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1 Introduction

Many experimental analyses at the Large Hadron Collider (LHC) apply jet vetoes to enhance
the signal sensitivity. In these analyses, the jet veto is usually imposed as a cut on the
transverse momenta pveto

T of the reconstructed jets. If this scale is much smaller than the
typical hard scale Q of the process, the QCD radiation gets constrained to be either soft or
collinear to the beam directions, which induces large Sudakov-type corrections of the form
αn

S ln2n(pveto
T /Q). These logarithms challenge the convergence of the perturbative expansion,

and they need to be resummed to all orders to obtain reliable predictions.
The resummation of jet-veto logarithms has received considerable attention in recent years.

While the formalism was originally developed for Higgs-boson and Drell-Yan production [1–8],
it was later applied to processes with other electroweak final states [9–16] and beyond-
the-standard-model signatures [17–20]. In most of these analyses, the jet-veto logarithms
were resummed to next-to-next-to-leading logarithmic (NNLL) accuracy, but the theoretical
predictions can be further improved using methods from effective field theory. In Soft-
Collinear Effective Theory (SCET) [21–23] the effects from the relevant scales pveto

T ≪ Q

are systematically disentangled (factorised), and the logarithmic corrections are resummed
using renormalisation-group (RG) techniques. The case of a pveto

T veto is special in the
sense that it contains rapidity logarithms, which cannot be resummed with conventional RG
methods. One therefore resorts to collinear-anomaly [24, 25] or rapidity RG techniques [26]
for these SCET-2 type observables.
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The starting point of the SCET analyses is a factorisation theorem, which at leading
power in pveto

T /Q ≪ 1 can be written in the schematic form

d2σ(pveto
T )

dQ2dY
=
∑
i,j

Hij(Q, µ)Bi/h1(x1, pveto
T , µ)Bj/h2(x2, pveto

T , µ)Sij(pveto
T , µ) , (1.1)

where the sum runs over all partonic channels, Q is the invariant mass and Y the rapidity of
the colourless final state with x1,2 = (Q/

√
s) e±Y . Here the purely virtual corrections to the

Born process are contained in the hard functions Hij , whereas the beam functions Bi/h and
the soft functions Sij describe the effects from collinear and soft radiation, respectively. The
factorisation theorem furthermore assumes that the jet radius R satisfies λ ≪ R ≪ ln(1/λ)
with λ = pveto

T /Q [2].
While the hard functions Hij(Q, µ) are process-dependent, the soft functions Sij(pveto

T , µ)
trivially depend on the process via the colour representations of the partons i, j. They are
currently known to next-to-next-to-leading order (NNLO) accuracy [6, 27, 28]. The beam
functions Bi/h(x, pveto

T , µ), on the other hand, are universal and depend on the parton i within
the hadron h that carries the longitudinal momentum fraction x after emitting collinear
radiation that passes the jet-veto constraint. They are by themselves non-perturbative objects,
but as long as the jet-veto scale satisfies pveto

T ≫ ΛQCD, they can be matched onto the standard
parton distribution functions as we will review below. The corresponding matching kernels
can then be computed perturbatively, and they were determined to NLO in [2, 9]. A subset
of the current authors extended this calculation to NNLO for quark-initiated processes [29],
whereas the full set of matching kernels was determined afterwards in [30]. These results
were subsequently used to perform NNLL′ resummations in [15, 16].1

The purpose of this work is twofold. First, we will complete the NNLO calculation
initiated in [29] by computing the matching kernels for gluon-initiated processes. This serves,
on the one hand, as a cross-check of the calculation in [30], which was based on a different
technique and, in particular, a different prescription to regularise rapidity divergences. We
will also study the endpoint behaviour of the matching kernels in some detail since these
are often divergent and therefore hard to control numerically. In addition we for the first
time present results for the gluon beam function in Mellin space. Second, we stress that the
method we use for the calculation of the jet-veto kernels is generic, and it can be applied to a
much broader class of observables. It actually follows a strategy that was successfully applied
for the calculation of soft functions within the SoftSERVE approach [27, 31–33], which relies
on a universal parametrisation of the observable-dependent measurement function in Laplace
space. In our previous study [29], we performed a Mellin transform to resolve the distributions
associated with the momentum fraction x, whereas we extract these distributions directly in
momentum space in the current work. We view this extension as a major improvement of
our automated approach, and we anticipate many further results of this novel framework in
the future. We, in fact, already recalculated the matching kernels for transverse-momentum
resummation and the event-shape variable N-jettiness in this setup [34–36].

