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1 Introduction

A more precise understanding of algebras of operators in several contexts in quantum gravity
has been given much attention in recent years. Even though studying the algebra of the
operators of the semiclassical physics had already proven to be useful, for instance in the
background of a black hole, the Tomita Takesaki theory of the algebra of operators was used
in the reconstruction of the interior of a black hole [1], the renewed interest followed the
work of Leutheusser and Liu [2, 3]. They identified the algebra of operators of a CFT that is
thermally entangled with another CFT above the Hawking-Page temperature to be a type
III1 von Neumann algebra in the strict large N limit. This identification naturally led them
to propose an operator that is associated with an infalling observer and discuss the emergence
of time in the eternal black hole background in AdS. This was followed by several works of
Witten et al. [4–7], where gravitational interactions are added in some limited fashion to the
cases where matter does not gravitationally backreact, where the upshot can be summarized
to be the Lorentizan derivation of the generalized entropy of the semiclassical states, among
others. This is relevant given the role the entropy plays in the understanding of the black hole
information paradox and most of the recent applications of quantum information in quantum
gravity. Some other directions this analysis proceeded include understanding subregions in
several backgrounds, the de Sitter spacetime and Hilbert space, the role of the observer in de
Sitter and cosmology in general, progress towards understanding the presence/ absence of the
ensemble averaging for black holes in higher dimensions, background independent description
of the perturbative quantum gravity to mention few among many [8–14].

The key role of algebras was noticed even in the early days of quantum field theory in
curved spacetime [15]. The reason for this was the fact that the well understood quantization
procedures of a classical theory to a quantum theory faces serious problems when applied
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in curved spacetimes. In essence, there is no unique quantization of the classical theory,
rather one arrives at several unitarily inequivalent Hilbert spaces (see 3.1 for more discussion)
describing possibly ‘inequivalent’ quantum theories. This is persistent in particular when
the background geometries are open with no particular asymptotics (check [16] to see the
discussion of this issue in several geometries). The resolution is to consider the algebra of
operators in the algebraic quantum field theory sense instead, where such arbitrariness is
not present when we pass from the classical theory to the quantum theory. The issue is
quite similar to what we face as we move from special relativity, where there is a preferred
frame of reference, to general relativity where any frame of reference is equivalent to any
other, thus the theory should be described in a frame independent manner. The algebra of
operators for the quantum theory already includes the physical content of all the unitarily
inequivalent Hilbert space at once and is the correct way to describe the quantum theory.
Thus it is not quite naive to imagine the useful role played by the algebra of operators in
different limits of quantum gravity.

This article follows a similar spirit in that, we start with an algebra of operators then
we consider a particular useful representation of that algebra in different situations. This
representation is called the covariant representation [17–19] and it includes the representation
of the algebra that acts on a certain Hilbert space. But, in addition the symmetries or the
automorphisms of the algebra are also implemented as unitary operators on the Hilbert
space. For the obvious reason that symmetries are just changes in the our perspective that
should not change experimental results, they should be represented by unitary operators in
the Hilbert space and this is the only relevant representation for the algebra for physical
systems [20]. A related discussion can also be found in [21, 22].

Coming back to the recent developments in algebras and quantum gravity, a certain
construction called the crossed product construction has been used to go beyond the strict
GN → 0 limit. In most cases, this led to the change in the type of the von Neumann
algebra from a type III1 to type II, where a finite trace and entropy can be defined. But
still, it seems that this step is a bit mathematical and not physically clear. On the other
hand, the covariant representation of an algebra can be rigorously shown to be in one to
one correspondence with what is called a covariance algebra (see appendix A), of which the
crossed product algebra is an example [23]. Thus, in terms of the covariant representation,
the crossed product type II algebra can be understood in a physically intuitive way, which
is one of the goals the article hopes to accomplish.

We can also imagine a case where the vacuum of the Hilbert space breaks some of the
symmetries. These cases will lead to what we call proto quantum gravity Hilbert space which
is a Hilbert space not described by a quantum field theory on a curved spacetime even though
it arises in the strict GN → 0 limit. An example of such a Hilbert space was discussed in
the [6] and dubbed proto holographic black hole by the authors.

In section 2, we revise the relevant background discussion about algebra of operators with
out gravitational backreaciton. In section 3, we discuss what the covariant representation
of an algebra is and which algebra precisely we are talking about in the most general cases.
Then in the following section, we continue the discussion to proto QG Hilbert spaces and
covariant representations for the algebra of operators associated with subregions and an
observer’s worldline in any spacetime.
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2 No backreaction: review

2.1 The strict large N limit

Holography implies that the semiclassical physics in AdS is emergent from a low lying sector
of the boundary CFT. For a CFT containing a large central charge and operators that
factorize, called generalized free fields, there is a reorganization of the small number of these
degrees of freedom (compared to the central charge) that reproduces the gravitational theory
in AdS [24–28]. In fact this property of generalized free fields, that they obey an equation
of motion in a higher dimension even though they do not satisfy any equation of motion in
the CFT was well known even before the formulation of AdS/CFT [29]. But generalized
free fields are not fully self consistent CFTs by themselves and can only be understood as
a small sector of a bigger CFT. This property has been useful in understanding of how
gravity encodes information as a quantum error correcting code [30], granting the Hilbert
space they are acting on, the name the code subspace.

