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1 Introduction

Symmetry is a guiding principle in the study of physical systems, especially quantum field
theories (QFTs) where there are often very few other analytic methods. By exploring the
constraints of symmetry, we have gained many insights into non-perturbative aspects of QFTs,
such as renormalization group (RG) flows, phase diagrams, critical phenomena, and dualities.

Traditionally, symmetries have been formulated as transformations of the fields, or
better yet as invertible operators on Hilbert space. Recently, it has been recognized that
symmetries in QFT are associated with topological operators. For instance, symmetries
which produce transformations of the fields define invertible topological defects by choosing
boundary conditions across a hypersurface to that the fields on one side are glued to the
transformed fields on the other side. This operator captures everything about the symmetry,
so we might define a symmetry as an invertible codimension-one topological operator.

There is an obvious generalization, which is to relax the conditions of codimension-one
and invertibility. By exploiting analogies with more familiar symmetries, general topological
operators can be used to derive new symmetry principles in QFT. For example, topological
surface operators in 3+1D that are generators of one-form symmetries have been used
to elucidate confining and Higgs phases of gauge theories [1–5]. More generally a p-form
symmetry is given by a codimension-(p + 1) invertible topological operator.

Relaxing invertibility is apparently more exotic, and the constraints from the associated
symmetries are just beginning to be explored [6–21].1 In this paper, which follows our previous
work [16], we show that these symmetries, which we dub “fusion category symmetries”, are

1We note there is a different notion of categorical symmetry presented in [22, 23] for 2 + 1D TQFTs in the
presence of gapless boundaries. In their context, the symmetries themselves are invertible but the anomalies
are not captured by a phase, thus non-invertible. One can think of their symmetries as Morita equivalence
classes of the ones we study.
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L1

L2

L4

L3

L5

=
∑

simple L6

KL1L4
L2L3

(L5,L6)

L1

L2

L4

L3

L6

Figure 1. The F-move, that relates correlation functions containing two topologically distinct networks
of TDLs. Here KL1L4

L2L3
(L5,L6) are the F-symbols (also known as crossing kernels or 6j symbols). Note

in general there are vertex labels indicating a degeneracy of topological junctions among three TDLs.
In most of our examples this degeneracy is 1 and we suppress these labels from the figures.

actually rather ubiquitous, by giving methods for constructing them and applying those
methods to c = 1 conformal field theories (CFTs) in 1+1D.

We use the term “fusion category” not in the precise mathematical sense, but just to
refer to the fact that topological defects form some kind of category (whose morphisms are
given by junctions of defects [24]) with fusion data. We expect a general mathematical
definition will eventually be found (see [25] for a recent proposal in higher dimensions), but
for our methods it will not be necessary.

For 1+1d CFTs, topological defect lines (TDLs) have been axiomatized in [6, 7, 14, 26].
TDLs come with a fusion algebra. Ordinary symmetries define invertible TDLs, but generally
the algebra will also include non-invertible TDLs, which are our primary interest here.

Furthermore we require the TDLs to obey the locality condition [14], meaning that
the TDLs can fuse and split locally, creating branched networks. We will focus on defects
which can be created and annihilated locally, allowing one to introduce and remove TDL
bubbles away from operator insertions without changing the correlation function. Topological
invariance implies that the networks can be deformed by isotopy away from operator insertions
without changing the value of any correlation function computed in the background of such a
network. Meanwhile, recombinations of the network transform these correlation functions
by certain universal factors. All such recombinations of generic (i.e. trivalent) networks are
sequences of one basic recombination, shown in figure 1, referred to here as the F-move.
The associated universal factors are known by many names, but we will refer to them as
F-symbols. The collection of fusion rules and F-symbols defines an algebraic structure known
as a fusion category [27], hence the name “fusion category symmetry”.

In recent works [14, 16, 19], the authors (including us) have explored constraints of the
fusion category symmetry on bulk RG flows in 1+1D.2 In particular, the ’t Hooft anomaly
which plays an important role in understanding constraints of invertible symmetries on QFT
dynamics has a natural generalization for fusion category symmetries. As explained in [16],
given a fusion category A realized by a CFT, the corresponding fusion category symmetry
is anomaly-free (meaning the theory admits an A-symmetric deformation to a gapped
nondegenerate phase) if and only if A admits a fiber functor (and such fiber functors describe

2See also [28] for constraints from topological defect lines on boundary RG flows in 1+1D.
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the A-symmetric gapped nondegenerate phases, i.e. A-SPTs, themselves). By definition,
RG flows protected by an anomalous fusion category symmetry A must either undergo
A-symmetry breaking or end at a nontrivial A-symmetric CFT. For instance, any fusion
category symmetry which involves a TDL of non-integer quantum dimension is anomalous [14].

To utilize its power in constraining RG flows, it is thus very important to identify the
fusion category symmetry of the (UV) CFT. Similar to trying to pinpoint ordinary global
symmetries, this problem can be quite difficult in a generic QFT, as one needs to specify
the action of the putative symmetries on general operators in the theory, some of which
may be quite subtle, such as 1+1D vortex operators and 2+1D monopole operators, even
when the theory has a Lagrangian description.

Sometimes TDLs can be identified directly using modular bootstrap techniques. For
example, in 1+1d rational CFTs (RCFTs), TDLs known as Verlinde lines [29] can be defined
using the modular data of the chiral algebra (see [6, 14] for explicit examples). However we
will see that even this approach misses a huge portion of TDLs in familiar CFTs.

In particular, we focus on c = 1 CFTs, which form a sort of edge case between rational
and general irrational CFTs.3 Familiar examples of c = 1 CFTs include the free compact
boson, its (reflection) Z2 orbifold, and the SU(2)1 WZW model. More general (unitary
and compact) c = 1 CFTs have been classified and form a moduli space consisting of two
continuous branches and three isolated points [30] (see figure 2). The c = 1 CFTs at generic
points of the moduli space are irrational, with no enhanced chiral algebra. Consequently it
becomes much harder to identify the fusion category symmetries compared to the RCFT
cases, and to date no broad study of fusion category symmetries in irrational theories have
been attempted. However as we will show in this paper, by utilizing a combination of the
generalized modular bootstrap method, 1+1D gauge theory arguments, and knowledge from
the special rational points on the c = 1 moduli space, we can capture a large zoo of fusion
categories that inhabit different parts of the c = 1 moduli space summarized in figure 2.

The rest of the paper is organized as follows. In section 2, we give a review of fusion
category symmetry in 1+1D. We describe constraints imposed on the existence of these
symmetries by the modular bootstrap equations. We provide general methods for constructing
them including RCFT techniques, gauging finite groups (orbifolding), and the bosonization
map from (para)fermions. We also prove a Noether theorem for continuous fusion category
symmetry.

In section 3 we apply these techniques to the circle branch of the c = 1 moduli space.
We find no non-invertible symmetries at generic radius R. However, for R =

√
2k, the theory

exhibits self-duality under Zk gauging corresponding to a pair of duality TDLs associated
with two distinct Zk Tambara-Yamagami fusion categories. For R ∈

√
2Q, these fusion

categories are enhanced to a continuum of TDLs parameterized by six parameters, coming
from the SO(4) symmetry enhancement at R =

√
2.

In section 4 we study the Z2 orbifold branch. We find self-dualities at arbitrary radius
under gauging Z4 and Z2 × Z2 subgroups of the D8 global symmetry. We identify the
corresponding fusion categories as certain Z4 Tambara-Yamagami categories in the former

3Here rational CFTs are CFTs that contain a finite number of conformal blocks with respect to a chiral
algebra that extends the Virasoro algebra. CFTs that do not obey this property are irrational.
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case and Rep(D8) and Rep(H8) in the latter case by relating to more specialized constructions
at the RCFT points described by the Z4 parafermions, the Ising2 CFT, and the four-state
Potts model. We show at generic radius these dualities are enhanced to a four-parameter
continuum of TDLs. At radius R ∈

√
2Q, this continuum is enhanced to six parameters,

similar to what happened on the circle branch. As an example, we describe an anomalous
triality of the Kosterlitz-Thouless (KT) theory which is associated with Z2 × Z2 gauging.

Finally, in section 5 we study the three isolated points of the moduli space, the exceptional
orbifolds of the SU(2)1 WZW model. Besides the Verlinde lines which we determine from
the modular data, each of these orbifolds host a six-parameter continuum of TDLs arising
from the parent SU(2)1 CFT.

Some technical details and complementary discussions to those presented in the main
text are given in the appendix. A visual table of contents with links to relevant sections
is shown in figure 2.

Acknowledgements We would like to thank Zohar Komargodski for collaborating on this
work in its early stages. RT would also like to acknowledge Tsuf Lichtman, Erez Berg, Ady
Stern, and Netanel Lindner for collaboration on a related project, as well as Dave Aasen and
Dominic Williamson for many useful discussions. The work of YW is supported in part by
the Center for Mathematical Sciences and Applications and the Center for the Fundamental
Laws of Nature at Harvard University. YW would like to thank Ofer Aharony and Xi Yin for
useful discussions. YW is also grateful to the Weizmann Institute of Science for hospitality
where the project was initiated during his visit.

2 Overview of fusion category symmetries

2.1 Axiomatic constraints and generalized modular bootstrap

Like ordinary symmetries, fusion category symmetries act on local operators, but this is
not the only data that defines them. For such an action to be associated with a topological
defect line (TDL) L and hence a fusion category, we would like to be able to define Euclidean
correlation functions on arbitrary Riemann surfaces with local operator and TDL insertions.
For this, it is necessary and sufficient to further specify the defect Hilbert space HL, the
OPE of defect operators, and the action of L on them [14].

This is essentially a geometric statement. The OPE of operators Oa in the defect Hilbert
spaces HLa is governed by the three-point function ⟨OaObOc⟩, which is related to the partition
function on a pair of pants by a conformal transformation as in figure 3.

The symmetry action of a TDL La on the defect Hilbert space HLb
is more subtle to

define. It is determined by a certain two-point function of defect operators, which maps
to a partition function on the cylinder with La wrapping around and Lb entering from the
bottom. However, unlike ordinary symmetries, non-invertible TDLs generally do not preserve
a given defect Hilbert space, for instance they often map ordinary local operators to defect
operators, so a different TDL Lc will exit at the top of this cylinder in general. Furthermore,
we must resolve the crossing of La, Lb, and Lc via a fourth TDL Ld in the fusion product
LcLa and LbLa. We should consider all possible input and output spaces Hb and Hc and
all possible ways of resolving these crossings as part of the symmetry action of La. We
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6 SU(2)A5

4 /U(1) , Z4 parafermions

2
√
2 SU(2)1/D4, four-state Potts

2
√
3 N = 1 super-Ising+

n
√
2 SU(2)1/D2n

T: SU(2)1/A4

O: SU(2)1/S4

I: SU(2)1/A5

Figure 2. The moduli space of c = 1 CFTs and fusion category symmetries.

La

Lc

Lb

Oa

Ob Oc

v

Figure 3. The three-point function ⟨OaObOc⟩ connected by TDLs La,b,c and equivalently the CFT
partition function on a pair of pants decorated by the TDLs. Here v is a index denoting the fusion
channel (topological junction), which we henceforth suppress from the notation and diagrams. The
arrows denote orientations of the TDLs. Strictly speaking, the correlation functions depend on a
co-orientation, i.e. a choice of normal direction for each TDL, but since we will only work on orientable
surfaces, we can choose an orientation to make them equivalent.
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Oc

Ob

Lc

Ld
La

Figure 4. The lasso diagram that depicts the two-point function of defect operators Ob and Oc

joined by a web X of TDLs La,b,c,d and equivalently the partition function of the CFT on a cylinder
decorated by the same TDL web X. They compute the matrix element of the TDL acting on the
defect Hilbert spaces (L̂a)X : Hb → Hc.

denote the corresponding operator as (L̂a)X : Hb → Hc where X specifies the relevant TDL
network on the cylinder as in figure 4.

Any Riemann surface Σ with a network of TDLs and operator insertions can be obtained
by gluing together these elementary pieces, known as a pants decomposition. Consistency
demands the observable to be independent of the choice of pants decompositions, leading to
nontrivial constraints on ⟨OaObOc⟩ and (L̂a)X . The different decompositions are related by the
mapping class group Γ(Σ). More explicitly, if Σ is a Riemann surface with conformal moduli τ
and n marked points, and X is a network of TDLs on Σ that ends on the marked points, then
the associated n-point function ⟨O1, . . . ,On⟩Σ,τ,X of appropriately-twisted operators sitting
at the marked points transforms in the following way under a “modular transformation”,
i.e. an element ϕ ∈ Γ(Σ) fixing the set of n marked points,

⟨O1, . . . ,On⟩Σ,τ,X = ⟨ϕ(O1), . . . , ϕ(On)⟩Σ,ϕ(τ),ϕ(X) . (2.1)

Here crucially the modular transformation acts on the TDL network and operator insertions,
hence this relation is also sometimes referred to as “modular covariance”.

As argued in [14], it is sufficient to verify invariance of CFT observables under two
“simple moves”, namely the F-move on a four-punctured sphere and the S-transform on a
one-punctured torus, which generate the mapping class group, and thus supply the complete
set of constraints on the defect data.

Let us outline one of the simplest nontrivial constraints among the infinite set, which arises
from a torus Σ = T 2 with no puncture. In this case the mapping class group Γ(Σ) = SL(2,Z)
is generated by the familiar S and T transformations. It turns out that the constraints
coming from (2.1) in this case are already quite stringent, and will allow us to constrain the
spectrum of TDLs in a given CFT by a sort of generalized modular bootstrap.

To be more specific, we define the (twisted) torus partition function with simple TDLs
L1,L2 inserted along the time and spatial cycles of T 2 by

ZL3
L1L2

(τ, τ̄) = trHL1
(L̂2)L3q

L0− c
24 q̄L̄0− c

24 , (2.2)

– 7 –
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L1

L2

L3 −→S

L2

L1

L3 =
∑
Lk

KL1L̄2
L2L̄1

(L3,Lk)

L2

L1

Lk

Figure 5. The first diagram on the left defines the twisted partition functions ZL3
L1L2

. The second
diagram is obtained from a modular S-transform. After a F-move, it is related to a combination of
ZLk

L2L̄1
for each simple Lk that appear in the fusion product L2L̄1.

where HL1 is the defect Hilbert space for L1 (the case with trivial L1 = 1 corresponds to the
usual CFT Hilbert space of point operators), L3 is a simple TDL that specifies the resolution
of the four-fold junctions between L1 and L2, and (L̂2)L3 implements the corresponding
action of the TDL L2 on HL1 (as defined by the leftmost diagram in figure 5). We adopt the
usual convention for the torus partition function with q ≡ e2πiτ and q̄ ≡ e−2πiτ̄ .

Since the TDLs commute with the left and right Virasoro algebras, the twisted partition
function ZL3

L1L2
(τ, τ̄) naturally decomposes into left and right moving Virasoro characters

of the Virasoro primaries Hprim
L1

⊂ HL1 ,

ZL3
L1L2

(τ, τ̄) =
∑

(h,h̄)∈Hprim
L1

(L̂2)h,h̄
L3
χhχ̄h̄ , (2.3)

where (L̂2)h,h̄
L3

specifies the action of L2 on the Virasoro primaries (hence on all states in HL1).
Likewise, ZLk

L2L̄1
(τ) defines the twisted partition function where the roles of the two

TDLs L1 and L2 are interchanged. Theses partition functions are related by the modular
S-transform as (see figure 5)

ZL3
L1L2

(−1/τ) =
∑
Lk

KL1L̄2
L2L̄1

(L3,Lk)ZLk

L2L̄1
(τ) , (2.4)

which translates into the constraint

∑
(h,h̄)∈Hprim

L1

(L̂2)h,h̄
L3
Shh′Sh̄h̄′ =


∑

Lk
KL1L̄2

L2L̄1
(L3,Lk)(̂̄L1)h′,h̄′

Lk
(h′, h̄′) ∈ Hprim

L2
,

0 otherwise .
(2.5)

The equation (2.5) applies to any triplet of TDLs L1,2,3 with a nontrivial three-fold topological
junction (i.e. L̄3 ∈ L1L2) and can be generalized by considering more arbitrary TDL networks
on T 2. We refer to them collectively as (generalized) modular bootstrap equations. The
usual modular bootstrap equation for 2d CFTs corresponds to the special case with trivial
TDLs L1 = L2 = 1.4

4The complete set of bootstrap equations for a 2d CFT enriched by TDLs includes the F-crossing relations
in figure 1 and the modular covariance of torus one-point function involving a general point operator potentially
connected to a nontrivial TDL network as in figure 5 (which generalizes (2.5)).

– 8 –



J
H
E
P
0
7
(
2
0
2
4
)
0
5
1

2.2 RCFTs and Verlinde lines

A priori, the large set of bootstrap equations like (2.5) makes it a highly-constrained and
difficult problem to identify non-trivial TDLs in a given CFT (especially when the set of
primaries in Hprim

L1
is infinite). An exception is when the CFT T is rational. Suppose T

contains (higher spin) symmetry currents that generate a chiral algebra V which extends the
Virasoro algebra, and that the CFT is defined by a diagonal modular invariant torus partition
function which contains a finite number of V blocks corresponding to primary operators ϕi.
Then there is a special class of TDLs that commute with the large symmetry V (both left
and right) known as the Verlinde lines Li, which are in one-to-one correspondence with the
V primaries ϕi and act diagonally on the V blocks,

L̂i|ϕk⟩ =
Sik

S0k
|ϕk⟩ , (2.6)

where Sik is the modular S-matrix [6]. The fusion rules of these TDLs follow from the
Verlinde formula

LiLj =
∑

k

Nk
ijLk with Nk

ij =
∑

ℓ

SiℓSjℓS
∗
kℓ

S0ℓ
. (2.7)

The defect Hilbert space HLk
contains non-diagonal primaries ϕi|j of V with degeneracy Nk

ij .
The fusion category symmetry generated by the Verlinde lines Li turns out to be braided,

and moreover a modular tensor category (MTC) equivalent to the representation category of
the chiral algebra C = Rep(V) [31, 32].5 In this case, the bootstrap axioms reviewed in the
last section boil down to a finite set of conditions on the defect structure constants which
are satisfied in the RCFT. This was shown based on explicit constructions using the relation
between the RCFT and the 2+1D topological field theory associated to the MTC C together
with a choice of certain algebra object in C [33–37].

For general TDLs in RCFTs and TDLs in general CFTs, we lose the luxury of rationality
and have to face an infinite set of bootstrap equations. However, if we can infer the existence
of certain TDLs from alternative methods such as direct constructions, the action of such
TDLs on local (defect) operators and the corresponding fusion category can often be uniquely
determined by analyzing a small subset of bootstrap equations of the form (2.5). In the
following subsections, we will analyze some ways of constructing TDLs directly in 2d CFTs.

2.3 Nonabelian orbifolds

One common instance of fusion category symmetry in 2d CFT is A = Rep(G), the repre-
sentation category of a finite group G. A CFT T has such a symmetry if and only if it is
a G-orbifold of another theory T ′ [12],

T ∼= T ′/G . (2.8)

We think about this orbifold by coupling T ′ to a flat G gauge field. These TDLs in T
correspond to G-Wilson lines WR labeled by G-representations R. Their fusion products

5We emphasize that the braiding structure is not necessary for general TDLs.
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follow from the usual tensor product of representations, and the corresponding F-symbols
are identified with the 6j symbols. Moreover the quantum dimensions of the Wilson lines
are simply the dimensions of the corresponding G-representations. In particular, only the
TDLs associated to one-dimensional representations are invertible, so if G is nonabelian,
A contains non-invertible TDLs. These symmetries are present whether or not we include
discrete torsion in (2.8). Furthermore the action of the TDLs in Rep(G) on local operators
in the theory T is completely fixed. For an operator ϕ[g] in the twisted sector labelled by
the conjugacy class [g], the Wilson line acts as

WR|ϕ[g]⟩ = χR(g)|ϕ[g]⟩ , (2.9)

where χR(g) is the usual group character. This action obeys the expected fusion rules for
the Wilson lines,

WiWj =
∑

k

Nk
ijWk with Nk

ij = 1
|G|

∑
g∈G

χi(g)χj(g)χk(g)∗ , (2.10)

as can be checked using the orthogonality property of the characters

1
|G|

∑
k

χk(g)χk(h)∗ =


1

|[g]| if h ∈ [g] ,
0 otherwise .

(2.11)

This construction works in higher dimensions as well, again the Wilson lines give rise to
TDLs, which can probably be described as a kind of higher fusion category symmetry. It
also works for higher form symmetries G and higher group generalizations. While we will
only be interested in gauging finite symmetries, with care one can sometimes find topological
Wilson lines in gauge theories with continuous gauge group [14, 19, 38].

2.4 Self-dual orbifolds

Another large class of fusion category symmetries that appears often is described by the
Tambara-Yamagami (TY) fusion category, denoted by TY(Gab, χ, ϵ), which is associated to
an abelian finite group Gab, a symmetric non-degenerate bilinear map χ : Gab×Gab → R/2πZ
called the bicharacter, and a sign ϵ = ±1 known as the Frobenius-Schur (FS) indicator [39].
The TY category contains Gab as the group of invertible lines Lg and includes one extra
simple TDL, namely the duality defect N with quantum dimension

√
|Gab|, which acts as

a Kramers-Wannier-like duality. The fusion rules are

LgLg′ = Lgg′ , NLg = LgN = N , N 2 =
∑

g∈Gab

Lg . (2.12)

The F-symbols compatible with the above fusion rules and the pentagon equations are given
in [39] and the solutions are classified6 by χ and ϵ. One such F-symbol is depicted below, where

6We can redefine the correlation functions by local phase factors associated with the fusion vertices. We
only classify F-symbols up to these redefinitions and we refer to this freedom as the F-gauge choice.
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in solid blue we draw the duality defect, and in dashed red two group lines which end on it,

= eiχ(g,h) . (2.13)

Any CFT T that hosts a fusion category symmetry described by TY(Gab, χ, ϵ) has the
curious feature that it is self-dual under Gab-gauging,

T ∼= T /Gab . (2.14)

This is also a special case of (2.8), and we have Wilson line TDLs from Rep(Gab) =
hom(Gab,U(1)). The self-duality maps Lg with g ∈ Gab to the Wilson line labelled by the
abelian character eiχ(g,−), and thus defines an isomorphism between the symmetry Gab in
T and Rep(Gab) in the orbifold T /Gab. Under this isomorphism, the bicharacter eiχ(g,h)

describes the g-charge of the h-twisted sector operators, as can be seen from the F-move above.
To prove the equivalence (2.14), in any correlation function we nucleate a small loop

of the duality defect and bring it around the system, using the fusion rule and F-moves
when it circles around and meets itself [7, 11, 14].

For instance, one consequence of (2.14) is an identity of twisted partition functions

Z(Σ, B) = 1√
|H1(Σ, Gab)|

∑
A∈H1(Σ,Gab)

Z(Σ, A)ei
∫

χ(A,B)+α(A)+β(B) , (2.15)

where A,B ∈ H1(Σ, Gab) are flat Gab gauge fields on the spacetime manifold Σ, (by abuse
of notation) χ(A,B) is a pairing of such gauge fields derived from the bicharacter and cup
product [16], and α(A), β(B) captures the possible discrete torsion in H2(Gab,U(1)). If we
apply the above technique to the torus partition function, we find

Z(T 2) = 1
|Gab|3/2

∑
g,h∈Gab g

h

. (2.16)

The duality loop (in solid blue) may then be pulled off of the group symmetry lines (in
dashed red) and removed, introducing another factor of |Gab|1/2 and a possible phase factor
α(g, h) (coming from the F-symbols), thus obtaining an equality with the orbifold partition
function with discrete torsion α.
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= χR(g) ·

Figure 6. A boundary between the region R (shaded gray), where G is gauged (left) and a region
where G remains a global symmetry. In R, we sum over all closed G loops (dotted, green) which
remain in the interior of R, and the dual global symmetry acts via Wilson lines (orange), which simply
count the number of crossings with the green lines. Such Wilson lines can end at the boundary in
a gauge invariant way, so long as we place their endpoint (orange dot) just over the edge, so that
the sum over closed loops in the interior is well-defined. Global G lines (solid, green) can enter R
from the ungauged side in a topological manner, joining the gauge lines (dotted, green). There is a
non-trivial F symbol when Wilson lines and global G lines meet from either side of the defect, which
can be seen from the crossing of the solid green line and orange dot above, which changes the number
of crossings between the Wilson line and the green G lines, resulting in a phase. If the Wilson line is
labelled by the representation R and the G line by g ∈ G, this phase is the character χR(g).

