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1 Introduction

Quantum gravity aims to provide a suitable characterisation of the gravitational interaction at
very short distances and very high energy. Recent studies on extreme cosmological events and
exploring the quantum regime may provide a way to set-up possible observational tests. See
for instance [1, 2]. This challenging theoretical question has been approached from different
viewpoints giving rise to a large amount of works, from which a consensus often shows up
that Quantum Gravity may well give rise to a quantum space-time in some effective regime.

It appears that quantum space-times, for which most of the usual notions linked to
manifolds no longer make sense, can be conveniently described within the framework of
noncommutative geometry [3]. Many examples of these quantum objects are now available
in the physics literature, among which some physically promising ones are those acted
on by a deformation of the Poincaré symmetry, interpreted as the “quantum space-time
symmetry” with deformation parameter identified with the Planck mass or eventually the
scale of Quantum Gravity. In the vein of the development of field theories on these quantum
spaces called generically noncommutative field theories, the construction of related gauge
model versions has been the subject of an intense activity. For a review, see [4].

Gauge theory models on the Moyal spaces, a noncommutative structure possibly emerging
in String Theory [5, 6], have been considered a long ago either as noncommutative extension
of Yang-Mills type theories or as matrix models, see e.g. in [7]–[15]. Gauge theories on
R3

λ, a deformation of the 3-dimensional Euclidean space1 which shows up for instance in
Group Field Theory, see e.g. [18], have also been considered mainly from the viewpoint of
matrix models [19]–[23]. The κ-Minkowski space-time, rigidely linked through a duality
to a deformation of the Poincaré algebra called the κ-Poincaré algebra, appeared three

1For earlier work on R3
λ, see e.g. [16, 17].
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decades ago [24, 25] and has now acquired a physically prominent place among the quantum
spaces [26], for instance as providing a realisation of the Double Special Relativity [27, 28] or
for its possible relationship to Relative Locality [29, 30]. Field theories and gauge theories
on the κ-Minkowski space-time have been considered in [31]–[38].

In this paper, we will focus on another deformation of the Minkowski space-time, called
the ρ-Minkowski space-time, first considered almost two decades ago in [39]. Similarly to
the κ-Minkowski space-time, this recently (re)considered quantum space-time is acted on by
a deformation of the Poincaré algebra, hence called the ρ-Poincaré algebra. The relevance
of this so far poorly explored quantum space-time has been examined in black-hole physics
in [40, 41] and its impact on localisability and quantum observers studied in [42, 43]. For
appearance in ADS/CFT context, see [44, 45]. The algebraic structures underlying the
ρ-deformed Poincaré symmetry have been explored recently in [46], showing in particular
the isomorphism between the bicrossproduct structure and the Drinfeld twist approach of
the deformed symmetry, based on the Drinfeld twist first defined in [39]. Some quantum
one-loop properties of (ρ-Poincaré invariant) scalar field theories with quartic interaction
based on different star-products were studied in [47] and [48]. The overall conclusion of both
works is that UV/IR mixing occurs in these field theories.

The purpose of this paper is to build the action for a gauge theory on the (four-
dimensional) ρ-Minkowski space-time, using for that purpose a noncommutative differential
calculus based on twisted derivations. The star-product modeling the ρ-Minkowski space-time
is the one used in [48]. The invariance of the classical action under the ρ-deformation of
the Poincaré symmetry is examined.

The paper is organised as follows. In section 2, the twisted noncommutative differential
calculus is characterized. In section 3, we define the twisted (hermitian) connection and related
curvature together with the gauge transformations. In section 4, a gauge invariant action
whose commutative limit coincides with the usual action for electrodynamics is presented and
discussed. The ρ-deformation of the Poincaré (Hopf) algebra leaving this action invariant
is characterized. Its (Hopf) subalgebra generated by the twisted derivations, which can
be interpreted as deformed translations, is dual to the associative algebra modeling the
ρ-Minkowski space-time. The results are discussed in section 5.

2 Twisted differential calculus

2.1 Star-product for ρ-Minkowski space-time

We will use the star-product introduced in [48]. This latter, together with the associated
involution is given by2

(f ⋆ g)(x0, x⃗, x3) =
∫

dp0
2π

dy0 e−ip0y0f(x0 + y0, x⃗, x3)g(x0, R(−ρp0)x⃗, x3), (2.1)

f †(x0, x⃗, x3) =
∫

dp0
2π

dy0 e−ip0y0f(x0 + y0, R(−ρp0)x⃗, x3), (2.2)

2Our convention for the Fourier transform is Ff(p) =
∫

ddx
(2π)d e−ipxf(x) and f(x) =

∫
ddp eipxFf(p).
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for any functions f, g in the associative ∗-algebra, denoted by M4
ρ [48], which describes

the ρ-Minkowski space-time. In (2.1), (2.2), R(ρp0) denotes a 2 × 2 rotation matrix with
dimensionless parameter ρp0, where p0 and ρ have respective mass dimension 1 and −1.

The corresponding construction combines the main features of the group algebra related
to the non trivial part of the coordinates algebra for the ρ-Minkowski space-time and the
Weyl quantization map, as we will briefly recall and illustrate below. For more details, see
e.g. [4]. Note that a similar scheme, directly inherited from the old works of von Neumann
and Weyl [49, 50], has already been applied to the κ-Minkowski space-time in [35–38, 51].
The resulting star-product has been further used to build and study scalar field theories
and gauge theories on this quantum space [35–38, 52].

In the present situation, the relevant group is the special Euclidean group

Gρ := SE(2) = SO(2) ⋉ϕ R2, (2.3)

related to the non trivial part of the coordinate algebra for the ρ-Minkowski space-time
given by

[x0, x1] = iρx2, [x0, x2] = −iρx1, [x1, x2] = 0, (2.4)

which defines the Euclidean algebra e(2). In (2.3), ϕ : SO(2) → Aut(R2) denotes the action
of any matrix of SO(2) on elements of R2.