Specializing to N = 4 super Yang Mills in 4d in the ’t Hooft limit, the generalized free
fields will be the single trace operators with thermal or vacuum expectation value subtracted.
Their correlators factorize into two point functions in the large N limit where SU(N) is the
gauge group. We are interested in studying quantum field theory on the eternal black hole in
AdS, which is expected to be dual to two thermally entangled CFTs [31] above the Hawking
Page temperature. Thus we consider the Hilbert space H = HL ⊗HR, where HL and HR

are the Hilbert spaces of the left and right CFTs. We denote the set of all bounded and
linear operators acting on H by B(H). The generalized free fields, ÃL/R ⊂ B(H), acting
either on the left or right side form a von Neumann algebra in the strict large N limit (i.e,
1/N is set to zero), once their weak closure is taken. The weak closure is a requirement
to include any limit point for a Cauchy sequence of matrix elements, i.e, if for an ∈ ÃL/R,
limn→∞ ⟨ψ| an |χ⟩ = ⟨ψ| a |χ⟩, for all |ψ⟩ and |χ⟩ in H, then a must also be in ÃL/R. If
it had not been for the subtraction of the thermal expectation value in the definition the
generalized free fields, this algebra ÃL/R, would have described the entangled system in a
background independent way. But following [2, 3], we will specifically discuss the eternal
black hole at a given temperature. What Leutheusser and Liu did was to identify the Hilbert
space on the eternal black hole background at some temperature 1/β, Hβ

HH , with what is
called the GNS Hilbert space built on the thermofield double state of the same temperature,
which is distinct from H.

We consider the thermofield double state at inverse temperature β,

|Ψβ⟩ = 1√
Zβ

∑
i

e−βEi/2 |Ei⟩R |Ei⟩L (2.1)

where |Ei⟩ are the energy eigenstates. We can define an inner product on ÃR using |Ψβ⟩
in the large N limit, in particular,

⟨a|b|a|b⟩ = lim
N→∞

⟨Ψβ | ab |Ψβ⟩ , ∀a, b ∈ ÃR . (2.2)

Note that, if limN→∞ ⟨Ψβ |x†x |Ψβ⟩ = 0 for x ∈ ÃR, then it follows the Schwarz inequality
that |a⟩ ∼ |a+ x⟩. Let X be the set of all operators like x, then we have an equivalence class
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ÃR/X with an inner product. We can then interpret this set as a pre-Hilbert space, where
after we take the Hilbert space completion, becomes a Hilbert space. To take the Hilbert
space completion means to add all the limit points of a Cauchy sequence of states, {|ψn⟩}
in the pre-Hilbert space. We get the GNS Hilbert space, Hβ

GNS, after we take the Hilbert
space completion of the above equivalence class. Thus we have,1

Hβ
HH ≡ Hβ

GNS (2.3)

There is also a representation πβ of the operator algebra ÃR acting on Hβ
GNS,

πβ(c) |a⟩ = |ca⟩ , ∀c, a ∈ ÃR (2.4)

We will denote this representation by Aβ
R,0 (from now on we will only write the superscript

β when it is necessary) and it is identified with the bulk fluctuations on right exterior of
the eternal black hole geometry at temperature 1/β.

2.2 Modifications to HGNS

The first, and perhaps not so severe, modification to the operator algebras and the Hilbert
spaces is to include the contribution of the conserved charges acting on the bulk Hilbert spaces.
To illustrate this we consider HHH , discussed in the previous subsection, and the perturbative
limit of quantum gravity in the static patch of the deSitter spacetime, a maximally symmetric
spacetime with positive cosmological constant. The Hilbert space for the static patch of
deSitter, which we call HdS, is constructed like HHH with the action of the static patch bulk
fluctuations but on the background of the Bunch-Davies state of de Sitter. To identify the
conserved charges, we look at the symmetry of the ‘vacua’ of each Hilbert spaces which is seen
by an observer on the right exterior. For the eternal black hole the symmetry group observed
by each exterior is GHH = R × (Spin(4) × SU(4)R)/Z2 while for static patch of deSitter, it
is GdS = R × SO(d− 1). Let’s call the generators Qα ∈ gHH and Qβ ∈ gdS. One has to be
careful not to naively include these generators to the operator algebras on the Hilbert spaces
since they act only in the right exterior. Thus, they do not map a smooth Cauchy surface
to a smooth Cauchy surface, in particular, they create a singularity at the horizon. The
natural resolution is to impose a brick wall boundary condition close to horizon, renormalize
the charges before taking the limit. The same can be accomplished by renormalizing the
charges by appropriate power of GN as we take it to zero. In the case of the eternal black
hole the situation is cleaner since we can renormalize the boundary operators such that the
conserved charges in the boundary, dual to the bulk charges, take the form N2Tr(L) for
some operator L with no explicit N dependence. Thus subtracting the thermal one point
function and multiplying by 1/N (∼

√
GN for N = 4 super Yang Mills in 4 dimensions)

will make them finite in the large N limit.
Let’s call the renormalized charges qα ∈ g and their bounded functions will act on the

corresponding Hilbert spaces. The wave function associated with these modes will take
values in L2(g). Thus, the first extension to the Hilbert spaces will be HGNS ⊗ L2(gHH) and
HdS ⊗ L2(gdS) while the algebras become AR,0 ⊗AgHH and AdS ⊗AgdS , where AgHH and
AgdS are algebras of bounded functions of the charges of gHH and gdS respectively.

1This is not exactly correct as will be seen in the sections that follow. The state Hβ
HH is built upon,

|ψHH⟩, should also include a wave function for the right Hamiltonian, which is a delta function.
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3 In the presence of gravitational interactions

3.1 Algebra of operators on general backgrounds

In this subsection, we discuss what we mean precisely by the algebra of quantum fields
in general spacetimes. In section 2.1, the elements of the algebra in consideration (ÃL/R)
was given in terms of the dual CFT subtracted single trace operators in the large N limit,
which form an algebra of generalized free fields. These operators are well defined even at
non perturbative level, though they do not close to form an algebra without the addition of
operators not available in the large N limit, for instance product of N2 single trace operators.
Even though we do not aspire to define operators that make sense non perturbtatively for
general spacetime (including non holographic) at the moment, we would like to describe
what the elements of the algebra of observables, A, is when gravitational interactions are
added in some limited fashion.