Conversely, if we have a theory T which is self-dual under gauging a finite abelian
symmetry Gab, it is guaranteed to host a duality defect N which along with Gab generates
a fusion category symmetry. When α = −β (in which case they can be absorbed into the
definition of Z), we can argue that this fusion category is a TY category. This duality defect
may be defined as a topological interface between T and T /G by coupling to a flat G gauge
field which is constrained to live in a region R of the spacetime, with the defect along ∂R.
To define this coupling properly, we have to choose appropriate boundary conditions for the
gauge field, so that the gauge lines cannot end on ∂R, or equivalently that Wilson lines
can end there, and modify the Hamiltonian so that it is gauge invariant. See appendix D
for lattice examples of this construction.

These Wilson lines generate the Gab global symmetry insideR after gauging. In particular,
Lg =Wχ(g,−), where Wq represents a Wilson line of charge q ∈ hom(Gab,U(1)). As we have
mentioned above, these Wilson lines are allowed to end on ∂R. Gab lines from outside R can
also “end” on ∂R — they pass through ∂R and join the gauge lines inside R. This allows us
to derive the F-symbol above (see figure 6). We can also easily derive NLg = LgN = N .

Another perspective which is useful is to interpret the above construction in terms of
boundary conditions of the folded theory T × T . If |Lg⟩ is the boundary state of the folded
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theory corresponding to the group symmetry TDL Lg, the duality defect comes from the state

|N ⟩ = 1√
|Gab|

∑
g∈Gab

|Lg⟩ . (2.17)

This state is not a Cardy state for T × T , but it enjoys a Gab symmetry which acts only on
one side of the defect (that is, on one layer of the folded theory). Gauging this one-sided Gab
symmetry results in an elementary Cardy boundary state for T ×T /Gab, known as the regular
brane in the orbifold theory (see [40] for a review). It has boundary entropy g =

√
|Gab|,

which is identified with the quantum dimension of the topological interface between T and
T /Gab after unfolding. Since the theory is self-dual under Gab gauging, this defines a defect
in the original theory T . It is easy to see that the cylinder amplitude ⟨N |e−βH |N ⟩ in the
folded theory T × T is the torus partition function of T where we sum over g-twisted sectors,
capturing the fusion rule N 2 =

∑
g Lg which is an immediate consequence of (2.17).

The most familiar CFT with TY symmetry is the c = 1
2 Ising CFT, with Gab = Z2 acting

as the spin-flip symmetry. The equivalence between Ising and its Z2 orbifold is known as
Kramers-Wannier duality. When expressed as a defect, by studying the modular bootstrap,
it turns out to have ϵ = 1 [16], and meanwhile there is only one choice of bicharacter. The
defect can be constructed using the methods above either on the lattice or in field theory,
and it agrees with known constructions [11, 41]. We will explore an example of a self-duality
(actually a triality) which does not have TY fusion rules in section 4.8.

2.5 Shadows of invertible defects and Noether’s theorem

For general orbifolds T = T ′/G, we can ask what is the fate of topological defects in T ′ after
orbifolding? A TDL L of T ′ which is G-normalizing, meaning

Lg = g′L (2.18)

for g, g′ ∈ G, will define a (possibly reducible) TDL of T . For invertible TDLs, this is
the familiar fact that global invertible symmetries of T ′ in the normalizer of G give rise to
invertible symmetries of the orbifold T . Note that in the presence of nontrivial F-symbols
between the TDL L and G-symmetry TDLs, the fusion rule involving the resulting TDL in
T may change. For invertible L, this corresponds to a nontrivial extension of the symmetries
due to a mixed ’t Hooft anomaly with G [42].

It turns out that general non-G-normalizing TDLs of T ′ also define TDLs of T , after
summing over their G-orbit. This sum can turn invertible TDLs into non-invertible ones.
More precisely, if L is a TDL of T ′ with quantum dimension ⟨L⟩,

LG ≡
∑

g

gLg−1 , (2.19)

is a G-invariant TDL, and so defines a TDL of the gauge theory T of quantum dimension
|G|⟨L⟩.7

7Note that LG can be reducible. In particular if L is G-normalizing as in (2.18), LG is equivalent to |G|L
in the orbifold theory.
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This construction reveals a huge amount of TDLs hidden in familiar CFTs. For example,
the compact boson at a generic radius has two continuous U(1) symmetries which anti-
commute with the ZC

2 charge conjugation symmetry generated by C. When we gauge C to
go to the orbifold branch, there are no longer continuous ordinary symmetries, but there is an
algebra of non-invertible TDLs of quantum dimension 2 labelled by continuous parameters!
Such lines were recently discussed in [20] and we return to them in section 4.7.

Briefly, these defects can be defined as follows. We start with the compact boson before
orbifolding. Let X1(x, t), X2(x, t) be the compact scalar fields of radius R to the left and
right of the defect at x = 0. For the variational problem to be well defined, we require

(δX1∂xX1 − δX2∂xX2)|x=0 = 0 , (2.20)

A set of consistent conformal gluing conditions are

(X1 −X2)|x=0 = αR, (∂xX1 − ∂xX2)|x=0 = 0 . (2.21)

with α ∈ [0, 2π]. Furthermore, one can include a theta angle on the defect

Sdefect =
β

R

∫
x=0

dX1 , (2.22)

with β ∈ [0, 2π]. They define a two-parameter (α, β) family of topological defects in the
compact boson theory which correspond to the U(1) × U(1) continuous symmetries. The
C-invariant direct sum of the these defects given by (α, β)⊕ (−α,−β) survive the orbifold
identification X1,2 ∼ −X1,2 and give rise to the two-parameter family of TDLs in the orbifold
theory which are now non-invertible.

TDLs such as these with continuous parameters satisfy a version of Noether’s theorem.
Indeed, the continuous parameter implies that there is a marginal operator O defined on the
defect. If we fold the defect L over the location of this operator, we see O is defined at the end
of (a fusion product in) LL̄.8 Because O is marginal, its conformal dimension is fixed to be 1.
Unitarity and topological invariance of the defect marginally deformed by O further requires
the spin of O to be 1. This captures the familiar Noether’s theorem when L is invertible, in
which case LL̄ is trivial, so O is a local operator which we recognize as the conserved current.

In the orbifold construction above, O comes from the current in the theory T ′ before
gauging, and lives at the end of a Wilson line in T = T ′/G (in our example above the two
currents are dX1 and its dual ⋆dX1 ). Conversely, if O lives at the end of an anomaly-free
line in T , that is, a TDL in an anomaly-free fusion subcategory of the full symmetry, then
gauging this subcategory produces a theory T ′ in which O is a local operator. In fact if
this line is invertible, it is guaranteed to be anomaly-free by the spin selection rule, which
would otherwise forbid a spin 1 operator [14, 43].

This construction works in all dimensions, on topological defects of any codimension, as
does the Noether theorem above, producing a “defect current” O of dimension D − k, where

8For a general line defect L that is not necessarily topological, by state-operator correspondence via a
conformal mapping, the operator O on defect L maps to a state in the defect Hilbert space HL,L̄ on S1 that
intersects twice with the ingoing and outgoing L at antipodal points. If L is a TDL, HL,L̄ is simply given by
a direct sum of HLi for each TDL Li in the fusion product LL̄.
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LLgh1g
-1

L

Figure 7. To define the action of LG on all local operators of the G-orbifold, we need to consider the
action of

∑
g gLg−1 on operators in the G-twisted sector. This is equivalent to computing the cylinder

partition function shown here, regarded as a map from the h1-twisted to the h2-twisted sectors, for
h1, h2 ∈ G. The diagram is only nontrivial if the topological junctions exist.

D is the spacetime dimension and k is the codimension of the defect. For invertible defects,
these are the conserved currents of continuous higher form symmetries [3]. In general, O lives
at the end of a line operator obtained by wrapping the defect on SD−k−1. An example of a
non-invertible 1-form symmetry in 3+1D was recently constructed by this method in [44]. In
particular, in O(2) gauge theory in 3+1D the field strength is a conserved 2-form current
which is not local but lives at the end of a Wilson line for the sign representation of O(2).

Above, (2.19) defines the action of LG on local operators of the orbifold T = T ′/G in the
untwisted sector (i.e. from local operators of T ′). However, general local operators of T come
from the G-twisted sectors of T ′ will be mapped to one another under LG. To determine the
action of LG in these cases, we must study TDL networks as in figure 7 in the theory T ′.

2.6 Duality defects from (para)fermions

When the bosonic CFT is related by bosonization/fermionization duality to a fermionic CFT,
anomalous discrete symmetries acting on the fermions are known to generate dualities of the
bosonic theory after summing over spin structures (or GSO projection) [45–47]. The most
familiar case arises in the Ising CFT as the bosonization of one Majorana fermion, where
the chiral fermionic number symmetry (−1)FL corresponds to the Kramers-Wannier duality
(which modifies the GSO projection by an SPT given by the Kitaev chain, also known as
the Arf invariant). In this section, we will review the connection between symmetries in a
fermionic theory and duality defects in its bosonized partner, and discuss the generalization
to parafermionic theories.

In general, given a fermionic CFT TF with a non-anomalous fermion parity symmetry
(−1)F , one can obtain a bosonic CFT TB by summing over the spin structures ρ of the
underlying genus g Riemann surface Σ, while preserving modular invariance on Σ. The
corresponding partition functions on Σ are related by

ZB(a) =
1
2g

∑
ρ

ZF (ρ)(−1)Arf(ρ+a) , (2.23)
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which is known as the bosonization map. Here a denotes the background gauge field for
the dual ZB

2 symmetry of the bosonic theory TB. Conversely, the original fermionic CFT
can be recovered from the bosonic theory via the fermionization procedure by gauging the
dual ZB

2 symmetry,

ZF (ρ) =
1
2g

∑
a

ZB(a)(−1)Arf(ρ+a) . (2.24)

The bosonization map (and its inverse fermionization map) defined with a given fermion
parity is not unique. The freedom comes from stacking the fermionic theory with a 1 + 1D
spin SPT given by (−1)Arf(ρ),

ZF ′(ρ) = ZF (ρ)(−1)Arf(ρ) , (2.25)

which modifies (2.23) and produces another bosonic theory TB′ with partition function

ZB′(a) = 1
2g

∑
ρ

ZF (ρ)(−1)Arf(ρ+a)+Arf(ρ) . (2.26)

Using the following property of the Arf invariant,

1
2g

∑
a

(−1)Arf(ρ+a)+Arf(ρ)+a∪b) = (−1)Arf(ρ+b) , (2.27)

it is clear that TB′ is related to TB by gauging the ZB
2 symmetry. The relations between the

bosonic and fermionic CFTs discussed above are summarized in the diagram below,

TB TF

TB′ = TB/ZB
2 TF ′ = TF ⊗ (−1)Arf(ρ)

gauging

bosonize
fermionize stacking

bosonize
fermionize

(2.28)

If in addition the fermionic theory TF is invariant under the stacking operation with the
spin SPT (−1)Arf(ρ),

ZF (ρ) = ZF ′(ρ) , (2.29)

the bosonic theory becomes self-dual under ZB
2 gauging

ZB(a) = ZB′(a) . (2.30)

As explained in section 2.4, this implies a Z2 duality TDL N in TB that gives rise to a
Z2 TY categorical symmetry. More generally, symmetries in the fermionic theory TF will
give rise to TDLs in the bosonic CFT TB upon bosonization. The nature of the resulting
TDLs depends crucially on the anomalies of the corresponding fermionic symmetries. Here
an anomalous chiral parity in TF explains the invariance (2.29) and is responsible for the
corresponding duality TDL in TB [46, 48].
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n mod8 n Majorana Spin(n)1

0

(−1)FL

anomaly-free Z2

±1 Duality N in TY(Z2,+)
±2 Anomalous Z4

±3 Duality N in TY(Z2,−)
4 Anomalous Z2

Table 1. The relation between the anomalous (−1)FL parity symmetry of the Majorana fermions
and TDLs in the Spin(n)1 WZW model from bosonization. Here the anomalies for n = ±2, 4 mod 8
have order two.

Fermionic symmetry TDLs in the U(1)4 CFT (Dirac point)
(−1)F 1

L , (−1)F 2
L Duality N in TY(Z2,+)

(−1)F 1
L+F 2

L Anomalous Z4

Table 2. TDLs in the U(1)4 CFT from chiral parities in the fermionic theory.

Fermionic symmetry TDLs in Ising1 ⊗ Ising2

(−1)F 1
L Duality N in TY(Z2,+)Ising1

(−1)F 2
L Duality N in TY(Z2,+)Ising2

(−1)F 1
L+F 2

L Duality N in Rep(H8)

Table 3. TDLs in the Ising2 CFT from chiral parities in the fermionic theory.

For example, let us consider TF described by n Majorana fermions with total fermion
parity (−1)F . The theory has a diagonal chiral parity symmetry (−1)FL with anomaly
n ∈ Z8 [49–53]. The bosonization map based on (−1)F gives the Spin(n)1 WZW model, and
the TDL corresponding to (−1)FL is fixed by n [43, 47, 54], which we summarize in table 1.

The cases n = 1 and n = 2 are relevant for understanding TDLs in the c = 1 CFT from
bosonizing two Majorana fermions. There is a Z2×Z2 anomaly-free fermion parity symmetry
generated by (−1)F 1 and (−1)F 2 that act on the two fermions separately. Bosonizing with
respect to the diagonal symmetry (−1)F = (−1)F 1+F 2 , one obtains the c = 1 CFT on
the circle branch at the Dirac point R = 2 (also known as the U(1)4 CFT). The TDLs
corresponding to the chiral fermion parities follow from table 1 and are listed in table 2.

Note that N does not commute with the U(1)4 chiral algebra of this model, and is
not among the Verlinde lines.

Alternatively, one can bosonize the two Majorana fermions by gauging both (−1)F 1 and
(−1)F 2 , leading to the Ising2 CFT on the orbifold branch at R = 2. The TDLs that are
induced by the anomalous fermionic symmetries are summarized in table 3.

There is a natural generalization of the fermionic CFTs where operators obey fractional
statistics determined by a phase ω = e

2πi
k , known as Zk parafermionic CFTs TP F . The case

k = 2 corresponds to the usual fermionic CFTs. The Zk parafermionic CFTs have a Zk
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symmetry that generalizes the (−1)F symmetry in the fermionic case. The spin structures
for a fermionic CFT also have Zk counterparts, namely Zk paraspin structures. These are
lifts of the SO(2) frame bundle by the k-fold connected cover SO(2)→ SO(2) (note this can
only exist on surfaces whose Euler characteristic is divisible by k). There is a bosonization
procedure for the parafermionic theories TP F that produce bosonic CFTs TB by summing over
the paraspin structures (at least on T 2). The resulting bosonic theories are invariant under
a dual ZB

k symmetry. Familiar examples include the SU(2)k/U(1) coset CFTs. While the
resulting bosonic CFTs are well-defined on an arbitrary Riemann surface Σ, the parafermionic
theories have not been formulated for genus g > 1 due to an incomplete understanding of
the paraspin structure [55–57]. Below we focus on Σ = T 2 and discuss relations between
symmetries in the parafermionic theory TP F and its bosonic partner TB.

As in the fermionic case, the bosonization and parafermionization at the level of torus
partition functions are given by [57]9

ZB(a1, a2) =
1
k

∑
s1,s2∈Zk

ZP F (s1, s2)ω̄(s1+a1)(s2+a2) ,

ZP F (s1, s2) =
1
k

∑
a1,a2∈Zk

ZB(a1, a2)ω(s1+a1)(s2+a2) ,
(2.31)

where a1, a2 ∈ Zk are holonomies around the two independent cycles of T 2 which specify
the Zk background gauge field and s1, s2 ∈ Zk label the Zk paraspin structure ρk. If we
compare with (2.23), we see ωs1s2 reduces to the Arf invariant when k = 2, and we can
consider it a paraspin generalization “Arfk” on T 2.

Performing an ZB
k orbifold of the bosonic CFT TB , we obtain the partition function for T ′

B ,

ZB′(a1, a2) =
1
k

∑
b1,b2∈Zk

ZB(b1, b2)ωp(b1a2−b2a1) , (2.32)

where 1 ≤ p ≤ k is coprime with k and labels the bicharacter in the discrete gauging
(see (2.15)) corresponding to eiχ(a,b) = ωpab. Using (2.31), one have

ZB′(a1, a2) =
1
k

∑
s1,s2∈Zk

ZP F ′(s1, s2)ω̄(s1+a1)(s2+a2) , (2.33)

with the corresponding parafermion partition functions related by

ZP F ′(s1, s2) =
1
k

∑
ti,ai,bi∈Zk

ZP F (t1, t2)ω(s1+a1)(s2+a2)−(t1+b1)(t2+b2)+p(b1a2−b2a1) . (2.34)

We focus on the special cases with p = ±1 which will be relevant for the later discussion. In
these cases, the above relation simplifies dramatically. For p = 1, we have

ZP F ′(s1, s2) = ZP F c(s1, s2)ωs1s2 = ZP F (s1,−s2)ωs1s2 (2.35)

9This is the continuum version of the Fradkin-Kadanoff transformation between the 1+1D Zk clock model
and the discrete Zk parafermion [58]. For k = 2, it becomes the familiar Jordan-Wigner transformation
between the 1+1D Ising model and the Majorana fermion.
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phase: ω−mn ωmn −1

ψ̄n ψ̄m ψn ψ̄m

Figure 8. The mutual statistics of Zk parafermions.

which involves a conjugation on the Zk charge together with stacking by the Arfk invariant,
as summarized in

TB TP F

TB′ = TB/ZB
k TP F ′ = TP F c ⊗ ωArfk(ρk)

gauging

bosonize
parafermionize

stacking
+

conjugation

bosonize
parafermionize

(2.36)

which generalizes (2.28). Similarly for p = −1, the relation between TP F and TP F ′ (2.34)
becomes

ZP F ′(s1, s2) = ZP F (−s1, s2)ωs1s2 . (2.37)

From (2.36), if the parafermionic theory TP F is invariant under the combined stacking and
conjugation, we can conclude that the ZB

k invariant bosonic theory TB is self-dual under ZB
k

gauging with p = 1 in (2.32). For more general p, this requires

ZP F ′(s1, s2) = ZP F (s1, s2) . (2.38)

By the general argument in section 2.4, this property of TB implies a duality TDL that
along with the ZB

k symmetry TDLs generates a Zk TY symmetry. In analogy with the
fermionic case, we naturally expect the duality to be associated to an anomalous symmetry
in the parafermion theory.

To be concrete, let us consider the Zk parafermion theory of [59] and its bosonization
which gives the SU(2)k/U(1) coset CFT with the diagonal modular invariant. The basic
objects in the parafermion theory are the chiral parafermion fields ψn(z) with n = 1, 2, . . . k−1
and their anti-chiral partner ψ̄n(z̄), with Zk charge n. They have fractional mutual statistics as
in figure 8 and generalize the familiar Majorana fermion at k = 2. As we explain in appendix B,
in addition to the Zk symmetry, the theory has a non-chiral charge conjugations symmetry ZC

2

C : ψn(z)→ ψk−n(z) , ψ̄n(z̄)→ ψ̄k−n(z̄) , (2.39)

and a chiral parity symmetry ZS
2

S : ψn(z)→ (−1)nψn(z) , ψ̄n(z̄)→ ψ̄k−n(z̄) . (2.40)

The chiral parities S and CS lead to the equality (2.35) for p = 1 and (2.37) for p = −1
respectively and explain the two self-dualities of the SU(2)k/U(1) coset under ZB

k gauging.
In particular the corresponding duality defects generate a pair of Zk TY symmetries in the
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Parafermionic symmetry TDLs in SU(2)k/U(1) diagonal coset CFT
S Duality N in TY(Zk, ω,+)
CS Duality N in TY(Zk, ω̄,+)

Table 4. TDLs in the SU(2)k/U(1) CFT from symmetries in the parafermionic theory.

coset CFT as summarized in table 4 (see appendix B for details). For k = 4, the coset
CFT describes the R =

√
6 point on the c = 1 orbifold branch. See section 4.4 for further

discussions on the corresponding duality TDLs.
Finally we emphasize that in general fermionic and parafermionic theories, the chiral

parity symmetries discussed above are often absent (e.g. broken by interactions). In these
cases, the general relations between bosonic and (para)fermionic theories in (2.28) and (2.36)
still apply, but the bosonic theory TB and its orbifold TB′ are now distinct. On the c = 1
moduli space, this happens for example on the circle branch at R =

√
3 , 2
√
3 where the

theories are denoted by N = 2 super-Ising± in figure 2, and also on the orbifold branch
at the same radii described by N = 1 super-Ising±.10 The underlying fermionic theories
correspond to N = 2 and N = 1 super-Virasoro minimal models at c = 1 respectively. The
± subscripts are interchanged by stacking with the (−1)Arf(ρ) SPT which leads to different
fermionic and bosonic theories in these cases.

3 Fusion categories of the compact free boson

In this section we explore the fusion category symmetries of the c = 1 compact boson along
the circle branch. At radius R =

√
2k, these theories are rational with an enhanced chiral

algebra U(1)2k. We discuss the associated Verlinde lines in section 3.2, which for this chiral
algebra are all invertible. Also at this radius, the theory is self-dual under gauging a Zk

symmetry, and there is an associated Tambara-Yamagami symmetry (which is beyond the
Verlinde lines), which we discuss in section 3.3. Finally, at the radii k

√
2, which are obtained

by gauging a Zk symmetry of the SU(2)1 theory, the enhanced continuous symmetry of
SU(2)1 gives rise to a continuum of TDLs we discuss in section 3.5.

3.1 Operator content of the compact boson

There are several ways of describing the compact free boson in 1+1D, which we call the
compact boson for short. The most direct description is in terms of a 2πR-periodic field X,
where R is the radius of the target space circle. We define the 2π-periodic field θ = X/R

and its 2π-periodic conjugate momentum ϕ. They may be expressed in terms of the left
and right moving fields XL,R as11

θ = R−1(XL +XR) , ϕ = R(XL −XR)/2 . (3.1)
10Here the orbifold by ZC

2 of the N = 2 super-Ising± CFT projects out half of the supercurrents, leaving
behind an N = 1 super-Virasoro symmetry.

11We note there is an important subtlety which is that while it is possible to define θ and ϕ as 2π-periodic,
there is no way to consistently assign periodicities to XL and XR, because the above change of variables is
not invertible over Z for any R. This may be accounted for by introducing certain cocycles into the definition
of the vertex operators (see section 5 of [60]). One can avoid this subtlety by working with θ and ϕ but to
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The compact boson at a generic radius R has symmetry

Gbos = (U(1)θ ×U(1)ϕ)⋊ ZC
2 , (3.2)

where U(1)θ and U(1)ϕ act as shift symmetries of θ and ϕ, respectively, and “charge con-
jugation” C acts as

C :

θ 7→ −θ ,ϕ 7→ −ϕ .
(3.3)

The primary local operators in this theory consist of vertex operators

Vn,w =: ei( n
R

+ wR
2 )XLei( n

R
−wR

2 )XR :=: einθeiwϕ : n,w ∈ Z ,

(h, h̄) =
(
1
2

(
n

R
+ wR

2

)2
,
1
2

(
n

R
− wR

2

)2
)
,

(3.4)

where (h, h̄) label the conformal weights, as well as normal ordered Schur (symmetric)
polynomials in the U(1) currents j1 = ∂XL and j̄1 = ∂̄XR and their derivatives, which
we denote by

jn2 j̄m2 (h, h̄) = (n2,m2) . (3.5)

There is a duality known as T-duality which takes

R 7→ 2/R ,
XR 7→ −XR ,

θ ↔ ϕ ,

(3.6)

and will play a crucial role in our story. As written, this duality commutes with charge
conjugation C and exchanges U(1)θ and U(1)ϕ.