The convolution algebra is C(Gρ) := (L1(Gρ), ◦,✶ ) with convolution product ◦ together
with involution ✶ given by

(F ◦ G)(s) =
∫
Gρ

dµ(t)F (st)G(t−1), F ✶(x) = F (x−1) (2.5)

for any F, G ∈ L1(Gρ),3 s, t, x ∈ Gρ, where F is the complex conjugate of F and the Haar
measure of Gρ, dµ(t) reduces to the usual Lebesgue measure.

Next, assume that the elements of C(Gρ) are functions on a momentum space, i.e. write
F ∈ C(Gρ) as F = Ff where F is the Fourier transform. Then, upon parametrising any
element of Gρ as (R(ρp0), p⃗) where p⃗ ∈ R2 and R(ρp0) ∈ SO(2) denotes a 2 × 2 matrix with
defining dimensionless parameter ρp0 with p0 identified with the time-like component of a
momentum (p0, p⃗) and further using the defining group laws for Gρ given by

(R(ρp0), p⃗) (R(ρq0), q⃗) =
(
R(ρ(p0 + q0)), p⃗ + R(ρp0)q⃗

)
, (2.6)

(R(ρp0), p⃗)−1 =
(
R(−ρp0),−R(−ρp0)p⃗

)
, I = I2, (2.7)

one can easily re-express (2.5) as

(Ff ◦ Fg)(p0, p⃗) =
∫

d3q Ff
(
R(ρ(p0 + q0)), p⃗ + R(ρp0)q⃗

)
Fg

(
R(−ρq0),−R(−ρq0)q⃗

)
(2.8)

Ff∗(p0, p⃗) = Ff
(
R(−ρp0),−R(−ρp0)p⃗

)
, (2.9)

for any Ff,Fg ∈ L1(Gρ), where we used the fact that the Haar measure is the Lebesgue
measure.

3Additionally, the functions must be compactly supported.
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Now, introduce the Weyl quantization map Q : M3
ρ → B(H), a morphism of ⋆-algebra,

where M3
ρ is an associative ⋆-algebra of functions, with star-product ⋆ and involution †.

Q is defined by

Q(f) = π(Ff) (2.10)

where π : C(Gρ) → B(H) is known to be the induced ⋆-representation of C(Gρ) on B(H) by
some unitary representation of Gρ.4 Here, B(H) denotes the algebra of bounded operators
on some Hilbert space H. As a morphism of ⋆-algebra, Q satisfies

Q(f ⋆ g) = Q(f)Q(g), (Q(f))‡ = Q(f †), (2.11)

where (Q(f))‡ denotes the adjoint of Q(f). In the same time, as induced ⋆-representation
of C(Gρ), π verifies

π(F ◦ G) = π(F )π(G), π(F )‡ = π(F ✶). (2.12)

The combination of (2.11) and (2.12) yields

f ⋆ g = F−1(Ff ◦ Fg), f † = F−1(F(f)✶). (2.13)

These relations, combined with (2.8), (2.9) and finally adding a central element x3, thus
extending M3

ρ introduced above to a new algebra M4
ρ relevant to the 4-dimensional case, give

rise after some computation to the star-product and involution (2.1), (2.2) constructed in [48].
The above Weyl quantization framework selects out a natural trace which is defined

here by the Lebesgue integral. Indeed, from∫
d4x (f ⋆ g†)(x) =

∫
d4x f(x)g(x) (2.14)

which holds for any f, g ∈ M4
ρ, one infers that

∫
d4x (f ⋆ f †)(x) =

∫
d4x f(x)f(x) ≥ 0 so

that
∫

d4x defines a positive map
∫

d4x : M4+
ρ → R+ where M4+

ρ is the set of positive
elements of M4

ρ.
Besides, one has ∫

d4x (f ⋆ g)(x) =
∫

d4x (g ⋆ f)(x), (2.15)

for any f, g ∈ M4
ρ, so that the trace is cyclic contrary to its counterpart in the case of

κ-Minkowski space-time which is twisted [35].
A convenient Hilbert product can be defined, namely

⟨f, g⟩ :=
∫

d4x (f † ⋆ g)(x) =
∫

d4x f(x)g(x), (2.16)

for any f, g ∈ M4
ρ, which coincides formally with the usual L2 product. We will use this

product to construct an gauge action functional in a while.
4One has π(F ) =

∫
G dµG(x)F (x)πU (x) for any F ∈ C(G), where πU : G → B(H) is a unitary representation.

Recall that π is bounded and non degenerate.
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From now on, we denote generically by Mρ := (M4
ρ, ⋆, †) the associative ⋆-algebra

modeling the ρ-Minkowski space-time. Note that the corresponding “algebra of coordinates”
can be easily obtained from (2.1) and takes the expected form

[x0, x1] = iρx2, [x0, x2] = −iρx1, [x1, x2] = [x1, x3] = [x3, x2] = 0. (2.17)

For our present purpose, it will be sufficient to define Mρ as the algebra of Schwartz functions
equipped with the star-product and involution respectively given by (2.1) and (2.2).

2.2 Derivations and ρ-deformed translations

We will use a framework directly adapted from the derivation-based differential calculus,
see e.g. in [53]. For past studies on noncommutative gauge theories based on this type of
differential calculus, see [54, 55].

