circle, see (5.8). The particle is accordingly being pushed
out to infinity or attracted towards the singularity at the origin, depending on the sign of the
energy of the underlying non-relativistic problem. Bounded motion arise in the attractive
quadrant, with the particle oscillates along quarter-of-circle between the lines which separate
the attractive and repulsive quadrants. Their behavior is reminiscent of that in the Kepler
problem where the bounded (elliptical) and unbounded (hyperbolic) motions with negative
or positive energy are separated by zero-energy parabolic motions.

Analytic solutions were found also for escaping or incoming radial motion along the
“crests” or “valley bottoms” which corresponds to the usual inverse-square potential with
repulsive or attractive sign.

The anisotropy breaks the rotational symmetry: the length of the angular momen-
tum (5.28) oscillates, as shown in figure 16 in the periodic case.

The periodic motions in the attractive zone show remarkable historical analogies, re-
counted in section 6 by proceeding backwards in time.

The rôle played by the inverse-square potential in black-hole physics has been noticed
before [65] for the isotropic Reissner-Nordström solution [35]. The anisotropic metric (5.8),
which seems to have escaped attention so far, is a pp wave which resembles that near the
“Dirac String” in the Lorentzian Taub-NUT metric [81–83].
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Replacing the trigonometric functions of θ in (4.8) or in (5.8) by a constant, we would
recover the familiar inverse-square profile

ds2 =
(
dR2 +R2dθ2 + 2dUdV

)
− 2
R2dU

2, (7.1)

which is reminiscent of Aichelburg-Sexl ultraboosts [84–86],

ds2 =
(
dr2 + r2dθ2 + 2dudv

)
− 8 δ(u)log rdu2, −π < θ < π (7.2)

which describes the gravitational field of a massless particle which moves with the velocity of
light. It can be considered as an approximation of the gravitational field of a photon [86].
The metric (7.2) is indeed the impulsive limit of the axisymmetric Gaussian pulse

ds2 =
(
dr2 + r2dθ2 + 2dudv

)
− 4a log r
π(1 + a2u2)du

2 (7.3)

when a → ∞.
The substantial difference between our inverse-square (7.1) and the Aichelburg-Sexl

metric (7.2) is that the latter is a vacuum wave outside the origin because of ∆(log r) = δ(r),
while (7.1) and our anisotropic generalisation (5.8) are merely pp waves.

The relation of the inverse-square metric with that of Aichelburg and Sexl can be
enlightend by putting (7.1) first into a Gaussian envelope,

ds2
Gauss =

(
dX2 + dY 2 + 2dUdV

)
− 2
λ

exp
[
−U

2

λ2

]
sin 2θ
R2 dU2 . (7.4)

The parameter λ rules the width of Gaussian bell. For λ→ ∞ we recover the U -independent
profile (5.8), and λ→ 0 is the impulsive limit it shrinks to δ(U) with alternating sign which
depends on the quadrant. The metric (7.4) is still a pp-wave however the U -dependent
pre-factor breaks the O(2, 1) symmetry.

Then taking the impulsive limit λ→ 0 yields an anisotropic analog of the Aichelburg-Sexl
metric (7.2),

ds2 =
(
dR2 +R2dθ2 + 2dUdV

)
− δ(U)2 sin 2θ

R2 dU2. (7.5)

Another difference is that our (4.8) is o(2, 1)-symmetric, while the Aichelburg-Sexl
ultraboost is not: log r is not scale-invariant which makes the discussion more elaborate.
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