There are several important subtleties of this duality, emphasized in [60], which can be
seen at the self-dual radius R =

√
2. At this radius, there is an enhanced SO(4) = (SU(2)L ×

SU(2)R)/Z2 symmetry in which we expect to find T-duality. To define it unambiguously
we need to specify the SO(4) matrix by which it acts. The following specifies the vector
representation of the SO(4),

(cos θ, sin θ, cosϕ, sinϕ) , (3.7)

and in this basis we choose the swapping matrix

T =

 0 I2×2

I2×2 0

 , (3.8)

which agrees with the usual prescription (3.6). This differs from the choice in [60], which is
order 4 and anomalous. The above is anomaly-free, and generalize to self-dualities at the
other points on the circle branch, as we will see.

make contact with the CFT literature we include transformation rules for XL and XR as well, with the caveat
that these rules only unambiguously define the symmetry actions on the oscillator part of the spectrum.

– 21 –



J
H
E
P
0
7
(
2
0
2
4
)
0
5
1

Primary einθ (n = −k + 1,−k + 2, . . . , k)

h n2

4k

Characters Kk
n(τ) ≡ 1

η(τ)
∑

r∈Z q
k(r+ n

2k )
2

Table 5. The 2k chiral primaries in U(1)2k.

3.2 RCFTs on the circle branch

Special points on the c = 1 moduli space (see figure 2) are described by rational CFTs, which
have a finite number of conformal blocks with respect to an enhanced chiral algebra. These
arise when the radius satisfies R2 ∈ Q. For these theories we can study the Verlinde lines,
which turn out to be invertible, and generate a finite subgroup of the ordinary global symmetry.

We start with the case R =
√
2k for k ∈ Z. The enhanced chiral algebra is generated by

T , jL , e
±i

√
2kXL (3.9)

of spin 2, 1, k respectively, and likewise for the right-movers. We will refer to this as the
U(1)2k chiral algebra (the associated 3d Chern-Simons theory is U(1)2k). There are 2k chiral
primaries as listed in table 5.

The U(1)2k characters satisfy the following identities

Kk
m = Kk

−m = Kk
2k+m . (3.10)

Under the modular S transformation, we have

Kk
n(−1/τ) =

1√
2k

∑
m∈Z2k

e−
πimn

k Kk
m(τ) , (3.11)

while under the T transformation, they become

Kk
n(τ + 1) = e

πin2
2k e−

πi
12Kk

n(τ) . (3.12)

The partition function of the theory is given by the diagonal modular invariant

Zbos(R =
√
2k) =

k∑
m=−k+1

|Kk
m|2 (3.13)

and we will refer to this theory as the U(1)2k CFT.
The Verlinde lines in this theory are labelled by the primaries einθ, n ∈ Z2k. Let us

denote the corresponding line by Ln. As for any Verlinde line, the action of Ln on local
operators is determined by the modular S matrix, such that an operator in the |Kk

m|2 block
gets a phase e−iπmn/k. We recognize this action as the Z2k shift symmetry θ 7→ θ − πm/k.

These lines are all invertible. Indeed, the Chern-Simons theory U(1)2k which governs the
properties of these lines is abelian. In the following, we will find there are also non-invertible
lines at these and other special radii.
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The more general RCFTs on the circle branch are associated to non-diagonal modular
invariants of the chiral algebra for U(1)2k. The RCFT at R =

√
2p
q with positive coprime

integers p, q has torus partition function

Zbos

(
R =

√
2p
q

)
=

2q−1∑
r=0

2p−1∑
s=0

Kpq
pr+qs(τ)K

pq
pr−qs(τ̄) , (3.14)

which can be easily derived using the fact that this CFT is the Zq (shift symmetry) orbifold
of the U(1)2pq CFT. A Z2p subset of the Z2pq Verlinde lines in the U(1)2pq CFT survives the
orbifold and becomes a part of the global symmetry in the non-diagonal RCFT at R =

√
2p
q .12

3.3 Zk Tambara-Yamagami symmetry

The Verlinde lines discussed above on the circle branch are all invertible. There are also
non-invertible TDLs at these radii, indicated by the self-duality under Zk gauging, which
as we have discussed in section 2.4, gives rise to a Zk Tambara-Yamagami (TY) symmetry.
Recall the Zk TY category is characterized by a nondegenerate bicharacter Zk × Zk → U(1),
which may be written as

eiχ(a,b) = ωab , (3.15)

with ω a primitive k-th root of unity, as well as the Frobenius-Schur indicator ϵ = ±1 of the
duality defect N [39]. In this subsection, we will constrain this data and identify the TY
symmetry action from knowledge of the operator spectrum on the c = 1 circle branch. We find
an continuum of such symmetry actions parametrized by a sign ± and a number α ∈ [0, 1),

N̂α,± :


Vn,w →

√
keπinw+2πiα(n∓kw)V±wk,±n

k
for n ∈ kZ ,

(∂XL, ∂̄XR)→ (±
√
k∂XL,∓

√
k∂̄XR) ,

other primaries→ non− local operators ,
(3.16)

where Vn,w are the vertex operators defined in (3.4). The corresponding fusion category is

Nα,± → TY(Zk, χ±, 1) , (3.17)

where χ±(a, b) ≡ ±2πab
k , as we will derive in the following sections. Note we only write the

explicit formula for the action on local operators which are sent to other local operators (the
rest can be determined from the F-symbols of the underlying fusion category).

3.3.1 Self-duality under gauging

Let us consider the (anomaly-free) cyclic Zθ
k subgroup of U(1)θ, which acts as

Zθ
k : θ 7→ θ + 2π

k
. (3.18)

12General TDLs that are transparent to the chiral algebra in a non-diagonal RCFT can be identified using
the corresponding 3d TQFT on a slab with a surface operator parallel to the boundaries that defines the
modular invariant [9, 10, 61]. Here the TDLs come from bulk anyons and their fusion products in the presence
of the surface operator [19]. The corresponding map between the fusion category symmetries underlying the
diagonal and non-diagonal RCFT is known as the α-induction [62–67].
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We can think of this as a k-fold rotation symmetry of the circle target space. It is known that
when one gauges a discrete geometric symmetry of a sigma model, if that symmetry acts freely
on the target space, the result is again a sigma model but now the target space is replaced by
its quotient [30], in this case a circle of radius R

k . Indeed, when we gauge this subgroup, we
restrict the θ vertex operators to have momentum numbers n = kñ, while the twisted sectors
contribute ϕ vertex operators of fractional winding w = w̃/k. Comparing with (3.4), we see
the spectrum of the Vkñ,w̃/k at radius R matches that of the Vñ,w̃ at radius R

k .
At the special radius R =

√
2k, R

k =
√

2
k is the T-dual radius, so this theory is self-dual

under gauging Zθ
k. As in (2.15), one consequence of this self-duality is an identity of twisted

partition functions

Zbos(R =
√
2k,Σ, B) = 1√

|H1(Σ,Zk)|
∑

A∈H1(Σ,Zk)
Zbos(R =

√
2k,Σ, A)ω

∫
Σ A∪B , (3.19)

where A,B ∈ H1(Σ,Zk) are background Zk gauge fields on the spacetime manifold Σ, ∪
denotes the cup product of gauge fields, and ω is a primitive k-th root of unity which defines
the bicharacter for the TY category.

Let us now determine the possible ω which can occur in this formula for the theory at
hand. Indeed an immediate consequence of the self-duality condition (3.19) applied to the
U(1)2k CFT on T 2 is that ω = e±

2πi
k . This follows by studying the coefficients of the term

q
1

4k
− 1

24 q̄
1

4k
− 1

24 on the two sides of the equality, with B chosen to have holonomy equal to
the ξ : θ → θ + 2π

k generator of Zθ
k around the temporal cycle, and trivial holonomy around

the spatial cycle. On the l.h.s. , the two momentum operators V±1,0 contribute e±
2πi

k for a
total of 2 cos 2π

k . On the r.h.s. , this term comes from the Zθ
k symmetry generator ξ acting

on twisted sector operators. Now the ξn-twisted sector ground states for 0 ≤ n ≤ k − 1
correspond to operators with fractional winding e

in
k

ϕ or e
i(n−k)

k
ϕ depending on which one

has the lower scaling dimension. Clearly h = h̄ = 1
4k is only attainable for n = 1, k − 1.

Furthermore since these operators are scalars, whereby the T -transformation acts trivially,
they carry vanishing Zθ

k charge. Meanwhile the bicharacter contributes ω and ωk−1 = ω̄,
respectively. Consequently, we arrive at the promised equality

2 cos 2πi
k

= ω + ω̄ , (3.20)

which determines ω up to a conjugation ambiguity.
Generally speaking, there is a certain ambiguity in the expression (3.19), whereby the

Galois action on ω can be equated with the action of Aut(Zθ
k) on the background gauge field

B. The partition function of the compact boson is invariant under B 7→ −B because of the
charge conjugation symmetry C, which acts to negate the generator of Zθ

k. One can check that
it has no further Aut(Zθ

k) ambiguities by studying the operators V±1,0 with momentum charge
±1 and zero winding charge. Thus, the identity above cannot distinguish between ω and ω̄.
In fact, by fusing a Zk TY TDL with a certain bicharacter eiχ by the C TDL we obtain a Zk

TY TDL with the conjugate bicharacter e−iχ, so they always come in pairs (see figure 13).
When we study the TDL action on local operators in the CFT, there are new constraints

on ω. We will analyze these constraints using the duality twisted partition functions.
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3.3.2 Duality acting on local operators

The duality is obtained by gauging and then applying T-duality. Using the definition of
T-duality in (3.6), we obtain the following action of the TDL N on the primaries

N̂ :


Vn,w →

√
keπinwVwk, n

k
for n ∈ kZ ,

(∂XL, ∂̄XR)→ (
√
k∂XL,−

√
k∂̄XR) ,

other primaries→ non-local primaries ,
(3.21)

corresponding to the special case N̂α=0,+ in (3.16). The extra phase eπinw comes from the
mutual non-locality of θ and ϕ variables. We can compute the fusion rule by projecting to
local operators, and we find N̂ satisfies the Zk TY fusion rule

N̂ 2 =
∑

m∈Zk

U θ(2πm/k) , (3.22)

where U θ(2πm/k) generates a 2πm/k shift of θ.
This solution is not unique — there are actually many Zk duality defects in the U(1)2k

CFT. For instance we can compose N with the charge conjugation symmetry C (which as
we mentioned above yields a Zk duality TDL CN with the conjugate bicharacter). Generally
besides this C ambiguity we can also modify the action of N on the operators Vn,w (3.21)
by a phase µ(n,w). Consistency with the OPE and the TY fusion rule requires that
µ(n,w) = e2πiα(n−kw) for α ∈ [0, 1). This phase corresponds to an invertible defect

LU(1)R
α ≡ eiα

√
2k
∮

dz̄∂̄XR , (3.23)

associated to the right-moving U(1) symmetry, and we can write the modified duality defect
as Nα,+ ≡ NLU(1)R

α . It is easy to check that it satisfies the Zk TY fusion rule as a consequence
of (3.21). Similarly, we have the modified TY duality defect Nα,− ≡ CNLU(1)L

α using the
left-moving U(1) symmetry. Therefore the U(1)2k RCFT contains a family of Zk TY categories
indexed by α (and a complementary family related by C).13 Since they are related by invertible
defects which are already known, it is enough to show that just one of these symmetry actions
in (3.16) is associated with a TDL, so we will focus on the case N = Nα=0,+ below.14

Let us study the torus partition function of the U(1)2k CFT with the N TDL inserted
along a spatial cycle. For even k, N commutes with the left-moving chiral algebra, and its
action on the right-moving side projects to the sector with n = wk, namely the vacuum block
with respect to the chiral algebra.15 Therefore we have

Z1N (τ, τ̄)=
√
kKk

0 (τ)

 ∑
m∈Z≥0

(−1)mχm2(τ̄)

=
√
k

|η(τ)|2
∑

n,m∈Z
(−1)mqkn2

q̄m2
=
√
kθ3(2kτ)θ4(2τ̄)

|η|2
,

(3.24)
13N̄α,±Nα,± = Nα,±Nα,± contains the trivial line, and the Noether current obtained from this family by

the method of section 2.5 is just the local U(1)R current ∂̄XR.
14As we will see, the compositions with the chiral symmetries LU(1)R

α and LU(1)L
α do not lead to further

changes to the TY category.
15As a consequence, the duality defect NLU(1)R

α has the identical twisted partition function as for N .
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where Kk
0 is the identity character for the U(1)2k chiral algebra (see table 5).16 We have used

the fact that the right-moving U(1)2k vacuum character twisted by N gives,

Kk
0 (τ̄)

N−−→
∑
n∈Z

(−1)mχm2(τ̄) , (3.25)

and also the following relation for the degenerate Virasoro characters

∑
m∈Z≥0

(−1)mχm2 =
∑
m∈Z

(−1)mqm2

η
. (3.26)

One can immediately check that the twisted partition function is compatible with modular
invariance and integrality. Indeed the modular S-transform gives

ZN1(τ, τ̄) =
1

2|η(τ)|2
∑

n,m∈Z
q

n2
4k q̄

(m+1/2)2
4 =

k∑
n=−k+1

∑
m∈Z≥0

Kk
n(τ)χ (m+1/2)2

4
(τ̄) , (3.27)

which decomposes into U(1)2k and Virasoro characters with integral degeneracies, as required.
For odd k, a similar analysis gives the N twisted torus partition function

Z1N (τ, τ̄) =
√
k

|η(τ)|2

∑
n∈Z

(−1)nqkn2

∑
m∈Z

(−1)mq̄m2

 =
√
kθ4(2kτ)θ4(2τ̄)
|η(τ)|2 , (3.28)

where we have used the fact that the U(1)2k vacuum character twisted by N gives,

Kk
0 (τ)

N−−→ 1
η(τ)

∑
n∈Z

(−1)nqkn2
. (3.29)

Performing an S-transform, we obtain

ZN1(τ, τ̄) =
1

2|η(τ)|2
∑

n,m∈Z
q

(n+1/2)2
4k q̄

(m+1/2)2
4 = 2

∑
n,m∈Z≥0

χ (n+1/2)2
4k

(τ)χ (m+1/2)2
4

(τ̄) . (3.30)

Note that for k = 1, the duality defect becomes invertible and generates a non-anomalous Z2
T-duality symmetry (3.8). The twisted partition function and its S-transform for this case are

Z1N (τ, τ̄) = θ4(2τ)θ4(2τ̄)
|η(τ)|2 , ZN1(τ, τ̄) =

θ2(τ/2)θ2(τ̄ /2)
2|η(τ)|2 . (3.31)

3.3.3 Spin selection rules

Here we derive relations between the spectrum of spins in the defect Hilbert space HN
for the duality TDL and the F-symbols of the TY category. As we will see, they lead to
further constraints on the F-symbol data of Zk TY symmetries, namely the primitive k-th
root of unity ω and FS indicator ϵ.

16In contrast to N , the duality defect CN commutes with the right-moving chiral algebra. The corresponding
twisted partition function is the parity-flip τ ↔ τ̄ of (3.24). The same relation holds for other twisted partition
functions discussed here and in the following sections.
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Figure 9. To define the Zk symmetry action in the N -twisted sector, we must choose a resolution of
the crossings into 3-fold junctions. We refer to the resolution depicted in the figure as the “minus”
resolution, and the operators associated with group elements g = h = ra ∈ Zk as (̂ra)−. This is
related to the other resolution by a phase (̂ra)+ = ωa2 (̂ra)−.

−→T 2
= ϵ√

k

k−1∑
a=0

Figure 10. Applying partial fusion and crossing to the T 2 transformation of N line in time direction.

We define the action of the Zk symmetry TDL L on the defect Hilbert space HN as L̂−
as in figure 9. The bicharacter eiχ(a,b) = ωab enters in the crossing relations involving both
the duality TDL N and the Zk generators ra and rb. In particular,

(̂ra)− · (̂rb)− = ωab(̂ra+b)− , (3.32)

which implies

(̂ra)− = ω−a(a−1)
2 (r̂−)a , (3.33)

and
(r̂−)k = ω

k(k−1)
2 = (−1)k−1 . (3.34)

We would like to derive a relation between the spin spectrum in HN and the choice of
bicharacter (3.15). We proceed as in [14] to consider the cylinder amplitude between a pair
of states |ψ⟩, |ψ′⟩ ∈ HN of equal conformal weights

⟨ψ′|qL0− c
24 q̄L̄0− c̄

24 |ψ⟩ . (3.35)

By performing a T 2 transformation τ → τ + 2 on this configuration (which involves the
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duality N in the time direction), and applying partial fusion and crossing relations, as in
figure 10, we reach the equation

e4πis⟨ψ′|ψ⟩ = ϵ√
k
⟨ψ′|

k−1∑
a=0

(̂ra)−|ψ⟩ . (3.36)

Let us restrict our attention to Zk eigenstates in HN . Since ω is a primitive k-th root of
unity, these states satisfy

r̂−|ψ⟩ = ωq|ψ⟩ , (3.37)

with q ∈ Z for k odd and q ∈ Z+ 1
2 for k even (cf. (3.34)). Then (3.36) can be rewritten as

e4πis = ϵ√
k

k−1∑
a=0

ω̄
a(a−1)

2 ωqa = ϵ√
k

k−1∑
a=0

ω
2qa−a(a−1)

2 = ϵ√
k

k−1∑
a=0

ω− 1
2 (a− 2q+1

2 )2
ω

(2q+1)2
8 . (3.38)

For k odd, using the periodicity in a → a + k, we have

e4πis = ϵ√
k
ω

(2q+1)2
8

k−1∑
a=0

ω− (a−1/2)2
2 . (3.39)

Similarly for k even, using the periodicity in a→ a+ k, redefining p = q + 1
2 ∈ Zk

17

e4πis = ϵ√
k

k−1∑
a=0

ω− (a−p)2
2 ω

p2
2 = ϵ√

k
ω

p2
2

k−1∑
a=0

ω−a2
2 . (3.40)

These Gauss sums constrain the allowed spins in the defect Hilbert space HN in terms of
the F-symbol data of the TY category (ϵ and ω here) and vice versa.

The second Gauss sum (3.40) may be found in appendix 4 of [68], where it is shown that

1√
k

k−1∑
a=0

ω−a2
2 = e−

2πiσ
8 , (3.41)

and σ is the signature of the associated quadratic form on Zk

q(a) = ω
a2
2 . (3.42)

Namely, we must find an (even) integer bilinear form ⟨−,−⟩ on some Zn lattice with dis-
criminant group Zk and associated quadratic form q, and then σ is the signature of ⟨−,−⟩.
There is an algorithm for producing such a lift by Wall [69]. This lift is not unique and can
only define a signature modulo 8 because of the existence of even bilinear forms with nonzero
signature and trivial discriminant group, such as the E8 root lattice. See [70] for a discussion
of these facts in another physics context. In particular, if ω = e±

2πi
k , e

2πiσ
8 = e±

πi
4 which

comes from a rank one bilinear form ⟨x, y⟩ ≡ ±kxy for x, y ∈ Z.
17Here the fractional powers of ω are taken in the standard branch. Consequently for fixed p ∈ Zk, the r.h.s.

of (3.40) in general changes as ω → we2πi. However the set of e4πis for p ∈ Zk does not depend on such a
change of branch (it can be canceled by shifting p→ p+ k

2 ).
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It turns out the first Gauss sum (3.39) is also related to a signature [71]. Namely, it is18

1√
k

k−1∑
a=0

ω− (a−1/2)2
2 = e−

2πiσ
8 , (3.43)

where now we must find an integer bilinear form ⟨−,−⟩ with discriminant group Zk associated
to the bilinear form ωab, and a Wu (characteristic) element w ∈ Rn such that

⟨x,w⟩ = ⟨x, x⟩ mod 2 ∀x ∈ Zn , (3.44)

and such that w lifts the generator of the discriminant group 1 ∈ Zk. In particular, if
ω = e±

2πi
k , we can take a rank one lattice with bilinear form ⟨x, y⟩ = ±kxy and Wu element

w = ± 1
k . Consequently we find e

2πiσ
8 = e±

πi
4 and again the signature σ has a mod 8

ambiguity due to the E8 lattice.
To summarize, the spin selection rules we have derived for HN with bicharacter χ±

and general FS indicator ϵ are,

e4πis =

ϵe
± πi

4k
(2n+1)2

e∓πi/4 k ∈ 2Z ,
ϵe±

πi
k

n2
e∓πi/4 k ∈ 2Z+ 1 .

(3.45)

Let us now apply the above spin selection rules to infer about the F-symbols and determine
which TY category symmetry is present in the U(1)2k CFT. From (3.30) and (3.27), one
can read off the spins in HN ,

s+ 1
16 =


(2m+1)2

16k + 1
2Z k ∈ 2Z+ 1 ,

n2

4k + 1
2Z k ∈ 2Z ,

(3.46)

where m,n ∈ Z.
For k odd, it is immediate to check that out of the four possibilities given by ω = e±

2πi
k

and ϵ = ±1 for the TY symmetry, only the case ω = e
2πi

k and ϵ = 1 produces the spin
selection rule (3.39) which is consistent with the above spin spectrum. This completes the
identification of the TY category symmetry on the circle branch (3.17) for the k odd case.

For k even, while the spin selection rule (3.40) with ω = e
2πi

k and ϵ = 1 is satisfied by the
above spin spectrum (3.46), other solutions to this constraint are possible at special values of
k. To eliminate these spurious possibilities, we carry out a bootstrap analysis that utilizes
the left-moving U(1)2k chiral algebra which commutes with the duality for even k.

3.3.4 Bootstrap analysis for k even

The idea here is to analyze the modular bootstrap equation (2.5) for the torus partition
function of the U(1)2k CFT decorated by the Zk symmetry TDL ra and the putative duality
TDL N , to derive constraints on the Zk charge of the states in the twisted Hilbert space HN
(e.g. q in (3.37)). As we will see, this gives a refinement of the spin selection rule derived in
the last section and determines the F-symbols for N completely to be those in (3.17).

18Note that unlike the k even case, here the summand q(a) ≡ ω− (a−1/2)2
2 defines a quadratic function on

Zk → U(1) but not a quadratic form on Zk (i.e. q(na) ̸= q(a)n2
).
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N̂ 2
∣∣∣
Hrm

=

m

m = ϵ√
k

k−1∑
n=0

n

m

m = ϵ√
k

k−1∑
n=0

ω̄m(m+n)
n

m

m

= ϵ√
k

k−1∑
n=0

ω̄m(m+n)
n

m

=
k−1∑
n=0

ω̄m(m+n)
n

m

Figure 11. The sequence of F-moves that simplifies the squared action of the duality TDL N̂ 2 on
the defect Hilbert space Hrm .

We start with the torus partition function with a Zk TDL along the spatial cycle,

Z1r(τ, τ̄) =
k∑

m=−k+1
e

2πim
k |Kk

m(τ)|2 . (3.47)

Its modular S-transform captures the states in the defect Hilbert space Hr,

Zr1(τ, τ̄) =
2k−1∑
n=0

Kk
n(τ)Kk

n−2(τ̄) . (3.48)

If we insert a duality TDL along the spatial cycle, the corresponding partition function is
the trace of N̂ in Hr. Using F-moves with the F-symbols parametrized by the undetermined
parameters ω = e±

2πi
k and ϵ = ±1 as in figure 11, we obtain

N̂ 2 = ω̄
k−1∑
n=0

ω̄n(r̂)n . (3.49)

This means that acting on Hr, N̂ annihilates a state unless it has Zk charge 1 if ω = e
2πi

k

and charge −1 if ω = e−
2πi

k . Note that each term Kk
n(τ)Kk

n−2(τ̄) in (3.48) carries Zk

charge n − 1. Moreover since the duality acts as an automorphism of the right-moving
U(1)2k chiral algebra, consistency with OPE requires that (non-local) right-moving primary
operators ei n√

2k
XR (from the block Kk

n(τ̄)) are mapped to e−i n√
2k

XR under the duality action
N̂ . Consequently, the trace of N̂ can only receive contributions from the right moving vacuum
block Kk

0 (τ̄), which transforms according to (3.29). Now Hr does not contain states with
Zk charge −1 if the right-moving part resides in Kk

0 (τ̄) which requires n = 2 or n = k − 2
in (3.48). As a result, we find

ZrN (τ, τ̄) =

γe
−πi

k
∑

m∈Z≥0
Kk

2 (τ)(−1)mχm2(τ̄) ω = e
2πi

k ,

0 ω = e−
2πi

k ,
(3.50)

with γ = ±1.
The modular S-dual transform gives the partition function ZN r which computes the

trace of the TDL r̂− acting on the defect Hilbert space HN . The defect ground state with
weight (h, h̄) = (0, 1

16) is non-degenerate (3.27). Since r̂− is invertible, this implies that ZN r
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cannot vanish identically. Therefore we can conclude that only the first solution in (3.50)
is possible and ω = e

2πi
k as desired.

