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1 Introduction

Since the discovery of the Higgs boson by the ATLAS and CMS collaborations in 2012 [1, 2],
the precision test of the properties of the Higgs boson has become one of the most important
topics in high-energy physics. In particular, the Yukawa coupling between the top quark and
the Higgs boson plays an important role in pursuing the answers to many deep questions,
such as the origin of the masses of fundamental fermions, the stability of the electroweak
vacuum, and the matter-anti-matter asymmetry in our observable universe. The ATLAS and
CMS collaborations at the Large Hadron Collider (LHC) have observed the Higgs production
associated with a top-antitop quark pair (tt̄H production) in 2018 [3, 4]. This allows us
to directly probe the top-quark Yukawa coupling. The possible violation of the Charge-
Parity (CP) symmetry in the coupling has also been investigated experimentally [5, 6]. With
the accumulation of data in the near future, the experimental accuracy for the cross section of
this process can reach 2% at the High-Luminosity LHC (HL-LHC) [7]. To match the expected
precision of the HL-LHC, it is highly desirable to have equally accurate theoretical predictions.

The leading-order (LO) cross sections for tt̄H production were present in [8, 9]. The
next-to-leading order (NLO) QCD corrections have been calculated 20 years ago [10–15]
and interfaced with parton showers in [16–18]. The NLO eletroweak (EW) corrections were
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reported in [19–21]. The off-shell effects of the top quark and/or the Higgs boson were
considered in [22–25]. The resummation of soft-gluon contributions close to the partonic
threshold up to NNLL was considered in [26–32]. The mixed QCD+EW corrections were
calculated in [33] and the NLO QCD corrections in the Standard Model Effective Field Theory
were presented in [34]. Beyond all these, the next-to-next-to-leading order (NNLO) QCD
corrections are the current frontier. In the NNLO corrections, in addition to the two-loop
amplitudes, the higher order contributions of one-loop amplitudes in the dimensional regulator
ϵ are also necessary. In [35], the O(ϵ1) contributions for both the quark-antiquark annihilation
channel and the gluon fusion channel were obtained and used to extract the Infrared (IR)
singularities of corresponding two-loop amplitudes. The O(ϵ2) contributions for the gluon
fusion channel have recently been known in [36]. The contributions from off-diagonal partonic
channels are present in [37], which turn out to be at the per-mill level. The contributions from
the qq̄ channel with closed massless and/or massive quark loops to the two-loop amplitudes
were calculated numerically in [38]. In [39], the so-called soft Higgs approximation was applied
to calculate the most difficult two-loop amplitudes. This approximation is valid in the limit
where the momentum of the Higgs boson is small compared to other scales in the process.
Such an approximation turns out to be reasonable for calculating the total cross sections,
but may not be applicable to more exclusive differential cross sections. The two-loop master
integrals for leading-color QCD scattering amplitudes with closed light-quark loops in tt̄H

production were calculated in [40], while the exact calculation of the two-loop amplitudes
is still beyond the reach of current methods.

In this paper, we take a kinematic limit different from that in [39]. We consider
the two-loop amplitudes for tt̄H production in the high-energy boosted limit, where the
momentum-invariants are much larger than the mass of the top quark, i.e., |sij | ≫ m2

t for all
external legs i and j. In this limit, a general mass-factorization formula was given in [41–44].
Using this factorization formula, our main task becomes the calculation of the two-loop
massless amplitudes, where mt and mH are set to zero. This is much simpler than the
calculation of the fully massive amplitudes, and is made possible by the recent progresses in
the integration-by-parts (IBP) reduction techniques [45–51] and the results for the two-loop
five-point master integrals [52–59].

The paper is organized as follows. In section 2, we give our notations and the definitions
of various quantities used in our calculation. We introduce our approximate formula for the
massive amplitudes in the high-energy boosted limit in section 3, and discuss the conventions
for dealing with power-suppressed contributions in section 4. We then present our numeric
results in section 5 and conclude in section 6. We collect some length expressions in the
appendices.

2 Notations and definition

For the production of a Higgs boson associated with a top-antitop quark pair, we consider
the following two partonic processes

qβ(p1) + q̄α(p2) → tk(p3) + t̄l(p4) + H(p5) , (2.1)
ga(p1) + gb(p2) → tk(p3) + t̄l(p4) + H(p5) , (2.2)
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where α, β, a, b, k, l are color indices and pi the momenta of the external partons with
p2

1 = p2
2 = 0, p2

3 = p2
4 = m2

t and p5
5 = m2

H . The kinematic variables are defined as
sij = (pi + σijpj)2, where σij = +1 if the momenta pi and pj are both incoming or outgoing,
and σij = −1 otherwise.

To facilitate the calculation of the amplitudes |Mq,g⟩, we decompose them in terms
of color and spin (Lorentz) structures in the color ⊗ spin space of external partons. Note
that the subscript q or g specifies the quark-antiquark annihilation channel or the gluon
fusion channel, respectively. The amplitudes |Mq,g⟩ can be expanded in the strong coupling
constant αs up to NNLO as

|Mq,g⟩ = 4παs

[
|M(0)

q,g⟩+
αs

4π
|M(1)

q,g⟩+
(

αs

4π

)2
|M(2)

q,g⟩+O(αs)3
]

. (2.3)

The l-loop coefficient |M(l)
q,g⟩ can be further decomposed in the color ⊗ spin space

|M(l)
q,g⟩ =

∑
I,i

c
(l)q,g
Ii |cq,g

I ⟩ ⊗ |dq,g
i ⟩ , (2.4)

where |cq,g
I ⟩ are the orthogonal color bases for the quark-antiquark annihilation channel

and the gluon fusion channel, |dq,g
i ⟩ denote independent spin structures. We employ the

color-space formalism [60, 61], and choose the color bases as

|cq
1⟩ = δαβ δkl , |cq

2⟩ = (ta)αβ (ta)kl ,

|cg
1⟩ = δab δkl , |cg

2⟩ = ifabc (tc)kl , |cg
3⟩ = dabc (tc)kl . (2.5)

To define the spin structures |dq,g
i ⟩, we choose the conventional dimensional regulariza-

tion (CDR) scheme and assume that the external partons live in d spacetime dimensions.
There are 28 independent structures in the quark-antiquark annihilation channel and 40
independent structures in the gluon fusion channel, which are given in appendix A.1.

The ultraviolet (UV) divergences in the bare amplitudes |Mbare
q,g ⟩ are renormalized

according to
∣∣∣MR

q,g(αs, gY , mt, µ, ϵ)
〉
=
(

µ2eγE

4π

)−3ϵ/2

Zq,gZQ

∣∣∣Mbare
q,g (α0

s, g0
Y , m0

t , ϵ)
〉

, (2.6)

where Zg, Zq and ZQ are the on-shell wave-function renormalization constants for gluons,
light- and heavy-quarks, respectively. We have suppressed the dependence of the amplitudes
on other kinematic variables. The Yukawa coupling gY is defined as

gY = e mt

2mW sin(θW ) . (2.7)

We renormalize the top-quark mass in the on-shell scheme: m0
t = Zmmt, and the Yukawa

coupling is renormalized accordingly. The strong coupling constant αs is renormalized in
the MS scheme with nf = nl + nh active flavors. The relations between the bare couplings
and the renormalized ones are given by

α0
s =

(
µ2eγE

4π

)ϵ

Zαsαs , g0
Y =

(
µ2eγE

4π

)ϵ/2

Zm gY . (2.8)

The renormalization constants up to NNLO are given in the appendix B.
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The renormalized form factors cR;q,g
Ii can be extracted as a linear combination of scalar

Feynman integrals according to

cR;q,g
Ii =

∑
j

(
D−1

q,g

)
ij

⟨cq,g
I |cq,g

I ⟩

[
⟨dq,g

j | ⊗ ⟨cq,g
I |MR

q,g⟩
]

, (2.9)

where Dq,g are matrices in the space of spin structures, whose elements are defined by
Dq,g

ij = ⟨dq,g
i |dq,g

j ⟩. The polarization sum of the two initial gluons yields

∑
s

εµ(p1, s)εν(p1, s) =
∑

s

εµ(p2, s)εν(p2, s) = −gµν + pµ
1 pν

2 + pν
1pµ

2
p1 · p2

. (2.10)

The two-loop renormalized amplitudes |M(2)R
q,g ⟩ are the main object of study in this work.