We take this algebra to be a slight modification to the algebra of observables of a
quantum field theory on a general curved spacetime [15]. This modification can be a
perturbative interaction between the matter field and the graviton or an addition of modes
that correspond to large diffieomorphisms. So, they would not be present for a quantum
field theory, without gravity.

We start with the classical field theory describing matter fields and metric fluctuations
on top of some fixed globally hyperbolic geometry. If we assume that the matter fields satisfy
equations of motion with a well defined initial value problem, then we can describe the system
in terms of a phase space, M, of a pair of smooth functions (Π,Φ) defined on a Cauchy
hypersurface Σ. This phase space also has a symplectic structure; that means there is a non
degenerate, closed two form Ω(., .) on M. The states of the classical system correspond to
points on M, while functions (or more precisely functionals), f : M → R, are the observables
(we take linear functions of (Π,Φ) as the basis for this set of observables). On the other hand,
a quantum theory is described by a Hilbert space, H, and self adjoint bounded operators
acting on the Hilbert space. Quantization of the classical system is thus the problem of
finding a map from the classical phase space M and functions on M to a Hilbert space and
self adjoint operators acting on the Hilbert space. But since Hilbert spaces with infinite
dimensions (we expect this since the phase space is infinite dimensional) are all isomorphic,
the physical content of the problem concerns with the map from the linear functions (classical
observables) on M to operators acting on a certain Hilbert space. Canonical quantization
provides such a map by requiring Poisson brackets satisfied by functions on M be mapped
to commutators satisfied by the operators.

In the case where the geometry has a killing vector that is everywhere timelike, there
is a simple way to implement this, that also ensures the correct short distance behaviour
of the matrix elements of the quantum observables. For definiteness, let’s consider a free
scalar field with the equation of motion,

1
√
g
∂µ(√ggµν∂νΦ −m2Φ) = 0 (3.1)

where gµν is the metric.

– 5 –



J
H
E
P
0
7
(
2
0
2
4
)
0
1
5

The metric can be written in a time independent way and we can define a self adjoint
Hamiltonian that is bounded from below. A solution of (3.1) can be decomposed into a
positive and negative frequency modes of complex functions,

Φ(x, t) =
∫
dωdk (aωkfωk(x)eiωt + a†ωkf

∗
ωk(x)e−iωt) (3.2)

where ω > 0. The phase space of the classical system is the space of functions (Π,Φ), with
Π = nµDµΦ where Dµ is the covariant derivative and nµ is a normal vector to Σ. Then,
mapping Poisson brackets to commutators leads to the canonical commutation condition,
[aωk, a

†
ω′ k′ ] = δ(ω − ω

′)δ(k − k
′), while the rest of the commutators vanish.

In addition, we can also define an inner product to be the real part of the Klein-Gordon
inner product of the positive frequency parts of the solutions corresponding to the initial
data.2 Thus, in this case, we can consider the algebra of operators generated by the a finite
but arbitrary product of a and a†’s and take our algebra of observables for the quantum field
theory to be the completion of this algebra with respect to the inner product just described.
Similarly, the algebra can be extended to include other matter fields and free gravitons.

But the above analysis is only for a stationary spacetimes. In particular, we would not
have the decomposition of the fields into positive and negative frequency modes (3.2) in a
general curved spacetime.3 Thus to proceed, we go back to the symplectic structure of the
phase space and note that the function f = Ω(q, .), for q ∈ M is a linear function on M since
f(p) = Ω(q, p) ∈ R and the symplectic form is non degenerate. Therefore, we can take Ω(q, .)
as the basis for our set of classical observables. In most cases the phase space is defined as
the cotangent bundle of the configuration space of the system and thus the symplectic form
is taken to be the usual anti-symmetric bilinear map on a contangent bundle. For example,
in the case of the free scalar field mentioned above,

Ω[(Π1,Φ1), (Π2,Φ2)] =
∫

Σ
(Π1Φ2 − Π2Φ1). (3.3)

Following this, we can summarize the Poisson bracket conditions on (Π,Φ) in terms of the
symplectic form as

{Ω(q1, .),Ω(q2, .)} = −Ω(q1, q2)I (3.4)

where qi = (Πi,Φi), i = 1, 2. For instance if we take q1 = (δϵ(x), 0) and q2 = (0,−δϵ(y))
where δϵ is a smooth approximation of the delta function such that limϵ→0 δϵ(x) = δ(x), then
in the limit ϵ → 0, Ω(q1, (Π,Φ)) = Φ(x) and Ω(q2, (Π,Φ)) = Π(y) and we find,

{Φ(x),Π(y)} = δ(x− y). (3.5)

Since Ω(q, .) is an observable, we can promote it into self adjoint operator so that

[Ω̄(q1, .), Ω̄(q2, .)] = −iΩ(q1, q2)I (3.6)
2Check section 4.3 of [15] for a precise construction.
3And with it, we lose the nice particle interpretation of the Hilbert space.
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is satisfied. The bounded functions4 of these operators form an algebra5 and we can also
define an inner product from the symplectic form so that [15],

⟨q1, q1⟩ = 1
2supq2 ̸=0

|Ω(q1, q2)|2

⟨q2, q2⟩
. (3.7)

Taking the completion of the algebra with respect to this inner product, we get the algebra
that corresponds to a quantum field theory on the curved spacetime.6 It should be noted
that there is a wide class of inner products that satisfy the above equation and that there is
arbitrariness in the definition of the inner product, but this will not create a problem since
the resulting algebras are all isomorphic as abstract algebras [15]. However, this becomes
a problem when we construct a Hilbert space.

To describe the algebra of observables in the presence of perturbative gravitational
interactions, we will consider the same algebra but now we can also take linear combination
of the operators with powers of GN as coefficients. In the case where we just include a large
diffeomorphism mode, we form the algebra associated with it from the unitaries constructed
from the generator of the diffeomorphism. The algebra includes bounded functions of the
generator and any bounded function can be expressed in terms of the unitaries. We will
reformulate the latter case in terms of the covariant representation of the algebra of the
paragraph above, in the sections that follow.