A convenient differential calculus which leads to a suitable commutative limit ρ → 0 can
be obtained by starting from the following set of twisted derivations of Mρ

D =
{
Pµ : Mρ → Mρ, µ = 0, 3,±, {P0, P3}I ⊕ {P+}E+ ⊕ {P−}E−

}
, (2.18)

where, anticipating the discussion of subsection 4.2, P0, P3, P± = P1 ± iP2 generates the
Hopf algebra of ρ-deformed translations denoted by Tρ, which is a Hopf subalgebra of the
ρ-deformed Hopf Poincaré algebra, denoted by Pρ and the subscripts in (2.18) refer to the
corresponding twist affecting the Leibnitz rule, namely

Pi(f ⋆ g) = Pi(f) ⋆ g + f ⋆ Pi(g), i = 0, 3
P±(f ⋆ g) = P±(f) ⋆ g + E∓(f) ⋆ P±(g) (2.19)

for any f, g ∈ Mρ with

E± = e±iρP0 . (2.20)

Eq. (2.19), (2.20) are easily obtained by assuming that the Hopf algebra Tρ acts on Mρ as

(Pµ ▷ f)(x) = −i∂µf(x), µ = 0, 3,± (2.21)

for any f ∈ Mρ and then combining (2.21) with (2.1). In eq. (2.21), the symbol ▷ denotes
the map

▷ : Tρ ⊗Mρ → Mρ (2.22)

defining the action of Tρ on Mρ.
In order to introduce quantum analogs of space-time symmetries, it is natural to require

that Mρ behaves as a left module over a Hopf algebra corresponding to a deformation of
the Poincaré algebra.

For convenience, we recall that given a Hopf algebra H with coproduct ∆ and counit
ϵ, a left H-module algebra, says A, is an algebra with action map

φ : H ⊗A → A, (2.23)
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(as e.g. (2.22)) satisfying

φ ◦ (idH ⊗ m) = m ◦ (φ ⊗ φ) ◦ (idH ⊗ τ ⊗ idA) ◦ (∆ ⊗ idA ⊗ idA), (2.24)

and

φ ◦ (idH ⊗ 1A) = 1A ◦ ϵ, (2.25)

where m : A⊗A → A is the product on A, 1A : C → A is the unit of A and τ : H⊗A → A⊗H

is the flip map.
Now, consider only the translations Pµ. The inclusion of the rotation and boost part

will be done in section 4. By further requiring that Mρ is a left module algebra over Tρ, a
standard algebraic computation using the above conditions yields the coproduct equipping
the Hopf algebra Tρ, defined by ∆ : Tρ → Tρ ⊗ Tρ:

∆(Pi) = Pi ⊗ I + I⊗ Pi, i = 0, 3 (2.26)
∆(P±) = P± ⊗ I + E∓ ⊗ P± (2.27)

∆(E) = E ⊗ E , (2.28)

where we set

E := exp(iρP0). (2.29)

Eqs. (2.26), (2.27) expresse the compatibility between the star product (2.1) of the algebra
Mρ and the coproduct ∆ of the Hopf algebra Tρ.

For computational purpose, note that the compatibility condition to be verified can be
conveniently written as t ▷ (f ⋆ g) = m(∆(t)(▷ ⊗ ▷)(f ⊗ g)) for any t ∈ Tρ, f, g ∈ Mρ, where
m : Mρ ⊗Mρ → Mρ defines as usual the star product as m(f ⊗ g) = f ⋆ g.

Finally, supplementing the pair (Tρ, ∆) with a co-unit ϵ : Tρ → C and an antipode
S : Tρ → Tρ given by

ϵ(Pµ) = 0, µ = 0, 3,±, ϵ(E) = 1, (2.30)

S(P0) = −P0, S(P3) = −P3, S(P±) = −E∓P±, S(E) = E−1 (2.31)

turns (Tρ, ∆, ϵ, S) into a Hopf algebra. Notice that eq. (2.31) can be obtained from the
defining relation of the antipode, namely m ◦ (S ⊗ id) ◦ ∆ = m ◦ (id ⊗ S) ◦ ∆ = ϵ.

Upon using (t ▷ f)† = S(t) ▷ f †, for any t ∈ Tρ, f ∈ Mρ, combined with (2.31), one
obtains (Pi ▷ f)† = Pi ▷ (f †), i = 0, 3, so that P0 and P3 behave as real derivations while
P± are not since one has

(P± ▷ f)† = −E±P∓ ▷ f †, (2.32)

for any f ∈ Mρ where (2.31) has been used, which signals that P∓ are not real derivations.
Finally, one can easily check that ⟨Pµ ▷ f, g⟩ = ⟨f, Pµ ▷ g⟩, µ = 0, 1, 2, 3, for any f, p ∈ Mρ

where the Hilbert product is given by (2.16) thus insuring that the Pµ, µ = 0, 1, 2, 3, define
self-adjoint operators.

The Hopf algebra of deformed translations defined above will become a Hopf subalgebra
of the ρ-deformed Poincaré algebra defined in section 4.

– 6 –
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2.3 Twisted differential calculus

To introduce a noncommutative differential calculus, one has to equip D (2.18) with a suitable
algebraic structure. To do that, we first observe that one has obviously

[Pµ, Pν ] = 0, µ, ν = 0, 3,±, . (2.33)

Besides, one can easily verify that

(z.Pµ)(f) = z ⋆ Pµ(f) = Pµ(f) ⋆ z := (Pµ.z)(f), µ = 0, 3,±, (2.34)

for any z ∈ Z(Mρ), f ∈ Mρ, where Z(Mρ) is the center of Mρ.
In order to deal with various derivations carrying different twists, see (2.19), it is

convenient to introduce an extra degree, called the twist degree. It is defined by

τ(Pi) = 0, i = 0, 3, τ(P±) = ±1. (2.35)

Accordingly, the linear structures in (2.18) will be defined from homogeneous linear combina-
tions of elements of (2.18), i.e. all the elements in the linear combination have the same twist
degree. This actually defines a grading which will extend to the differential calculus. It follows
that D (2.18) inherits a structure of graded abelian Lie algebra and graded Z(Mρ)-bimodule
owing to (2.33), (2.34) so that one can write in obvious notations

D = D0 ⊕D+ ⊕D−, (2.36)

where Di, i = 0,± can be read off from (2.18).
The notion of noncommutative differential calculus is not unique. In the rest of this

subsection, we will present two differential calculi5 incorporating the various twists related
to the derivations.