1In the primed-order counting the matching corrections are included at one order higher than in the
unprimed one, i.e. at O(α2

s) at NNLL′ accuracy.
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To validate our results, we performed an independent semi-analytical calculation that
is closer to the method that was used in [30]. Specifically, it exploits the similarity of the
jet-veto beam functions to the ones relevant for transverse-momentum resummation, which
are known analytically to the considered NNLO and beyond [37–43]. In the difference between
the two beam functions, many contributions drop out and the calculation can moreover
directly be performed in four space-time dimensions. While similar in spirit, our method is
not equivalent to the one that was used in [30] as we will explain below.

The remainder of the paper develops as follows: we first introduce the theoretical
foundation of our framework in section 2. In section 3 we provide the computational details
of both our automated numerical approach and the semi-analytical method that was used
for cross-checks. In section 4 we present our results for the gluon beam function as well
as a comparison to the results from [30]. We conclude in section 5, collect the relevant
anomalous dimensions and splitting functions in appendix A, and provide details on the
reference observable that was used in the semi-analytical approach in appendix B. Finally, in
appendix C we present our novel results for the quark beam function in momentum space.

2 Theoretical framework

To set up the notation, we introduce two light-like vectors nµ and n̄µ that obey n2 = n̄2 = 0
and n · n̄ = 2. Any four-vector kµ can then be decomposed according to its projections
k− = n̄ · k, k+ = n · k, and a transverse component k⊥µ that satisfies n · k⊥ = n̄ · k⊥ = 0. In
this notation, the gluon beam function for jet-veto resummation is defined as

Bg/h(x, pveto
T , µ) = − (xP−)

∑
X

δ
(
(1− x)P− −

∑
i

k−i

)
M̂(pveto

T ; {ki})

× ⟨h(P )| Ac,µ
n⊥(0) |X⟩ ⟨X| Ac

n⊥,µ(0) |h(P )⟩ , (2.1)

where Ac,µ
n⊥(x) = 1/gs W †

n(x)
[
iDc,µ
⊥ Wn(x)

]
is the n-collinear gluon field operator, Wn a

collinear Wilson line, and the sum over X represents the phase space of the final-state partons
with momenta {ki}. At the tree level, when there is no collinear emission, this is simply the
vacuum state, and at NNLO it denotes the phase space of up to two massless partons. The
hadronic state with collinear momentum P µ = P−nµ/2 is furthermore indicated by |h(P )⟩,
whereas the jet-veto constraint is imposed by the measurement function M̂(pveto

T ; {ki}), which
we will specify in section 3 below.

As a matrix element of hadronic states, the beam function is not directly accessible
in perturbation theory. But as long as the scale that constrains the collinear emissions
satisfies pveto

T ≫ ΛQCD, it can be matched onto the usual parton distribution functions
fi/h(x, µ) according to

Bi/h(x, pveto
T , µ) =

∑
k

∫ 1

x

dz

z
Ii←k(z, pveto

T , µ) fk/h

(x

z
, µ
)

, (2.2)

which holds at leading power in ΛQCD/pveto
T . Our goal consists in computing the matching

kernels Ii←k(z, pveto
T , µ) for gluon-initiated processes (i = g) to NNLO in QCD. However, since

our previous results for the quark channels (i = q) were provided only in Mellin space [29],
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we will for completeness also determine those kernels directly in momentum space in this
work. The matching calculation can, in fact, be most easily performed using partonic on-shell
states, since the parton distribution functions then evaluate to fi/j(x, µ) = δij δ(1− x) to
all orders in perturbation theory when dimensional regularisation is used to regularise both
ultraviolet (UV) and infrared (IR) divergences. The partonic calculation therefore directly
yields the matching kernels in this case.