Coming back to the construction of the Hilbert space, we will first take the Hilbert
space completion of M with respect to a given inner product, (3.7). We then complexify
the manifold using the antisymmetric two form Ω. This complex manifold, M̄, can be
used to create the Fock space of states, which is given by the direct sum of the vacuum
(C), one particle space, two particle space and so on; where the n-particle space is given
by the symmetric (bosonic) or antisymmetric (fermionic) tensor product of n copy of M̄.
But as mentioned before, the condition (3.7) does not uniquely determine an inner product
and the different inner products in general lead to different Hilbert spaces. Naturally, it is
reasonable to take the direct sum of all the Hilbert spaces and consider a bigger Hilbert
space (this Hilbert space is the one studied by von Neumann et al. [33, 34] as infinite tensor
product Hilbert spaces, where in the same papers shown that they are equivalent to the
infinite direct sum Hilbert spaces). But there are a couple of issues with this bigger Hilbert
space [35, 36], first it is a Hilbert space with unaccountably infinite dimensions. Second, the
individual Hilbert spaces are what are called unitarily inequivalent and they correspond to
different superselection sectors, in the sense that states in different sectors will not form a
coherent superposition and a superposition only results in a mixed state and any dynamics,
implemented by a unitary evolution will not evolve states in one sector to a different sector.
Hoping to avoid this non-separable Hilbert space and because of the fact that each sector can

4A basis for the bounded functions of the operators can be taken to be the unitary operators generated
by Ω̄(q1, .). The self adjointness and the commutation condition on the operators translates to the unitary
operators satisfying thw Weyl relation.

5This algebra is called a ∗−algebra [32].
6If there is a sequence of operators {an} and if the completion of the algebra is taken such that the operator

a is in included in the algebra when, for any ψ in the Hilbert space, aψ = limn→∞ anψ, then the algebra is
what is called a C∗ algebra. If we rather take the completion of the ∗−algebra by including the limit points of
the expectation values of the operators, we will get a von Neumann algebra.
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be treated completely independently, studying the individual sectors only is generally expected
to be enough to describe a physical system [35]. But again a question arises as to which of
the sectors we should choose, to correspond to the quantization of the classical system.

In the case where the geometry has a timelike Killing vector that is globally defined,
there is a canonical choice of inner product, in particular a generalization of the inner product
mentioned for the free scalar field. This is also directly related with the fact that there is
a canonical choice of the vacuum state. In addition to stationary spacetimes, it was also
shown that [16] for asymptotically AdS (with boundary conditions as that of AdS/CFT),
asymptotically flat spacetimes (with theories with a mass gap) and compact spacetimes,
there is a canonical choice of vacuum and a natural choice of Hilbert space. For a more
general open spacetimes though, it is expected that there is indeed not a canonical inner
product (or choice of ‘vacuum’ state) and an algebraic treatment of the theory is necessary
as it includes the content of all the unitarily inequivalent Hilbert spaces in a systematic
manner, as was discussed in the introduction.7

This algebra is the same for any spacetime in the sense that it is generated by the (3.6).
But the elements differ for the specific choice of geometry since the symplectic form of the
classical theory will in general be different. For instance, for flat spacetimes, the operators (3.6)
can be shown to be the sum of the annihilation and creation operator [15]. On the other
hand, the fact that even for the same classical theory, there are several unitraily inequivalent
Hilbert space will lead to several representations (π) of the algebra on the Hilbert spaces.
These representations can be constructed following the GNS construction (see 2.1) on a
certain cyclic state in the Hilbert space. In the following sections, we discuss the covariant
representation of this algebra.

3.2 Covariant representation of the algebra

One of the central principles of algebraic approach towards understanding of quantum field
theory (and statistical physics) has been that physical content is actually algebraic and
does not depend on the representation. Still, there are certain physically sensible and useful
representations. In particular, if A is a von Neumann algebra with an automorphism group G,
then the most interesting representation (and probably the only relevant representation [18,
20]) for physics is one where the automorphism/symmetry group is implemented by an action
of a unitary operator on the Hilbert space (the reason for considering unitary operators is
that the symmetry group is expected to preserve transition probabilities and this is true if
they are represented by a unitary operator). This is to say that one concentrates on a set
of special states which are related to each other by a unitary action of the automorphism
group. The automorphism group can be one associated with space-time translations or some
internal symmetry of the system in consideration. Such representation is called a covariant
representation of the algebra A [17–20].

More precisely, a covariant representation (π, U) of A is pair of a non-degenerate rep-
resentation of A, π : A → B(H) and a unitary representation of the automorphism group

7Additional condition on the states is making sure that they reproduce the correct short distance behaviour
for the operators. This is analyzed by checking that the UV behaviour of the two point functions has the correct
singularity. This condition goes by the name, the Hadamard condition. Check [15] for more careful discussion.
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G, U : G → U(H), where B(H) is a set of bounded operators acting on H and U(H) is a
set of unitary operators acting on H, such that;

U(g)†π(a)U(g) = π(αg(a)) , for all a ∈ A (3.8)

where α : G→ AutoA and AutoA is the automorphism group of A. We will write the unitary
representations of the automorphism group as U(g).

Thus, given an algebra of operators of a quantum system, gravitational or not, we should
ask what is the Hilbert space where there is a non degenerate representation of the algebra.
In addition, there should also be a unitary representation of the automorphism group of the
algebra acting on the same Hilbert space such that (3.8) is satisfied.

For instance, in the context of section 2.1, once we are given an algebra of operators
ÃR it is then physically necessary to ask what the covariant representation of the algebra is.
The first guess at the relevant Hilbert space may be HHH , as one is interested in a quantum
field theory on the black hole or deSitter background. But, since this Hilbert space does
not carry a unitary representation of the automorphism group of ÃR, one should consider
an extension of it, say H = HHH ⊗ L2(g). Then we take the representation, π to be the
representation furnished on the GNS Hilbert space, πβ (see section 2.1) and identity on the
L2(g) factor. The unitary representation of the automorphism group on the other hand
acts as identity on HHH but acts by mulitplication on the L2(g) factor. We will discuss in
section 4 another representation of ÃR that is also covariant.