From now one, we set Ω0(Mρ) := Mρ. Formally, one would also have to define Ωn
(p,q,r)(Mρ)

as the set of n-linear forms (forms of degree n) where the subscripts denote the respective
integer twist degrees for {P0, P3}, P+, P− such that p + q + r = n. Then, the product of
forms would amount to define a map such that

× : Ωn
(p1,q1,r1)(Mρ) × Ωm

(p2,q2,r2)(Mρ) → Ωn+m
(p1+p2,q1+q2,r1+r2)(Mρ). (2.37)

In the following analysis, we will not have to use explicitly the twist degree otherwise than to
restrict the linear structures of D to homogeneous structures w.r.t. this degree. To simplify
the notations, we will omit from now on the corresponding subscripts.

To define a first suitable differential calculus, let us assume that the exterior algebra
of differential forms is defined from the spaces of Z(Mρ)-multilinear antisymmetric maps
ω : Dn → Mρ denoted by Ωn(Mρ) according to the above remark. Let us define

Ω•(Mρ) =
4⊕

n=0
Ωn(Mρ). (2.38)

5Note that D does not involve all the derivations of Mρ so that the present differential calculi is of the
restricted type in the sense of [53].
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For any n-form ω ∈ Ωn(Mρ), one has:

ω(P1, P2, . . . , Pn) ∈ Mρ, (2.39)
ω(P1, P2, . . . , Pn.z) = ω(P1, P2, . . . , Pn) ⋆ z, (2.40)

for any z in Z(Mρ) and any P1, . . . , Pn ∈ D, where in both (2.39), (2.40), the symbols Pi

stand for some derivations in D.
The product × : Ω•(Mρ) → Ω•(Mρ) and differential d are formally defined for any

ω ∈ Ωp(Mρ), η ∈ Ωq(Mρ) by

ω × η ∈ Ωp+q(Mρ) (2.41)

with

(ω × η)(P1, . . . , Pp+q)

= 1
p!q!

∑
σ∈Sp+q

(−1)sign(σ)ω(Pσ(1), . . . , Pσ(p)) ⋆ η(Pσ(p+1), . . . , Pσ(p+q)),
(2.42)

dω(P1, . . . , Pp+1) =
p+1∑
j=1

(−1)j+1Pj ▷
(
ω(P1, . . . ,∨j , . . . , Pp+1)

)
, (2.43)

where the symbols Pi, i = 1, 2, . . . , p + q in (2.42), (2.43) denote generically some derivations
Pµ, µ = 0, 3,± ∈ D, sign(σ) is the signature of the permutation σ, Sp+q is the symmetric
group of p + q elements and the symbol ∨j denotes the omission of the element j. The
differential verifies

d2 = 0. (2.44)

The differential satisfies a twisted Leibnitz rule which can be conveniently put into
the form

d(ω × η) = dω × η + (−1)δ(ω)ω ×E dη (2.45)

for any ω, η ∈ Ω•(Mρ), where the symbol δ(.) denotes the degree of form while the symbol
×E indicates that a twist will act on the first factor depending on the actual derivation acting
on the 2nd factor in (2.48) which appears in the evaluation of forms on a suitable set of
derivations. Indeed, one obtains the following evaluation (E(ω) × dη)(P1, . . . , Pp+q+1) which
by combining (2.42) and (2.43) with (2.48) gives rise to a combination of terms of the form

E(ω)(Pσ(1), . . . , Pσ(p)) ⋆ dη(Pσ′(p+1), . . . , Pσ′(p+q+1))

=
∑

j

E(ω)(Pσ(1), . . . , Pσ(p)) ⋆ ((−1)j+1Pσ′(j)η(Pσ′(p+1), . . . ,∨j , . . . , Pσ′(p+q+1)))

=
∑

j

Eσ′(j) ▷ (ω(Pσ(1), . . . , Pσ(p))) ⋆ ((−1)j+1Pσ′(j)η(Pσ′(p+1), . . . ,∨j , .., Pσ′(p+q+1)))

(2.46)

where Eσ′(j) is the twist linked to the derivation Pσ′(j) ∈ D.

– 8 –
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Hence, the data (Ω•(Mρ),×, d) where the product and differential defined by (2.42)
and (2.43) defines the graded differential algebra of forms. Notice that one has

ω × η ̸= (−1)δ(ω) δ(η)η × ω, (2.47)

simply stemming from the noncommutativity of the product ⋆ in (2.42) so that the above
algebra is not graded commutative.

Alternatively, another suitable differential calculus can be defined by modifying the
definition of the product of forms, still preserving the above formal definition of the differential.

This other product is such that we recover the usual Leibnitz rule, i.e. the twists are
included into the product. Namely, one obtains

d(ω ∧ η) = dω ∧ η + (−1)δ(ω)ω ∧ dη (2.48)

for any ω, η ∈ Ω•(Mρ), where ∧ is defined by

(ω ∧ η)(P1, . . . , Pp+q)

= 1
p!q!

∑
σ∈Sp+q

(−1)sign(σ)(Eσ(p+1)..Eσ(p+q) ▷ ω)(Pσ(1), .., Pσ(p+1)) ⋆ η(Pσ(p+1), . . . , Xσ(p+q)).

(2.49)
The corresponding triple (Ω•(Mρ),∧, d) still defines a graded differential algebra which is
still not (graded) commutative.