As stated in the introduction, the jet veto is usually imposed on the transverse momenta
of the reconstructed jets. It is well known, however, that transverse-momentum dependent
observables belong to a special class of observables that suffer from rapidity divergences that
are not captured by the dimensional regulator ϵ = (4 − d)/2. This follows from the fact
that the relevant soft and collinear modes have the same virtuality in the effective theory,
which is also known as SCET-2. To regularise these rapidity divergences, we use the analytic
phase-space regulator from [44], which is introduced for each emission with momentum kµ

i via

∫
ddki

(
ν

k−i + k+
i

)α

δ(k2
i ) θ(k0

i ) , (2.3)

where α is the rapidity regulator and ν the associated rapidity scale. The same prescription
is also implemented for the soft integrals in SoftSERVE, but for collinear emissions with
k−i ≫ k+

i it can be further simplified at leading power. The very fact that the rapidity
regulator in (2.3) respects the n-n̄ symmetry of the process, ensures that the beam functions
for collinear and anti-collinear emissions are equivalent to all orders in perturbation theory.

The matching kernels defined in (2.2) thus depend on the scheme that is used to regularise
the rapidity divergences and, in particular, the rapidity scale ν. To obtain a result that is
scheme independent, we follow the collinear-anomaly approach [24, 25], which states that
the product of the soft and collinear functions can be refactorised as[

Ig←i(z1, pveto
T , µ, ν) Ig←j(z2, pveto

T , µ, ν) Sgg(pveto
T , µ, ν)

]
Q

=
(

Q

pveto
T

)−2Fgg(pveto
T ,µ)

Ig←i(z1, pveto
T , µ) Ig←j(z2, pveto

T , µ) , (2.4)

where the matching kernels Ii←j(z, pveto
T , µ) on the right-hand side of this equation are inde-

pendent of the rapidity scale ν. The dependence on the hard scale Q is furthermore resummed
through the collinear-anomaly exponent Fgg(pveto

T , µ), which satisfies the RG equation

d
d lnµ

Fgg(pveto
T , µ) = 2ΓA

cusp(αs) (2.5)

with the cusp anomalous dimension in the adjoint representation ΓA
cusp(αs). Up to two-loop

order, its solution is given by

Fgg(pveto
T ,µ)=

(
αs

4π

){
2ΓA

0 L+dA
1

}
+
(

αs

4π

)2{
2β0ΓA

0 L2+2
(
ΓA

1 +β0dA
1

)
L+dA

2

}
, (2.6)

where L = ln
(
µ/pveto

T

)
, and ΓA

i and βi are the expansion coefficients of the cusp anomalous
dimension and the β-function, respectively, that are given explicitly to the required order in
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appendix A. As the anomaly exponent describes the physics from the overlap of the soft and
collinear regions, the non-logarithmic terms dA

i in (2.6) are constrained by Casimir scaling,
and they are therefore related to the corresponding quantities for the quark channels, which
were given in our previous work [29]. We also note that the anomaly exponent renormalises
additively, F bare

gg = Fgg + ZF
gg, and the corresponding MS counterterm ZF

gg obeys a similar
RG equation as in (2.5), whose two-loop solution reads

ZF
gg(pveto

T , µ) =
(

αs

4π

){ΓA
0
ϵ

}
+
(

αs

4π

)2
{
−β0ΓA

0
2ϵ2 + ΓA

1
2ϵ

}
. (2.7)

The remaining ingredients in the collinear-anomaly relation (2.4) are the refactorised matching
kernels Ii←j(z, pveto

T , µ), which are independent of the rapidity regularisation scheme. Their
scale dependence is determined by the RG equation

d
d lnµ

Ii←j(z, pveto
T , µ) = 2

[
ΓRi

cusp(αs)L − γi(αs)
]

Ii←j(z, pveto
T , µ)