Next we want to derive the Frobenius-Schur indicator ϵ = 1. Along the way we will
see that γ = 1 as required by the bootstrap equation and the spin selection rule. Upon
S-transform, we have

ZN r−(τ, τ̄) = γe−
πi
k

k∑
n=−k+1

∑
m∈Z≥0

e
2πin

k Kk
n(τ)χ

(m+1/2)2
4 (τ̄) . (3.51)

From the above partition function, we see the defect ground state |ψ0⟩ with spin s = − 1
16

carries charge

r̂−|ψ0⟩ = γe−
πi
k |ψ0⟩ . (3.52)

The doubly-degenerate states |ψ±1⟩ of weight (h, h̄) = ( 1
4k ,

1
16) have charges

r̂−|ψ±1⟩ = γe−
πi
k e±

2πi
k |ψ±1⟩ . (3.53)

The spin selection rule (3.40) applied to these three states reads

ϵ = e
πip2

k , e
πi
k ϵ = e

πi(p+1)2
k = e

πi(p−1)2
k , (3.54)

with e
2πip

k = γ. It then immediately follows that γ = 1 and ϵ = 1. This completes the
determination of the TY fusion category symmetries in (3.17).19

3.3.5 Special cases

As a very simple example, taking k = 2 we find that the special radius where 2R = 2
R is

the Dirac radius R = 1. As explained in section 2.6, the self-duality of this (bosonic) theory
under Z2 gauging arises from the chiral fermion parity of a single Majorana factor of the
Dirac fermion (which can be thought of as two Majorana fermions with the diagonal GSO
projection), just as the Kramers-Wannier duality does for the critical Ising model [45, 47]
(see table 2). See also [46].

Another important case is k = 4, as this radius R =
√
8 describes the Kosterlitz-Thouless

(KT) point where the circle branch meets the Z2 orbifold branch. We will see in section 4.2
that the entire orbifold branch has Z4 TY symmetries. This can be related to a chiral parity
symmetry of Z4 parafermions, which we explain in section 4.4.

3.4 Symmetric RG flows from the circle branch

The Zk TY symmetries are all anomalous [16] (the corresponding TY categories do not admit
fiber functors [16, 72]). Consequently any RG flow respecting such symmetries cannot end

19Note that the parameter α for the duality defect does not change the analysis here for both k even and
odd. This is because the duality twisted partition function Z1N is independent of α (see around (3.24)). The
analysis for the duality defect CN (and its α-family) is also completely parallel which involves a parity-flip of
the twisted partition functions for N (see Footnote 16) and leads to a conjugate bicharacter χ(a, b) = − 2πiab

k

but the same FS indicator ϵ = 1.
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at a trivially gapped phase in the IR. Below we discuss the implications for RG flows from
CFTs on the circle branch preserving such symmetries.

In the case of the U(1)2k CFT on the circle branch, the theory admits relevant scalar
operators commuting with the TY(Zk, χ±, 1) symmetry (with α = 0 and the + sign in (3.17))
for k = 2, 3, given by linear combinations of

k = 2 : V2,0 + V0,1 , V−2,0 + V0,−1 , h = h̄ = 1
2 ,

k = 3 : V3,0 + V0,1 , V−3,0 + V0,−1 , h = h̄ = 3
4 ,

(3.55)

and marginal deformations for k = 4

k = 4 : V4,0 + V0,1 , V−4,0 + V0,−1 , h = h̄ = 1 . (3.56)

Such deformations preserving the TY symmetry become irrelevant for k ≥ 5.
For simplicity let us consider the linear combination of the above deformations that

preserve the ZC
2 symmetry of the circle CFT as well. The anomalous fusion category symmetry

requires the deformed theory to be a nontrivial CFT (or TQFT) in the IR which realizes the
same symmetry or the symmetry must be spontaneously broken. Below we will see explicitly
these deformed c = 1 CFTs indeed retain the TY symmetries by flowing to a gapless phase.

For k = 4, the CFT is at the Kosterlitz-Thouless point, which is the intersection of the
circle and orbifold branches of the c = 1 moduli space. The ZC

2 symmetric combination
of (3.56) leads to precisely the exactly marginal deformation that moves onto the orbifold
branch [73]. Indeed we will show in section 4.2 that the TY(Z4, χ±, 1) symmetries persist
on the entire orbifold branch.

The c = 1 CFT at k = 2 is the diagonal bosonization of the Dirac fermion. From
the bosonization map, it is easy to see that the ZC

2 symmetric relevant deformation V2,0 +
V0,1 + V−2,0 + V0,−1 corresponds to the mass term for one of the two Majorana fermions.
Consequently the theory flows to the Ising CFT in the IR, with the Z2 TY symmetry acting
as Kramers-Wannier duality.

The RCFT at k = 3 is described by the SU(2)D4
4 /U(1) coset with a non-diagonal modular

invariant of the D4 type [74]. This is related to the SU(2)A5
4 /U(1) coset CFT with diagonal

modular invariant of the A5 type by gauging the Z2 charge conjugation symmetry in (B.6).
Both CFTs come from two distinct bosonizations of the Z4 parafermions in [59] (see also
appendix B for this and a review of parafermions). As shown in [75], the SU(2)A5

4 /U(1) coset
CFT admits an integrable RG flow to the tetracritical Ising model triggered by the parafermion
bilinear deformation e

πi
4 ψ1ψ̃1 + e−

πi
4 ψ3ψ̃3 of weight h = h̄ = 3

4 , which is Z2 symmetric.20

Moreover, this operator corresponds to the charge conjugation invariant combination of the
operators in (3.55) for k = 3 (since it’s the unique Virasoro primary with these weights that

20The general statement in [75] involves an integrable RG flow from the SU(2)Ak+1
k /U(1) coset CFT deformed

by eπi
k ψ1ψ̃1 + (c.c) of weight h = h̄ = k−1

k
to the (Ak, Ak+1) minimal model for k ≥ 3.
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is Z2 symmetric), as summarized in the diagram below,

SU(2)A5
4 /U(1) SU(2)D4

4 /U(1)

tetracritical Ising three-state Potts

Z2-symmetric RG

gauging Z2

TY-symmetric RG

gauging Z2

(3.57)

Gauging the Z2 symmetry along the entire RG flow, this implies that the SU(2)D4
4 /U(1) coset

CFT flows, under the symmetric relevant deformation in (3.55), to the three-state Potts model
which is the Z2 orbifold of the tetracritical Ising model. The three-state Potts is equivalently
described by the SU(2)A4

3 /U(1) coset CFT, which evidently hosts the TY(Z3, χ±, 1) fusion
category symmetries following the general discussions in section 2.6.

3.5 Continuum of topological defects from SU(2)1

At the self-dual radius R =
√
2, the (U(1)θ ×U(1)ϕ)⋊ZC

2 symmetry of the compact boson is
enhanced to SO(4). When gauging the Zϕ

n subgroup of U(1)ϕ, which takes us to the radius
R = n

√
2, those SO(4) rotations which do not commute with Zϕ

n define TDLs of quantum
dimension n according to the method of section 2.5.

There are four defect currents associated with these TDLs, given by vertex operators
with momentum and winding (p, w) = (±n,±1/n). Because of the fractional winding, these
currents are not local, but sit at the end of Zθ

n TDLs, which generate the magnetic symmetry
of the orbifold. By then gauging a Zθ

m symmetry, with m coprime to n, we obtain a continuum
family at radius R = n

√
2/m, with defect currents given by (p, w) = (±n/m,±m/n).

This family of TDLs was constructed previously in [76], whose authors argued that
they form a complete set of TDLs for the compact boson at these radii. For example, this
family contains the Zk TY TDLs discussed in section 3.3 for k = n2. To see this consider
the SO(4) element

 0 I2×2

I2×2 0

 , (3.58)

which describes the action of T-duality in (3.8). At the self-dual point, this acts as a
symmetry Vp,w 7→ (−1)pwVw,p, with the sign coming from the relation Vp,w = :Vp,0V0,w: =
(−1)pw:V0,wVp,0:. We will use V ′

p,w for the moment to denote the vertex operators at R = n
√
2.

These operators come from Vp/n,nw at the self-dual point when gauging the Zϕ
n symmetry

therein. For p ∈ nZ we thus obtain the action on these operators using

V ′
p,w ∼ Vp/n,nw 7→ n(−1)pwVnw,p/n ∼ n(−1)pwV ′

n2w,p/n2 . (3.59)

The factor of n comes from the sum over Zϕ
n orbit in (2.19). Thus we recover the action

on vertex operators in (3.21).
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4 Fusion categories of the Z2 orbifold

In this section, we study fusion category symmetries on the orbifold branch of the c = 1 CFT
which persist to all values of the marginal parameter. We will follow a similar strategy as in
the previous section. In particular, the Z2 orbifold has a global symmetry group D8 and is
self-dual under gauging various subgroups. This leads to two Z4 TY categories TY(Z4, χ±,+)
(section 4.2) and two D4 = Z2

2 TY categories, Rep(D8) and Rep(H8) (section 4.3). We
then discuss these symmetries at rational points on the orbifold branch where they can
be understood using Verlinde lines and ordinary symmetries in (para)fermion theories.
Furthermore we argue that these fusion categories are part of a continuum of TDLs which
exists at all R and are enhanced at special values R = n

√
2.

4.1 Operator content of the Z2 orbifold

The c = 1 orbifold at radius R (“the Z2 orbifold”) is obtained by gauging the ZC
2 charge

conjugation symmetry of the compact boson of the same radius. In terms of the (normalized)
non-chiral compact boson θ ≡ XL+XR

R and its T-dual ϕ ≡ R(XL−XR)
2 (normalized such that

both θ and ϕ have unit radii)

ZC
2 : (θ, ϕ)→ (−θ,−ϕ) . (4.1)

The spectrum of Virasoro primaries on the c = 1 orbifold branch consists of two sectors,
the untwisted sector and the Z2 twisted sector. The latter is charged under the magnetic
symmetry ZM

2 .
The twisted sector consists of two primary operators

σ1 and σ2, (h, h̄) =
( 1
16 ,

1
16

)
(4.2)

that correspond to the ground states at the two fixed points of S1/ZC
2 , as well the first

excited states

τ1 and τ2, (h, h̄) =
( 9
16 ,

9
16

)
. (4.3)

The untwisted sector includes reflection-invariant momentum-winding operators V +
n,w de-

fined by

V +
n,w = Vn,w + V−n,−w√

2
, (4.4)

where Vn,w denotes the usual momentum-winding operators in the unorbifolded theory (3.4).
The rest of the Virasoro primaries in the untwisted sector are built from ZC

2 invariant
normal-ordered Schur polynomials in the U(1) currents dθ, dϕ and their derivatives in the
unorbifolded theory [30],

jn2jm2 with m− n ∈ 2Z , (h, h̄) = (n2,m2) . (4.5)

For example,

j1 = ∂XL , j4 = :j4
1 :− 2:j1∂2j1: +

3
2:(∂j1)

2: . (4.6)

– 34 –



J
H
E
P
0
7
(
2
0
2
4
)
0
5
1

The exactly marginal operator that gives rise to the orbifold branch is j1j̄1. The spin-one
U(1) currents themselves are projected out in the orbifold, but there is a spin 4n2 left-moving
(and right-moving) current for every n ∈ Z+ at general R and they generate a W-algebra of
type W (2, 4) that extends the Virasoro algebra. At special radii, this chiral algebra can be
further enhanced to an even larger W-algebra such that the CFT becomes rational, with a
finite number of primaries and conformal blocks for this chiral algebra.

The orbifold branch has global symmetry

Gorb = D8 , (4.7)

at generic R, which does not harbor ’t Hooft anomalies. However we will see the orbifold
branch hosts a rich zoo of non-invertible TDLs that include TY categories associated to Z4
and D4 = Z2 × Z2 subgroups of D8. We adopt the following convention for D8

D8 = ⟨s, r|s2 = r4 = (rs)2 = 1⟩ . (4.8)

In the 2×2 Pauli-matix representation of D8, we have s = σx, sr = σz, r = σxσz, r2 = −1, etc.
The appearance of D8 symmetry can be understood from the ZC

2 discrete gauging as
follows. Recall the unorbifolded boson at generic R has global symmetry

G = (U(1)θ ×U(1)ϕ)⋊ ZC
2 , (4.9)

where ZC
2 negates the parameters of both U(1)’s. The commutant of ZC

2 in G/ZC
2 is Zθ

2 × Zϕ
2

generated by π-translations in θ or ϕ. These symmetries continue to act as global symmetries
in the orbifolded theory in both the twisted and untwisted sectors. In addition, we have
the magnetic symmetry ZM

2 which only acts non-trivially in the twisted sector, where it
acts as a scalar −1. Due to a mixed anomaly between ZC

2 and its commutant, we arrive
at the group extension

1→ ZM
2 → D8 → Zθ

2 × Zϕ
2 → 1 . (4.10)

See appendix A.2 for more details. In particular, we find ZM
2 is identified with the center of

D8, generated by r2, and D8 acts on the untwisted sector through its quotient Zθ
2 × Zϕ

2 ,

r : (θ, ϕ)→ (θ + π, ϕ+ π) , s : (θ, ϕ)→ (θ, ϕ+ π) . (4.11)

For the operators in the twisted sector, D8 acts as

r : (σ1, σ2)→ (iσ1,−iσ2) , (τ1, τ2)→ (iτ1,−iτ2) ,
s : (σ1, σ2)→ (σ2, σ1) , (τ1, τ2)→ (τ2, τ1) .

(4.12)

In appendix A.2, we show that this D8 symmetry is anomaly-free, despite its chiral-looking
action (4.11).

The D8 symmetry has the following important subgroups

⟨r⟩ = Zr
4 , ⟨sr3⟩ = Zη

2 , ⟨sr⟩ = Zσ
2 , (4.13)
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Primary 1 j ϕi
k ϕm σi τi

h = h̄ 0 1 k
4

m2

4k
1
16

9
16

Characters 1
2(K

k
0 −W ) 1

2(K
k
0 +W ) 1

2K
k
k Kk

m
1
2(W+ +W−) 1

2(W+ −W−)

Table 6. The k + 7 chiral primaries in the orbifold CFT U(1)2k/Z2. Here i = 1, 2 and
m = 1, 2, . . . , k − 1.

where the superscript indicates the name of the TDL generating the symmetry, and

⟨r2, s⟩ = DA
4 , ⟨r2, sr⟩ = DB

4 , (4.14)

where D4 = Z2 × Z2.
Along the orbifold branch, the RCFTs locate at radius R =

√
2k for k ∈ Z [77]. The

enhanced chiral algebra is generated by

T , j4 , cos
√
2kXL , (4.15)

of spin 2, 4, k respectively. There are k + 7 chiral primaries listed in table 6.
Here in writing down the characters in table 6 we have introduced [78]

W (τ) ≡ 1
η

∑
r∈Z

(−1)rqr2
, W (τ)± ≡

1
η

∑
r∈Z

(±1)rq(r+ 1
4)

2
. (4.16)

The partition function of the theory is given by the diagonal modular invariant

Zorb(R =
√
2k) = 1

2Zbos(R =
√
2k) + 1

2 |W |
2 + |W+|2 + |W−|2 . (4.17)

We will refer to such theories as the U(1)2k/Z2 CFTs.

4.2 Z4 Tambara-Yamagami symmetry

Let us denote the orbifold partition function at radius R coupled to a Z4 gauge field A on a
closed spacetime Σ as Zorb(R,Σ, A), where Z4 is generated by the element r ∈ D8 (cf. (4.8)).
This theory is self-dual under gauging Z4 at any radius, meaning21

Zorb(R,Σ, A) =
1√

|H1(Σ,Z4)|
∑

B∈H1(Σ,Z4)
e

±iπ
2

∫
A∪BZorb(R,Σ, B). (4.18)

For an explicit check with Σ = T 2 see appendix C.
As in section 3.3, we expect that there is an associated Z4 Tambara-Yamagami fusion

category which acts on the theory. In general, there are four Z4 TY categories labeled by
the FS indicator ϵ = ± of the duality defect and a choice for the bicharacter

χ±(ra, rb) ≡ (±i)ab , (4.19)
21Recall there is a similar identity for the partition function on the circle branch (3.19). As we will see this

is not a coincidence. The Z4 TY symmetry at the KT point on the circle branch can be continued to the
orbifold branch since it preserves the corresponding marginal operator.
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both of which are consistent with (4.18).22 The c = 1 orbifold branch realizes the two Z4 TY
categories with ϵ = 1 at general R and the two duality TDLs NZ±

4
are related by stacking

with the Z2 symmetry defect associated to s ∈ D8:

TY(Z4, χ+,+)
NZ±4

7→ sNZ±4←−−−−−−−−−−→ TY(Z4, χ−,+) . (4.20)

We propose the following action on local primary operators

N̂Z+
4
:


V +

n,w → 2in−wV +
n,w for n− w ∈ 2Z ,

jn2 j̄m2 → 2jn2 j̄m2 ,

all other primaries→ non-local operators ,

N̂Z−
4
:


V +

n,w → 2in+wV +
n,w for n− w ∈ 2Z ,

jn2 j̄m2 → 2jn2 j̄m2 ,

all other primaries→ non-local operators .

(4.21)

These actions have the following desired features. First, the duality defects annihilate
operators that are charged under Z4 and act on the Z4 invariant operators with eigenvalue
±2 as required by the TY fusion rule N 2 = 1 + r + r2 + r3. They also solve the modular
bootstrap equation (2.5) for torus with a single duality twist around the space or time cycle.

More explicitly, the corresponding duality defects NZ+
4

and NZ−
4

= sNZ+
4

define the
following twisted partition functions at general R ≥

√
2,

Z1NZ+
4
(τ, τ̄) = 1

|η|2

 ∑
m,n∈Z,m−n∈2Z

in−mq
1
2( n

R
+ mR

2 )2
q̄

1
2( n

R
−mR

2 )2
+

∑
m,n∈Z

(−1)m+nqm2
q̄n2

 ,

Z1NZ−4
(τ, τ̄) = 1

|η|2

 ∑
m,n∈Z,m−n∈2Z

in+mq
1
2( n

R
+ mR

2 )2
q̄

1
2( n

R
−mR

2 )2
+

∑
m,n∈Z

(−1)m+nqm2
q̄n2

 .

(4.22)
Their modular S-transform (using Poisson resummation) yields the spectrum in the duality-
twisted sectors,

ZN
Z+

4
1(τ,τ̄)= 1

2|η|2

( ∑
m,n∈Z,m−n∈2Z

q
1
8

(
n−1/2

R
+ (m+1/2)R

2

)2

q̄
1
8

(
n−1/2

R
− (m+1/2)R

2

)2

+
∑

m,n∈Z

q
1
4 (m+1/2)2

q̄
1
4 (n+1/2)2

)
,

ZN
Z−4

1(τ,τ̄)= 1
2|η|2

( ∑
m,n∈Z,m−n∈2Z

q
1
8

(
n+1/2

R
+ (m+1/2)R

2

)2

q̄
1
8

(
n+1/2

R
− (m+1/2)R

2

)2

+
∑

m,n∈Z

q
1
4 (m+1/2)2

q̄
1
4 (n+1/2)2

)
,

(4.23)
which decompose into Virasoro characters with positive integer degeneracies, as required,
thanks to the shifts in the exponents of q and q̄.

We can also study the spin selection rules by specializing (3.40) to k = 4. If we define
the two inequivalent bicharacters as

χ±(a, b) = (±i)ab , (4.24)
22None of the four TY categories admit fiber functors, and are thus anomalous according to [16]. Thus any

CFT with such symmetries (including the orbifold CFTs here) cannot flow to trivially gapped phases under
symmetric RG flows.
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then
χ+, ϵ = 1 : e4πis = {1,±e−

πi
4 } ,

χ+, ϵ = −1 : e4πis = {−1,±e−
πi
4 } ,

χ−, ϵ = 1 : e4πis = {1,±e
πi
4 } ,

χ−, ϵ = −1 : e4πis = {−1,±e
πi
4 } .

(4.25)

Since the set of allowed spins s for the four Z4 TY categories are non-identical, it provides a
quick way to diagnose which Z4 duality defect N corresponds to by looking at the spins in HN
(equivalently the partition function ZN1). This allows us to determine the Frobenius-Schur
indicator to be ϵ = 1 for both Z4 duality lines.

In section 4.4, we will return to these duality defects at the Z4 parafermion point, where
they come from chiral parity symmetries in the parafermion theory (see section 2.6), and
explicitly verify the action on local operators given above. At the KT point, they become
the Zk self-duality studied in section 3.3 for k = 4.

4.3 D4 Tambara-Yamagami symmetry

Let us denote the orbifold partition function at radius R coupled to Z2 × Z2 = D4 gauge
fields Ag, Ah on a closed spacetime Σ for g, h ∈ D8 commuting elements of order 2 as

Zorb(Σ, R,Ag, Ah) . (4.26)

There are two choices of g and h up to conjugacy in D8 and automorphism of D4, namely
g, h = s, sr2 or g, h = sr, sr3. The corresponding groups are denoted by DA

4 and the DB
4

respectively in (4.14).
This partition function is not uniquely defined by the action of D4 on local operators

since there is a possible discrete torsion class in H2(D4,U(1)) = Z2 which can modify the
action of g on the h-twisted sector by a sign, and vice versa, meaning that the two partition
functions on the torus Σ = T 2 in the sector Ag = (1, g) (g-twist in time), Ah = (h, 1) (h-twist
in space) differ by an overall sign, corresponding to tensoring the theory with an SPT.

To fix the ambiguity, we look at the g-charge of the lightest operator in the h-twisted
sector and choose the overall sign of Zorb by requiring this operator to be neutral, so that in
the low-temperature expansion, restricting to q = q̄, the leading term is positive,

Zorb(T 2, R, (1, g), (h, 1)) = qα + subleading terms R >
√
2 . (4.27)

This makes sense for the Z2 orbifold because as long as R is greater than its value at the KT
point R =

√
2, there is a unique lightest operator in the h-twisted sector for any Z2 symmetry

generator h. For instance, with h = r2, this operator is eiθ − e−iθ, of weight h = h̄ = 1
2R2 . At

R =
√
2 the above partition function vanishes because of the chiral anomaly.

It makes sense to define Zorb(T 2, R,Ag, Ah) also for R <
√
2, since T-duality does not

respect the D4 symmetries of the orbifold, as it acts by an outer automorphism of D8 taking
s↔ sr. As we continuously tune R through the KT point R =

√
2 we find there is a level

crossing in the h-twisted sector where two operators of opposite g-charge exchange places as
the lightest operator in the h-twisted sector (this level crossing happens across the whole
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spectrum, giving the vanishing of the partition function we mentioned above). Thus, we
have (again with q = q̄ ≪ 1)

Zorb(T 2, R, (1, g), (h, 1)) = −qα + subleading terms R <
√
2 . (4.28)

This type of phenomenon was dubbed a “topological transition” in [47].
This level crossing is related to an anomalous accidental symmetry at the KT point

related to T-duality which exchanges DA
4 and DB

4 (see appendix A.3). This complicates
the usual discussion of the duality. The correct statement is that if we take our theory
so-defined enriched with its DB

4 symmetry and tune the marginal parameter R through the
KT point to the dual value 2

R , then we find a theory which may be equivalently described as
a DA⋆

4 -enriched orbifold at radius R, where the star indicates discrete torsion.
We find that with the definitions above, the theory is self-dual under gauging DB

4 for all R,

Zorb(Σ, R,Asr, Asr3) = 1
4

∑
Bsr,Bsr3∈H1(Σ,Z2)

(−1)
∫

Σ AsrBsr+Asr3 Bsr3Zorb(Σ, R,Bsr, Bsr3) .