3 Twisted connection and curvature

Starting from D (2.36) together with a right hermitian module over Mρ, denoted by E, a
twisted connection can be defined as a map ∇ : D× E → E satisfying linearity conditions
and Leibnitz rule inspirated from the celebrated Koszul connection. In view of the discussion
in subsection 2.2, it will be convenient to consider the different actions of the map ∇

∇ : Di × E → E, i = 0,± (3.1)

satisfying for any m ∈ E, f ∈ Mρ

∇Pµ+P ′
µ
(m) = ∇Pµ(m) + ∇P ′

µ
(m), ∀(Pµ, P ′

µ) ∈ Di ×Di, i = 0,± (3.2)

∇z.Pµ(m) = ∇Pµ(m) ⋆ z, ∀Pµ ∈ D, ∀z ∈ Z(Mρ), (3.3)

∇Pµ(m ◁ f) = ∇Pµ(m) ◁ f + βPµ(m) ◁ Pµ(f), ∀Pµ ∈ D, (3.4)

where m ◁ f denotes the action of the algebra on the module and the linearity condition (3.2)
holds for linear combinations of derivations homogeneous in twist degree.

We assume from now on that E is one copy of Mρ, that is

E ≃ Mρ. (3.5)
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Besides, we assume that the action of Mρ on E ≃ Mρ is given by

m ◁ f = m ⋆ f. (3.6)

The map βPµ : E → E in the Leibnitz rule (3.4) can be easily characterized by computing
the left- and right- hand side of the identity ∇Pµ((m ⋆ f) ⋆ g) = ∇Pµ(m ⋆ (f ⋆ g)) which
is found to be verified provided

βPµ = Eµ, with Eµ = I, I, E±, µ = 0, 3,±, (3.7)

so that, (3.4) becomes now

∇Pµ(m ◁ f) = ∇Pµ(m) ◁ f + Eµ(m) ◁ Pµ(f), ∀Pµ ∈ D. (3.8)

Then, upon setting

Aµ = ∇Pµ(I), ∇µ := ∇Pµ (3.9)

which defines the gauge potential, the relation (3.8) yields

∇µ(f) = Aµ ⋆ f + Pµ(f) (3.10)

for any f ∈ Mρ.
In order to deal with a noncommutative analog of an hermitian connection, the right-

module E is further assumed to be equipped with an hermitian structure. Recall that it
is defined as a map h : E × E → Mρ satisfying h(m1, m2)† = h(m2, m1), together with
h(m1 ⋆ f1, m2 ⋆ f2) = f †

1 ⋆ h(m1, m2) ⋆ f2 and h(1, 1) = 1, for any m1, m2 ∈ E and any
f1, f2 ∈ Mρ. In the following, we use the canonical hermitian structure

h(m1, m2) = m†
1 ⋆ m2, (3.11)

for any m1, m2 ∈ E ≃ Mρ. Then, compatibility between the connection and the hermitian
structure can be expressed as twisted hermiticity conditions for A± and A0, A3 respectively
given by

(h(E+ ▷ ∇+(m1), m2) + h(E+ ▷ m1,∇+(m2))) + (+ → −) = P+h(m1, m2) + P−h(m1, m2),
(3.12)

h(∇i(m1), m2) + h(m1,∇i(m2))) = Pih(m1, m2), i = 0, 3 (3.13)

for any m1, m2 ∈ E, which are verified provided

A†
± = E± ▷ A∓, A†

i = Ai, i = 0, 3 (3.14)

The curvature, defined as a map

F(Pµ, Pν) := Fµν : E → E, µ, ν = 0, 3,± (3.15)

has the following expression

Fµν := Eν∇µE−1
ν ∇ν − Eµ∇νE−1

µ ∇µ, µ, ν = 0, 3,± (3.16)
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with Eµ still given by (3.7) and satisfies

Fµν = −Fνµ, µ, ν = 0, 3,±, (3.17)

together with

Fµν(m ⋆ f) = Fµν(m) ⋆ f, (3.18)

for any m ∈ E, f ∈ Mρ, indicating that Fµν (3.18) defines a morphism of module.
Set now

Fµν(I) = Fµν (3.19)

which can be viewed as the noncommutative analog of the field strength. The corresponding
“components” can be expressed as

Fµν = PµAν − PνAµ + (Eν ▷ Aµ) ⋆ Aν − (Eµ ▷ Aν) ⋆ Aµ, µ, ν = 0, 3 ± . (3.20)

By further using the convenient product of forms (2.49), the 2-form curvature F ∈ Ω2(Mρ)
corresponding to (3.20) can be expressed as

F = dA + A ∧ A (3.21)

which thus satisfies the Bianchi identity

dF = F ∧ A − A ∧ F, (3.22)

where A ∈ Ω1(Mρ) is the 1-form connection.
The unitary gauge transformations are defined as the set of automorphisms of the

module E, says ϕ ∈ Aut(E), preserving the hermitian structure (3.11), which is expressed
as h(ϕ(m1), ϕ(m2)) = h(m1, m2). By combining the fact that ϕ(m ◁ f) = ϕ(m) ◁ f together
with (3.6), (3.11) and setting ϕ(I) := g ∈ E one easily find that the group of unitary gauge
transformations is given by

U = {g ∈ E ≃ Mρ, g† ⋆ g = g ⋆ g† = 1}. (3.23)

The twisted gauge transformations for the connection is

∇g
µ(.) = (Eµ ▷ g†) ⋆ ∇µ(g ⋆ .), (3.24)

for any g ∈ U , for which one easily find the gauge transformations of the gauge potential
given by

Ag
µ = (Eµ ▷ g†) ⋆ Aµ ⋆ g + (Eµ ▷ g†) ⋆ Pµg, (3.25)

where Eµ is still given by (3.7).
The corresponding twisted gauge transformations for the noncommutative field strength

Fµν are given by (no summation over indices µ, ν in the r.h.s.)

F g
µν = (EµEν ▷ g†) ⋆ Fµν ⋆ g, (3.26)

for any g ∈ U and Eµ as in (3.7).
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At this stage, some comments are in order.
One can easily verify that

(Eµ ▷ g)† = Eµ ▷ g†. (3.27)

Thus, (3.27) shows that the twists Eµ define ∗-automorphims of E ≃ Mρ. Hence, the present
framework underlying the gauge theory model on the ρ-Minkowski space-time space-time to
be presented in the next section actually depends on two twists: one is trivial (the identity)
while the other one is E+, with obvious inverse E−, is a ∗-automorphism of the module.