− 2
∑

k

∫ 1

z

dz′

z′
Ii←k(z′, pveto

T , µ) Pk←j

( z

z′
, αs

)
, (2.8)

where ΓRicusp(αs) is the cusp anomalous dimension in the representation of the parton i,
γi(αs) is the collinear anomalous dimension for quarks (i = q) or gluons (i = g), and
Pk←j(z, αs) are the DGLAP splitting functions. The renormalisation of the refactorised
matching kernels is, in fact, slightly more complicated, and it is convenient to introduce
two types of counterterms that subtract the UV divergences of the beam function (ZB

i )
and the IR divergences associated with the matching onto the parton distribution functions
(Zf

k←j) for them [29]. Specifically, we write

Ii←j(z, pveto
T , µ) = ZB

i (pveto
T , µ)

∑
k

∫ 1

z

dz′

z′
Ibare

i←k (z′, pveto
T ) Zf

k←j

( z

z′
, µ
)

, (2.9)

where the UV counterterm obeys the RG equation

d
d lnµ

ZB
i (pveto

T , µ) = 2
[
ΓRi

cusp(αs)L − γi(αs)
]

ZB
i (pveto

T , µ) . (2.10)

Up to two loops, its solution reads

ZB
i (pveto

T , µ) = 1 +
(

αs

4π

){
− Γi

0
2ϵ2 − Γi

0L − γi
0

ϵ

}

+
(

αs

4π

)2 {(Γi
0)2

8ϵ4 +
(
Γi

0
2 L − γi

0
2 + 3β0

8

)
Γi

0
ϵ3 +

((Γi
0)2

2 L2 − Γi
0

(
γi

0 −
β0
2
)
L

− Γi
1
8 + (γi

0)2

2 − β0γi
0

2

) 1
ϵ2 − Γi

1L − γi
1

2ϵ

}
, (2.11)

and the specific values for the coefficients of the anomalous dimensions are also summarised
in appendix A. The IR counterterm, on the other hand, satisfies the RG equation

d
d lnµ

Zf
k←j(z, µ) = −2

∑
l

∫ 1

z

dz′

z′
Zf

k←l(z
′, µ) Pl←j

( z

z′
, αs

)
, (2.12)
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whose two-loop solution is given by

Zf
k←j(z, µ) = δkj δ(1− z) +

(
αs

4π

){
P

(0)
k←j(z)

1
ϵ

}
+
(

αs

4π

)2 {
− P

(0)
k←j(z)

β0
2ϵ2 + 1

2ϵ2

(
P

(0)
k←l ⊗ P

(0)
l←j

)
(z) + P

(1)
k←j(z)

1
2ϵ

}
, (2.13)

where the coefficients of the DGLAP splitting functions P
(i)
k←j(z) are defined in appendix A.

We furthermore introduced a short-hand notation for the convolutions(
P

(0)
k←l ⊗ P

(0)
l←j

)
(z) =

∑
l

∫ 1

z

dz′

z′
P

(0)
k←l(z

′) P
(0)
l←j

( z

z′

)
(2.14)

that appear frequently in the calculation. Note that this notation implies a sum over
intermediate partonic channels with index l. For completeness, we give the explicit expressions
for these convolutions also in appendix A.

Finally, we state the solution of the RG equation (2.8) for the renormalised matching
kernels. Up to NNLO, it takes the form

Ii←j(z, pveto
T , µ) (2.15)

= δij δ(1− z) +
(

αs

4π

){(
Γi

0 L2 − 2γi
0 L
)
δij δ(1− z)− 2L P

(0)
i←j(z) + I

(1)
i←j(z)

}

+
(

αs

4π

)2 {((Γi
0)2

2 L4 − 2Γi
0

(
γi

0 −
β0
3

)
L3 +

(
Γi

1 + 2(γi
0)2 − 2β0γi

0
)
L2 − 2γi

1L

)
δij δ(1− z)

− 2
(
Γi

0L3 +
(
β0 − 2γi

0
)
L2
)
P

(0)
i←j(z) +

(
Γi

0L2 − 2(γi
0 − β0)L

)
I

(1)
i←j(z)

+ 2L2
(
P

(0)
i←k ⊗ P

(0)
k←j

)
(z)− 2L

(
I

(1)
i←k ⊗ P

(0)
k←j

)
(z)− 2L P

(1)
i←j(z) + I

(2)
i←j(z)

}
.