Note that the IR singularities of |M(2)R
q,g ⟩ have been presented in [35]. The IR poles are

obtained from the one-loop amplitude up to O(ϵ1) and a universal anomalous dimension
matrix. However, for the finite part, one needs to calculate the highly non-trivial two-loop
five-point Feynman integrals involving 7 physical scales. In this work, we explore the high-
energy boosted limit, and use the mass-factorization [41] to approximately calculate these
two-loop amplitudes.

3 Massive amplitudes in the high-energy boosted limit

3.1 The massive amplitudes from mass-factorization

Consider the amplitude for a generic 2 → n partonic scattering process in QCD:

h1(p1, m1) + h2(p2, m2) → h3(p3, m3) + h4(p4, m4) + · · ·+ hn+2(pn+2, mn+2) , (3.1)

where mi is the mass of the parton hi. We work in the high-energy boosted limit, where
|sij | ≫ m2

k for arbitrary i, j, k and i ̸= j. In this limit, the renormalized massive amplitude
MR can be factorized as [41–44]∣∣∣MR (ϵ, {p}, {m}, µ)

〉
=
∏
j

(
Z(m|0)

[j] (ϵ, {m}, µ)
)1/2

× S(ϵ, {p̃}, {m}, µ)
∣∣∣M̃R (ϵ, {p̃}, µ)

〉
+O(m2) , (3.2)

where M̃R is the renormalized massless amplitude with all parton masses taken to zero. We
use {p} and {p̃} to collectively denote the sets of all external momenta for the massive and
massless amplitudes, and {m} to denote the set of all parton masses. The Z-factors Z(m|0)

[j]
and the soft function S contain all the mass logarithms ln(µ2/m2), where S only receives
contributions from closed-loops of massive partons starting from O(α2

s). The expressions
of Z(m|0)

[j] for gluons and quarks up to NNLO can be found in [41, 62, 63], up to terms
proportional to n1

hn0
l . These missing terms as well as the soft function can be found in [42–44].

For completeness, we give the explicit expressions in appendix C. Note that the factorization
in (3.2) is correct up to power corrections of O(m2). These sub-leading contributions are
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currently under active investigations [64–66]. In this work, we will keep only the leading
power (LP) terms and neglect the power corrections.

For the tt̄H production process considered in this work, there is a massive Higgs boson
in the final state in addition to massive top (anti-)quarks. The Higgs boson is color neutral
and is not involved in QCD interactions. We can in principle keep the Higgs mass mH

in M̃R of eq. (3.2). However, since mH < mt, it is reasonable to expand in mH as well.
Therefore, for simplicity, we choose to take mH → 0 in M̃R. Note that this does not
introduce logarithmic terms of mH .

We are now ready to define an approximate amplitudes for tt̄H production in the boosted
limit, given by∣∣∣M̄R

q,g (ϵ, {p}, mt, mH , µ)
〉
= Z(m|0)

[q,g] (ϵ, mt, µ)Z(m|0)
[t] (ϵ, mt, µ)

× S(ϵ, {p̃}, mt, µ)
∣∣∣M̃R

q,g (ϵ, {p̃}, µ)
〉

. (3.3)

The amplitude M̄R provides an approximation to the full amplitude MR up to power
corrections in m2

t and m2
H . The momenta in M̃R satisfy the on-shell conditions p̃2

i = 0,
and we define s̃ij ≡ σij p̃i · p̃j . There are some degrees of freedom in choosing how {p̃} are
related to the original momenta {p} in the massive amplitude. We will discuss our choice in
the next section. Before that, we turn to the actual calculation of the massless amplitude
M̃R at NNLO in the following.

3.2 Calculation of the massless amplitudes

Similar to the massive case, we renormalize the massless amplitudes according to∣∣∣M̃R
q,g(αs, gY , µ, ϵ)

〉
=
(

µ2eγE

4π

)−3ϵ/2 ∣∣∣M̃bare
q,g (α0

s, g0
Y , ϵ)

〉
, (3.4)

where we have suppressed the dependence of the amplitudes on the kinematic variables. Note
that the on-shell wave-function renormalization constants for gluons and quarks are always
unity in the massless case. The renormalization of the strong coupling constant αs and the
Yukawa coupling constant gY is the same as eq. (2.8). The renormalized massless amplitudes
can then be decomposed in the color ⊗ spin space into

|M̃R
q,g⟩ =

∑
I,i

c̃R;q,g
Ii |cq,g

I ⟩ ⊗ |d̃q,g
i ⟩ , (3.5)

where the color basis is the same as eq. (2.5). However, the number of linearly independent
spin (Lorentz) structures |d̃q,g

i ⟩ in the massless case is different from that in the massive case.
There are 14 independent structures for the quark-antiquark annihilation channel and 20
independent structures for the gluon fusion channel. We list them in appendix A.2. Note
that the number of massless spin structures is exactly one-half of that of massive ones. This
is due to the chirality conservation of perturbative QCD vertices, which implies that the
chirality flipping terms vanish when taking mt = 0.

The renormalized massless form factors c̃R;q,g
Ii can be extracted according to

c̃R;q,g
Ii =

∑
j

(
D̃−1

q,g

)
ij

⟨cq,g
I |cq,g

I ⟩

[
⟨d̃q,g

j | ⊗ ⟨cq,g
I |M̃R

q,g⟩
]

, (3.6)
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where D̃q,g
ij = ⟨d̃q,g

i |d̃q,g
j ⟩. We generate the massless amplitudes using FeynArts [67], and

manipulate the expressions with FeynCalc [68–70] and FORM [71]. After applying the projectors
in eq. (3.6), the one-loop and two-loop massless form factors can be expressed as linear
combinations of one-loop and two-loop scalar Feynman integrals, respectively. The two-loop
scalar integrals are categorized into 180 integral families. Taking into account permutations
of external momenta, there are four independent integral topologies. These integrals have
been considered in refs. [52–59]. Following the notation of ref. [72], we define the two-loop
integral families Gτ,σ for each topology τ in permutation σ as

Gτ,σ [⃗a] ≡ e2ϵγE

∫
dDl1

iπ
D
2

dDl2

iπ
D
2

1
D⃗a⃗

τ,σ

, D⃗a⃗
τ,σ =

∏
i

Dai
τ,σ,i . (3.7)

For each of the four independent integral topologies, we choose the standard permutation
σ0 = (1, 2, 3, 4, 5), and define the sets D⃗τ,σ0 as

D⃗a,σ0 D⃗b,σ0 D⃗c,σ0 D⃗d,σ0

1 (l1)2 (l1)2 (l1)2 (l1)2

2 (l1 + p1)2 (l1 − p1)2 (l1 − p1)2 (l1 − p1)2

3 (l1 + p1 + p2)2 (l1 − p1 − p2)2 (l1 − p1 − p2)2 (l1 − p1 − p2)2

4 (l1 − p4 − p5)2 (l1 + p4 + p5)2 (l2)2 (l2)2

5 (l2)2 (l2)2 (l2 + p4 + p5)2 (l2 + p4 + p5)2

6 (l2 − p4 − p5)2 (l2 + p5)2 (l2 + p5)2 (l2 − p1 − p2)2

7 (l2 − p5)2 (l1 − l2)2 (l1 − l2)2 (l2 + p5)2

8 (l1 − l2)2 (l1 − l2 + p4)2 (l1 − l2 + p3)2 (l1 − l2)2

9 (l1 − p5)2 (l2 − p1)2 (l1 + p5)2 (l1 − l2 + p3)2

10 (l2 + p1)2 (l2 − p1 − p2)2 (l2 − p1)2 (l1 + p5)2

11 (l2 + p1 + p2)2 (l2 + p4 + p5)2 (l2 − p1 − p2)2 (l2 − p1)2

(3.8)

The corresponding diagrams are depicted in figure 1.
We now need to perform IBP reduction for these four independent topologies. We

note that the most difficult part is the reduction of the top-sector in topology-DP, where
the total power of irreducible scalar products in the numerator can be up to 5. The IBP
relations in this top-sector have been given in the literature [46–48]. For the sub-sectors in
this topology, and the other three topologies, we perform IBP reduction using the program
package Kira [73, 74] with the help of FireFly [75, 76]. We find that the top-sector of
topology-HT is reducible and the masters in this topology can be obtained from topology-PB
with a suitable permutation of external momenta. The size of these reduction relations is
around 15 GB. To simplify subsequent calculations, we follow the suggestion of [46], and
express the integrals in terms of the uniform transcendentality (UT) basis given in [72]
for each topology.1 The IBP coefficients are further simplified using the program package

1Note that the UT bases for the top-sector of topology-DP given in [46–48] are different from those in [72].
They are related by linear transformations.
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(a) Planar pentagon-box (PB) (b) Non-planar hexagon-box (HB)

(c) Non-planar double pentagon (DP) (d) Planar hexagon-triangle (HT)

Figure 1. Two-loop integral topologies.