The occurrence of ∗-automorphisms as twists in the present framework may be understood
by comparing the algebraic structure underlying the present gauge theory framework to the
one for the κ-Minkowski space-time considered in [37, 38]. There, the (unique) non-trivial twist
given6 by E = e−3P0/κ defines a regular automorphism, i.e., it satisfies (E ▷ f)† = E−1 ▷ (f †).
This latter is rigidly linked to the (one-parameter) group of ∗-automorphisms of the κ-
Minkowski space

{σ̃t := eit
3P0

κ }t∈R, (3.28)

forming the modular group for the KMS weight defined by the twisted trace occurring
naturally in the very structure of the group algebra related to the κ-deformation considered
in [35, 51], namely the (right) Haar measure of the affine group R+⋉R3. The above mentioned
twisted trace verifies φ(f ⋆κ g) :=

∫
d4x f ⋆κ g =

∫
d4x (E ▷ g) ⋆ f in obvious notations.

In the present analysis, the affine group is simply replaced by the special Euclidian group
SO(2) ⋉ R2 whose group factor SO(2) acting on Rd can be viewed, up to technicalities, as
a compactified version of the group factor R+ of the affine group. Roughly speaking, one
passes from R+ ≃ {ex}x∈R to SO(2) ≃ {eix}x∈R. This extra i factor in the argument of
the exponential will also show up in the star product modeling the ρ-deformation of the
Minkowski space (observe the arguments of the functions in (2.1)) and by duality will affect
the coproduct equipping the (translation part of the) ρ-Poincaré algebra leading to the extra i

factor in the argument of the exponential defining the present twist E+, thus forcing E+ to be a
∗-automorphim. This twist is now an element of a group of ∗-automorphisms of Mρ given by

{σt := e−itρP0}t∈R. (3.29)

One might wonder if σt (3.29) plays a distinguished role in the present situation as
σ̃t (3.28) does in the κ-Minkowski case [37, 38]. The fact that the present trace, ω(f) :=∫

d4x f(x) for any f ∈ Mρ,7 has the standard property of cyclicity (2.15) implies a negative
answer, as it is obviously not a KMS weight. Indeed, recall that a KMS weight on a (C∗)
algebra A for a modular group of ∗-automorphisms σt, t ∈ R, is a positive linear map
φ : A+ → R+ such that i) φ ◦ σz = φ, ii) φ(f † ⋆ f) = φ(σ i

2
(f) ⋆ (σ i

2
(f))†) where σz, z ∈ C,

is an analytic extension of σt [56]. The positivity of ω is obvious and the condition i)
6In the four dimensional case.
7For the present comment, it is again sufficient to restrict the functions of the algebra Mρ to Schwartz

functions. The extension to a suitable multiplier algebra can be carried out as it is done for the case of
κ-Minkowski space.
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easily verified, since ω ◦ σz(f) =
∫

d4x e−izρP0 ▷ f =
∫

d4xf(x). However, the condition ii)
cannot be satisfied because the trace ω is now cyclic in view of (2.15). Simply compute
ω(σ i

2
(f) ⋆ (σ i

2
(f))†) =

∫
d4x e

ρ
2 P0(f) ⋆ e−

ρ
2 P0(f †) =

∫
d4x f ⋆ e−ρP0 ̸=

∫
d4x f † ⋆ f .

Althought the present framework cannot accommodate a non-trivial KMS structure [57],
the gauge theory obtained from the connection and curvature introduced in section 3 has
physically interesting properties. We turn now on to the corresponding construction.

4 Gauge theory model on ρ-Minkowski space-time

4.1 Gauge invariant action

The requirement that the formal commutative limit ρ → 0 of a 4-dimensional action describing
a gauge theory on Mρ coincides with the standard 4-dimensional QED action points toward
the following candidate action

Sρ := 1
4G2 ⟨Fµν , Fµν⟩ = 1

4G2

∫
d4x F †

µν ⋆ Fµν = 1
4G2

∫
d4x Fµν(x)Fµν(x), (4.1)

where G is a dimensionless coupling constant, Fµν given by (3.20), f denotes the complex
conjugate of f and summation over µ, ν is of course understood; we used (2.16) to obtain
the third equality. It will be convenient to set A± := A1 ± iA2.

We will assume from now on that A1, A2 together with A0, A3 are real-valued.
It is easy to verify that the action Sρ is invariant under the gauge transformations (3.25),

(3.26). One uses the cyclicity of the trace together with

((EµEν) ▷ g)† = (EµEν) ▷ g, µ, ν = 0, 3,±, (4.2)

for any g ∈ U (3.23) and the fact that Eµ ▷ (f ⋆ g) = (Eµ ▷ f) ⋆ (Eµ ▷ g) combined with
g ⋆ g† = I (3.26).

At this stage, some comments are in order.
Note that the present ρ-Poincaré invariant (anticipating the result of subsection 4.2)

gauge theory on Mρ is 4-dimensional (and could be obviously constructed in principle in
any d ≥ 3 dimensions). This has to be compared with the κ-Poincaré invariant gauge theory
on κ-Minkowski [37, 38] for which the requirement of both gauge and κ-Poincaré invariance
selects the dimension to take the unique value d = 5, stemming from the fact that the natural
trace involved in the action is twisted with a twist depending on the dimension. In the present
situation, the trace is standard, having the usual cyclicity property so that no constraint
on the dimension of the quantum space-time can occur.