Even though, as stated before, this statement is to be applied to either gravitational
or non gravitational systems, there are quite interesting features that arise in gravitational
setting and also in non gravitational systems when we think of them as limits of gravitational
systems. By a gravitational system we mean that a system where gravitational modes are
present and interact with the rest of matter fields perturbatively (AdS/CFT will be the
special case where ‘we know what we mean’ non-perturbatively).

Such a system in general will be described by an action of the form,

S = 1
GN

∫
dxd√−g(R+ . . .) (3.9)

where the . . . represents the matter part of the action with minimal coupling to gravity and a
boundary Gibbons-Hawking-Yorks term. A non gravitational system will be described by the
strict GN → 0 limit of the above action. We assume the full geometry to be asymptotically
flat or AdS but we have not specified the background geometry with respect to which we take
this limit, gµν = g0

µν +
√
GNhµν . We can consider the matter fluctuations (and free graviton)

acting on the full spacetime or a subregion and take the algebra of these operators as the
starting point. The physically relevant question will be what is the covariant representation
of this algebra, i.e, the appropriate Hilbert space and representation for the algebra, where
the automorphisms of act unitarily?

To answer this question, 1) we must know what the symmetries (automorphisms) of the
algebra of operators are; 2) we must find the Hilbert space where they act unitarily. As we
consider theGN → 0 limit, we note the following; the associated charges for the automorphisms
can be obtained from the action (3.9). Thus the generators for the autmorphisms (rather for
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the unitary representation of the automorphisms) will in general also have the following form,8

Q = 1
GN

∫
dxdf(x) , and [Q, π(a)] = O(1) (3.10)

where f(x) is a function of the background metric, the metric fluctuations, the matter fields
and their derivatives.

As it is the case for the action, we have to subtract the contribution from the background
space-time and redefine the charge Q to get a possibly finite result. But, as we take the limit
GN → 0, this gives finite higher point functions for Q only in the cases where the background
spacetime is flat or pure AdS. (There are also other exceptions, specifically states with O(1)
variance for the charges. We will defer the discussion of these states to section 4.) In the other
most interesting examples, black holes backgrounds or semiclassical geometries of coherent
states [37–40], (3.10) still diverges specifically as a result of the GN → 0 limit. In particular
such semiclassical states will have O(1/GN ) variance in the charges [41].9

Thus in the strict GN → 0 limit in particular, the charge that is well defined is,

q =
√
GNQ, (3.11)

and together with (3.10), we have [q, π(a)] = 0. This implies that in most interesting
cases (except in the cases where the background metric is flat or pure AdS) where the
renomarlization (3.11) is necessary, the automorphism generators will not produce O(1)
transformation, in fact they will be central to the representation of the operator algebra
A. The consequence of this fact is that the condition (3.8) for the covariant representation
will be trivial in the strict large N limit.

Thus the covariant representation of the algebra A with a symmetry group G (g being
the corresponding lie algebra) will be (π, U) acting on a Hilbert space H = Hbulk ⊗ L2(g)
where π(a) will act on Hbulk creating bulk fluctuations and acts as identity on L2(g) while
U(g) = eiqανα acts as identity on Hbulk and by multiplication on L2(g). In addition, U(g)
will commute with the bulk fluctuations π(a). But note that when the background geometry
is flat or pure AdS, U(g) will have non-trivial action on π(a) given by (3.8).

This property, that for general gravitational systems in the strict GN going to zero limit
the automorphism generators do not generate transformations, may look a little unattractive.
Let’s divide the symmetry groups into the compact and non compact components. Even
though the non compact group be could more general and even non abelian, we specifically
treat time translations as the non compact group in part because time translation is usually
one of the symmetry generators for A in part because we want to make contact with the cross
product construction of [4, 5] (we defer the discussion on the compact subgroup to section 4).
The above argument implies that time development generator commutes with operators in
the algebra. How would we then implement time translations for our operators?

Keeping the above question in mind, let’s consider the modification of the covariant
representation (π, U) when gravitational interactions are added perturbatively. Looking at

8In general there are more than one generators for the representation of G.
9For each Hilbert space we assume the existence of a Hadamrad vacuum with respect to which the n-point

functions will satisfy the Wick contraction and factorize to 2 point functions.
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representation π, we can construct operators with coefficients in the ring of power series in√
GN . On the other hand, the unitary representations of the symmetry group will transform

as follows; concentrating on time translations, as we back away from the strict GN going to
zero limit, since

√
GNQ generates transformations of O(GN ), the most natural modification

to (3.11) would be

√
GNQt = qt −

√
GN

β
log∆. (3.12)

For asymptotically AdS eternal black hole spacetime, the above modifications can be showed
to be enough to all orders in perturbation theory [4], otherwise it is valid to first order in
perturbation theory.10 The unitary representation for time translation symmetry acting on
the Hilbert space Hbulk ⊗ L2(g) will thus be U(gt) = ei(qt−

√
GN /β log∆)ν .

This looks quite similar to the cross product construction but our starting point is
different and the crossed product construction is in fact distinct from it. The crossed product
algebra is a special kind of what is called a covariance algebra (see appendix A). It was
shown in [17] that the covariant representation of an algebra A and the representations of
the covariance algebra associated with A are in one to one correspondence.

Coming back to the question we asked above, the bulk fluctuations now transform non
trivially under the action of U(g), following the equation (3.8). Still, since we are working in
perturbation theory, the transformation is infinitesimally small. To produce an O(1) time
translations, we propose (inspired by [3]) U(s), the half sided modular translation [2, 3, 42], as
the appropriate operator whenever it is possible to define it, particularly because its generator
has bounded spectrum. Note that for the other candidate for the generator of a translation
operator, −log∆, the spectrum is not bounded from below, in general.