As the logarithmic terms in this expression are already known, we will focus on the non-
logarithmic terms I

(m)
i←j(z) in later sections.

3 Computational aspects

As stated in the introduction, we followed two different approaches to compute the renor-
malised matching kernels for jet-veto resummation. The first approach is based on an
automated numerical framework that can be used for a generic class of observables, while
the second approach is a semi-analytical method that exploits the similarity of the jet-veto
beam functions to the ones relevant for transverse-momentum resummation. We will now
describe each of these methods in turn.

3.1 Numerical approach

In the first approach, we start from the definition of the beam function (2.1) with the
measurement function replaced by the ansatz

M(τ ; {ki}) = exp
(
− τ ω({ki})

)
, (3.1)

– 6 –
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where τ is a Laplace variable of dimension 1/mass, and the function ω({ki}) specifies a generic
observable. Following [29, 35], we find it convenient to work in Laplace space, since both
the calculation of the bare beam function and its renormalisation simplify in this case. We
note that for the specific jet-veto beam function defined in (2.1), the measurement function
is not of the form (3.1), but it is instead given by M̂(pveto

T ; {ki}) = θ
(
pveto

T − ω({ki})
)
. We

then follow the procedure described in [27] to convert this into the form (3.1) by taking a
Laplace transform, and we extract the results in the original pveto

T space by inverting the
Laplace transformation at the very end of the calculation.

To factorise the implicit divergences of the collinear matrix elements, we use universal
phase-space parametrisations as in [29, 35]. Particularly, for a single emission with momentum
kµ, we use the magnitude of its transverse momentum relative to the beam axis, which is set
by P µ ∝ nµ, and we allow for a non-trivial azimuthal dependence of the observable,

kT = |⃗k⊥| , tk = 1− cos θk

2 , (3.2)

where θk is the angle between k⃗⊥ and a reference vector v⃗⊥ that could be imposed by the
observable. The remaining momentum components are then fixed by the on-shell condition
and the explicit delta function in (2.1), yielding k+ = k2

T /k− and k− = z̄P− with z̄ = 1− z.
This leads to the following measurement function for a single emission,

ω1(k) = kT . (3.3)

For two emissions, we proceed similarly and parametrise the momenta kµ and lµ of the
massless final-state partons in the form2

a = k−lT
l−kT

, b = kT

lT
, z̄ = k− + l−

P−
, qT =

√
(k− + l−)(k+ + l+) , (3.4)

where again kT = |⃗k⊥|, lT = |⃗l⊥|, and we in addition now have three non-trivial angles in
the transverse plane, with θk and θl referring to the external vector v⃗⊥ as before, and θkl

being the angle between k⃗⊥ and l⃗⊥. We then rewrite these angles in terms of variables tk,
tl, and tkl that are defined on the unit interval, similar to (3.2).

In terms of these variables, the two-emission measurement function for jet-veto resum-
mation takes the form

ω2(k, l) = qT
√

a√
(1 + ab)(a + b)

{
θ(∆− R) max(1, b) + θ(R −∆)

√
(1− b)2 + 4b(1− tkl)

}
,

(3.5)

where R is the jet radius and ∆ =
√
ln2 a + arccos2(1− 2tkl) is the distance measure of

the jet algorithm. The twofold structure in (3.5) arises as follows: if the distance between
the two emissions is smaller than R, the emissions are clustered together and the veto is
imposed on the recombined pseudo-particle. If, on the other hand, this distance is larger
than R, the veto constrains both of the reconstructed jets. Similar to our previous work on

2Note that we use a slightly different notation here compared to our setup that was used for the calculation
of the Mellin-space kernels [29].
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the quark beam function [29], we consider the general class of kT -type jet algorithms in this
work, for which the expression in (3.5) turns out to be independent of the specific clustering
prescription (kT , Cambridge/Aachen, anti-kT , . . . ) [2].