(4.29)
On the other hand, if we define

Z⋆
orb(Σ, R,Ag, Ah) = (−1)

∫
Σ Ag∪AhZorb(Σ, R,Ag, Ah) (4.30)

to be the theory obtained by taking the opposite convention as what we have considered
above, equivalent to tensoring Zorb with the Z2 × Z2 SPT, we find instead it is self-dual
under gauging DA

4 ,

Z⋆
orb(Σ, R,As, Asr2) = 1

4
∑

Bs,Bsr2∈H1(Σ,Z2)
(−1)

∫
Σ AsBs+Asr2 Bsr2Z⋆

orb(Σ, R,Bs, Bsr2) . (4.31)

These two equations are related by T-duality and everything is consistent.
Therefore we expect these self-dualities to give rise to T-dual pairs of DA

4 and DB
4 TY

symmetries.23 There are four such TY categories labeled by the FS indicator ϵ = ± of the
duality defect and two bicharacters, χs coming from the product of the unique bicharacters
of each Z2 factor and χa related to χs by swapping the two Z2 factors,

χs(i1, i2; j1, j2) = (−1)i1j1+i2j2 , χa(i1, i2; j1, j2) = (−1)i1j2+i2j1 , (4.32)

where i1,2, j1,2 ∈ Z2.
The self-dualities above evidently correspond to the bicharacter χs. We will see below

that the FS indicator is +, so this gives rise to the TY category TY(Z2×Z2, χs,+) = Rep(H8).
We denote this duality line NH8,B and its T-dual NH8,A. Let us focus on NH8 = NH8,B.
The element s ∈ D8 acts as the swapping automorphism of DB

4 , so fusing NH8 with the line
corresponding to s yields TY(Z2 × Z2, χa,+) = Rep(D8),

TY(DB
4 , χs,+)

NH8 7→ sNH8 =ND8←−−−−−−−−−−−−−−→ TY(DB
4 , χa,+) . (4.33)

23The two D4 TY symmetries differ in their F-gauge. See discussions in section 2.4 and around (2.16).
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We propose the following action on local operators

N̂D8 :


V +

n,w → 2inV +
n,w for n ∈ 2Z ,

jn2 j̄m2 → 2jn2 j̄m2 ,

other primaries→ non-local operators ,
(4.34)

N̂H8 :


V +

n,w → 2in(−1)wV +
n,w for n ∈ 2Z ,

jn2 j̄m2 → 2jn2 j̄m2 ,

other primaries→ non-local operators .
(4.35)

These satisfy the desired TY fusion rules. The T-dual lines for the DA
4 self-duality act as

above by switching n and w.
The twisted torus partition functions associated with this action are

Z1ND8
(τ, τ̄) = 1

|η|2

 ∑
m,n∈Z

(−1)nq
1
2( 2n

R
+ mR

2 )2
q̄

1
2( 2n

R
−mR

2 )2
+

∑
m,n∈Z

(−1)m+nqm2
q̄n2

 , (4.36)

Z1NH8
(τ, τ̄) = 1

|η|2

 ∑
m,n∈Z

(−1)m+nq
1
2( 2n

R
+ mR

2 )2
q̄

1
2( 2n

R
−mR

2 )2
+

∑
m,n∈Z

(−1)m+nqm2
q̄n2

 .

These solve the modular bootstrap equation (2.5) for the torus partition functions with one
duality line inserted. In particular, the modular S-transform (from Poisson resummation
formula) yields the duality-twisted sector spectra

ZND8 1(τ, τ̄) = 1
2|η|2

( ∑
m,n∈Z

q
1
2

(
n
R

+ (m+1/2)R
4

)2

q̄
1
2

(
n
R

− (m+1/2)R
4

)2

+
∑

m,n∈Z

q
1
4 (m+1/2)2

q̄
1
4 (n+1/2)2

)
, (4.37)

ZNH8 1(τ, τ̄) = 1
2|η|2

( ∑
m,n∈Z

q
1
2

(
n+1/2

R
+ (m+1/2)R

4

)2

q̄
1
2

(
n+1/2

R
− (m+1/2)R

4

)2

+
∑

m,n∈Z

q
1
4 (m+1/2)2

q̄
1
4 (n+1/2)2

)
,

which thanks to the shifts in the exponents of q and q̄ decomposes into Virasoro characters
with positive integer degeneracies, as required.

The TY data also shows up in the spin selection rules (similar to those derived in
section 3.3.3). For a general D4 TY defect N satisfying N 2 = 1 + η + σ + ησ we have

χs : e4πis⟨ψ′|ψ⟩ = ϵ

2⟨ψ
′|(1 + η̂− + σ̂− + η̂−σ̂−|ψ⟩ ,

χa : e4πis⟨ψ′|ψ⟩ = ϵ

2⟨ψ
′|(1 + η̂− + σ̂− − η̂−σ̂−|ψ⟩ ,

(4.38)

where we have used that η−, σ− commute (regardless of the choice of bicharacter). Moreover
from crossing relations we have

χs : η̂2
− = σ̂2

− = −1 ,
χa : η̂2

− = σ̂2
− = 1 .

(4.39)

Consequently, the spin selection rules are

χs, ϵ = 1 : e4πis = {1, i,−i} ,
χs, ϵ = −1 : e4πis = {−1, i,−i} ,
χa, ϵ = 1 : e4πis = {1,−1} ,

χa, ϵ = −1 : e4πis = {1,−1} .

(4.40)
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This provides a quick way to determine whether the crossing data is associated to χs or χa.
The spin selection rules differentiate the two categories TY(D4, χs,±) but a more refined
argument is needed to determine the FS indicator in TY(D4, χa,±).

We will verify the action of local operators in section 4.5 by studying Verlinde lines at
the Ising2 point and in section 4.6 at the four-state Potts point. This will also determine
the Frobenius-Schur indicators.

4.4 Z4 Tambara-Yamagami and Z4 parafermions

Let us consider the Z2 orbifold at the special radius R =
√
6. This theory is rational and its

RCFT structure is manifest from its SU(2)4/U(1) coset description of the A5 type (diagonal
modular invariant),24

U(1)6
ZC

2

∼=
SU(2)A5

4
U(1) . (4.41)

The same CFT is also realized by bosonization from the Z4 parafermions [59] (see also
appendix B). We will see that the Z4 TY TDLs outlined in section 4.2 consist of Verlinde
lines (see section 2.2) at this point together with the duality TDLs coming from chiral
symmetries for the Z4 parafermions (see section 2.6). This also provides a check on the
proposed actions (4.21) of dualities on local operators on the orbifold branch.

The relevant chiral algebra is given by the W-algebra W (2, 3, 4) which includes spin
3 and 4 generators,

cos(
√
6XL) = cos(3θ + ϕ) and j4 , (4.42)

in addition to the stress tensor. With respect to W (2, 3, 4), the SU(2)k/U(1) coset CFT
has 10 primaries ϕj

m as listed in table 7 with j = 0, 1
2 , 1,

3
2 , 2 and m + j ∈ Z and subject

to the identification (see appendix B.2 for details)

ϕj
m = ϕj

m+4 = ϕ2−j
2+m . (4.43)

Correspondingly there are 10 TDLs in the SU(2)4/U(1) CFT realized by Verlinde lines L(j,m).
In particular, from the fusion rules, we find that the Z4 subgroup of D8 is realized by the
Verlinde lines as ri = L(0,i) for i = 0, 1, 2, 3.

As we have described in section 2.6, the SU(2)k/U(1) coset CFT is self-dual under
Zk gauging, and there are two Zk TY symmetries corresponding to the fusion categories
TY(Zk, χ±, 1) with χ±(a, b) ≡ ±2πab

k . Here we explicitly verify this for the corresponding
duality defect N in the Z4 case (the analysis for the other duality defect sN is similar). Unlike
the Z4 symmetry TDLs, the duality defect N does not commute with the full chiral algebra.
Instead, it preserves the left-moving W (2, 3, 4) while acting on the right-moving generators by
a Z2 automorphism that flips the sign of the spin 3 generator. Furthermore, the Z4 invariant
W (2, 3, 4) primaries, namely the thermal operators ϕ0

0, ϕ
1
0, ϕ

2
0, transform under the duality as25

N · ϕj
0 = 2(−1)jϕj

0 . (4.44)
24In the following all SU(2)k/U(1) coset CFTs are defined with respect to the diagonal modular invariant

unless otherwise noted.
25The overall factor of 2 is required by the fusion relation N 2 = I + r + r2 + r3.
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Coset ϕj
m U(1)6/ZC

2 h = h̄ Z4 charge
ϕ0

0 1 0 0
ϕ0

1 cos
√

6(XL+XR)
2 = cos(3θ) 3

4 2
ϕ0

2 ∂XL∂̄XR = dϕdθ 1 0
ϕ0

3 cos
√

6(XL−XR)
2 = cos(ϕ) 3

4 2

ϕ
1
2
− 1

2
σ1

1
16 3

ϕ
1
2
1
2

σ2
1
16 1

ϕ
1
2
3
2

τ1
9
16 3

ϕ
1
2
5
2

τ2
9
16 1

ϕ1
−1 cos XL+XR√

6 = cos(θ) 1
12 2

ϕ1
0 cos 2(XL+XR)√

6 = cos(2θ) 1
3 0

Table 7. SU(2)4/U(1) coset primaries ϕj
m and their descriptions in the U(1)6/ZC

2 orbifold.

The above two conditions suffice to completely determine how N acts on local operators
(see appendix B for details).

The SU(2)4/U(1) coset CFT has the diagonal modular invariant partition function

Z(τ, τ̄) = |η|2(|c0
0|2 + 2|c0

2|2 + |c0
4|2 + 2|c1

1|2 + 2|c1
3|2 + |c2

2|2 + |c2
0|2) . (4.45)

Here η(τ)c2j
2m(τ) are W (2, 3, 4) characters (see appendix B.2). For the thermal operators

ϕj
0 with j = 0, 1, 2, they are given by

ηc0
0(τ) =

1
2η(τ)

∑
k∈Z

((−1)kqk2 + q3k2) ,

ηc2
0(τ) =

1
η(τ)

∑
k∈Z

q3(k+1/3)2
,

ηc4
0(τ) =

1
2η(τ)

∑
k∈Z

(−(−1)kqk2 + q3k2) .

(4.46)

As reviewed above (also appendix B), to write down the duality twisted partition function,
we just need the duality twisted characters for the thermal operators,

I1(τ) =
1

2η(τ)
∑
k∈Z

(qk2 + q3k2)(−1)k ,

I2(τ) =
1

η(τ)
∑
k∈Z

q3(k+1/3)2(−1)k ,

I3(τ) =
1

2η(τ)
∑
k∈Z

(−qk2 + q3k2)(−1)k ,

(4.47)

where the extra sign comes from the odd parity of the spin 3 generator under the duality.
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The twisted partition function reads

Z1N (τ, τ̄) = 2η̄(c̄0
0I1 − c̄2

0I2 + c̄4
0I3) , (4.48)

and has the following explicit form

Z1N (τ, τ̄) = 1
|η|2

∑
m,n∈Z

(
(−1)mq3m2

q̄3n2 + (−1)m+nqm2
q̄n2 − 2(−1)mq3(m+1/3)2

q̄3(n+1/3)2)
.

(4.49)
Performing the modular S-transform using the Poisson resummation formula,

ZN1(τ,τ̄)=
1
|η|2

∑
m,n∈Z

(
1
6q

1
12 (m+1/2)2

q̄
1

12 n2
+1
2q

1
4 (m+1/2)2

q̄
1
4 (n+1/2)2

−1
3q

1
12 (m+1/2)2

q̄
1

12 n2
e

(2(m+n)+1)πi
3

)
,

= 1
2|η|2

∑
m,n∈Z

(
1
3(1−2cos

(2(m+n)+1)π
3 )q 1

12 (m+1/2)2
q̄

1
12 n2

+q 1
4 (m+1/2)2

q̄
1
4 (n+1/2)2

)
,

= 1
2|η|2

 ∑
m,n∈Z,m−n∈2Z

q
(n+3m+1)2

16 q̄
(n−3m−2)2

16 +
∑

m,n∈Z
q

1
4 (m+1/2)2

q̄
1
4 (n+1/2)2

, (4.50)

which indeed decomposes into Virasoro characters with non-negative integer degeneracies
thanks to the overall factor of 2 in (4.48).26 This determines the defect Hilbert space HN
completely. In particular, the spectrum of spins satisfies

e4πis = {±e−
πi
4 , 1} , (4.51)

which suggests, using the spin selections rules (4.25), that the duality defect together with
the Z4 symmetry TDLs furnishes the TY(Z4, χ+, 1) category. By stacking the duality defect
N with the Z2 symmetry TDL s, we obtain TY(Z4, χ−, 1) as explained in section 4.2.

The marginal operator that moves away from the SU(2)4/U(1) CFT on the orbifold
branch is ϕ2

0 = ϕ0
2 in table 7, which commutes with both Z4 TY symmetries. Consequently

this verifies the presence of these fusion category symmetries on the entire orbifold branch.
In particular, the twisted partition functions here (4.49) and (4.50) matches with the general
expressions (4.22) and (4.23) once we set R =

√
6 as promised.

4.5 Rep(H8) and Ising2

At radius R = 2 the Z2 orbifold is rational and equivalent to a tensor product of two Ising
CFTs, which we denote by Ising2. The operators σ1,2 of the orbifold (4.2) are identified
with the spin operators of the two Ising sectors, while σ1σ2 = cos θ, the sum of thermal
operators ϵ1 + ϵ2 = cosϕ, etc.

This rational point was discussed in detail in section 4 of our previous work [16]. We
review it here for completeness. We will see that the self-duality of the Z2 orbifold under
DB

4 gauging associated with the bicharacter χs gives rise to a TDL with Frobenius-Schur
indicator ϵ = 1 (the TY category is therefore isomorphic to Rep(H8)), and verify our
proposed action (4.35) on local operators.

26This is also the minimal choice. Since in the defect Hilbert space partition function ZN1, certain operators
appear with unit degeneracy, thus e.g. 1

2N would not be a well-defined TDL.
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The D8 global symmetry is generated by the individual Z2 symmetries η ∼ sr3 and
σ ∼ sr of the Ising factors, along with the Z2 TDL s that swaps them. Each Ising factor is
self-dual under gauging its Z2 symmetry, and realizes the Z2 TY category TY(Z2,+) with
duality defects N1,2. These TDLs satisfy the fusion rules

N 2
1 = 1 + η , N 2

2 = 1 + σ . (4.52)

The tensor product of these two duality defects thus gives a DB
4 = ⟨sr, sr3⟩ duality defect

N = N1N2. The bicharacter of this defect respects the product structure, and we recognize
it as χs in (4.32). Furthermore, since N1,2 both have ϵ = 1, so does N1N2, so we recognize
the TY category TY(D4, χs, 1), which is equivalent to Rep(H8).

Recall the twisted partition function in the Ising model,

ZIsing
1N1

(τ, τ̄) =
√
2(|χ0| − |χ 1

2
|2) , (4.53)

where χh here denotes the Virasoro character at c = 1
2

χ0 = 1
2

(√
θ3
η

+
√
θ4
η

)
,

χ 1
2
= 1

2

(√
θ3
η
−
√
θ4
η

)
,

χ 1
16

= 1√
2

√
θ2
η
.

(4.54)

Then in the Ising2 CFT, we have

Z1N (τ, τ̄) = 2(|χ0|2 − |χ 1
2
|2)2 . (4.55)

Using (4.54), this becomes

Z1N = 1
|η|2

 ∑
m,n∈Z

(−1)m+nq(m+n)2/2q̄(m−n)2/2 +
∑

m,n∈Z
(−1)m+nqm2

q̄n2

 , (4.56)

and the modular S-transform gives

Z1N (τ, τ̄) = 1
2|η|2

 ∑
m,n∈Z

q
1
2(n+m+1

2 )2
q̄

1
2(n−m

2 )2
+

∑
m,n∈Z

q
1
4 (m+1/2)2

q̄
1
4 (n+1/2)2

 , (4.57)

which is agreement with our general proposal (4.36) at R = 2. Moreover, we can check
the spin spectrum in HN satisfies

e4πis = {±i, 1} (4.58)

as expected for the spin selection for Rep(H8) (4.40).
The tensor product of the thermal operators ϵ1,2 in the two Ising models, ϵ1ϵ2 has

weight h = h̄ = 1 and is exactly marginal. It is uncharged under DB
4 . Since ϵ1ϵ2 does
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not commute with the individual Ising Z2 dualities, the duality defects N1 and N2 are no
longer topological when we move away from the Ising2 point. However this deformation
commutes with the duality defect N ,

N · ϵ1ϵ2 = ⟨N⟩ϵ1ϵ2 = 2ϵ1ϵ2 , (4.59)

thus the DB
4 duality defect N and the associated category Rep(H8) will persist along the

entire orbifold branch, in agreement with our observation of self-duality under DB
4 gauging.

4.6 Rep(D8) and the four-state Potts model

At R = 2
√
2 the Z2 orbifold is again rational and is equivalent to the four-state Potts model

and a D4 orbifold of the SU(2)1 WZW model,

U(1)8
ZC

2

∼=
SU(2)1
D4

. (4.60)

The theory has S4 global symmetry and an enhanced chiral algebra W (2, 4, 4) containing
two spin 4 generators in addition to the stress tensor. There are eleven chiral primaries
1, ja, ϕ, σa, τa with scaling dimension h = h̄ = {0, 1, 1

4 ,
1
16 ,

9
16} respectively [77]. The index

a = 1, 2, 3 transforms in the 3-dimensional irreducible representation of S4.
This rational point gives us access to the other DB

4 TY symmetry of the Z2 orbifold,
associated with the bicharacter χa in (4.32), allowing us to determine the Frobenius-Schur
indicator to be ϵ = 1 and verify the action (4.34) on local operators. Indeed, the Verlinde
lines associated with the chiral primaries 1, ja, ϕ have D4 TY fusion rules: ja correspond to
the order 2 elements of DA

4 , and ϕ corresponds to the duality defect.
The untwisted torus partition function of the four-state Potts model is

Z(τ, τ̄) = |χ0|2 + 3|χ1|2 + |χ 1
4
|2 + 3|χ 1

16
|2 + 3|χ 9

16
|2 , (4.61)

where χh denotes the W (2, 4, 4) character for a weight h primary. The torus partition function
twisted by the duality defect N wrapping the spatial circle is given by the S matrix by the
braiding monodromy of ϕ (which is natural from the 2+1D TQFT perspective),

Z1N (τ, τ̄) = 2|χ0|2 + 6|χ1|2 − 2|χ 1
4
|2 . (4.62)

Its modular S-transform (see table 9) is

ZN1(τ, τ̄) = (χ0 + 3χ1)χ̄ 1
4
+ 3χ 1

16
χ̄ 9

16
) + c.c.) + 3(|χ 1

16
|2 + |χ 9

16
|2) . (4.63)

The spin spectrum in HN satisfies

e4πis = {±1} . (4.64)

Compared to the spin selection rules in (4.40), this implies N is a duality defect with
associated F-symbols determined by the bicharacter χa and a FS indicator ϵ = ±1. Below we
will carry out a refined version of the analysis around (4.40) to show that ϵ = +1.

Performing a T 2 transformation on ZN1, we find

ZN1(τ + 2, τ̄ + 2) = ϵ

2 (ZN1 + ZNη + ZNσ + ZNησ) , (4.65)
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which constrains the action of the DB
4 TDLs on the defect Hilbert space HN . Moreover,

from partial fusion and crossing, one can derive that,

η̂2
− = σ̂2

− = η̂σ2
− = 1 , η̂−σ̂− = σ̂−η̂− = −η̂σ− (4.66)

as linear operators acting on HN . Since HN has a single defect chiral primary of weight
(h, h̄) = (0, 1

4), from (4.65), we conclude that η̂−, σ̂−, η̂σ− acting on this operator has to be
−.−,− if ϵ = 1, and +,+,− or its permutations if ϵ = −1.

We obtain additional constraints on η̂−, σ̂−, η̂σ− from the modular bootstrap equa-
tion (2.5) for the pair of TDLs η and N , with two solutions

ZNη = γ
[
(χ0 + 3χ1)χ̄ 1

4
− χ 1

16
χ̄ 9

16
) + c.c.)− (|χ 1

16
|2 + |χ 9

16
|2)
]
,

ZηN = 2γ(χ0χ̄1 + χ1χ̄0 + 2|χ1|2 − |χ 1
4
|2) ,

(4.67)

parametrized by γ = ±1. From the discussion around (4.66), for ϵ = 1 we must have

ZNη = −
[
(χ0 + 3χ1)χ̄ 1

4
− χ 1

16
χ̄ 9

16
) + c.c.)− (|χ 1

16
|2 + |χ 9

16
|2)
]
,

ZNσ = −
[
(χ0 + 3χ1)χ̄ 1

4
− χ 1

16
χ̄ 9

16
) + c.c.)− (|χ 1

16
|2 + |χ 9

16
|2)
]
,

ZNησ = −
[
(χ0 + 3χ1)χ̄ 1

4
− χ 1

16
χ̄ 9

16
) + c.c.)− (|χ 1

16
|2 + |χ 9

16
|2)
]
,

(4.68)

while for ϵ = −1 we end up with

ZNη =
[
(χ0 + 3χ1)χ̄ 1

4
− χ 1

16
χ̄ 9

16
) + c.c.)− (|χ 1

16
|2 + |χ 9

16
|2)
]
,

ZNσ =
[
(χ0 + 3χ1)χ̄ 1

4
− χ 1

16
χ̄ 9

16
) + c.c.)− (|χ 1

16
|2 + |χ 9

16
|2)
]
,

ZNησ = −
[
(χ0 + 3χ1)χ̄ 1

4
− χ 1

16
χ̄ 9

16
) + c.c.)− (|χ 1

16
|2 + |χ 9

16
|2)
]
,

(4.69)

or any permutations of the overall signs. However looking at the piece χ 1
16
χ̄ 9

16
, we see ϵ = −1

cannot be compatible with (4.65). Thus we conclude ϵ = 1 for the D4 TY symmetry in
the four-state Potts model.

We can also compute more general twisted partition functions that involve a network of
TDLs (see figure 12) which provide additional consistency checks on our identification of the
TY symmetries. By solving the modular bootstrap equations (2.5), we find

ZX
Nη = ZX

Nσ = ZX
Nησ =

[
i(χ0 + 3χ1)χ̄ 1

4
− χ 1

16
χ̄ 9

16
) + c.c.) + (|χ 1

16
|2 + |χ 9

16
|2)
]
, (4.70)

which satisfy the following relations

ZX
Nη(τ + 1) = 1

2(ZN + ZNη − ZNσ − ZNησ) ,

ZX
Nσ(τ + 1) = 1

2(ZN − ZNη + ZNσ − ZNησ) ,

ZX
Nησ(τ + 1) = 1

2(ZN − ZNη − ZNσ + ZNησ) ,

(4.71)

that come from partial fusion and crossing.
Finally, we note that the four-state Potts model has three independent exactly-marginal

operators ja which transform as the three-dimensional irreducible representation of S4.
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η
N

Figure 12. Torus partition function ZX
Nη decorated by a TDL network formed by duality TDL N

and symmetry TDL η (similarly when η is replaced by other symmetry TDLs in DB
4 .

Consequently, deformation from either of the three moves the CFT along the orbifold branch.
Now the duality defect N commutes with all three marginal operators

N · jaj̄a = ⟨N⟩jaj̄a . (4.72)

Thus the Rep(D8) category of TDLs is preserved along the entire orbifold branch.
In particular we can compare to our general proposal (4.36), at R = 2

√
2,

Z1ND8
= 1
|η|2

 ∑
m,n∈Z

(−1)mq
1
4 (2n+m)2

q̄
1
4 (2n−m)2

+
∑

m,n∈Z
(−1)m+nqm2

q̄n2

 , (4.73)

using the explicit forms for the W (2, 4, 4) characters,

χ0(τ) =
1
2η
∑
m

(q4m2 + (−1)mqm2) ,

χ1(τ) =
1
2η
∑
m

(q4m2 − (−1)mqm2) ,

χ 1
4
(τ) = 1

η

∑
m

q
(1+4m)2

4 ,

(4.74)

we find that it agrees with Z1N in (4.62) as desired.