4 Gravitational interaction: continued

4.1 Proto-QG Hilbert space

In the previous section, we introduced the covariaint representation of an algebra. The
algebra of our interest was the one discussed in subsection 3.1. Up till now we have focused
mainly on the algebra where perturbative corrections are added, controlled by GN , to the
algebra of operators for a quantum field theory on a curved spacetime. Now, we discuss the
case where no perturbative correction is added to the QFT operators, rather we consider
a ‘background’ state that has O(1) variance in the charges. Thus, we consider a Hilbert
space built on top of such a state with bulk fluctuations and where the symmetries of the
spacetime are implemented unitarily. As we will see, such a representation corresponds to a
system where gravitational modes that are associated with large diffeomorphism is added to
the description. Since this representation is not the naively considered Hilbert space of a
QFT on a fixed background and yet it arises from the strict GN → 0 limit of perturbative
quantum gravity, we call it proto-quantum gravity (proto-QG) Hilbert space.

10For the semiclassical geometries of coherent states, even when the Cauchy slice is complete for the full
globally hyperbolic spacetime, ∆ is defined by doubling the Hilbert space associated with the states on the
background and performing the usual GNS construction. Unlike the black hole backgrounds or subregions,
the GNS construction here will not produce anything essentially new.
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Let’s consider the covariant representation of the algebra A on flat or pure AdS spacetimes.
Then π(a) will be operators that create bulk fluctuations on the flat or AdS spacetime. The
unitary representations of the symmetries will be constructed as discussed in subsection 3.2.
The only difference being the additional normalization of the charges, multiplication by

√
GN ,

is no longer necessary. That is, Q is already well defined in the limit GN → 0, and [Q, π(a)] is
nonzero O(1) number. Thus, the covariant representation (π, U) where U = eiQν will act on
Hbulk ⊗L2(g). The operators π(a) will act on Hbulk creating bulk fluctuations while acting as
identity on L2(g) and U(g) acts on Hbulk as identity while acting on L2(g) by multiplication.
The fact that Q, for gravitational theories in general, is a boundary quantity together with
[Q, π(a)] shows that the operators π(a) are dressed with respect to the boundary of the
spacetime and alludes to the gravitational nature of the Hilbert space even in this GN = 0
limit. Note that the one to one correspondence with the cross product algebra implies that
this algebra is a type II∞ algebra in the cases where π(a)’s form a type III1 von Neumann
algerba. The cross product algebra in Minkowski and pure AdS was discussed in [9].

The gravitational nature of the Hilbert space is even more elaborated in the example
of the GNS Hilbert space of the microcanonical thermofield double state [6]. We consider a
new covariant represenation of the same algebra of operators, ÃR introduced in section 2.1.
Rather than using the GNS Hilbert space of the thermofield double, we consider the state,

|Φβ⟩ = 1
eS(E0)

∑
i

e−β(Ei−E0)/2f(Ei − E0) |Ei⟩R |Ei⟩L (4.1)

where,
∫
dx |f(x)|2 = 1 and define an inner product as in (2.1),

⟨a|b|a|b⟩ = lim
N→∞

⟨Φβ | ab |Φβ⟩ , ∀a, b ∈ ÃR . (4.2)

If Y is the ideal of the algebra with respect to this inner product, we can define the equivalence
class, ÃR/Y and complete it to a Hilbert space, HΦ. Thus, we take the non degenerate
representation πΦ acting on HΦ as,

πβ(c) |a⟩ = |ca⟩ , ∀c, a ∈ ÃR (4.3)

But we notice that the symmetry generator of the algebra ÃR (we only consider the non-
compact subgroup for the moment) is also present in this Hilbert space and is well defined in
the large N limit. In particular, it the Hamiltonian of the right system. This is in contrast
to the Hartle-Hawking state where this observable is not present and we had to consider
an extension of the Hilbert space built on |ψHH⟩ (by the action of the bulk fluctuations)
to get a covariant representation. Even the canonical thermofield double Hilbert space
includes a covariant representation, i.e, no extension is needed. The only issue with the
canonical thermofield double is that the generator has to be normalized twice to be well
defined in the large N limit. The obvious difference between the canonical or microcanonical
thermofield double and the Hartle Hawking state is that, the former are well defined even in
non-perturbtive theory of quantum gravity. This again points to the intrinsically quantum
gravitational nature the covariant representation of an algebra.

Since the subtracted generator, Q of the symmetry is already included in the Hilbert
space and well defined large N limit, we take U(gt) = eiQν as the unitary representation
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of the symmetry group, where it acts as.

Q = q − 1
β

log∆Ψ. (4.4)

This is because it translates the operators πΦ(a) but differs from the modular Hamiltonian by
a central operator, q. Thus the representation (πΦ, U) acting on the Hilbert space HΦ will be a
covariant representation of ÃR and it is an example where the variance of the generator is O(1).

The states in the Hilbert space correspond to different semiclassical states in general even
though we have set GN to zero. The reason is that the solution |Φβ⟩ breaks the symmetry of
the theory. In particular, while the symmetry (corresponding to time translations) of the full
theory is RR⊗RL generated by the left and right Hamiltonians, the solution is only symmetric
under the diagonal sub group R, generated by the difference of the two Hamiltonians. This
implies that there is a moduli space of classical solutions given again by R. Since U only
acts on the right boundary, states related by the action of U(gt) are associated with different
classical solutions on the moduli space. The action of πΦ(a) on any of the classical solutions
would correspond to a given ‘Hilbert space’ of QFT on a curved spacetime. That is to say
that, excluding U , one of these states acted upon by the bulk fluctuations πΦ(a) is what we
expect QFT on a curved spacetime describes. Note that these Hilbert spaces are not the
unitraily inequivalent Hilbert spaces described in section 3.1, rather they more similar to the
sectors corresponding to different charge sectors of a gauge theory. This sectors in a gauge
theory are related by a large gauge transformation that does not vanish at infinity. Similarly,
the transformation by Q is a diffeomorphism that actually does not vanish in the boundary.
This mode parameterizes the timeshift between the left and the right boundary. Thus, we
can think of the algebra of operators (πΦ, U) as an addition of a gravitational mode to the
algebra of operators describing bulk fluctuations at GN = 0.