Having defined the phase-space parametrisations and the structure of the measurement
function, the partonic beam functions can now be computed. The required collinear matrix
elements are related to the spin-averaged d-dimensional time-like splitting functions [45].
Specifically, we used the expressions from [46–48] for the real-virtual contributions, and the
ones from [49, 50] for the double real-emission part, and we applied standard crossing relations
to convert these to time-like kinematics [36]. The main task then consists in factorising
the implicit phase-space divergences, which allows one to perform the expansion in the two
regulators α and ϵ directly on the integrand level. While this can easily be achieved in
the one-emission case, this is only true in certain cases for the double real emissions in the
parametrisation (3.4). We therefore employed a number of further techniques that involve
sector-decomposition steps and non-linear transformations to factorise all divergences for
this contribution (details can be found in [36]).

In comparison to our previous work on the quark beam function [29], our novel framework
is capable of computing the beam functions directly in momentum space. In particular, within
the parameterisations (3.2) and (3.4) it is possible to factorise the divergence associated
with the longitudinal momentum fraction z. We may then introduce the corresponding
distributions via

(1− z)−1−mα = −δ(1− z)
mα

+
[ 1
1− z

]
+
− mα

[ ln(1− z)
1− z

]
+
+ . . . (3.6)

After expanding the integrand first in the rapidity regulator α and subsequently in the
dimensional regulator ϵ, the coefficients in this double expansion can be integrated numerically.
The final expressions for the matching kernels then consist of distributions with numerical
coefficients and a non-trivial z-dependent ‘grid’ contribution that we sample for different
values of z. To perform these steps, we have implemented our formalism in the publicly
available program pySecDec [51], and we use the Vegas routine of the Cuba library [52] for
the numerical integrations. By following this procedure, one obtains the regulator-dependent
matching kernels on the left-hand side of the refactorisation condition (2.4). In the last
step, we then combine these expressions with the corresponding NNLO soft function that is
provided by the SoftSERVE distribution to extract the I

(m)
i←j(z) part of the refactorised and

renormalised matching kernels that are defined in (2.15).

3.2 Semi-analytical approach

In the second approach, we use the fact that the beam functions for jet-veto resummation
are related to the ones for transverse-momentum resummation. As the latter are known
analytically at the considered NNLO, one focuses on the difference

∆Ii←j(z, pveto
T , µ, ν) = Ii←j(z, pveto

T , µ, ν)− Iref
i←j(z, pveto

T , µ, ν) , (3.7)

where the first term refers to the jet-veto matching kernels that appear on the left-hand
side of the refactorisation condition (2.4), and the second term indicates the corresponding
kernels for a so-called reference observable. Following [5], we choose for the latter the
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integrated qT -spectrum,

σref(pveto
T ) =

∫ pveto
T

0
dqT

dσ

dqT
, (3.8)

and we provide details on the derivation of the corresponding refactorised matching kernels
I

ref,(2)
i←j (z) in appendix B.

At NLO the difference in (3.7) vanishes by construction, and at NNLO it only receives
contributions from diagrams with double real emissions. The measurement function capturing
these contributions can be expressed as

M̂∆(pveto
T ;{k, l})= θ(∆−R)

[
θ
(
pveto

T −|⃗k⊥|
)
θ
(
pveto

T −|⃗l⊥|
)
−θ
(
pveto

T −|⃗k⊥+ l⃗⊥|
)]

, (3.9)

where the angular separation ∆ between the two emissions is quantified as before.
As has been further argued in [5], there is a price to pay when working with the

difference (3.7), i.e. one has to explicitly compute mixing terms that originate from different
sectors of the effective theory. Notably, these contributions are independent of the jet radius
R and they emerge solely within the uncorrelated contribution to the amplitude. To manage
these contributions effectively, we decompose the double-emission amplitude in the collinear
region A(2)

c into its uncorrelated and correlated components,

A(2)
c (k, l, P ) = Auncor, (2)

c (k, l, P ) +Acor, (2)
c (k, l, P ) , (3.10)

wherein the uncorrelated term is constructed from the product of one-emission collinear
and soft amplitudes,