MultivariateApart [51]. As a result, the size of the reduction relations becomes about
2.2 GB. Finally, the UT bases can be evaluated using the program package PentagonMI [72].
With the same program, we also compute the one-loop UT bases up to weight 4, which are
necessary for calculating the one-loop form factors up to order ϵ2.

4 Squared amplitudes and mapping between massive and massless
phase-space points

We have noted in eq. (3.2) that the factorization formula receives power corrections. As
such, there are ambiguities of O(m2) among different conventions of using the formula. In
particular, when we apply the formula to compute the physical cross sections, there are two
kinds of ambiguities that we’ll discuss in this section.

4.1 Squared amplitudes

The first kind of ambiguity comes from how to apply the formula to compute the squared
amplitudes. Since the tree-level and one-loop massive amplitudes can be calculated exactly,
the only ambiguity in the NNLO squared amplitudes lies in the interference between the
two-loop amplitudes and the tree-level ones. We will pick two particular schemes and compare
the outcome, while keeping in mind that other choices are possible.

The first scheme is that we strictly square the approximate amplitudes |M̄R
q,g⟩ in eq. (3.3),

and extract the NNLO terms, which are simply 2Re ⟨M̄(0)R
q,g |M̄(2)R

q,g ⟩. Here, |M̄(0)R
q,g ⟩ are the

– 7 –
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same as the massless tree-level amplitudes |M̃(0)R
q,g ⟩. The only mass information is contained

in the factors of Z(m|0)
[j] and the soft function S. We will refer to this scheme as the “massless

scheme”.
The second scheme is a bit more involved. We introduce a modified version of the

approximate amplitudes:∣∣∣M̂R
q,g (ϵ, {p}, mt, mH , µ)

〉
= Z(m|0)

[q,g] (ϵ, mt, µ)Z(m|0)
[t] (ϵ, mt, µ)

× S(ϵ, {p̃}, mt, µ)
∑
I,i

c̃R;q,g
Ii |cq,g

I ⟩ ⊗ |d̂q,g
i ⟩ (4.1)

where |d̂q,g
i ⟩ are the massive version of |d̃q,g

i ⟩. That is, the spinors and the momenta of the
(anti-)top quark and the Higgs boson are treated as massive. The difference between M̂R

q,g

and M̄R
q,g is power-suppressed. We can then define the interference between the approximate

two-loop amplitudes with the fully massive tree-level amplitudes via ⟨M(0)R
q,g |M̂(2)R

q,g ⟩. In
this setup, only the two-loop form factors c̃

(2)R;q,g
Ii are purely massless and are calculated

according to eq. (3.6). The other quantities, including the tree-level amplitudes M(0)R
q,g and

the spin (Lorentz) structures |d̂q,g
i ⟩, all contain mass information. Therefore, we will refer

to this scheme as the “semi-massive scheme”.

4.2 Mapping between massive and massless phase-space points

The second kind of ambiguity lies in the relation between the massive external momenta pi

and the massless external momenta p̃i in eq. (3.3). In practice, when performing phase-space
integration, we first generate a set of massive momenta pi. We then need to uniquely fix
a corresponding set of p̃i that differ from pi only by power corrections. Our convention is
simple: we set the directions of the 3-momenta unchanged between pi and p̃i, and rescale
the norms of the 3-momenta together with the energy parts to fulfill the massless on-shell
condition while keeping momentum conservation.

To be more precise, since p1 and p2 are already massless, we will simply choose p̃1 = p1 and
p̃2 = p2. Therefore we have s̃12 = s12. We now parameterize pi in the center-of-mass frame as

p1 =
√

s12
2 (1, 0, 0, 1) ,

p2 =
√

s12
2 (1, 0, 0,−1) ,

p3 =
(√

m2
t + q2

3, q3 sin θ3 sinϕ3, q3 sin θ3 cosϕ3, q3 cos θ3

)
,

p4 =
(√

m2
t + q2

4, q4 sin θ4 sinϕ4, q4 sin θ4 cosϕ4, q4 cos θ4

)
,

p5 =
(√

m2
H + q2

5, q5 sin θ5, 0, q5 cos θ5

)
, (4.2)

where qi is the norm of the spatial components of pi, θi is the polar angle and ϕi is the
azimuthal angle. For convenience and without loss of generality, we have set ϕ5 = 0. Due to
momentum conservation and the on-shell conditions, there are 7 independent parameters in
the right-hand side of eq. (4.2), which are chosen as s12, mt, mH , q5, θ3, ϕ3 and θ5. Their
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values satisfy the physical constraints

s12 ≥ (2mt + mH)2 , 0 ≤ q5 ≤ q5,max =
√

s12 − (2mt + mH)2
√

s12 − (2mt − mH)2

2√s12
,

mt > 0 , mH > 0 , 0 ≤ θ3 ≤ π , 0 ≤ ϕ3 < 2π , 0 ≤ θ5 ≤ π . (4.3)

For the massless momenta p̃i, we can similarly parameterize them as

p̃1 =
√

s̃12
2 (1, 0, 0, 1) ,

p̃2 =
√

s̃12
2 (1, 0, 0,−1) ,

p̃3 =
(
q̃3, q̃3 sin θ̃3 sin ϕ̃3, q̃3 sin θ̃3 cos ϕ̃3, q̃3 cos θ̃3

)
,

p̃4 =
(
q̃4, q̃4 sin θ̃4 sin ϕ̃4, q̃4 sin θ̃4 cos ϕ̃4, q̃4 cos θ̃4

)
,

p̃5 =
(
q̃5, q̃5 sin θ̃5, 0, q̃5 cos θ̃5

)
. (4.4)

As mentioned before, we will set s̃12 = s12, θ̃i = θi and ϕ̃i = ϕi. The remaining parameters
q̃i can then be solved from momentum conservation. They can be written as

q̃3 =
√

s12 cosϕ4 sin θ5 sin θ4
cosϕ4 sin θ4(sin θ5 − sin θ3 sinϕ3)− cosϕ3 sin θ3(sin θ5 − sin θ4 sinϕ4)

,

q̃4 =
−√

s12 cosϕ3 sin θ5 sin θ3
cosϕ4 sin θ4(sin θ5 − sin θ3 sinϕ3)− cosϕ3 sin θ3(sin θ5 − sin θ4 sinϕ4)

,

q̃5 =
−√

s12 sin θ3 sin θ4 sin(ϕ3 − ϕ4)
cosϕ4 sin θ4(sin θ5 − sin θ3 sinϕ3)− cosϕ3 sin θ3(sin θ5 − sin θ4 sinϕ4)

.

5 Numeric results

We are now ready to present the numeric results for the two-loop amplitudes based on
our approximate formula. Before that, we briefly discuss the choice of the renormalization
scale µ. The kinematic configuration that we’re considering involves vastly different scales
|sij | ≫ m2

t . In this case, there will be large logarithms such as ln(sij/m2
t ) no matter what we

choose as µ. The standard way to deal with this problem is to resum these logarithms using
renormalization group equations, based on the factorization formula (3.2) (see, e.g., [77–81]).
However, in this work we are only using the factorization formula to provide an approximation
of the two-loop amplitudes. Therefore, we are free to use any scale µ to present our results.
We will by default set µ = mt in the following, and will compare with other scale choices.
For the other input parameters, we set mt = 173 GeV and mH = 125 GeV.