A general state will be a superposition of states with different classical background, thus
does not have a semiclassical bulk dual geometry. But, following [6], we call a semiclassical
state a state with a very large variance in Q (very small variance in the dual mode). The
ideal case would be if the variance of Q is O(1/

√
GN ), where we get the canonical thermofield

double and so a fixed background geometry.
This feature of the spontaneous breaking of the symmetries can be generalized to any

state. Starting with an algebra of operator A with a symmetry group G, we can choose
a classical solution in the theory that breaks the symmetry to Gs. This state can be a
coherent state like a collection of galaxies, a black hole or a collapsing geometry. Taking this
state as the background geometry we can construct the GNS Hilbert space and describe the
quantum field theory on this fixed background (with all the subtleties described in section 3.1).
Because the ‘vacuum’ breaks the symmetry G, there is a moduli space of classical solutions
parameterized by the quotient G/Gs. But if we look at this state in the limit GN → 0 of
perturbative quantum gravity, charges of the symmetry group G/Gs must have variance of
O(1/GN ), since the strict GN → 0 limit is a quantum field theory on a fixed spacetime while
the action of the generators of G/Gs map a classical solution of the theory to a different one
(see also section 3.2). Thus these generators will have to be normalized (multiplied by

√
GN )

to be well defined. On the other hand, if we rather take an O(1) superposition of states that
correspond to different classical solutions on the moduli space as a starting point for the
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covariant representation of A, we have mitigated the diverging variance of the charges, at
the cost of not having a well defined semiclassical spacetime.

As mentioned before there will be a Hilbert space for each element of the moduli group
G/Gs that corresponds to the classical solution. Thus we have a fiber of Hilbert spaces F on
the base space G/Gs. The Hilbert space the covariant representation (π, U) will act on will
be L2 sections of the fiber F → G/Gs. This is the proto-QG Hilbert space for general states
and general symmetry group G that can also be compact. For a symmetry group that is non
compact, if the algebra generated by π(a) for a ∈ A is a type III1 algebra, then the one to
one correspondence with the crossed product algebra implies that the algebra generated by
π(a) and U will be a type II∞ algebra, with a well defined trace and entropy.

4.2 Subregions and the observer

The last comment we would like to add is concerning sub regions. The naive algebra of
operators we associate to subregions are not so well defined in the perturbative theory of
quantum gravity since the spacetime is fluctuating, we can not define a fixed subregion
with respect to which we define the algebra, all the while the spactime fluctuation itself
is expected to be included in the algebra of observables (check [10, 11, 43] for discussions
of algebra of operators associated with subregions in perturbative quantum gravity). But
we have a well defined notion of subregions in the QFT on a curved spacetime limit and
we can define a covariant representation for this algebra associated with a subregion. The
symmetry of a sub region has to preserve the causal diamond of the subregion and one such
symmetry is the one that looks like the Lorentz boost symmetry close to the horizon, that
acts both on the subregion and its complement. But note that the boost generator that
only acts on the subregion is not a well defined operator. In fact we have to do a brick-wall
regularization to the operator by demanding a Dirichlet boundary conditions on the fields at
some proper distance ϵ from the horizon. In the limit ϵ→ 0, we will have a divergence similar
to the GN → 0 divergence of the symmetry generators discussed in 3.2. This brick-wall
regularization is clear and unambiguous (up to the Weyl anomaly present in even dimensions)
in the cases where the theory has a holographic dual, where the renomlization corresponds to
a renomalization of Euclidean hyperbolic manifolds in the bulk dual theory, [36] (assuming
large rank for the gauge group of the boundary theory). Then the algebra generated π(a)
and U will be a type II∞ algebra.

Recently, the role of an observer in connection to the algebra of observables in subregions
and compact spacetimes like deSitter has been given some attention [10, 11]. The connection
between the two is given by the timelike tube theorem ([11, 44]) which states that for the
so called ‘complete’ theories, where all the possible electrically and magnetically charged
objects (particles, strings, . . . ) that can couple to the gauge fields (and higher form gauge
fields) in the theory are also present, that the algebra of quantum fields smeared along a
timelike world line is same as the algebra of quantum fields that are causally accessible to
the world line. In other words, if we pick two points, p and q, one to the future of the other
along a timelike world line, the algebra of operators that we can construct by smearing the
fields in this segment of the worldline is the same as the algebra of operators that are defined
in the causal diamond defined by the points p and q. The theorem is proved for quantum
field theories in flat and curved spacetimes, [45].
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The fact that the static patch of deSitter can be understood as the region that is causally
accessible to an observer and that algebra of operators along the worldline of the observer
is the same as that of the static patch (in QFT on a curved spacetime limit) motivated
including an observer in the study the algebra of operators in the static patch in perturbative
quantum gravity, where since the spacetime has compact spacelike slices the symmetries
of the spacetime are to be treated as gravitational constraints. The algebra of operators is
defined in the presence of an observer at one of the boundaries of the Penrose diagram of
deSitter, which would otherwise be trivial (just c-numbers).

In our situations, even though it is not shown that the timelike tube theorem is still
present in perturbative quantum gravity (as far as the author is aware), the fact that it
holds in the QFT limit is enough motivation to study the covariant representation of the
algebra of operators along a timelike worldline. Thus we consider an observer in a certain
spacetime and the algebra of observables, Aob constructed from the quantum fields smeared
along its worldline.