From the rightmost equality in (4.1), one easily realizes that the kinetic operator coincides
with the one of (commutative) electrodynamics, as a mere consequence of (2.16) and the
structure of the differential calculus which is used. Namely, the quadratic kinetic term is

Sρ,kin ∼
∫

d4x AµKµνAν , Kµν = ηµν∂2 − ∂µ∂ν , (4.3)

where the summations run over µ, ν = 0, 1, 2, 3, the gauge-potential Aµ is real-valued (see
beginning of section 4.1) in obvious notations. This is unlike the gauge model on κ-Minkowski
derived in [37, 38] which involves a deformed kinetic operator, merely stemming from the
difference between the twist structure characterizing each derivation based differential calculus.
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4.2 ρ-Poincaré invariance of the action

We now examine the invariance of Sρ under the action of a Hopf algebra which defines a
deformation of the usual (trivial Hopf structure of the) Poincaré algebra, denoted herafter by
Pρ. We will show in particular that the associative algebra Mρ modeling the ρ-Minkowski
space-time is a left module algebra over Pρ.

In order to make contact with a deformation of the Poincaré algebra, we first supple-
ment Tρ with rotation and boost generators, i.e. we consider the enlarged set of generators
(Pµ, Mj , Nj), µ ∈ {0, +,−, 3} and j ∈ {+,−, 3} where Mj and Nj denote respectively the
rotations and boosts, assuming that these latter act on Mρ as

(Mj ▷ f)(x) = (ϵl
jkxkPl ▷ f)(x) (4.4)

(Nj ▷ f) = ((x0Pj − xjP0) ▷ f)(x), (4.5)

for any f ∈ Mρ, with M± = M1 + ±iM2, N± = N1 ± iN2, while (2.21) still holds where
the map (2.22) of course must now be extended to ▷ : Pρ ⊗Mρ → Mρ. From (2.21), (4.4),
(4.5), one infers that

[Mi,Nj ] = iϵijkNk, [Mi,Mj ] = iϵijkMk, [Ni,Nj ] = −iϵijkMk, [Ni,P0] = iPi

[Ni,Pj ] = iδijP0, [Mi,Pj ] = iϵijkPk, [Pµ,Pν ] = [Mj ,P0] = 0,
(4.6)

which defines the usual Lie algebra structure of the Poincaré algebra. In short, the Poincaré
Lie algebra is not deformed.

We now show that the action (2.21), (4.4), (4.5) insures that Mρ is a left module algebra
over Pρ equipped with a Hopf algebra structure.

To do this, first compute the action of Mj (4.4) on the star product (2.1). Define the
following left multiplication operator (i.e. usual product, not the star-product)

Lxj f := xjf, j = ±, 3, Lx0f := x0f (4.7)

for any f ∈ Mρ and set

x± = 1
2(x1 ∓ ix2), ∂± = ∂1 ± i∂2. (4.8)

Then, a standard computation yields the following relations for any f, g ∈ Mρ:

Lx±(f ⋆ g) = (x±f) ⋆ g = (E∓ ▷ f) ⋆ (x±g), (4.9)
Lx0(f ⋆ g) = (x0f) ⋆ g = f ⋆ (x0g), (4.10)
Lx3(f ⋆ g) = (x3f) ⋆ g = f ⋆ (x3g), (4.11)

Lx3P± ▷ (f ⋆ g) = (Lx3P± ▷ f) ⋆ g + (E∓f) ⋆ (Lx3P± ▷ g), (4.12)
Lx±P3 ▷ (f ⋆ g) = (Lx±P3 ▷ f) ⋆ g + (E∓f) ⋆ (Lx±P3 ▷ g), (4.13)
Lx±P∓ ▷ (f ⋆ g) = (Lx±P∓ ▷ f) ⋆ g + f ⋆ (Lx±P∓ ▷ g) (4.14)

From (4.9)–(4.14), one easily finds

M± ▷ (f ⋆ g) = (M± ▷ f) ⋆ g + (E∓ ▷ f) ⋆ (M± ▷ g), (4.15)
M3 ▷ (f ⋆ g) = (M3 ▷ f) ⋆ g + f ⋆ (M3 ▷ g), (4.16)
N± ▷ (f ⋆ g) = (N± ▷ f) ⋆ g + (E∓ ▷ f) ⋆ (N± ▷ g), (4.17)
N3 ▷ (f ⋆ g) = (N3 ▷ f) ⋆ g + f ⋆ (N3 ▷ g). (4.18)
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Now, processing as in 2.2, the requirement that Mρ is a left module algebra over Pρ is verified
if the coproduct ∆ : Mρ → Mρ ⊗ Mρ is defined by

∆(M±) = M± ⊗ I + E∓ ⊗ M±, (4.19)
∆(N±) = N± ⊗ I + E∓ ⊗ N±, (4.20)
∆(M3) = M3 ⊗ I + I⊗ M3, (4.21)
∆(N3) = N3 ⊗ I + I⊗ N3, (4.22)

while (2.26)–(2.28) still hold true for which however the map ∆ extends to a coproduct map
∆ : Mρ → Mρ ⊗Mρ. Finally, the counit and antipode are found to be

ϵ(Mj) = ϵ(Nj) = 0, j = ±, 3, ϵ(E) = 1, (4.23)
S(Mj) = −Mj , S(Nj) = −Nj , j = ±, 3, (4.24)

where again use has been made of the defining relation m◦(S⊗id)◦∆ = m◦(id⊗S)◦∆ = η⊗ϵ,
with unit η : C → H, which must be supplemented by (2.31), extended as a map S : Pρ → Pρ.

From the above discussion, one concludes that Pρ is a Hopf algebra involving Tρ as a
Hopf subalgebra, while Mρ is a left module algebra over Pρ.