In order to assess the validity of the approximate formula, we will first compare the
approximate results with the exact ones. These exact results include the NLO squared
amplitudes up to the finite parts, and the IR poles of the NNLO squared amplitudes [35].
The NLO squared amplitudes come from the interference between tree-level and one-loop
amplitudes, which can be obtained from the literature as well as various program pack-
ages [10–15, 82–90]. Since we want to compare at the level of different color structures,
we have recomputed the exact NLO results. The NNLO squared amplitudes receive two
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Figure 2. The squared amplitudes at O(ϵ0) for NLO and O(ϵ−1) for NNLO in both the qq̄ and gg

channels, as a function of the partonic center-of-mass energy √
s12. The other kinematic variables are

chosen as θ3 = 14π/29, ϕ3 = 34π/29, θ5 = 15π/29 and q5 = 20 q5,max/29. We have included the spin-
and color-average factors of 1/36 for the qq̄ channel and 1/256 for the gg channel. The lower panel in
each plot shows the ratios between the approximate results and the exact ones.

contributions: the one-loop-squared amplitudes, and the interference between tree-level and
two-loop amplitudes. The finite part of the latter contribution is the genuinely new result
of this work. Hence, for convenience, we will drop the one-loop-squared amplitudes and
only compare the interference terms.

We first show in figure 2 the numeric results at O(ϵ0) for NLO (upper plots) and O(ϵ−1)
for NNLO (lower plots) squared amplitudes for both qq̄ (left plots) and gg (right plots)
channels. We change the partonic center-of-mass energy √

s12 from about 1.5 TeV to 20 TeV,
and fix the other kinematic variables as θ3 = 14π/29, ϕ3 = 34π/29, θ5 = 15π/29 and
q5 = 20 q5,max/29. The black lines are exact results, while the red and blue curves are
approximate results using the two different schemes discussed in section 4. As expected, the
approximation works better towards higher energies both at NLO and NNLO. We observe
that the semi-massive scheme (the blue curves) generally has a better performance than
the massless scheme. Such an effect can be attributed to the fact that the semi-massive
scheme incorporates some of the power-suppressed contributions. However, this should be
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Figure 3. The squared amplitudes at O(ϵ0) for NLO and O(ϵ−1) for NNLO in both the qq̄ and
gg channels, as a function of the angle parameter θ3. The other kinematic variables are chosen as√

s12 = 5 TeV, ϕ3 = 34π/29, θ5 = 15π/29 and q5 = 20 q5,max/29.

taken with a grain of salt since these beyond-LP terms can only be reliably obtained by a
real calculation at the corresponding orders. Overall, the semi-massive scheme provides a
reasonable approximation to the exact results down to √

s12 ∼ 2 TeV in all cases.
Interestingly, we observed from figure 2 that the approximation works better in the gg

channel than in the qq̄ one. In particular, the relative difference in the qq̄ channel between
the result in the massless scheme and the exact one is much bigger than the naive estimation
of the order (m2

t , m2
H)/|sij |. In fact, this effect is already present at LO, and is inherited to

higher orders. The tree-level squared amplitude in the qq̄ channel is a rational function of
mt, mH and sij . When expanded in the small-mass limit, there is an accidental cancellation
at the LP. Numerically, the LP contribution is similar to the next-to-leading power (NLP)
one. These power corrections at LO are dropped in the massless scheme, but are kept in the
semi-massive scheme. This is the reason why the semi-massive scheme works much better
than the massless scheme in the qq̄ channel.

We now turn to investigate the behaviors of the approximate results when varying
the angle θ3 between p⃗3 (of the top quark) and p⃗1. The other parameters are fixed to be
√

s12 = 5 TeV, ϕ3 = 34π/29, θ5 = 15π/29 and q5 = 20 q5,max/29. It can be expected that
when θ3 → 0 or π, the approximation will become worse due to the smallness of either
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Figure 4. The squared amplitudes as a function of the angle parameter θ5. The other kinematic
variables are chosen as: √

s12 = 5 TeV, θ3 = 14π/29, ϕ3 = 34π/29 and q5 = 20 q5,max/29.

|s13| or |s23|. Indeed, as is evident from figure 3, the approximate results deviate from the
exact ones at the two ends of the spectrum. Especially in the gg channel, the tree-level
amplitudes contain 1/(s13 − m2

t ) and 1/(s23 − m2
t ) propagators. Whether or not one takes

mt → 0 will make a huge difference for these terms. This explains the wild behaviors of
the blue and red curves for the gg channel at the left and right ends. Nevertheless, the
semi-massive scheme still provides a reasonable approximation in a large portion of the phase
space in both the qq̄ and gg cases.

The situation is slightly different in the case of θ5, the angle between p⃗5 (of the Higgs
boson) and p⃗1. Since the Higgs boson is color neutral, it is expected that the QCD corrections
should have a mild dependence on its momentum. This can be seen from figure 4. The
approximation is rather good in the whole range of θ5, as long as θ3 is in the wide-angle
region. From this and the previous plots, we find that the semi-massive scheme has an overall
better performance than the massless scheme. Therefore, we will use the semi-massive scheme
as the default to present our numerical results in the following.

Now we turn to consider the NLO and NNLO squared amplitudes at different orders
in ϵ in the semi-massive scheme. We define the following ratios between the approximate
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Figure 5. The ratios between the approximate results in the semi-massive scheme and the exact
ones at different orders in ϵ, as functions of √s12. The phase-space parameters are the same as those
in the figure 2.

results and the exact ones at each order in ϵ:

R̂NLO
n,q/g =

Re ⟨M(0)R
q/g |M̂(1)R

q/g ⟩
∣∣∣∣
ϵn

Re ⟨M(0)R
q/g |M(1)R

q/g ⟩
∣∣∣∣
ϵn

, R̂NNLO
n,q/g =

Re ⟨M(0)R
q/g |M̂(2)R

q/g ⟩
∣∣∣∣
ϵn

Re ⟨M(0)R
q/g |M(2)R

q/g ⟩
∣∣∣∣
ϵn

, (5.1)

where |M̂(i)R
q/g ⟩ are defined in eq. (4.1) and |M(i)R

q/g ⟩ are the exact massive amplitudes. Note
that |M(1)R

q/g ⟩ are known up to ϵ1 and |M(2)R
q/g ⟩ are known up to ϵ−1 in [35]. We show R̂NLO

n,q/g

and R̂NNLO
n,q/g as functions of √s12 in figure 5 with the same choices of phase-space parameters

as in figure 2. It can be seen that, in general, the approximation works better for the
coefficients of higher poles than those of lower ones. This can be expected since the higher
poles are generically related to lower order (in αs) amplitudes and anomalous dimensions. In
figure 6, we show R̂NLO

n,q,g and R̂NNLO
n,q,g as functions of θ3, with the same phase-space points as

figure 3. We observe that the approximation is rather good for most values of θ3 in the qq̄

region except when θ3 → 0, where the 1/ϵ term at NLO and the 1/ϵ3 term at NNLO behave
weirdly. This behavior is partly due to the incomplete information of the power-suppressed
contributions in the semi-massive scheme, which already appears at the tree-level. In the
gg channel, the approximation works perfectly in the central region, while breaking down in
the forward regions θ3 → 0 or π. This can be expected since in these regions the propagator
denominator s13 − m2

t or s23 − m2
t cannot be described reliably using small-mass expansion.
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Figure 6. The ratios between the approximate results in the semi-massive scheme and the exact
ones at different orders in ϵ, as functions of θ3. The other phase-space parameters are the same as
those in the figure 3.

The above results are all computed using the default scale choice µ = mt. In figure 7,
we show the scale dependence of the squared amplitudes at NLO and NNLO. We can see
that the quality of the approximation is nearly the same for different choices of µ. It is
worth noting that without the n1

hn0
l terms in our factorization formula computed in [44], the

approximate results would deviate for µ ̸= mt. This shows that our approximate formula
has correctly captured the scale-dependence of the amplitudes.