Φ =
∫
dτf(τ)ϕ(τ, x) (4.5)

These operators are well defined operators that act on the code subspace of states, that
map normalized states to normalizable states.11 Since in quantum filed theory the algebra
of this operators is the same as the algebra of operators in the subregion that is causally
accessible to the worldline, the symmetries of this subregion are also the symmetries of the
algebra along the world line. Thus the covariant representation for the algebra of operators
along a timelike world line includes a representation of the algebra of operators π(Φ),12

and unitaries, U , generated by the symmetry generators of the subregion (let’s call them
generically Q) associated to the worldline by timelike tube theorem. Note that this symmetry
generators will preserve the worldline but since we assumed the existence of an observer, we
will need to add operators that are associated with the observer itself. Following a minimal
model for the observer as a clock with a given rest mass, m, the only operator that needs
to be modified is the time translation operator. If Qt is one of the symmetry generators
that generate time translation along the worldline of the observer, the actual operator that
acts on the observer, generating time translations, has to be modified to Qt + qob so that its
spectrum is bounded from below by m. With the appropriate renormalization of the symmetry
generators, as discussed at the beginning of this subsection, the covariant representation of
the algebra of operators for an observer will be π(Φ) and U , generated by the symmetry
generators where the time translation generator is modified as Qt + qob.

Following the timelike tube theorem, the operators π(Φ) associated with a time segment
on the worldline (or for an observer living at the boundary of one of the static patches) is
actually a type III1 von Neumann algebra. On the other, the algebra of operators generated
by π(Φ) and U will be type II. Simply renormalizing the generators would result in a type
II∞ algebra but with the presence of an observer, the algebra will be type II1, because of
the bounded spectrum of the time translation generator.

11A general smearing of a quantum field would not map normalized states to normalized states because of
the OPE singularities of the quantum fields.

12This representation is a representation of operators of the theory on the specific code subspace that
includes the observer.
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Notice that the reason for the algebra associated, for example with the deSitter static
patch, is a type II1 algebra is different from the above argument. In [5], with the addition
of the observer to the deSitter patch the algebra is modified from A0 (algebra of quantum
fluctuations in the patch) to A0⊗B(L2(R)), where B(L2(R)) is the set of bounded functions of
the observer’s Hamiltonian, hob ≥ m. The algebra of operators associated with perturbative
QG is the subalgebra that is invariant under the action of the full symmetry generator
h+ hob, where h is the symmetry generator of deSitter that preserve the static patches.13

This subalgebra will be composed of hob and

eipha0e
−iph, ∀a0 ∈ A0, (4.6)

if p is the conjugate operator to hob. This set of operators is a type II1 algebra by Take-
saki duality.

To relate this algebra to the covariant representation given above, we use the timelike tube
theorem and claim that A0 is the same as the algebra generated by π(Φ)’s and conjugating
the set of operators {eipha0e

−iph, hob} by e−iph would give the covariant representation of
Aob and the condition hob ≥ m transforms to h+ hob ≥ m, which is the condition satisfied
by Qt + qob for the covariant representation.

Thus we find that the covariant representation of Aob is the same as the algebra of
operators for the deSitter static patch in perturbative quantum gravity. The same can also
be said for a subregion, which by the timelike tube theorem is associated to a proper time
segment of the observer’s worldline. But there is a subtlety here in that the subregion is
not well defined in perturbative QG because the spacetime fluctuates with fluctuations of
O(

√
GN ), in the same sense there is uncertainty of O(

√
GN ) in specifying a point in time

along the worldline, and so there is uncertainty in defining the segment.
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A Covariance algebra

We will now introduce the definition of the covariance algebra and only state some of its
properties. We refer the reader to [17] for complete discussion.

We consider a C∗ algebra A and a locally compact group G, which to simplify the writing
we assume to be Abelian, acting on A such that for every g ∈ G, there is a linear map
ḡ : a ∈ A → a(g) ∈ A with the properties,

ab(g) = a(g)b(g) and a†(g) = a(g)† for a, b ∈ A (A.1)
13The operator h is in fact the modular Hamiltonian of A0.
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that preserves the norm of a in A, |a| = |a(g)|. In other words the map preserves the group
structure of A. It is also a linear map over complex numbers such that,

(αa+ βb)(g) = αa(g) + βb(g) for α, β complex numbers. (A.2)

Note that this furnishes a representation of the group G in the automorphism group
of A, that is,

[a(g1)](g2) = a(g1 + g2) (A.3)
a(0) = a. (A.4)

In addition, the function a(g) is a continuous function of g ∈ G in the norm topology of A.
We define the covariance algebra (A, G) as a set of all measurable functions, A, from

G to A,

A : g ∈ G→ Ag ∈ A (A.5)

defined up to a measure zero and absolutely integrable set as long as,

|A|1 =
∫

|Ag|dg <∞. (A.6)

This means the function A is not necessarily exactly everywhere defined and dg is the Haar
measure on G. Note that the element A is not an operator in A, rather a function which
takes values in A. The product of A and B, elements of (A, G), is defined as follows,

(A.B)g =
∫
AuBg−u(u)du (A.7)

where Bg−u(u) is the image under the action of the automorphism group by u, of the element
Bg−u; while the element Bg−u is just the image of B, an element of the covariance algebra
at g − u ∈ G. We define the adjoint of A as,

A†
g = A−g(g)† (A.8)

so that |A†| =
∫
|A−g(g)†|dg =

∫
|A−g|dg = |A|.

With these definitions of the adjoint and products of the elements of the covariance algebra,
it can be shown that it forms a Banach ∗− algebra. In section 3 of [17] the representations of
this algebra are shown to be in one to one correspondence with the covariant representation
of A. This rather unfamiliar form for the covariance algebra is discussed in the familiar form
of crossed product algebra [4, 6] when A is a von Neumann algebra, in work by Takesaki [23].
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