4.7 Continuum of topological defects

As we have mentioned in section 2.5, and using the general method therein, we can construct
a continuum of TDLs for every R from the continuous U(1)θ × U(1)ϕ symmetry of the circle
branch. In particular, if Lθ

α is the TDL of the compact boson corresponding to the symmetry
θ 7→ θ + α, then Lθ

α + Lθ
−α is C invariant and will define a noninvertible TDL N θ

α of the ZC
2

orbifold with quantum dimension 2. It acts on local operators (for generic α) by

N̂ θ
α :


V +

n,w → 2 cos(nα)V +
n,w ,

jn2 j̄m2 → 2jn2 j̄m2 ,

other primaries→ non-local operators ,
(4.75)
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and there is likewise a continuum family for the ϕ shift symmetry Lα
ϕ. See [20] for a recent

discussion of these lines.
The Noether currents associated with these families are dθ and dϕ respectively, which live

at the end of the Wilson line for the C gauge field. The TDL ND8 of (4.34) appears in this
family at α = π

2 . In fact the subalgebra of lines with α = 2πm
k , m = 1, . . . , ⌊k−1

2 ⌋ generates
a Rep(D2k) symmetry.27 This can be seen by writing the ZC

2 orbifold at radius R as a D2k

orbifold of the compact boson on the circle branch at radius R
k by gauging Zϕ

k ⋊ ZC
2 = D2k.

By multiplying with the D8 generator s, we see that the Rep(H8) symmetry similarly extends
to an infinite family, as well as their T-dual TY symmetries, which arise from Lα

ϕ.
At the special radii R = n

√
2 this continuum is enhanced to an “SO(4)” family, obtained

from the SO(4) invertible TDLs of SU(2)1 upon gauging the D2n subgroup Zϕ
n ⋊ZC

2 . Besides
dθ and dϕ which live at the end of the Wilson line for the sign representation, there are four
Noether currents V±n,±1/n, which live at the end of a Wilson line for the two-dimensional
fundamental representations of D2n. If m is coprime to n, by first gauging Zθ

m and then
Zϕ

n ⋊ ZC
2 , we obtain a related family at radius R = n

m

√
2, with Noether currents V±n/m,±m/n.

4.8 The Kosterlitz-Thouless point and triality

If we consider the ZC
2 orbifold of the SU(2)1 point, we land at the Kosterlitz-Thouless (KT)

point, where the orbifold and circle branches meet. This can either be described in terms of
the C-gauged fields θ, ϕ and C-twist operators, or in terms of the (gauge invariant) circle
branch fields θ̃, ϕ̃ (see appendix A.3).

Along with the continuous families of TDLs associated with the non-local currents dθ
and dϕ, which persist along the entire orbifold branch, at the KT point we also have the four
currents V±1,±1 mentioned in the previous subsection (take n = 1). Two of these are local:
V1,±1 + V−1,∓1, which we can identify with the currents dθ̃, dϕ̃. These generate the familiar
U(1)θ̃ × U(1)ϕ̃ symmetry of the KT point, expressed as a circle branch theory. However,
the other two currents V1,±1 − V−1,∓1 are non-local, and correspond to a two-parameter
enhancement of the TDLs at this special point. Note this is the same four-parameter family
we constructed in section 3.5 by considering the KT point as an orbifold of SU(2)1 by Zϕ

2 ,
since Zϕ

2 and ZC
2 are conjugate in the full SO(4) symmetry.

Some of the new TDLs at the KT point also have interpretations as self-dualities under
gauging. In part I [16], we noted that by gauging D4 using the bicharacter χa, β = 0, and
α the generator of H2(D4,U(1)) = Z2 in (2.15) we obtain an order three permutation of
the D4-symmetric gapped phases.

It turns out this triality is a category symmetry of the KT point. We can see this as
follows. We identify DB

4 with Zθ̃
2 × ZC̃

2 , where C̃ is the charge conjugation symmetry of the
circle branch variables θ̃, ϕ̃. The theory is self-dual under gauging this symmetry: gauging
Zθ̃

2 halves the radius, putting us at the SU(2)1 point, then gauging ZC̃
2 puts us back at the

KT point. This self-duality defines a DB
4 TY symmetry. A novelty for the KT point however

is the chiral anomaly, one symptom of which is that partition functions which might detect
the DB

4 discrete torsion vanish identically (see section 4.3). We can attribute this to a cubic
27These non-invertible TDLs are in one-to-one correspondence with the ⌊ k−1

2 ⌋ two-dimensional irreducible
representations of D2k.
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anomaly in Zθ̃
2 × Zϕ̃

2 × ZC̃
2 , such that Zϕ̃

2 “toggles” the discrete torsion, mapping ZC̃
2 -twisted

operators to ones of opposite Zθ̃
2 charge, etc (see appendix A.2). We expect that the triality

is therefore realized as a fusion product of a DB
4 TY TDL with the Zθ̃

2 TDL.
To explore this in detail, and to see its three-fold nature, we can examine these symmetries

as they arise from the SO(4) symmetry of the SU(2)1 point upon gauging ZC
2 . In terms of the

symmetries and the fields θ, ϕ before gauging, we have already identified the Rep(D8) duality
symmetry with a π

2 U(1)θ rotation Rθ(π
2 ) (see section 4.7). Meanwhile Zϕ̃

2 is generated by
a conjugate π

2 rotation Rϕ′(π
2 ) (this can be considered a π

2 rotation of an SO(4)-conjugate
field ϕ′). This squares to C and becomes a Z2 symmetry after gauging. As SO(4) matrices
in the basis (3.7), these are two 2× 2 blocks overlapping in one position, and we find their
composition is a 2π

3 rotation in the combined 3 × 3 block,

Rθ
(
π

2

)
=


0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

 ,

Rϕ′
(
π

2

)
=


0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

 ,

Q = Rθ
(
π

2

)
Rϕ′

(
π

2

)
=


0 1 0 0
0 0 −1 0
−1 0 0 0
0 0 0 1

 ,

C = Rϕ′ (π) =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 .

(4.76)

See appendix A.3 for more details. We can thus as well consider the triality defect as coming
from the invertible symmetry Q of the SU(2)1 point upon gauging ZC

2 , resulting in a triality
TDL LQ of quantum dimension 2.

The subgroup of the SO(4) symmetry at the SU(2)1 point generated by C and Q is
the alternating group A4. We want to study what fusion category results from A4 after
gauging ZC

2 . This will be a fusion subcategory of the symmetries of the KT point containing
the triality TDL we are interested in. Mathematically, ZC

2 defines a module category M
for the grouplike category A = VecA4 , such that the simple objects of M are labelled by
cosets in A4/ZC

2 [16, 79]. The fusion category symmetry we obtain after gauging is the “dual”
category A∗

M = EndA(M). Since ZC
2 is not normal in A4, A∗

M is not grouplike (see Thm 3.4
in [80]). We find there are six simple TDLs: four grouplike, corresponding to C̃ = sr (from
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Rθ(π)) and the magnetic symmetry r2, which together generate the DB
4 ⊂ D8 symmetry

of the KT point, as well as two triality defects of quantum dimension 2, associated with
Q and Q2 = Q−1. The fusion rules are

LQLg = LgLQ = LQ , LQ2Lg = LgLQ2 = LQ2 , (4.77)

for any g ∈ DB
4 . We also have

LQLQ2 =
∑

g∈DB
4

Lg , L2
Q = 2LQ2 . (4.78)

By analyzing the action of LQ on D4-symmetric gapped phases (see section 3.2.3 of [16]),
we find that the fusion category is anomalous — there is no way to deform the KT point
to a trivial gapped phase while preserving the triality. This also means that the category
above is not Rep(H) for any Hopf algebra (or group) H.

4.9 Symmetric RG flows from the orbifold branch

Let us discuss deformations of the c = 1 CFT on the orbifold branch preserving certain
fusion category symmetries. We focus on the D4 and Z4 TY symmetries. Firstly, the
D4 TY symmetries presented on the orbifold branch are all non-anomalous as they admit
fiber functors [16, 72]. On the contrary, the Z4 TY symmetries are all anomalous (see also
discussion in section 3.4). Consequently, while the D4 TY symmetries do not lead to nontrivial
RG constraints, the Z4 TY symmetries require the symmetric RG flow to end either in a
nontrivial CFT or a spontaneous symmetry broken phase. Below we will see explicitly that
for RG flows out of the orbifold branch preserving TY(Z4, χ±, 1), the IR phase is described
by a TQFT with degenerate ground states, fulfilling the second scenario predicted by the
anomalous fusion category symmetry.

As discussed in section 4.4, the Z4 TY symmetries are most transparent at the Z4
parafermion point on the orbifold branch, which is described by the SU(2)4/U(1) coset CFT.
Even though the Z4 parafermion point does not have relevant deformations that preserve the
Z4 duality TDLs, once we have moved to large enough R by the duality invariant marginal
deformation, there are plenty of relevant deformations that do commute with these TDLs,
namely the momentum operators

V +
4n,0 : h = h̄ = 8n2

R2 , (4.79)

cf. (4.21). Note that R = 2
√
2 corresponds to the four-state Potts model in which case V4,0 is

marginal and related to the marginal operator ∂X∂̄X by the enhanced S4 symmetry.
For R > 2

√
2, V +

4,0 is a relevant deformation that preserves the Z4 TY symmetries, and
consequently the IR phase must realize the Z4 TY symmetries and cannot be trivially gapped!
Indeed, in terms of the circle variable θ ∼ θ + 2π, the V +

4,0 deformation takes the form of
± cos 4θ. With + sign, the IR theory is gapped with two vacua located at θ = {π/4, 3π/4},
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while with − sign, there are three vacua located at θ = {0, π
2 , π}.

28 In either case, the IR
theory completes into a TQFT with two or three degenerate ground states.29

For Zk parafermions of general k, the SU(2)k/U(1) coset CFT contains TY symmetric
relevant deformations for k > 5, for example given by the leading duality-invariant thermal
operator ϕ2

0 of weight h = h̄ = 6
k+2 . Once again the anomalous Zk TY symmetries demands

a nontrivial symmetric IR theory that reproduces the same anomaly. In this case, this is
achieved by a direct sum of c = 1 CFTs,

SU(2)k/U(1)
TY-symmetric RG−−−−−−−−−−−→

deformed by ϕ2
0

KT⊕KT/Zk , (4.80)

which is suggested by the numerical analysis of the Zk clock model in [81–83] and integrability
analysis in [84].

5 Fusion categories of the exceptional orbifolds

In the previous section we have studied TDLs of the circle and Z2 orbifold branches of the
c = 1 moduli space. There are also three isolated points, collectively known as the exceptional
orbifolds, which arise from gauging one of three special symmetry subgroups of the SU(2)1
CFT. Recall this theory has a global symmetry

SO(4) = SU(2)L × SU(2)R

Z2
, (5.1)

of which the diagonal subgroup SO(3)diag is anomaly-free. Finite subgroups of SO(3) have an
ADE classification, where the A series are cyclic rotation groups around a fixed axis, whose
orbifolds define the series R = n

√
2 on the circle branch; the D series are dihedral groups of

rotations around a fixed axis along with a perpendicular π rotation, whose orbifolds define the
series R = n

√
2 on the Z2 orbifold branch; and the exceptional E series, with E6 the symmetry

group T of the tetrahedron, E7 the symmetry group O of the octahedron/cube, and E8 the
symmetry group I of the icosahedron/dodecahedron, whose orbifolds define the exceptional
orbifolds. These three exceptional groups are isomorphic to alternating and symmetric groups

T = A4 , O = S4 , I = A5 . (5.2)

The cases G = D4n, A4, S4, A5 all admit nontrivial discrete torsion H2(G,U(1)) = Z2.
However because of the ’t Hooft anomaly for SO(4) symmetry of the SU(2)1 CFT, the
discrete torsion can be removed by a chiral Z2 rotation, and thus it does not lead to distinct
orbifold theories.30

28Note that we have taken into account the Z2 identification of θ in the orbifold theory.
29Applying the self-duality condition (2.15) directly to the putative TQFT on Σ = T 2, it is a simple exercise

to derive a number of constraints on the TY symmetric TQFT using modular invariance. One of them requires
the vacuum degeneracy to be 3d1 + 2d2 where d1, d2 ∈ Z≥0 count the number of ground states with Z4 charge
1 and 2 respectively.

30This phenomena is a D = 2 analog of what happens in D = 4 nonabelian gauge theories with an
Adler-Bell-Jackiw (ABJ) anomaly for certain chiral (axial) U(1) rotation of the charged fermions. The role of
the discrete torsion is played by the usual theta angle term iθ

8π2

∫
trF ∧ F in the action. The presence of the

ABJ anomaly implies that the theta angle θ can be freely adjusted by a chiral (axial) rotation of the fermions.
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As discussed in section 2.3, the resulting orbifold CFT contain G Wilson lines which make
up a fusion category symmetry described by Rep(G). For the A series, the corresponding
Rep(Zn) symmetry is invertible and part of the U(1)×U(1) symmetry of the circle branch.
For the D series, the symmetry Rep(D2n) contains non-invertible lines and are part of a
continuous family of TDLs on the Z2 orbifold branch we discussed in section 4.7. Likewise
the Rep(A4),Rep(S4) and Rep(S5) fusion category symmetries of the exceptional orbifolds
are part of a much larger algebra of TDLs.

Some of the additional TDLs come from Verlinde lines associated to the enhanced chiral
algebra VG of the orbifolds. VG can be derived from the G-invariant part of the SU(2)1
Kac-Moody current algebra and are given by W-algebras of the following types,

VD2n =W(2, 4, n2), VA4 =W(2, 9, 16), VS4 =W(2, 16), VA5 =W(2, 36) , (5.3)

where we have listed the spins of the strong generators31 and the spin 2 generator is the
stress tensor with central charge c = 1. The characters for the VG representations and the
corresponding S matrices were derived in [77, 85]. The exceptional orbifold is described
by the diagonal modular invariant of the VG chiral algebra. Consequently, as explained in
section 2.2, they host a family of Verlinde lines that are in one-to-one correspondence with the
chiral primaries in the orbifold CFT, and generate a fusion category symmetry corresponding
to Rep(VG), extending the subcategory Rep(G) of G-Wilson lines.

Beyond these TDLs we also have a whole continuum obtained from the SO(4) TDLs
of the SU(2)1 theory by the method of section 2.5. The corresponding Noether currents
lie at the end of G Wilson lines associated to the three dimensional representation of each
G ⊂ SO(3). It is plausible that all the Verlinde lines appear in the fusion products of this
continuum of lines. We leave this interesting conjecture to future work.

We summarize the situation below, giving Rep(G) fusion rules in these theories. The
relevant S matrices are listed in appendix E and we attach a mathematica notebook that
tabulates the complete fusion rules for Verlinde lines in Rep(VG).

5.1 A4 orbifold

The orbifold SU(2)1/A4 has Rep(A4) symmetry generated by Wilson lines associated to
the four irreducible representations of A4: the trivial representation 1 and two nontrivial
one-dimensional representations R1, R2 as well as one three-dimensional representation V .
The fusion rules are

R1R2 = 1 , R2
1 = R2 , R2

2 = R1 , RiV = V , V 2 = 1 +R1 +R2 + 2V . (5.4)

Note that {1, R1, R2} generates a Z3 symmetry of the orbifold theory. This corresponds to
the magnetic symmetry of the theory regarded as an Z3 orbifold of the SU(2)1/D4 CFT
(four-state Potts), with A4 = D4 ⋊ Z3.

As an RCFT with respect to the VA4 chiral algebra (5.3), the theory contains 21 chiral
primaries which lead to 21 Verlinde lines defined by the modular S-matrix in table 11 as
in (2.6). They include the 4 Wilson lines in Rep(A4) and generate the Rep(VA4) fusion
category symmetry.

31All other higher spin currents in the chiral algebra are generated by the normal ordered products of the
strong generators and their derivatives.
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5.2 S4 orbifold

The orbifold SU(2)1/S4 has Rep(S4) symmetry generated by Wilson lines associated to the five
irreducible representations of S4. They are the trivial representation, the sign representation
S, a two-dimensional representation U , and two three-dimensional representations V,W .
The fusion rules are

S2 = 1 , SU = U , SV =W , U2 = 1 + S + U , UV = V +W , V 2 = 1 + U + V +W .

(5.5)
Note that the SU(2)1/S4 CFT is also realized by an Z2 orbifold of the SU(2)1/A4 theory
and S generates the corresponding magnetic Z2 symmetry.

The theory contains 28 chiral primaries with respect to the VS4 chiral algebra (5.3) which
give rise to 28 Verlinde lines defined by the S-matrix in table 12. They generate the fusion
category symmetry Rep(VS4) which contains Rep(S4).

5.3 A5 orbifold

The Rep(A5) symmetry of the SU(2)1/A5 orbifold is generated by Wilson lines associated
to the five irreducible representations of A5. They are the trivial representation, two
three-dimensional representations V,W , one four-dimensional representation T , and one
five-dimensional representation U . The fusion rules are

V 2 =W 2 =1+V +U , V W =T +U , V T =W +T +U , WT =V +T +U ,
V U =WU =V +W +U+T , T 2 =1+V +W +T +U , TU =V +W +T +2U ,
U2 =1+V +W +2T +2U . (5.6)

The theory contains 37 chiral primaries with respect to the VA5 chiral algebra (5.3) which
give rise to 37 Verlinde lines defined by the S-matrix in table 13. They generate the fusion
category symmetry Rep(VA5) which contains Rep(A5).

6 Conclusion and discussion

In this paper, we developed general methods to study non-invertible symmetries in QFTs.
In particular, we applied these tools to investigate the fusion category symmetries of c = 1
CFTs, and have found a surprisingly rich structure, richer than can be accounted for by just
studying Verlinde lines at the rational points. We have not fully classified these symmetries,
but we have shown that many are within the grasp of methods which generalize broadly
and which we believe demonstrate the ubiquity of fusion category symmetry. It is clear
that in higher dimensions there will be interesting fusion category (higher) symmetries to
explore. One can take any theory with a group-like symmetry and gauge a non-normal finite
subgroup, obtaining a theory with non-invertible TDLs. It will be very interesting therefore
to investigate the consequences of these symmetries in settings beyond 1+1D CFT. This
is just beginning to be explored, for instance, see [44, 86].

In light of the continua of topological defects, it is interesting to consider how one might
extend the usual mathematical definition of a fusion category to these sets of lines. Intuitively
the objects are parametrized by topological spaces, and all of the fusion data, such as the
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fusion products, duals, and F-symbols should be a suitable generalization of continuous maps.
Indeed continuity is too strong as the F-symbols for symmetry lines of continuous symmetry
groups are already not continuous, but only Borel measurable [87]. This is related to the
question “what kind of category is the category of QFTs?” if we demand that TDLs form
the morphisms between 1+1D QFTs, with the sort of fusion category we want to study being
the endomorphisms of a given object (such as a c = 1 CFT). The parametrized fusion and
F-symbol data appear to insist that this category is enriched over measurable spaces. We
leave this interesting question to future work.

A Global symmetries of orbifolds

A.1 The SU(2)1 point

The SU(2)1 point where the compact boson is self-T-dual is the key to unlocking the
symmetries of the c = 1 CFTs. It is convenient to write its global symmetry group as
(SU(2)× SU(2))/Z2 = SO(4). The SO(4) symmetry is generated by six conserved currents in
the CFT which can be taken to be the chiral and anti-chiral SU(2) currents

{∂XL, cos
√
2XL, sin

√
2XL} and {∂̄XR, cos

√
2XR, sin

√
2XR} . (A.1)

The usual anomalous rotations generated by the (anti)holomorphic currents ∂XL and ∂̄XR

are represented by

e
i α√

2

∮
dz∂XL =

Rα/2 0
0 Rα/2

 and e
i α√

2

∮
dz̄∂XR =

Rα/2 0
0 R−α/2

 ∈ SO(4) , (A.2)

respectively, where Rα is a 2× 2 rotation matrix parametrized by α ∈ [0, 2π]. Note that a 2π
rotation generated by either ∂XL or ∂̄XR is the central element −1 ∈ SO(4).

The non-holomorphic currents (∂θ, ∂̄θ) and (∂ϕ, ∂̄ϕ) generate rotations by

eiα
∮

(dz∂θ−dz̄∂̄θ) =

Rα 0
0 1

 and eiα
∮

(dz∂ϕ−dz̄∂̄ϕ) =

1 0
0 Rα

 ∈ SO(4) , (A.3)

matching the identification XL = θ+ϕ√
2 , XR = θ−ϕ√

2 . We denote the first group U(1)θ and the
second U(1)ϕ. We take charge conjugation to act by

C =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , (A.4)

which we see negates α in all the above formulas when we conjugate by it. It combines with
the U(1)’s above to form the symmetry (U(1)θ ×U(1)ϕ)⋊ ZC

2 of the whole circle branch.
There are various symmetries of the SU(2)1 point that might be called T-duality. An

SO(4) matrix exchanging U(1)ϕ and U(1)θ takes the form 0 A2×2

B2×2 0

 . (A.5)
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For instance, one which appears in [60] is a π-rotation generated by the current cosXR:
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , (A.6)

which is anomalous and squares to the central element, while in (3.6) we use

T =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 . (A.7)

The decomposition of the Hilbert space into SO(4) representations may be found in [88],
⊕

s,s̄∈Z
s+s̄∈2Z

(
s

2 ,
s̄

2

)
⊗
(
s2

4 ,
s̄2

4

)
, (A.8)

where the first part denotes the SU(2) × SU(2) representation, and the second part the
Virasoro representation, ie. h = s2

4 , h̄ = s̄2

4 . Recall an operator of momentum n and winding
w has s = n + m, s̄ = n − m.

A.2 Chiral anomaly and D8 symmetry

When we vary the radius away from the SU(2)1 point, the SO(4) symmetry is broken down
to the subgroup

Gbos = (U(1)θ ×U(1)ϕ)⋊ ZC
2 , (A.9)

where U(1)θ (resp. U(1)ϕ) is embedded as the top left (resp. bottom right) 2× 2 block of
SO(4), and C is charge conjugation defined above.

The anomaly is captured by the Euler class of the fundamental representation V4,

e(V4) ∈ H4(BSO(4),Z) . (A.10)

To restrict the above anomaly to Gbos, we need to equivalently study the restriction of the
representation V4 to Gbos. It is seen to split into a sum of the two O(2) fundamentals of
the two 2 × 2 blocks V4 = V θ

2 ⊕ V ϕ
2 ,

e(V4) = e(V θ
2 )e(V

ϕ
2 ) . (A.11)

Let us consider gauging C at a generic radius. The commutant of C in Gbos is generated
by the π-rotations

(−1)n =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ∈ SO(4) , (A.12)
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and

(−1)w =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ∈ SO(4) , (A.13)

as well as C itself. Thus our fundamental SO(4) bundle splits over the classifying space
of the corresponding Z2 gauge fields An, Aw, and C, respectively as An + C, An, Aw + C,
and Aw, so the Euler class is

e(V4) = (An + C)An(Aw + C)Aw = A2
nA

2
w + C2AnAw + CA2

nAw + CAnA
2
w

= 1
2d(AnA

2
w + CAnAw) .

(A.14)

The last equality allows us to identify the anomaly with the element

1
2AnA

2
w + 1

2CAnAw ∈ H3(BZ3
2,U(1)) . (A.15)

The first piece is the familiar Z2 shadow of the chiral anomaly, while the second piece causes
symmetry transmutation when we gauge C to go to the orbifold. Indeed, in that case we
find that the Zn

2 × Zw
2 commutant becomes D8 because of the extension class AnAw which

appears in the cubic piece. This is the symmetry at a generic orbifold point

Gorb = D8 . (A.16)

In terms of the presentation

D8 = ⟨r, s | r4 = s2 = 1, srs = r−1⟩ , (A.17)

we can write the two lifts of Zn
2 and Zw

2 as s and sr. Meanwhile the magnetic symmetry
is represented as r2.