We now come to the main results of this paper, namely the approximate predictions
for the finite parts of the two-loop amplitudes for tt̄H production. We show in figure 8
the results as functions of √s12, θ3 and θ5, respectively. The phase-space points are chosen
following figure 2, 3 and 4. Since the exact results of these finite terms are unknown, we
present approximate results from both semi-massive and massless schemes for comparison.
We find that the two results are quite similar at high energies, and start to deviate as we
lower √

s12. Based on our findings in figure 2, we believe that the semi-massive scheme
provides a more reliable approximation at low energies. The only exception is the θ3 → 0
region, where the semi-massive result has a weird behavior as observed earlier in figure 6.
In this region, the massless result seems to be more stable.

Besides the full squared amplitude as a whole, it is also interesting to study the squared
amplitude decomposed by color coefficients. The color structure of tt̄H production is the
same as that of tt̄ production. Therefore, we employ the color decomposition according
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Figure 7. The squared amplitudes as a function of the renormalization scale µ. Here we show the
ϵ0 coefficients at NLO and the ϵ−1 coefficients at NNLO. The center-of-mass energy is chosen as√

s12 = 5 TeV and other phase-space parameters are the same as those in figure 2.

to [62, 63, 91]:

2Re
〈
M(0)

q

∣∣∣M(2)
q

〉
= 2(N2−1)

(
N2Aq +Bq + 1

N2 Cq +Nnl Dq
l +Nnh Dq

h

+ nl

N
Eq

l +
nh

N
Eq

h+n2
l F q

l +nlnh F q
lh+n2

hF q
h

)
,

2Re
〈
M(0)

g

∣∣∣M(2)
g

〉
= (N2−1)

(
N3Ag +N Bg + 1

N
Cg + 1

N3 Dg

+N2nl Eg
l +N2nh Eg

h+nl F g
l +nh F g

h + nl

N2 Gg
l +

nh

N2 Gg
h

+Nn2
l Hg

l +Nnlnh Hg
lh+Nn2

hHg
h +

n2
l

N
Ig

l +
nlnh

N
Ig

lh+
n2

h

N
Ig

h

)
. (5.2)

In tables 1, 2, 3, 4, 5 and 6, we list the numeric values of the color-decomposed two-loop
squared amplitudes at different orders in ϵ. We show results at three representative phase-
space points, characterized by the center-of-mass energy: relatively low, intermediate and
very high. These data may serve as a cross-check for an exact evaluation of the two-loop
squared amplitudes in the future. Note that the numerical results of Dq, Eq and F q were
calculated recently in [38]. It will be interesting to compare their results with ours. However,
the three phase-space points given in [38] are all in the low energy region (√s12 ≲ 1.1 TeV)
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Figure 8. The finite parts of the NNLO squared amplitudes in the qq̄ and gg channels. The
phase-space points follow those in figure 2, 3 and 4.

where our high-energy boosted limit does not work very well. Therefore, we leave this
comparison for future investigation.
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(
2
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1
2
1

exact
ϵ−4 ϵ−3 ϵ−2 ϵ−1 ϵ0

semi-

Aq 0.3557588 −2.232234 18.09587 −103.9532
0.3515265 −2.195621 16.85573 −96.44254 348.5042

Bq −0.7115176 7.063085 −39.95150 64.86504
−0.7030530 6.967777 −37.89494 130.9224 −151.0649

Cq 0.3557588 −4.830851 9.261042 84.82862
0.3515265 −4.772156 8.634749 83.19236 −582.0071

Dq
l

−0.3557588 0.4713803 6.932929
−0.3515265 0.4624203 6.840171 −43.36795

Dq
h

−1.217990 8.594097
−1.513230 11.12860 −48.44219

Eq
l

0.3557588 −0.6853616 1.779527
0.3515265 −0.6768002 1.754250 −64.57500

Eq
h

1.217990 −0.5594025
1.513230 −3.261069 −57.86518

F q
l 0.1730958

F q
lh 0.3461917

F q
h 0.1730958

Total 1.124373 −8.136548 56.27591 −323.8812
1.110997 −8.004476 51.79516 −262.2186 890.7902

Ratio 0.9881 0.9838 0.9204 0.8096

Table 1. Color-decomposed NNLO squared amplitude in the qq̄ channel at the phase-space point
(√s12,

√
|s13|,

√
|s14|,

√
|s23|,

√
|s24|) = (2.0000, 1.1041, 1.1373, 1.1648, 1.1402)TeV, mt = 173 GeV,

and mH = 125 GeV.
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2
0
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1
2
1

exact
ϵ−4 ϵ−3 ϵ−2 ϵ−1 ϵ0

semi-

Ag 6.189970 −38.61149 185.2507 −502.3539
6.140920 −38.20303 180.8479 −466.0329 277.4175

Bg −9.662043 67.19163 −504.2190 2664.419
−9.528888 66.04951 −485.4858 2302.867 −8009.039

Cg −26.39205 137.5097 122.6492
−26.08095 129.1071 −282.4970 −363.2452

Dg 5.872808 −190.6910
5.665436 −179.9663 1016.432

Eg
l

−7.221632 30.41847 −83.58398
−7.164407 30.11041 −81.90409 122.4383

Eg
h

−7.090949 55.10048
−0.2277007 7.477590 −38.94969

F g
l

11.27238 −51.40444 145.7744
11.11704 −50.54900 139.8451 −187.9518

F g
h

13.78273 −106.0896
−10.76121 124.8742

Gg
l

13.19603 −19.72861
13.04047 −17.39200 −19.68276

Gg
h

18.82390
−16.44998

Hg
l

1.375549 −1.554947
1.364649 −1.537369 1.772607

Hg
lh

2.363650
0.07590022 −1.707018

Hg
h 0.2450480

Ig
l

−2.147121 2.581333
−2.117531 2.532773 −2.311413

Ig
lh

−4.594245
3.483198

Ig
h

Total 4.316971 −34.94825 146.5483 −257.9766
4.288068 −34.65125 145.6813 −275.2426 −381.0666

Ratio 0.9933 0.9915 0.9941 1.067

Table 2. Color-decomposed NNLO squared amplitude in the gg channel at the phase-space point
(√s12,

√
|s13|,

√
|s14|,

√
|s23|,

√
|s24|) = (2.0000, 1.1041, 1.1373, 1.1648, 1.1402)TeV, mt = 173 GeV,

and mH = 125 GeV.
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E
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0
7
(
2
0
2
4
)
1
2
1

exact
ϵ−4 ϵ−3 ϵ−2 ϵ−1 ϵ0

semi-

Aq 0.04359554 −0.4543021 4.245433 −28.83733
0.04352110 −0.4519036 4.179582 −28.25268 129.5765

Bq −0.08719108 0.9328190 −5.000430 −4.059032
−0.08704220 0.9261112 −4.849566 10.38085 41.35127

Cq 0.04359554 −0.4785169 −1.094868 26.09443
0.04352110 −0.4742076 −1.175457 26.74820 −129.2190

Dq
l

−0.04359554 0.01748520 2.409230
−0.04352110 0.01691567 2.401585 −21.19547

Dq
h

−0.2852286 3.073465
−0.2936883 3.172621 −22.32761

Eq
l

0.04359554 0.05436836 −0.7929464
0.04352110 0.05543837 −0.7840151 −11.00616

Eq
h

0.2852286 −1.225414
0.2936883 −1.294804 −10.45089

F q
l 0.6690317

F q
lh 1.338063

F q
h 0.6690317

Total 0.1377834 −1.684597 14.52404 −96.47415
0.1375482 −1.677330 14.31068 −87.60797 360.2332

Ratio 0.9983 0.9957 0.9853 0.9081

Table 3. Color-decomposed NNLO squared amplitude in the qq̄ channel at the phase-space point
(√s12,