In the present framework, it can be verified that Tρ and Mρ are dual as Hopf algebras.
Note that viewing the algebra modeling the ρ-Minkowski space-time as the universal enveloping
algebra of the Lie algebra of coordinates given by (2.17) would imply that it supports a
unique Hopf algebra structure defined by

∆M(xµ) = xµ ⊗ I + I⊗ xµ, (4.25)
ϵM(xµ) = 0, SM(xµ) = −xµ, (4.26)

as a consequence of the universal property of the universal enveloping algebra of any Lie
algebra. Now, Tρ and Mρ are dual as bialgebras if

⟨∆(t), x ⊗ y⟩ = ⟨t, x ⋆ y⟩ = ⟨t(1), x⟩⟨t(2), x⟩ (4.27)
⟨ht, x⟩ = ⟨h ⊗ t, ∆M(x)⟩ = ⟨h, x(1)⟩⟨t, x(2)⟩ (4.28)

for any h, t ∈ Tρ, x, y ∈ Mρ, where the bilinear map ⟨., .⟩ : Tρ ×Mρ → Mρ is the dual pairing
and we used the Sweedler notation in the rightmost equalities (4.27), (4.28). Combining (4.27)
with (4.8) together with (2.19) and defining the dual pairing as

⟨Pµ, xµ⟩ = −iδµν , (4.29)

a straightforward computation leads to the Lie algebra of coordinates (2.17) (expressed in
the x±, x0, x3 variables), while similar consideration applied to (4.28) gives back to (4.25).
Finally, the bialgebra structures are extended to Hopf algebra structures by including the
antipodes, which amounts to verify if

⟨S(t), x⟩ = ⟨t, SM(x)⟩ (4.30)

holds true for any t ∈ Tρ, x ∈ Mρ where ⟨., .⟩ still denotes the above Hopf pairing (4.29).
The fact that (4.30) holds can be checked from a straightforward calculation with SM given
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by (4.26). Summarising the above discussion, one concludes that Tρ and Mρ are actually
dual as Hopf algebras.

Going back to the gauge invariant action (4.1), it turns out that Sρ is Pρ-invariant,
which stems from the following relation

h ▶
∫

d4x L :=
∫

d4x h ▷ L = ϵ(h)
∫

d4x L, (4.31)

which holds true for any h ∈ Pρ, L ∈ Mρ.
To verify that (4.31) is true, it is sufficient to compute the action of the generators

of Pρ on
∫

d4x L.
For Pµ, µ = 0, 3,±, one has obviously

∫
d4x Pµ ▷ L =

∫
d4x (−i∂µL)(x) = 0 for any

L ∈ Mρ, where we used (2.21), so that the Pµ’s verify (4.31).
In the same way, for Mj , j = ±, 3, one has to compute various expressions of the form

Ijk =
∫

d4x xj∂kL for j ̸= k, see (4.4). But Ijk =
∫

d4x ∂k(xjL) = 0 for any L ∈ Mρ.
A similar computation and conclusion holds for Nj , j±, 3. Hence, the generators of Pρ

satisfy (4.31) which insures the ρ-Poincaré invariance of Sρ.

5 Discussion and conclusion

In this paper, we have constructed a gauge theory on a particular deformation of the Minkowski
space-time recently investigated in the literature [40, 41, 46], called the ρ-Minkowski space-
time. As shown in [48], it can be described by an associative algebra of functions Mρ whose
star-product is obtained from a combination of the Weyl quantization map and the defining
properties of the convolution algebra of the special Euclidean group. This latter is simply
the group related to the coordinate algebra for the ρ-Minkowski space-time. The algebra can
be equipped with a natural trace which is simply defined by the Lebesgue integral, a feature
which somewhat simplifies the implementation of the gauge invariance of the action.

The algebra for ρ-Minkowski Mρ inherits a structure of left module over a Hopf algebra
of twisted derivations which will form a Hopf subalgebra of a ρ-deformation of the Poincaré
algebra. These twisted derivations are used to define suitable twisted noncommutative
differential calculus underlying the gauge theory.

Then, the notion of twisted connection introduced in [37, 38] is adapted to the present
situation involving derivations with different twists. We assume that the right hermitian mod-
ule over Mρ entering the definition of the connection is one copy of Mρ. The corresponding
curvature is characterized and is found to satisfy a Bianchi identity. Recall that the presently
used notion of connection can be viewed as a noncommutative extension of the Koszul
description of a connection. The hermiticity condition obeyed by the (noncommutative)
gauge potential is found to be twisted together with the gauge transformations.

Unlike the case of κ-Minkowski considered in [37, 38] within a similar approach based
on Weyl map and group algebra (for the affine group), the twists appearing in the present
analysis are now ∗-automorphims of the module instead of being regular automorphisms.
As discussed at the end of section 3, this reflects the change in the structure of the group
related to the coordinate algebra.
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A four dimensional reasonable candidate for a noncommutative gauge theory on the
ρ-Minkowski space-time can be easily obtained starting from the “square of the curvature”,
as given by eq. (4.1) which has obviously a suitable commutative limit. The gauge invariance
can be easily verified from (3.26) combined with the cyclicity of the trace represented by the
Lebesgue integral. The kinetic operator of the classical action Sρ (4.1) coincides with the
kinetic operator of standard electrodynamics. This stems from the Hilbert product (2.16)
combined with the twisted differential calculus used in this analysis.

As far as quantum symmetries of the ρ-Minkowski space-time Mρ are concerned, it is
found that Sρ is invariant under the action of a Hopf algebra, Pρ, which corresponds to
a deformation of the Poincaré algebra which we have fully characterized in subsection 4.2.
Note that within the present ρ-deformation, the Lie algebra structure of the Poincaré algebra
remains undeformed. Besides, the Hopf subalgebra in Pρ of the deformed translations can
be verified to be dual of the ρ-Minkowski space-time.

Recently, other ρ-deformations of the Poincaré algebra have been considered from various
viewpoints [40, 41] and closely studied in [46] where in particular two star products have
been presented which however are different from the star product (2.1) used in this paper.
It would be interesting to investigate the possible relationship between the Hopf algebra Pρ

and their counterparts considered in [46]. Besides, further investigations on the quantum
behaviour of the gauge theory considered in this paper are definitely needed in order to see if
this gauge model suffers from the various pathologies, such as possible vacuum instability
or UV/IR mixing, affecting most of the noncommutaitve gauge theories constructed so far.
We will come back to these points in a forthcoming publication.
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