In fact, whenever a symmetry such as C only appears in a linear term in the anomaly
polynomial, the result is a kind of symmetry transmutation [42, 48]. To be precise, we
introduce the Z2 gauge field M of the magnetic symmetry. It satisfies

dM = AnAw , (A.18)

which leads to the D8 group as claimed. Furthermore, and key for us is that this allows
us to write the chiral anomaly as a counterterm:

1
2AnA

2
w = d

(1
2MAw

)
. (A.19)

There are two choices here, which are evidently exchanged by T duality, since we may also take

1
2AnA

2
w = d

(1
2MAn + 1

4AnAw

)
. (A.20)

These also differ by the unique choice of D8 discrete torsion, which may be written as

1
2MAn + 1

2MAw + 1
4AnAw . (A.21)
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A.3 The KT point

The T-duality on the circle branch exchanges U(1)θ and U(1)ϕ but commutes with C. It thus
descends to a duality of the orbifold which switches the lifts of the Z2 subgroups of each of
these U(1)’s, hence it acts by the outer automorphism of D8 which exchanges s and sr. This
duality fixes the Kosterlitz-Thouless (KT) point, which is the ZC

2 orbifold of the SU(2)1 point,
and we expect at this point the D8 symmetry is enhanced. In fact the KT point is a junction
between the circle and Z2 orbifold branches and we will find the symmetry is enhanced to
Gbos = (U(1)θ̃ ×U(1)ϕ̃)⋊ ZC̃

2 , where θ̃ and ϕ̃ are the circle branch fields describing the KT
point and C̃ is the charge conjugation θ̃ 7→ −θ̃, ϕ̃ 7→ −ϕ̃. We reserve the untilded fields ϕ, θ
to describe the circle branch fields at the SU(2)1 point.

The D8 symmetry is embedded into Gbos with sr acting as C̃ and r acting as a π
2 rotation

in U(1)θ̃. The T-duality of the orbifold branch is realized by a π
4 rotation in U(1)θ̃ (which

swaps s and sr). We derive this as follows.

At the SU(2)1 point, we represent the SO(4) group elements in the basis (3.7). The
normalizer of ZC

2 is enlarged to (U(1)×U(1))⋊ Z2. In particular, we see it includes a full
rotation group SO(2)a in the 1− 3 coordinates and another SO(2)b in the 2− 4 coordinates.
The elements (−1)n, (−1)w we studied above act as simultaneous reflections in these 2× 2
blocks, while their product, as well as C, is in the center. It is convenient to exchange the
2nd and 3rd coordinates so we have:

SO(2)a =


⋆ ⋆ 0 0
⋆ ⋆ 0 0
0 0 1 0
0 0 0 1

 ⊂ SO(4) , (A.22)

SO(2)b =


1 0 0 0
0 1 0 0
0 0 ⋆ ⋆

0 0 ⋆ ⋆

 ⊂ SO(4) , (A.23)

(−1)n =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 ∈ SO(4) , (A.24)

(−1)w =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ∈ SO(4) , (A.25)
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C =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ∈ SO(4) , (A.26)

T =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ∈ SO(4) . (A.27)

Note that C ∈ SO(2)a. The full normalizer group is (SO(2)a × SO(2)b) ⋊ Zn
2 .

In fact, we can re-express the SU(2)1 point in terms of fields ϕ′, θ′ related to ϕ, θ by an
SO(4) rotation which produces the change of basis used above. In these variables, SO(2)a

and SO(2)b act as shifts of ϕ′ and θ′, respectively. C is a π rotation in SO(2)a, and when we
gauge it the effect is to double the radius, such that the new circle branch variables at the
KT point may be expressed as ϕ̃ = ϕ′/2, θ̃ = 2θ′ (compare with section 3.3.1). The resulting
symmetry group is Gbos = (U(1)θ̃ × U(1)ϕ̃) ⋊ ZC̃

2 as claimed.

B Parafermions and self-dualities

In this appendix, we discuss in detail the symmetries in the Zk parafermion theory of [59]
and the relation to TDLs in the SU(2)k/U(1) coset CFT upon bosonization.

B.1 The Zk parafermions

As briefly reviewed in section 2.6, the fundamental fields in the Zk parafermion theory consist
of the chiral parafermions ψn(z) and its antichiral partners ψ̄n(z̄) which obey fractional
mutual statistics as in figure 8. The parafermions ψn generate a chiral algebra that extends
the Virasoro algebra at central charge c (and similarly for the antichiral fields ψ̄n),

ψn(z)ψm(0) = cn,m

z∆n+∆m−∆m+n
×


ψm+n(0) +O(z) for n+m < k ,

ψn−m(0) +O(z) for m < n and m+ n > k ,

1 + 2∆n
c z2T (z) +O(z3) for m < n and m+ n = k .

(B.1)
In particular ψn are Virasoro primaries with respect to the stress tensor T (z) and their
scaling dimensions ∆n satisfy

∆n +∆m −∆m+n = 2mn
k

modZ , (B.2)

as required for the mutual statistics of the parafermions. The parafermion algebra is completely
specified by (c,∆k) and the OPE coefficients cm,n in (B.1), which are subjected to constraints
from associativity. There are infinitely many solutions to these constraints [59]. Here we
focus on the simplest parafermion theories given by

c = 2(k − 1)
k + 2 , ∆k = n(k − n)

k
, (B.3)
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and the explicit form of cn,m can be found in [59] which is not important for our discussion
here. The bosonization of this parafermion theory corresponds to the SU(2)k/U(1) coset
CFT which we review in the following.

B.2 The SU(2)k/U(1) coset CFT

The SU(2)k/U(1) coset CFT is constructed by taking a quotient of the SU(2)k WZW CFT
by the current subalgebra U(1)2k. The resulting theory has central charge

c = 2(k − 1)
k + 2 , (B.4)

and follows an ADE classification [74] which is inherited from a choice of modular invariant
in the parent SU(2)k WZW CFT. Here we will focus on the diagonal modular invariant for
the SU(2)k/U(1) coset which is often referred to as the Ak+1 type.32

Physically the coset construction amounts to gauging an anomaly-free U(1) subgroup
of the SO(4) = (SU(2)L × SU(2)R)/Z2 global symmetry in the WZW model. Such a U(1)
subgroup is unique up to conjugation by elements in SO(4) and commonly referred to as the
U(1)V vector subgroup, whose commutant in SO(4) is a U(1)A axial subgroup.

In general, potential global symmetries of a gauge theory with continuous gauge group G

arise from the quotient NG(Ĝ)/G of the normalizer of G in the symmetry Ĝ of the ungauged
theory. Here the normalizer of U(1)V in SO(4) is

NU(1)V
(SO(4)) = (U(1)V ×U(1)A)⋊ Z2 , (B.5)

where the Z2 acts on both U(1) factors by complex conjugation. However the ’t Hooft anomaly
of the WZW model governed by the anomaly four-form I4 = ke4(SO(4)) induces an Adler-
Bell-Jackiw (ABJ) anomaly for NU(1)V

(SO(4))/U(1)V upon gauging U(1)V . Consequently,
the global symmetry of the coset theory is33

GSU(2)k/U(1) = Zk ⋊ Z2 = D2k . (B.6)

Coset CFTs are in general RCFTs with respect to certain chiral algebras that descend
from the parent current algebras by taking the commutant of the subalgebras that we gauge.
Here the SU(2)k/U(1) coset CFT bosonizes the Zk parafermions, and consequently the
relevant chiral algebra Vk ≡ V(SU(2)k/U(1)) is also an integer-spin subalgebra of the chiral
parafermion algebra generated by ψn [89–94],

Vk =



W (2) ∼= Virc= 1
2

k = 2 ,

W (2, 3) k = 3 ,
W (2, 3, 4) k = 4 ,
W (2, 3, 4, 5) k ≥ 5 ,

(B.7)

32The coset CFTs with non-diagonal modular invariants can be obtained from gauging a symmetric Frobenius
algebra in the diagonal CFT at special k [12]. For SU(2)2k−4/U(1) CFT of the Dk type, this amounts to
gauging the Z2 center of the symmetry (B.6) in the A2k−3 type coset CFT, and the resulting theory has
D2k−4 × ZM

2 global symmetry with a mixed anomaly between the two factors [42].
33For k = 2 which corresponds to the Ising CFT, the second Z2 factor in (B.6) acts trivially and the faithful

global symmetry is just Zk=2.
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where W (2, 3, . . . ) denotes a W-algebra with strong generators of spins 2, 3 and so on.34

The primary operators in the coset CFT with respect to Vk (and its anti-chiral partner) are
obtained from the SU(2)k current primaries Φj,j̄

m,m̄ by factoring out U(1)2k charged states
which can be parametrized by a compact boson (XL, XR) at radius R =

√
2k [74],35

Φj,j̄
m,m̄ = ϕj,j̄

m,m̄(z)e
2i√
2k

(mXL(z)+m̄XR(z̄))
. (B.8)

The coset primary is denoted by ϕj,j̄
m,m̄ and has scaling dimensions,

(h, h̄) =
(
j(j + 1)
(k + 2) −

m2

k
,
j̄(j̄ + 1)
(k + 2) −

m̄2

k

)
, for |m| < j and |m̄| < j̄ . (B.9)

With respect to the global symmetry (B.6) of the coset CFT, the operator ϕj,j̄
m,m̄ carries Zk

charge m + m̄ and transforms to ϕj,j̄
−m,−m̄ under the Z2 conjugation.36 It is convenient to

extend the range of the m, m̄ indices with the identifications

ϕj,j̄
m,m̄ = ϕ

k/2−j,k/2−j̄
k/2+m,k/2+m̄ = ϕj,j̄

m+k,m̄ = ϕj,j̄
m,m̄+k . (B.10)

Consequently we use the following convenient set of indices (j,m) with m + j ∈ Z to
parameterize the coset primaries,

Even k {(j,m)} =
{
0 ≤ j ≤ k − 2

4 ,−j ≤ m ≤ k − j − 1
}
∪
{
j = k

4 ,−j ≤ m ≤
k

2 − j − 1
}
,

Odd k {(j,m)} =
{
0 ≤ j ≤ k − 1

4 ,−j ≤ m ≤ k − j − 1
}
, (B.11)

and similarly for the antichiral indices (j̄, m̄). There are k(k+1)
2 independent primaries on

each side. The chiral fusion rule of these primary operators is

ϕj1
m1 ⊗ ϕ

j2
m2 =

min(j1+j2,k−j1−j2)⊕
j=|j1−j2|

ϕj
m1+m2 (B.12)

and similarly for the antichiral side.
The character for the coset chiral primary ϕj

m is often denoted by η(τ)c2j
2m(τ), which is

obtained from factorizing the SU(2)k characters χk
j (τ) in terms of the U(1)2k characters Kk

n(τ),

χk
j (τ, z) =

k∑
n=−k+1

η(τ)c2j
n (τ)Kk

n(τ) . (B.13)

The so-called string functions cℓ
n(τ) for ℓ − n ∈ 2Z satisfy the identities

cℓ
n = cℓ

n+2k = ck−ℓ
k+n = cℓ

−n (B.14)

34The chiral algebra Vk is invariant under the Zk symmetry of the coset CFT. Under the Z2 conjugation
in (B.6), each generator of Vk picks up a sign (−1)s depending on its spin s, similarly for the antichiral algebra.

35Here our convention is that j, j̄ = 0, 1
2 , . . . ,

k
2 label the SU(2) spins and m, m̄ ∈ Z/2 satisfy −j ≤ m ≤

j,−j̄ ≤ m̄ ≤ j̄.
36Note that j − j̄ ∈ Z irrespective of the choice of the ADE modular invariant [74] and thus m+ m̄ ∈ Z.

– 60 –



J
H
E
P
0
7
(
2
0
2
4
)
0
5
1

where the first three equalities follow from (B.10) and the last from the Z2 symmetry in (B.6).
The local operator content of the SU(2)k/U(1) CFT of the Ak+1 type consists of primaries

ϕj,j
m,m for (j,m) given in (B.11) and their Vk descendants.37 The torus partition function reads

Z(τ, τ̄) = |η(τ)|2
∑

(j,m)
|c2j

2m(τ)|2 . (B.15)

As explained in section 2.2, the SU(2)k/U(1) CFT contains obvious TDLs in the form
of Verlinde lines L(j,m) associated to each of the coset primaries above labelled by (j,m).
These TDLs preserve the extended Vk algebra (and its antichiral version) and follow the
same fusion rules as in (B.12), therefore furnishing a Rep(Vk) fusion category symmetry in
the coset CFT. In particular Rep(Vk) contains the Zk symmetry TDLs which correspond
to L(0,m) with m = 0, 1, . . . , k − 1. The full category symmetry of the coset CFT is much
richer and come from TDLs that only commute with a subalgebra of Vk that contains the
Virasoro subalgebra. This includes as independent generators, the Z2 conjugation symmetry
in (B.6) and also a duality defect N which generalizes the Kramers-Wannier duality of the
Ising CFT (see table 8).

While only the diagonal coset primaries appear as local operators in the Ak+1 type
SU(2)k/U(1) CFT, more general coset operators of the type ϕj,j

m,m̄ reside in the sector twisted
by an element a1 = m− m̄ ∈ Zk. They contribute to the twisted partition function with Zk

holonomies a1, a2 around the spatial and temporal cycles on T 2 respectively [74],

Z(τ, τ̄ ; a1, a2) =
1
2 |η(τ)|

2
k∑

n=−k+1

k∑
ℓ=0

ω(n+a1)a2cℓ
n+2a1(τ)c

ℓ
n(τ̄) . (B.16)

The twisted partition function satisfies

Z(τ, τ̄ ; a1, a2) =
1
k

∑
b1,b2∈Zk

Z(τ, τ̄ ; b1, b2)ωb1a2−b2a1 = 1
k

∑
b1,b2∈Zk

Z(τ, τ̄ ; b1, b2)ω̄b1a2−b2a1

(B.17)
which confirms the two self-dualities of the theory under Zk gauging with the bicharacter
in (2.15) given by χ±(a, b) ≡ ±2πab

k .

B.3 Operators and symmetries in the parafermion theory

Similar to the case of Majorana fermion, a general operator O in the parafermion theory
leads to a Zk valued monodromy for the parafermion field ψ1,

ψ1(e2πiz)O(0) = ωsψ1(z)O(0) (B.18)

and corresponds to a state in the Hilbert space HP F
s on S1 with the corresponding twisted

periodicity for ψ1. For k = 2, the relations to the usual fermionic Hilbert spaces are
HP F

0 = HF
NS and HP F

1 = HF
R .38

37In the main text, we denote the local operators ϕj,j
m,m as ϕj

m for convenience.
38Because of the nontrivial mutual statistics among ψn (see figure 8), the chiral parafermion ψ1 is not local

with respect to itself unless k = 2 and thus ψ1 (and general ψn) are not contained in HP F
0 .
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Zk × Z̄k ZC
2 ZS

2

ϕj
m,m̄ (m+ m̄,m− m̄) ϕj

−m,−m̄ (−1)m+jϕj
m,−m̄

ψn (n, n) ψk−n (−1)nψn

ψ̄n (n,−n) ψ̄k−n ψ̄k−n

σn (n, 0) σk−n µn

µn (0, n) µk−n σn

ϵr (0, 0) ϵr (−1)rϵr

Table 8. Global symmetries of the Zk parafermion theory.

Thanks to the bosonization/parafermionization map (2.31), we can describe the
parafermion operators using the coset primaries ϕj,j̄

m,m̄ reviewed in the last section. We
also impose an additional constraint j = j̄ which is consistent with the OPE and write
for simplicity

ϕj
m,m̄ ≡ ϕ

j,j
m,m̄ . (B.19)

In particular, the parafermion fields in section B.1 are realized by

ψn ≡ ϕ0
n,0 , ψ̄n ≡ ϕ0

0,n . (B.20)

The mutual statistics for two such operators (generalizing figure 8) is

ϕj
m,m̄(z, z̄)ϕj′

m′,m̄′(w, w̄) = ωm̄m̄′−mm′
ϕj′

m′,m̄′(w, w̄)ϕj
m,m̄(z, z̄) . (B.21)

Consequently, the operators corresponding to the states in the twisted parafermion Hilbert
space HP F

s are ϕj
s/2,m̄. There are two distinguished operators in each HP F

s which are a
pair of parafermion primaries

σs = ϕ
s/2
s/2,s/2 , µs = ϕ

s/2
s/2,−s/2 , (B.22)

that generalize the order and disorder spin operators for the Majorana fermion and its
bosonization, the Ising CFT at k = 2. All other operators arise from consecutive actions of
the modes of the basic parafermions ψ1, ψ̄1 on these (generalized) spin operators (including
the identity operator at s = 0) [59]. In particular, they include energy (thermal) operators
ϵr for r = 1, 2, . . . ,

⌊
k
2

⌋
,

ϵr = ϕr
0,0 . (B.23)

The full global symmetry of the parafermion theory is,

GP F = (Zk × Z̄k)⋊ (ZC
2 × ZS

2 ) , (B.24)

where ZC
2 and ZS

2 act on the Zk× Z̄k by conjugating and swapping the two factors respectively.
The operators of the parafermion theory transform under (B.24) as summarized in table 8.
Here Z̄k is the generalization of the (−1)F symmetry at k = 2, while Zk is identified with the
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ZB
k symmetry of the bosonized theory.39 The bosonization of the parafermion theory amounts

to summing over Z̄k twisted sectors and projecting to the Z̄k invariant states. Consequently,
the bosonized theory only contain operators of the form ϕj

m,m, which constituents the diagonal
modular invariant (of the Ak+1 type) for the SU(2)k/U(1) coset CFT. The other more general
parafermion operators carry nonzero Z̄k charges reside in the ZB

k twisted sectors, as reviewed
in the last section.

The full global symmetry of the bosonic SU(2)k/U(1) coset CFT is given in (B.6) and
we see the Z2 conjugation is also inherited from the ZC

2 symmetry in the parafermion theory.
The ZS

2 symmetry in (B.24) however does not lead to an ordinary symmetry in the bosonized
theory. For k = 2, this is simply the left fermion parity (−1)FL which is known to generate
the Kramers-Wannier duality under bosonization. Here we will see that for general k, the
ZS

2 symmetry of the Zk parafermions corresponds to a generalized Kramers-Wannier duality
for SU(2)k/U(1) coset CFTs, namely self-duality under gauging the ZB

k symmetry with the
bicharacter χ+(a, b) = 2πab

k , as evident from the first equality in (B.17) satisfied by the torus
partition function in general ZB

k background.
The parafermionic partition function with the paraspin structure (s1, s2) on T 2 is obtained

from (2.31) applied to (B.16) [57],

ZP F (τ, τ̄ ; s1, s2) =
1
2 |η(τ)|

2
k−1∑
a=0

k∑
ℓ=0

ω−(a+s1)s2
(
cℓ

s1(τ)c
ℓ
s1+2a(τ̄) + cℓ

s1+k(τ)cℓ
s1+k+2a(τ̄)

)
,

(B.25)
which counts the states in the twisted sector HP F

s1 with an insertion of the Zk group element
corresponding to s2 along the spatial cycle of the T 2. The condition (2.35) for self-duality in
the parafermion theory, after projecting to sectors with definite Z̄k charges, simply requires
a symmetry between states of charge q and s− q in the twisted sector HP F

s , which follows
from the ZS

2 symmetry in table 8. Furthermore, the ZS
2 symmetry exchanges the order spin

operators σn and disorder spin operators µn, which is expected for the Zk duality since the
latter live in the ZB

k twisted sector of the bosonic coset CFT. Finally the ZB
k symmetric

operators (i.e. the energy operators ϵr) also carry definite parity under the duality [95]. The
duality defect is not a Verlinde line in the SU(2)k/U(1) coset CFT since ZS

2 acts nontrivially
on the chiral algebra Vk (B.7). Under the duality, all left-moving generators are invariant,
whereas on the right-moving side, the generators of spin ℓ transform by a sign (−1)ℓ. This
needs to be taken into account when writing down the duality twisted partition functions of
the coset CFT. A similar analysis as above applies to the diagonal Z2 ⊂ ZC

2 × ZS
2 symmetry

which leads to the condition (2.37), corresponds to the second self-duality in the coset CFT,
and explains the second equality in (B.17). For this latter self-duality, it is the left-moving
chiral algebra generators that transform with a sign (−1)ℓ.

B.4 The duality defects and Zk Tambara-Yamagami symmetries

As explained in the last section, the ZS
2 symmetry generator S of the Zk parafermions, upon

bosonization, gives rise to a Zk duality defect N . For k > 2 the same procedure also works
for the other chiral symmetry CS where C generates the ZC

2 in (B.24). Therefore we have
39For notational simplicity, ZB

k and ZC
2 are denoted as Zk and Z2 in the last section.
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in fact two such duality defects N and CN in the SU(2)k/U(1) coset CFT, which lead to
the two equalities between the Zk twisted partition functions in (B.17) following the general
discussion in section 2.4. Since C acts as an automorphism on Zk, the two duality defects
have identical fusion rules and generate two Zk TY symmetries.

Such fusion categories are classified in [39]. For k > 2, they are parametrized by the
bicharacter eiχ(a,b) = ωab where ω is a primitive k-root of unity and the Frobenius-Schur
indicator ϵ = ±. Comparing the Zk and Z̄k charges of the order and disorder spin operators
given in table 8 that are related by the parafermionic symmetries S and CS, we see that the
corresponding bicharacters for the duality defects N and CN are χ+ and χ− respectively
(see section 2.4). Below we provide further evidence that the TY symmetries in the coset
CFT correspond to the two categories TY(Zk, χ±, 1) (see table 4).

Firstly, the two duality TDLs N and CN must have the identical FS indicator but
conjugate bicharacters. The former follows since C has trivial F-symbols (no ’t Hooft anomaly)
whereas the latter can be derived from F-moves as in [16] (see figure 13).40 Next, the spin
spectrum in the defect Hilbert space HN (or HCN ) of the duality TDL is constrained by
both χ and ϵ. For χ = χ±, the spin selection rules are given in (3.45),

e4πis =

ϵe
± πi

4k
(2n+1)2

e∓πi/4 k ∈ 2Z ,
ϵe±

πi
k

n2
e∓πi/4 k ∈ 2Z+ 1 .

(B.26)

Therefore knowledge of the partition function for the defect Hilbert space HN can be used
to fix ϵ. For k = 2, 3, by inspecting the spin spectrum of HN in the Ising and 3-state Potts
CFT, one finds that ϵ = 1 [14]. For k = 4, we deduce that ϵ = 1 from the bootstrap analysis
in section 3.3.4. We conjecture that the duality defects for general k in the SU(2)k/U(1)
coset CFT have ϵ = 1. This can be proven for example by working out the duality twisted
partition functions Z1N and we leave that to the interested readers.

C c = 1 CFT along the orbifold branch and D8 discrete gauging

At a generic point along the orbifold branch of the c = 1 moduli space, the CFT has D8
global symmetry. Here we consider discrete gauging by subgroups of D8.

We adopt the standard representation D8 = ⟨r, s|r4 = s2 = (sr)2 = 1⟩, whose conjugacy
classes and corresponding stabilizers are

{1} : D8 ,

{r2} : D8 ,

{s, r2s} : Z2 × Z2 = {1, r2, s, r2s} ,
{rs, r3s} : Z2 × Z2 = {1, r2, rs, r3s} ,
{r, r3} : Z4 = {1, r, r2, r3} .

(C.1)

The distinct gaugings of the CFT will be labeled by subgroups G ⊂ D8 up to conjugation,
and possible discrete torsion classes from H2(G,U(1)) which we will refer to as ι(G) ∈ Z2.

40We note that these relations between the F-symbols of the underlying fusion categories do not depend on
specifics of the underlying CFT and it would be interesting to understand more general relations of this type.
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g2

CN

g1

g2

g1

C

N CN

g2

g1

C

NCN

g2
C

NCN

g1

g2

CN

g1

eiχN (g1,g−1
2 )eiχCN (g1,g2)

Figure 13. Two sequences of F-moves that go from the TDL configuration in the leftmost figure to
the top figure. The equivalence between them relates the bicharacters associated to the two duality
defects N and CN by eiχCN (g1,g2) = eiχN (g1,g−1

2 ) = e−iχN (g1,g2).

In particular, we have 3 conjugacy classes of Z2 subgroups, 2 conjugacy classes of Z2 × Z2
subgroups (which we will label as A and B types) and 1 conjugacy class of Z4 subgroup. As
we will see, depending on these data, the discrete gauging may map one point on the orbifold
branch with partition function Zorb(R1) to a point on the unorbifolded branch Zcirc(R2) or
another point on the orbifold branch Zorb(R2). Let us briefly summarize our findings below
and the details will be giving in the subsequent sections.