√
|s13|,

√
|s14|,

√
|s23|,

√
|s24|) = (5.0000, 1.6558, 3.6246, 3.5411, 2.0659)TeV, mt = 173 GeV,

and mH = 125 GeV.
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exact
ϵ−4 ϵ−3 ϵ−2 ϵ−1 ϵ0

semi-

Ag 2.108278 −22.43687 154.7362 −696.5291
2.132335 −22.66071 156.2918 −701.0229 2001.209

Bg −2.321466 33.50440 −283.5492 1587.447
−2.340932 33.78268 −286.0874 1576.900 −5796.564

Cg −10.58208 103.5865 −310.1786
−10.67370 104.9121 −522.7946 1340.553

Dg −6.330904 8.141297
−6.390913 9.683863 154.2983

Eg
l

−2.459657 15.63943 −54.30544
−2.487724 15.81008 −54.94143 95.49227

Eg
h

−0.4536370 6.220529
−0.09288271 3.065970 −38.53754

F g
l

2.708377 −21.71698 76.36459
2.731087 −21.90274 77.13346 −130.1723

F g
h

0.7115711 −9.676640
−2.778873 60.58957

Gg
l

5.291039 −17.18699
5.336849 −17.51022 18.44228

Gg
h

1.621799
−12.54769

Hg
l

0.4685062 −0.7416234
0.4738522 −0.7528461 0.7176704

Hg
lh

0.1512123
0.03096090 −0.5283240

Hg
h 0.1612425

Ig
l

−0.5158813 0.8488621
−0.5202071 0.8576413 −0.6890958

Ig
lh

−0.2371904
0.8557063

Ig
h

Total 1.561222 −18.93601 124.5975 −506.8341
1.579695 −19.13566 125.9882 −515.3526 1265.827

Ratio 1.012 1.011 1.011 1.017

Table 4. Color-decomposed NNLO squared amplitude in the gg channel at the phase-space point
(√s12,

√
|s13|,

√
|s14|,

√
|s23|,

√
|s24|) = (5.0000, 1.6558, 3.6246, 3.5411, 2.0659)TeV, mt = 173 GeV,

and mH = 125 GeV.
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exact
ϵ−4 ϵ−3 ϵ−2 ϵ−1 ϵ0

semi-

Aq 0.01036634 −0.1657161 1.867325 −14.63674
0.01036192 −0.1655484 1.862399 −14.58049 77.26753

Bq −0.02073268 0.3368775 −2.685072 6.796855
−0.02072384 0.3364287 −2.674131 11.54460 −14.12207

Cq 0.01036634 −0.1711614 0.3780909 5.791447
0.01036192 −0.1708803 0.3723369 5.854854 −49.48764

Dq
l

−0.01036634 0.004553374 1.032195
−0.01036192 0.004519188 1.031455 −10.54324

Dq
h

−0.08854632 1.279040
−0.08907700 1.287382 −10.97078

Eq
l

0.01036634 0.01263650 −0.6003433
0.01036192 0.01270037 −0.5994460 −0.6874765

Eq
h

0.08854632 −0.7862173
0.08907700 −0.7926235 −0.3985877

F q
l 0.2919736

F q
lh 0.5839472

F q
h 0.2919736

Total 0.03276276 −0.5830237 6.229379 −47.21463
0.03274878 −0.5825123 6.213445 −44.87048 219.5371

Ratio 0.9996 0.9991 0.9974 0.9504

Table 5. Color-decomposed NNLO squared amplitude in the qq̄ channel at the phase-space point
(√s12,

√
|s13|,

√
|s14|,

√
|s23|,

√
|s24|) = (10.000, 3.3073, 7.2580, 7.0877, 4.1365)TeV, mt = 173 GeV,

and mH = 125 GeV.
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exact
ϵ−4 ϵ−3 ϵ−2 ϵ−1 ϵ0

semi-

Ag 0.5428451 −8.014744 70.73525 −409.1486
0.5444174 −8.035900 70.93871 −410.1906 1595.269

Bg −0.5947800 11.80785 −122.2304 816.5623
−0.5960768 11.83389 −122.5573 812.4284 −3618.243

Cg −3.535467 46.32135 −235.2084
−3.543373 46.48641 −306.0970 1153.332

Dg −3.786279 20.42499
−3.795128 20.68441 −16.55695

Eg
l

−0.6333192 5.140016 −20.91982
−0.6351536 5.154407 −20.98816 40.29084

Eg
h

−0.05982249 1.273500
−0.02446752 0.8755931 −18.82327

F g
l

0.6939100 −7.171378 29.55495
0.6954229 −7.187486 29.64513 −56.16316

F g
h

0.07058572 −1.610635
−0.7263948 27.30988

Gg
l

1.767734 −7.027765
1.771687 −7.066248 10.48010

Gg
h

0.2097864
−5.628954

Hg
l

0.1206322 −0.1890601
0.1209816 −0.1897854 0.1810913

Hg
lh

0.01994083
0.008155841 −0.1244663

Hg
h 0.05258422

Ig
l

−0.1321733 0.2159630
−0.1324615 0.2165426 −0.1742280

Ig
lh

−0.02352857
0.2178904

Ig
h

Total 0.4022649 −6.474464 55.07390 −296.0855
0.4034700 −6.492298 55.24290 −298.2640 1062.735

Ratio 1.003 1.003 1.003 1.007

Table 6. Color-decomposed NNLO squared amplitude in the gg channel at the phase-space point
(√s12,

√
|s13|,

√
|s14|,

√
|s23|,

√
|s24|) = (10.000, 3.3073, 7.2580, 7.0877, 4.1365)TeV, mt = 173 GeV,

and mH = 125 GeV.
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6 Conclusion

In this paper, we calculate the two-loop amplitudes for tt̄H production at hadron colliders in
the high-energy boosted limit, where the scalar products of external momenta are much larger
than the top-quark mass. We employ the factorization formula recently obtained in [44],
that incorporates all two-loop contributions including those proportional to the number of
heavy flavors nh. Using this factorization formula, we write the massive amplitudes as a
product of the corresponding massless ones with universal factors capturing collinear and soft
dynamics. We compute the massless amplitudes by IBP reduction and the existing results
for the master integrals. The massive amplitudes are then computed in two schemes: the
massless scheme where all the external spinors are treated as massless, and the semi-massive
scheme where the external spinors are taken to be massive. For the IR poles, we compare
the approximate results in the two schemes with the exact results of [35]. We find that the
semi-massive scheme provides a better approximation in most of the phase-space regions. We
also show that our approximation correctly reproduces the scale-dependence of the exact
results. We then give our predictions for the finite parts of the two-loop squared amplitudes,
which are the main new results of this work.

By combining the contributions from real emissions (including the double-real and real-
virtual diagrams), our results can be utilized to compute the NNLO differential cross sections
for this important process in the high-energy boosted limit. One may further incorporate
the low-energy approximations such as the threshold approximation and the soft-Higgs
approximation, and interpolates into the intermediate regions. This can lead to a reasonable
approximation across the whole phase space, and give reliable predictions for differential
cross sections from low to high energies.