Zorb(R)
Zr2

2−−→ Zcirc(R) ,

Zorb(R)
Zs

2−→ Zorb(2R) , Zorb(R)
Zsr

2−−→ Zorb(R/2) ,

Zorb(R)
(Z2×Z2)A−−−−−−→

ι=0
Zcirc(2R) , Zorb(R)

(Z2×Z2)B−−−−−−→
ι=0

Zorb(R) ,

Zorb(R)
(Z2×Z2)A−−−−−−→

ι=1
Zorb(R) , Zorb(R)

(Z2×Z2)B−−−−−−→
ι=1

Zcirc(2R) ,

Zorb(R)
Z4−→ Zorb(R) ,

Zorb(R)
D8−−→
ι=0

Zorb(2R) , Zorb(R)
D8−−→
ι=1

Zorb(R/2) .

(C.2)

Note that T-duality acts on this set of transformation rules by swapping A and B, s and
sr, ι = 0 and ι = 1.
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C.1 The D8 twisted torus partition functions

We label the torus partition function in the ra twisted sector with a srb symmetry line inserted
along the spatial cycle as Zab̄. Similarly we define the twisted partition functions Zab, Zāb̄, Zāb.

Let Zαβ
γδ denote twisted partition function of the (unorbifolded) c = 1 compact boson

at radius R:

Zαβ
γδ (τ,R, ω) =

1
|η|2

∑
n,m∈Z

ω(2n+γ)(2m+δ)q
1
2

(
n+α/2

R
+ (m+β/2)R

2

)2

q̄
1
2

(
n+α/2

R
− (m+β/2)R

2

)2

, (C.3)

with ω = e
πi
2 . Under T and S transformations, they transform as

Zαβ
γδ (τ + 1, R, ω) = ω−αδ−βγZα+γ,β+δ

γδ (τ,R, ω) ,

Zαβ
γδ (−1/τ,R, ω) = ω(α−γ)(β−δ)+2αβZγδ

αβ(τ,R, ω) .
(C.4)

We also recall [78]

W ≡ 1
η

∑
r∈Z

(−1)rqr2
, W± ≡

1
η

∑
r∈Z

(±1)rq(r+ 1
4)

2
. (C.5)

which transform as

T :


√

1
2W (τ + 1)
W+(τ + 1)
W−(τ + 1)

 =


e−2πi/24 0 0

0 eπi/24 0
0 0 eπi/24



√

1
2W (τ)
W−(τ)
W+(τ)

 ,

S :


√

1
2W (−1/τ)
W+(−1/τ)
W−(−1/τ)

 =


0 1 0
1 0 0
0 0 1



√

1
2W (τ)
W+(τ)
W−(τ)

 .

(C.6)

The explicit forms of these twisted torus partition functions of the Z2 orbifold are

Z00̄ =
1
2Z

10
00 +

1
2 |W |

2 , Z0̄0 =
1
2Z

00
10 + |W+|2 , Z0̄0̄ =

1
2Z

10
10 + |W−|2 ,

Z20̄ =
1
2Z

10
00 −

1
2 |W |

2 , Z0̄2 =
1
2Z

00
10 −|W+|2 , Z0̄2̄ =

1
2Z

10
10 −|W−|2 ,

Z01̄ =
1
2Z

01
00 +

1
2 |W |

2 , Z1̄0 =
1
2Z

00
01 + |W+|2 , Z21̄ =−

1
2Z

01
00 +

1
2 |W |

2 , Z1̄2 =Z3̄2 =−
1
2Z

00
01 + |W+|2 ,

Z1̄1̄ =
1
2Z

01
01 + |W−|2 , Z3̄1̄ =−

1
2Z

01
01 + |W−|2 ,

Z00 =
1
2Z

00
00 +

1
2 |W |

2+ |W+|2+ |W−|2 , Z20 =
1
2Z

00
00 −

1
2 |W |

2+ |W+|2−|W−|2 ,

Z02 =
1
2Z

00
00 +

1
2 |W |

2−|W+|2−|W−|2 , Z22 =
1
2Z

00
00 −

1
2 |W |

2−|W+|2+ |W−|2 ,

Z10 =Z30 =
1
2Z

00
11 + |W+|2 , Z01 =Z03 =

1
2ω

−1Z11
00 +

1
2 |W |

2 ,

Z12 =−
1
2Z

00
11 + |W+|2 , Z21 =

1
2ωZ

11
00 +

1
2 |W |

2 ,

Z13 =−
1
2Z

11
11 + |W−|2 , Z23 =

1
2ωZ

11
00 +

1
2 |W |

2 ,

Z31 =−
1
2Z

11
11 + |W−|2 , Z32 =−

1
2Z

00
11 + |W+|2 ,

Z11 =
1
2Z

11
11 + |W−|2 , Z33 =

1
2Z

11
11 + |W−|2 . (C.7)
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Note the following identities since Z(g, h) = Z(cgc−1, chc−1),

Z10 = Z30 , Z1̄0 = Z3̄0 , Z0̄0 = Z2̄0 , Z0̄2 = Z2̄2 , Z̄̄12 = Z3̄2 ,

Z2̄2̄ = Z0̄0̄ , Z0̄2̄ = Z2̄0̄
(C.8)

and that under S-transform

Z11(−1/τ,−1/τ̄) = Z31(τ, τ̄) , (C.9)

since the TDLs are oriented.

C.2 Z2 gauging

The Z2 subgroups of D8 fall into 3 conjugate classes whose representatives are generated
by r2 (center Z2), s or rs.

The center Z2 orbifold returns the original partition function between Z2 orbifold

Zr2
Z2(R) =

1
2(Z00 + Z02 + Z20 + Z22) = Z00

00 (R) = Zcirc(R) . (C.10)

The reflection Z2 orbifold preserves the orbifold branch but increases or decreases R by
2 respectively

Zs
Z2(R) =

1
2(Z00 + Z00̄ + Z0̄0 + Z0̄0̄)

= 1
4(Z

00
00 + Z10

00 + Z00
10 + Z10

10 ) +
1
2 |W |

2 + |W+|2 + |W−|2 = Z(2R) ,

Zrs
Z2(R) =

1
2(Z00 + Z01̄ + Z1̄0 + Z1̄1̄)

= 1
4(Z

00
00 + Z01

00 + Z00
01 + Z01

01 ) +
1
2 |W |

2 + |W+|2 + |W−|2 = Z(R/2) .

(C.11)

Here we have used

Z00
00 +Z01

00 +Z00
01 +Z01

01

= 1
|η|2

∑
n,m∈Z

(1+(−)n)q
1
2( n

R
+ mR

2 )2
q̄

1
2( n

R
−mR

2 )2
+(1+(−)n)q

1
2

(
n
R

+ (m+1/2)R
2

)2

q̄
1
2

(
n
R
− (m+1/2)R

2

)2

,

= 2
|η|2

∑
n,m∈Z

q
1
2( 2n

R
+ mR

4 )2
q̄

1
2( 2n

R
−mR

4 )2
. (C.12)

C.3 Z4 gauging

The orbifold branch is point-wise invariant under Z4 gauging

ZZ4(R) =
1
4

3∑
a,b=0

Zab =
1
4(2Z

00
00 + 2|W |2 + 4|W+|2 + 4|W+|2) = Z00(R) = Z(R) (C.13)

– 67 –



J
H
E
P
0
7
(
2
0
2
4
)
0
5
1

C.4 Z2 × Z2 gauging

There are two Z2 × Z2 subgroups of D8 up to conjugation. We will refer to them as

(Z2 × Z2)A = {1, r2, s, r2s} ,
(Z2 × Z2)B = {1, r2, rs, r3s} .

(C.14)

Furthermore H2(Z2 × Z2,U(1)) = Z2, so we may couple a nontrivial SPT when gauging.

Trivial SPT. In one case the orbifold branch is mapped to the unorbifolded branch with
R doubled

ZA
Z2×Z2 = 1

2(Z00̄ + Z20̄ + Z0̄0 + Z0̄2 + Z0̄0̄ + Z0̄2̄) +
1
4(Z00 + Z02 + Z20 + Z22) ,

= 1
2(Z

00
00 + Z00

10 + Z10
00 + Z10

10 ) ,

= Z00
00 (2R) = Zcirc(2R) ,

(C.15)

while in the other case the orbifold branch is invariant

ZB
Z2×Z2(R) =

1
2(Z01̄ + Z21̄ + Z1̄0 + Z1̄2 + Z1̄1̄ + Z1̄3̄) +

1
4(Z00 + Z02 + Z20 + Z22) ,

= 1
2(Z

00
00 + Z00

10 + Z10
00 + Z10

10 ) ,

= 1
2Z

00
00 + 1

2 |W |
2 + |W+|2 + |W−|2 = Z(R) .

(C.16)

Nontrivial SPT. In one case, the orbifold branch is point-wise invariant

ZA⋆
Z2×Z2(R) =

1
2(Z00̄ − Z20̄ + Z0̄0 − Z0̄2 + Z0̄0̄ − Z0̄2̄) +

1
4(Z00 + Z02 + Z20 + Z22) ,

= 1
2(Z

00
00 + Z00

10 + Z10
00 + Z10

10 )− Z20̄ − Z0̄2 − Z0̄2̄ ,

= Z00
00 (2R)− Z20̄ − Z0̄2 − Z0̄2̄ ,

= 1
2(Z

00
00 + |W |2 + |W+|2 + |W−|2) = Z(R) ,

(C.17)

and in the other case, the orbifold branch is mapped to the unorbifolded branch with R doubled

ZB⋆
Z2×Z2(R) =

1
2(Z01̄ − Z21̄ + Z1̄0 − Z1̄2 + Z1̄1̄ − Z1̄3̄) +

1
4(Z00 + Z02 + Z20 + Z22) ,

= 1
2(Z

00
00 + Z00

10 + Z10
00 + Z10

10 ) = Z00
00 (2R) = Zcirc(2R) .

(C.18)

C.5 D8 gauging

Recall that the nonabelian G orbifold partition function involves sum over the conjugacy
classes of G and in each g twisted sector a insertion of projector consisting of stablizers
of g. Since H2(D8,U(1)) = Z2, we may consider coupling to a nontrivial SPT (discrete
torsion) when gauging.
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Trivial SPT.

ZD8 =
1
8

( 4∑
a=0

Z0a+
4∑

ā=0
Z0ā+

4∑
a=0

Z2a+
4∑

ā=0
Z2ā

)
+ 1
4(Z0̄0+Z0̄2+Z0̄0̄+Z0̄2̄)

+ 1
4(Z1̄0+Z1̄2+Z1̄1̄+Z1̄3̄)+

1
4

4∑
a=0

Z1a , (C.19)

= 1
2ZZ4 +

1
8

( 4∑
ā=0

Z0ā+
4∑

ā=0
Z2ā

)
+ 1
4(Z0̄0+Z0̄2+Z0̄0̄+Z0̄2̄)+

1
4(Z1̄0+Z1̄2+Z1̄1̄+Z1̄3̄) .

We can rewrite the above as a combination of partition functions from gauging subgroups of D8,

ZD8 = 1
2ZZ4 +

1
2Z

A
Z2×Z2 +

1
2Z

B
Z2×Z2 −

1
2Z

r2
Z2 . (C.20)

Hence
ZD8(R) = Z(R) + 1

2(Z
00
00 (2R)−Z00

00 (R)) = Z(2R) . (C.21)

Namely, the D8 gauging preserves the orbifold branch but doubles R.

Nontrivial SPT. The nontrivial SPT associated with the D8 discrete torsion has nontrivial
torus partition functions

ZSPT
āb = ib , ZSPT

ab̄
= i−a , ZSPT

āb̄
= ib−a . (C.22)

Consequently

Z⋆
D8 =

1
2ZZ4 +

1
4(Z00̄−Z20̄+Z01̄−Z21̄)+

1
4(Z0̄0−Z0̄2+Z0̄0̄−Z0̄2̄)+

1
4(Z1̄0−Z1̄2+Z1̄1̄−Z1̄3̄)

=ZD8−
1
2(Z20̄+Z21̄+Z0̄2+Z1̄2+Z1̄3̄+Z0̄2̄) , (C.23)

= 1
2 |W |

2+ |W+|2+ |W−|2+Z00
00 (R/2)=Z(R/2) .

Thus the D8 gauging with discrete torsion preserves the orbifold branch but halves R.

D Some lattice defects

D.1 Ising duality defect

Let us use our recipe from section 2.4 to define the Ising duality defect. We start with
the Hamiltonian

H = −
∑

j

ZjZj+1 +Xj , (D.1)

(X,Z etc are Pauli matrices) and apply the Rx =
∏

j Xj gauging procedure

Xj 7→ ZjZj+1 , (D.2)

and
Zj 7→

∏
0≤k≤j

Xk , (D.3)
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to all j ≥ 0. The Hamiltonian is invariant away from the resulting defect at j = 0, but
near it we have

X−1 7→ X−1 , (D.4)
Z−1Z0 7→ Z−1X0 , (D.5)

X0 7→ Z0Z1 , (D.6)
Z0Z1 7→ X1 , (D.7)

so we obtain

H ′ = −

∑
j≤−1

Zj−1Zj +Xj

− Z−1X0 −

∑
j≥1

Zj−1Zj +Xj

 , (D.8)

in agreement with [11, 41].
We see that H ′ enjoys two anti-commuting Z2 symmetries,

UL =

 ∏
j≤−1

Xj

Z0 , (D.9)

and

UR =

∏
j≥0

Xj

 , (D.10)

which we recognize as the left and right Z2 action in the duality twisted sector, with the
anti-commutation reflecting the nontrivial TY F-symbol.

D.2 Continuum of topological defects in Ising2

We begin with the XY chain

H = −
∑

j

XjXj+1 + YjYj+1 . (D.11)

This can be related to the Ising2 chain by gauging Rx =
∏

j Xj . In terms of the operator
algebra, this amounts to the transformation

Xj 7→ ZjZj+1 , (D.12)

and
Zj 7→

∏
k≤j

Xk , (D.13)

from which we obtain

H ′ = −
∑

j

ZjZj+2 + ZjXj+1Zj+2 . (D.14)

This is related to a more familiar Hamiltonian H ′′ after applying the cluster entangler
transformation

Xj 7→ Zj−1XjZj+1 , (D.15)

H ′′ = −
∑

j

ZjZj+2 +Xj , (D.16)
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0
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(
2
0
2
4
)
0
5
1

u± ϕ± χb σs τs

u± 1 1 2 ±n ±n
ϕ± 1 1 2(−1)b σrsn σrsn

χa 2 2(−1)a 4 cos πab
n2 0 0

σr ±n σrsn 0 δrsn
√
2 −δrsn

√
2

τr ±n σrsn 0 −δrsn
√
2 δrsn

√
2

Table 9. The modular S matrix for VD2n
multiplied by 2

√
2n for n ∈ 2Z.

for which the even and odd sites define two decoupled critical Ising chains.
To construct the symmetry defect for a rotation U(θ) =

∏
j e

iθZj/2, we apply this symmetry
to sites j > 0. The bond terms are unchanged except for the 01 bond, which becomes

− cos θ(X0X1 + Y0Y1)− sin θ(X0Y1 − Y0X1) . (D.17)

For θ ̸= 0, π, this defect is not invariant under the symmetry Rx, indeed RxU(θ)Rx = U(−θ).
As in section 2.5, we want to replace it with a sum of defects labelled by θ and −θ. We do
this by introducing an extra qubit at j = 1/2, and writing the modified bond

− cos θ(X0X1 + Y0Y1)− sin θ(X0Y1/2Y1 − Y0Y1/2X1) , (D.18)

with the new symmetry Rx = X1/2
∏

j Xj .
We gauge this symmetry as above and obtain

− cos θ(Z0Z1/2Z1Z2 + Z0Y1/2Z1Y2)− sin θ(Z0X1Z2 + Z0X1/2Z2) . (D.19)

If we then apply the cluster entangler, it becomes

− cos θ(Z0Z1/2Z1Z2 + Y1/2Z1Y2Z3)− sin θ(Z0Z1/2X1 +X1/2Z1Z2) . (D.20)

E Modular S matrices for nonabelian orbifolds

The modular S-matrices for nonabelian orbifolds of the SU(2)1 CFT were derived for G = D2n

in [77] and for G = A4, S4, A5 in [85]. Here for completeness we record their results after
correcting a number of typos. As explained in section 2.2, they determine the Verlinde
lines in these orbifold theories.

The SU(2)1/D2n CFT contains n2 + 7 chiral primaries with respect to the VD2n chiral
algebra denoted as

{u±, ϕ±, χa, σr, τr} (E.1)

with 1 ≤ a ≤ n2 − 1 and r = 1, 2. The vacuum representation corresponds to u+. The
modular S matrix takes slightly different forms for n even versus for n odd and are given
in table 9 and table 10 respectively. Here σrs = 2δrs − 1.
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1

u± ϕj χb σs τs

u± 1 1 2 ±n ±n
ϕ± 1 1 2(−1)b iσrsn iσrsn

χa 2 2(−1)a 4 cos πab
n2 0 0

σr ±n iσrsn 0 e
πi
4 σrsn −e

πi
4 σrsn

τr ±n iσrsn 0 −e
πi
4 σrsn e

πi
4 σrsn

Table 10. The modular S matrix for VD2n
multiplied by 2

√
2n for n ∈ 2Z+ 1.

uj j ϕj σ τ ω+
j ω−

j θ+
j θ−j

uj 1 3 2 6 6 4ωi 4ω̄i 4ωi 4ω̄i

j 3 9 6 −6 −6 0 0 0 0
ϕj 2 6 −4 0 0 −4ωi −4ω̄i 4ωi 4ω̄i

σ 6 −6 0 6
√
2 −6

√
2 0 0 0 0

τ 6 −6 0 −6
√
2 6

√
2 0 0 0 0

ω+
i 4ωj 0 −4ωj 0 0 4ᾱ4ω̄i+j 4α4ωi+j 4α2ω2i+j 4ᾱ2ω̄2i+j

ω−
i 4ω̄j 0 −4ω̄j 0 0 4α4ωi+j 4ᾱ4ω̄i+j 4ᾱ2ω̄2i+j 4α2ω2i+j

θ+
i 4ωj 0 4ωj 0 0 4α2ωi+2j 4ᾱ2ω̄i+2j 4ᾱωi+j 4αω̄i+j

θ−i 4ω̄j 0 4ω̄j 0 0 4ᾱ2ω̄i+2j 4α2ωi+2j 4αω̄i+j 4ᾱωi+j

Table 11. The modular S matrix for VA4 multiplied by 12
√
2.

The SU(2)1/A4 CFT contains 21 chiral primaries with respect to the VA4 chiral algebra
which are denoted as

{ui , j , ϕi , σ , τ , ω
±
i , θ

±
i } (E.2)

with i = 0, 1, 2. The vacuum representation corresponds to u0. The modular S matrix is
given in table 11. For convenience, we introduce the following parameters given by various
roots of unity,

ω = e
2πi

3 , α = e
πi
9 , β = e

πi
16 , ζ = e

2πi
5 . (E.3)

The SU(2)1/S4 CFT contains 28 chiral primaries with respect to the VS4 chiral algebra
which are denoted as

{u±, uf , j± , ϕ± , ϕf , µs , σ± , τ± , ωi , θi , αk , βk} (E.4)

with s = 1, 2, i = 0, 1, 2 and k = 0, 1, 2, 3. The vacuum representation corresponds to u+. The
modular S matrix is given in table 12 with the parameters ω, α, β as in (E.3), and in addition

ck = (−1)k12Reβ2 , sk = (−1)k12Im β2 ,

aij = 16Re ᾱ4ω̄i+j , bij = 16Reα2ω2i+j , dij = 16Re ᾱωi+j ,

qkl = 12Re β̄ik+l , rkl = 12Re β̄3il−k , skl = 12Re β̄9i−l−k .

(E.5)
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(
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1

u± uf j± ϕ± ϕf µs σ± τ± ωj θj αl βl

u± 1 2 3 2 4 ±12 6 6 8 8 ±6 ±6
uf 2 4 6 4 8 0 12 12 −8 −8 0 0
j± 3 6 9 6 12 ±12 −6 −6 0 0 ∓6 ∓6
ϕ± 2 4 6 −4 −8 0 0 0 −8 8 ±6

√
2 ∓6

√
2

ϕf 4 8 12 −8 −16 0 0 0 8 −8 0 0
µr ±12 0 ±12 0 0 12

√
2(−1)r+s 0 0 0 0 0 0

σ± 6 12 −6 0 0 0 6
√
2 −6

√
2 0 0 ±cl ±sl

τ± 6 12 −6 0 0 0 −6
√
2 6

√
2 0 0 ±sl ∓cl

ωi 8 −8 0 −8 8 0 0 0 aij bij 0 0
θi 8 −8 0 8 −8 0 0 0 bji dij 0 0
αk ±6 0 ∓6 ±6

√
2 0 0 ±ck ±sk 0 0 qkl rkl

βk ±6 0 ∓6 ∓6
√
2 0 0 ±sk ∓ck 0 0 rlk skl

Table 12. The modular S matrix for VS4 multiplied by 24
√
2.

The SU(2)1/A5 CFT contains 37 chiral primaries with respect to the VA5 chiral algebra
which are denoted as

{um , ϕk , σ , τ , ωi , θi , πm , ρm , λm , ξm} (E.6)

with m = 0, 1, 2, 3, 4, i = 0, 1, 2 and k = 0, 1, 2, 3. The vacuum representation corresponds
to u0. The modular S matrix is given in table 12 with g± = 6(1 ±

√
5) and

P 1
mn=Ree−

4πi
25 ζ2(n+m), P 2

mn=Ree−
2πi
25 ζ2n+m, P 3

mn=Ree−
8πi
25 ζ2n−m, P 4

mn=Ree−
6πi
25 ζ2(n−m),

R1
mn=Ree−

πi
25 ζn+m, R2

mn=Ree−
4πi
25 ζn−m, R3

mn=Ree−
3πi
25 ζn−2m, L1

mn=Ree
16πi

25 ζn+m,

L2
mn=Ree

12πi
25 ζ2m+n, Xmn=Ree

9πi
25 ζ2(n+m). (E.7)
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0
5
1

u0 u1 u2 u3 u4 ϕ1 ϕ2 ϕ3 ϕ4 σ τ ωj θj πn ρn λn ξn

u0 1 3 3 4 5 2 2 4 6 30 30 20 20 12 12 12 12
u1 3 9 9 12 15 6 6 12 18 −30 −30 0 0 g− g+ g+ g−

u2 3 9 9 12 15 6 6 12 18 −30 −30 0 0 g+ g− g− g+

u3 4 12 12 16 20 8 8 16 24 0 0 20 20 −12 −12 −12 −12
u4 5 15 15 20 25 10 10 20 30 30 30 −20 −20 0 0 0 0
ϕ1 2 6 6 8 10 −4 −4 −8 −12 0 0 −20 20 −g+ g− −g− g+

ϕ2 2 6 6 8 10 −4 −4 −8 −12 0 0 −20 20 −g− g+ −g+ g−

ϕ3 4 12 12 16 20 −8 −8 −16 −24 0 0 20 −20 −12 12 −12 12
ϕ4 6 18 18 24 30 −12 −12 −24 −36 0 0 0 0 12 −12 12 −12
σ 30 −30 −30 0 30 0 0 0 0 30

√
2 −30

√
2 0 0 0 0 0 0

τ 30 −30 −30 0 30 0 0 0 0 −30
√
2 30

√
2 0 0 0 0 0 0

ωj 20 0 0 20 −20 −20 −20 20 0 0 0 5
2aij

5
2bij 0 0 0 0

θj 20 0 0 20 −20 20 20 −20 0 0 0 5
2bji

5
2dij 0 0 0 0

πm 12 g− g+ −12 0 −g+ −g− −12 12 0 0 0 0 P 1
mn P 2

mn P 3
mn P 4

mn

ρm 12 g+ g− −12 0 g− g+ 12 −12 0 0 0 0 P 2
nm R1

mn R2
mn R3

mn

λm 12 g+ g− −12 0 −g− −g+ −12 12 0 0 0 0 P 3
nm R2

nm L1
mn L2

mn

ξm 12 g− g+ −12 0 g+ g− 12 −12 0 0 0 0 P 4
nm R3

nm L2
nm Xmn

Table 13. The modular S matrix for VA5 multiplied by 60
√
2.
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