Finally, it will be beneficial to provide our code in an appropriate form. At the moment
this is not practical since the size of the files is rather large, and the code for the evaluation
is not optimized enough to run efficiently. We are in the progress of improving these aspects
of our code and will release it publicly in the near future.
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A Spin (Lorentz) structures

A.1 Massive spin (Lorentz) structures

For the massive qq̄ channel, we define |dq
i ⟩ in the following form:

|dq
i ⟩ = v̄(p2) Γi u(p1) v(p3) Γ′

i ū(p4) ⇒ Sq
i = Γi ⊗ Γ′

i , (A.1)

– 23 –



J
H
E
P
0
7
(
2
0
2
4
)
1
2
1

where Γi denotes a string of γ matrices concerning the initial state fermion line, while Γ′
i

concerns the final state fermion line. Sq
i are given by

Sq
1 = γµ ⊗ γµ , Sq

2 = γµ ⊗ γµ
/p1 ,

Sq
3 = γµ ⊗ γµ

/p2 , Sq
4 = γµ ⊗ γµ

/p1/p2 ,

Sq
5 = γµ

/p3/p4 ⊗ γµ , Sq
6 = γµ

/p3/p4 ⊗ γµ
/p1 ,

Sq
7 = γµ

/p3/p4 ⊗ γµ
/p2 , Sq

8 = γµ
/p3/p4 ⊗ γµ

/p1/p2 ,

Sq
9 = /p3 ⊗ 1 , Sq

10 = /p3 ⊗ /p1 ,

Sq
11 = /p3 ⊗ /p2 , Sq

12 = /p3 ⊗ /p1/p2 ,

Sq
13 = /p4 ⊗ 1 , Sq

14 = /p4 ⊗ /p1 ,

Sq
15 = /p4 ⊗ /p2 , Sq

16 = /p4 ⊗ /p1/p2 ,

Sq
17 = γµγν

/p3 ⊗ γµγν , Sq
18 = γµγν

/p3 ⊗ γµγν
/p1 ,

Sq
19 = γµγν

/p3 ⊗ γµγν
/p2 , Sq

20 = γµγν
/p3 ⊗ γµγν

/p1/p2 ,

Sq
21 = γµγν

/p4 ⊗ γµγν , Sq
22 = γµγν

/p4 ⊗ γµγν
/p1 ,

Sq
23 = γµγν

/p4 ⊗ γµγν
/p2 , Sq

24 = γµγν
/p4 ⊗ γµγν

/p1/p2 ,

Sq
25 = γµγνγρ ⊗ γµγνγρ , Sq

26 = γµγνγρ ⊗ γµγνγρ
/p1 ,

Sq
27 = γµγνγρ ⊗ γµγνγρ

/p2 , Sq
28 = γµγνγρ ⊗ γµγνγρ

/p1/p2 . (A.2)

For the massive gg channel, we define |dg
i ⟩ in the following form:

|dg
i ⟩ = εµ (p1, s) εν (p2, s) v(p3) Γµν

i ū(p4) , (A.3)

where Γµν
i are given by

Γµν
1 = γµγν

/p1/p2 , Γµν
2 = 1gµν , Γµν

3 = 1pµ
3 pν

3 , Γµν
4 = 1pµ

4 pν
4 ,

Γµν
5 = γµγν , Γµν

6 = /p1/p2gµν , Γµν
7 = /p1/p2pµ

3 pν
3 , Γµν

8 = /p1/p2pµ
4 pν

4 ,

Γµν
9 = γµγν

/p1 , Γµν
10 = γµ

/p1/p2pν
3 , Γµν

11 = γµ
/p1/p2pν

4 , Γµν
12 = γµ

/p1pν
3 ,

Γµν
13 = γµ

/p1pν
4 , Γµν

14 = γµ
/p2pν

3 , Γµν
15 = γµ

/p2pν
4 , Γµν

16 = /p1/p2pµ
3 pν

4 ,

Γµν
17 = γµpν

3 , Γµν
18 = γµpν

4 , Γµν
19 = /p1gµν , Γµν

20 = /p1pµ
3 pν

3 ,

Γµν
21 = /p1pµ

3 pν
4 , Γµν

22 = /p1pν
3pµ

4 , Γµν
23 = /p1pµ

4 pν
4 , Γµν

24 = 1pµ
3 pν

4 ,

Γµν
25 = γµγν

/p2 , Γµν
26 = γν

/p1/p2pµ
3 , Γµν

27 = γν
/p1/p2pµ

4 , Γµν
28 = γν

/p2pµ
3 ,

Γµν
29 = γν

/p2pµ
4 , Γµν

30 = γν
/p1pµ

3 , Γµν
31 = γν

/p1pµ
4 , Γµν

32 = /p1/p2pν
3pµ

4 ,

Γµν
33 = γνpµ

3 , Γµν
34 = γνpµ

4 , Γµν
35 = /p2gµν , Γµν

36 = /p2pµ
3 pν

3 ,

Γµν
37 = /p2pν

3pµ
4 , Γµν

38 = /p2pµ
3 pν

4 , Γµν
39 = /p2pµ

4 pν
4 , Γµν

40 = 1pν
3pµ

4 . (A.4)

A.2 Massless spin (Lorentz) structures

For the massless qq̄ channel, we define |d̃q
i ⟩ in the following form:

|d̃q
i ⟩ = v̄(p̃2) Γ̃i u(p̃1) v(p̃3) Γ̃′

i ū(p̃4) ⇒ S̃q
i = Γ̃i ⊗ Γ̃′

i , (A.5)
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where Γ̃i denotes a string of γ matrices concerning the initial state fermion line, while Γ̃′
i

concerns the final state fermion line. S̃q
i are given by

S̃q
1 = /̃p3 ⊗ 1 , S̃q

2 = /̃p4 ⊗ 1 ,

S̃q
3 = γµ ⊗ γµ

/̃p1 , S̃q
4 = γµ ⊗ γµ

/̃p2 ,

S̃q
5 = /̃p3 ⊗ /̃p1/̃p2 , S̃q

6 = /̃p4 ⊗ /̃p1/̃p2 ,

S̃q
7 = γµγν

/̃p3 ⊗ γµγν , S̃q
8 = γµγν

/̃p4 ⊗ γµγν ,

S̃q
9 = γµ

/̃p3/̃p4 ⊗ γµ
/̃p1 , S̃q

10 = γµ
/̃p3/̃p4 ⊗ γµ

/̃p2 ,

S̃q
11 = γµγνγρ ⊗ γµγνγρ

/̃p1 , S̃q
12 = γµγνγρ ⊗ γµγνγρ

/̃p2 ,

S̃q
13 = γµγν

/̃p3 ⊗ γµγν
/̃p1/̃p2 , S̃q

14 = γµγν
/̃p4 ⊗ γµγν

/̃p1/̃p2 . (A.6)

For the massless gg channel, we define |d̃g
i ⟩ in the following form:

|d̃g
i ⟩ = εµ (p̃1, s) εν (p̃2, s) v(p̃3) Γ̃µν

i ū(p̃4) , (A.7)

where Γ̃µν
i are given by

Γ̃µν
1 = γµγν , Γ̃µν

2 = γµγν
/̃p1/̃p2 , Γ̃µν

3 = 1gµν , Γ̃µν
4 = /̃p1/̃p2gµν ,

Γ̃µν
5 = γν

/̃p1p̃µ
3 , Γ̃µν

6 = γν
/̃p2p̃µ

3 , Γ̃µν
7 = γν

/̃p1p̃µ
4 , Γ̃µν

8 = γν
/̃p2p̃µ

4 ,

Γ̃µν
9 = γµ

/̃p1p̃ν
3 , Γ̃µν

10 = γµ
/̃p2p̃ν

3 , Γ̃µν
11 = 1p̃µ

3 p̃ν
3 , Γ̃µν

12 = /̃p1/̃p2p̃µ
3 p̃ν

3 ,

Γ̃µν
13 = 1p̃ν

3 p̃µ
4 , Γ̃µν

14 = /̃p1/̃p2p̃ν
3 p̃µ

4 , Γ̃µν
15 = γµ

/̃p1p̃ν
4 , Γ̃µν

16 = γµ
/̃p2p̃ν

4 ,

Γ̃µν
17 = 1p̃µ

3 p̃ν
4 , Γ̃µν

18 = /̃p1/̃p2p̃µ
3 p̃ν

4 , Γ̃µν
19 = 1p̃µ

4 p̃ν
4 , Γ̃µν

20 = /̃p1/̃p2p̃µ
4 p̃ν

4 . (A.8)

B Renormalization constant

In this section, we present the various renormalization constants needed in our work. Up to
NNLO, the renormalization constant of QCD coupling αs is given by

Zαs = 1−
(

αs

4π

)
β0
ϵ

+
(

αs

4π

)2
(

β2
0

ϵ2 − β1
2ϵ

)
, (B.1)

where
β0 = 11

3 CA − 4
3TF nf , β1 = 34

3 C2
A − 20

3 CATF nf − 4CF TF nf . (B.2)

Up to NNLO, the top-quark mass renormalization constant in the on-shell scheme is given by:

Zm = 1 + αs

4π
CF

[
−3

ϵ
− (4 + 3Lµ)− ϵ

(
8 + 4Lµ + π2

4 + 3
2L2

µ

)
(B.3)

+ ϵ2
(
−Lµ

(
8 + π2

4

)
− 2L2

µ −
L3

µ

2 − 48− π2

3 + ζ3

)]

+
(

αs

4π

)2 {
CA

[
11
2ϵ2 − 97

12ϵ
+ 4π2

3 − 1111
24 + 6ζ3 −

11L2
µ

2 − 4π2Lµ − 185Lµ

6

]

+ CF

[ 9
2ϵ2 + 36Lµ + 45

4ϵ
+ 1

8
(
−96ζ3 + 199− 34π2

)
+ 9L2

µ + 8π2Lµ + 45Lµ

2

]
+ TF nh

(
− 2

ϵ2 + 5
3ϵ

+ 2L2
µ + 26Lµ

3 − 8π2

3 + 143
6

)
+ TF nl

[
− 2

ϵ2 + 5
3ϵ

+ 1
6
(
71 + 8π2

)
+ 2L2

µ + 26Lµ

3

]}
+O(α3

s) , (B.4)
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which is also used to renormalize the top-Higgs Yuakawa coupling according to eq. (2.8).
The on-shell wave-function renormalization constants are

Zq = 1 +O(α2
s) ,

Zg = 1 + αs

4π
TF nh

[
− 4
3ϵ

− 4
3Lµ − ϵ

(
π2

9 + 2
3L2

µ

)
+ ϵ2

(
−π2

9 Lµ − 2
9L3

µ + 4
9ζ3

)]
(B.5)

+O(α2
s) ,

ZQ = 1 + αs

4π
CF

[
−3

ϵ
− (4 + 3Lµ)− ϵ

(
8 + 4Lµ + π2

4 + 3
2L2

µ

)
(B.6)

+ ϵ2
(
−Lµ

(
8 + π2

4

)
− 2L2

µ −
L3

µ

2 − 48− π2

3 + ζ3

)]
+O(α2

s) . (B.7)

C Matching coefficient in mass-factorization formula

In this section, we present the soft function S and the Z-factors Z(m|0)
[i] for gluons and quarks

up to NNLO, which can be expanded in strong coupling constant αs as

S({p}, {m}, ϵ) = 1 +
∞∑

n=1

(
αs

4π

)n

S(n) ,

Z(m|0)
[j] ({m}, ϵ) = 1 +

∞∑
n=1

(
αs

4π

)n

Z(n)
[j] .

(C.1)

General results of soft function and Z-factors can be found in [41–44, 62, 63], here we only
present the results satisfied for the tt̄H production process. Up to the second order, the
soft function is given by

S({p̃}, mt) = 1 +
(

αs

4π

)2∑
i,j
i ̸=j

(−Ti · Tj)S(2)(s̃ij , m2
t ) +O(α3

s) , (C.2)

where i and j run over all colored external legs, and

S(2)(s̃ij , m2
t ) = TF

(
µ2

m2
t

)2ϵ (
− 4
3ϵ2 + 20

9ϵ
− 112

27 − 4ζ2
3

)
ln −s̃ij

m2
t

. (C.3)

The boldface Ti is the color generator for the external parton i which is an operator in the color
space [60, 61]. For a final-state quark or an initial-state anti-quark, (T a

i )αβ = ta
αβ ; for a final-

state anti-quark or an initial-state quark, (T a
i )αβ = −ta

βα; and for a gluon, (T a
i )bc = −ifabc.

The dot product is Ti · Tj ≡ T a
i T a

j with repeated indices summed over.
The Z-factor for massless quarks starts at α2

s, and is given by

Z(2)
[q] = CF TF

(
µ2

m2
t

)2ϵ [ 2
ϵ3 + 8

9ϵ2 − 1
ϵ

(65
27 + 2ζ2

3

)
+ 875

54 + 16ζ2
3 − 20ζ3

3

]
. (C.4)
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The Z-factor for massive quark, i.e. top quark, starts at αs, and the one-loop coefficient
Z(1)

[t] is given by

Z(1)
[t] = CF

{
2
ϵ2 +

2Lµ+1
ϵ

+L2
µ+Lµ+4+ζ2+ϵ

[
L3

µ

3 +
L2

µ

2 +(4+ζ2)Lµ+8+ ζ2
2 − 2ζ3

3

]

+ ϵ2
[

L4
µ

12 +
L3

µ

6 +
(
2+ ζ2

2

)
L2

µ+
(
8+ ζ2

2 − 2
3ζ3

)
Lµ+16+2ζ2−

ζ3
3 + 9

20ζ2
2

]}
,

(C.5)

where Lµ = ln
(
µ2/m2

t

)
. The two-loop coefficient Z(2)

[t] can be split into two parts:

Z(2)
[t] = Z(2),l

[t] + Z(2),t
[t] , (C.6)

where Z(2),l
[t] contains contributions from gluon loops and light-quark loops; Z(2),t

[t] denotes the
contribution from a loop insertion of top quark itself, and they are given by

Z(2),l
[t] = C2

F

2
ϵ4 + 1

ϵ3

[
C2

F (4Lµ + 2)− 11
2 CF CA + nlCF

]
+ 1

ϵ2

[
C2

F

(
4L2

µ + 4Lµ + 17
2

+ 2ζ2

)
− CF CA

(11
3 Lµ − 17

9 + ζ2

)
+ nlCF

(2
3Lµ − 2

9

)]
+ 1

ϵ

{
C2

F

[8
3L3

µ + 4L2
µ

+ (17 + 4ζ2)Lµ + 83
4 − 4ζ2 +

32
3 ζ3

]
+ CF CA

[(67
9 − 2ζ2

)
Lµ + 373

108 + 15
2 ζ2

− 15ζ3

]
+ nlCF

(
−10

9 Lµ − 5
54 − ζ2

)}
+ C2

F

[4
3L4

µ + 8
3L3

µ + (17 + 4ζ2)L2
µ

+
(83

2 − 8ζ2 +
64
3 ζ3

)
Lµ + 561

8 + 61
2 ζ2 −

22
3 ζ3 − 48 ln 2ζ2 −

77
5 ζ2

2

]
+ CF CA

[11
9 L3

µ +
(167

18 − 2ζ2

)
L2

µ +
(1165

54 + 56
3 ζ2 − 30ζ3

)
Lµ + 12877

648

+ 323
18 ζ2 +

89
9 ζ3 + 24 ln 2ζ2 −

47
5 ζ2

2

]
+ nlCF

[
−2
9L3

µ − 13
9 L2

µ +
(
−77
27 − 8

3ζ2

)
Lµ

− 1541
324 − 37

9 ζ2 −
26
9 ζ3

]
, (C.7)

Z(2),t
[t] = CF TF

[ 2
ϵ3 + 1

ϵ2

(4
3Lµ + 8

9

)
+ 1

ϵ

(4
9Lµ − 65

27 − 2ζ2

)
− 4

9L3
µ − 2

9L2
µ

−
(274

27 + 16ζ2
3

)
Lµ + 5107

162 − 70ζ2
9 − 4ζ3

9

]
. (C.8)

Finally, Z-factors for gluons up to NNLO are given by

Z(1)
[g] =

{
− 2
3ϵ

− 2
3Lµ + ϵ

(
−1
3L2

µ − ζ2
3

)
+ ϵ2

(
−1
9L3

µ − ζ2
3 Lµ + 2ζ3

9

)}
,

Z(2)
[g] =

(
Z(1)

[g]

)2
+ 4

3ϵ
(nh + nl)TFZ(1)

[g] + Z(2),t
[g] .
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where Z(2),t
[g] denotes the contribution from a loop insertion of top quark,

Z(2),t
[g] = CATF

(
µ2

m2
t

)2ϵ [ 2
ϵ3 + 34

9ϵ2 − 2
ϵ

(22
9 Lµ + 64

27 − ζ2

)

+ 22
9 L2

µ + 358
27 + 4ζ2

3 − 4ζ3

]
− CF TF

(
µ2

m2
t

)2ϵ (2
ϵ
+ 15

)
. (C.9)
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