Auncor, (2)
c (k, l, P ) = 1

2A
(1)
c (k, P )A(1)

s (l) + (k ↔ l) . (3.11)

Therefore only specific colour structures receive mixing contributions. The starting point
for the evaluation of (3.7) is the representation

∆I(2)
i←j(z, pveto

T , µ, ν) =
∫ d4k

(2π)3
d4l

(2π)3 δ(k2)θ(k0) δ(l2)θ(l0) δ
(
k− + l− − (1− z)P−

)
×A(2)

c (k, l, P ) M̂∆(pveto
T ; {k, l})

(
ν

k−

)α ( ν

l−

)α

, (3.12)

where the rapidity regulator α has been factored in. As the divergences in the dimensional reg-
ulator ϵ are absent for the measurement (3.9), one can immediately set d = 4 in the calculation.
To evaluate this contribution we employ the following phase-space parametrisation [5],

∆y = yk − yl, ∆ϕ = ϕk − ϕl, pT = kT + lT , ξ = kT

pT
. (3.13)

In the computation of the correlated term, we then utilize integration techniques as delineated
in [5]. Initially, we determine the asymptotic behaviour in the limit R → 0 by expanding
the integrands around this limit. Moreover, the integral includes non-singular terms, which
can be represented as a power series in R2. To proceed, we first subtract the leading
singularities as ∆ϕ and ∆y approach zero, and we evaluate the coefficients of the power
series in R2 numerically.

The evaluation of the uncorrelated contribution necessitates consideration of the mixing
terms as discussed above. For this part, we rewrite the theta function θ(∆ − R) in (3.9)
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as 1− θ(R −∆), which bifurcates the analysis into R-independent and R-dependent terms.
The R-dependent terms are free of mixing contributions, and their computation parallels
the treatment of the correlated part. Conversely, for the R-independent terms one starts
from the measurement function

M̂R-indep.
∆ (pveto

T ; {k, l}) = θ
(
pveto

T − |⃗k⊥|
)
θ
(
pveto

T − |⃗l⊥|
)
− θ

(
pveto

T − |⃗k⊥ + l⃗⊥|
)

, (3.14)

and the mixed collinear/soft contribution can in this case be calculated from

∆I(2,cs)
i←j (z,pveto

T ,µ,ν)=
∫ d4k

(2π)3
d4l

(2π)3 δ(k2)θ(k0)δ(l2)θ(l0)δ
(

k−−(1−z)P−
)

× 1
2A

(1)
c (k,P )A(1)

s (l)M̂R-indep.
∆ (pveto

T ;{k, l})
( ν

k−

)α
(

ν

l−+l+

)α

+(k ↔ l) ,

(3.15)
where we stress that the rapidity regulator is retained in its original form (2.3) in the soft
region. Due to the n-n̄ symmetry of the process, there is no need to evaluate the mixing
between anti-collinear and soft contributions explicitly, and for the collinear/anti-collinear
mixing one finds a scaleless integral that vanishes in the applied regularisation prescription.
Finally, for the double soft emissions one has

∆S(2)
ii′ (pveto

T , µ, ν) =
∫ d4k

(2π)3
d4l

(2π)3 δ(k2)θ(k0) δ(l2)θ(l0)
(

ν

k− + k+

)α ( ν

l− + l+

)α

×A(2)
s (k, l) M̂R-indep.

∆ (pveto
T ; {k, l}) , (3.16)

where A(2)
s denotes the soft double-emission amplitude, whose explicit expression can be

found e.g. in [53].
Focusing on concreteness on the diagonal gluon channel, the various contributions can

be put together and the final correction to the refactorised matching kernel in (2.15) can
be obtained from

∆I(2)
g←g(z)=∆I(2)

g←g(z,pveto
T ,µ,ν)+∆I(2,cs)

g←g (z,pveto
T ,µ,ν)

+ 1
2 ∆S(2)

gg (pveto
T ,µ,ν)δ(1−z)−∆dA

2 (R) ln pveto
T

Q
δ(1−z) , (3.17)

where the last term subtracts the contribution from the two-loop anomaly exponent, which
we decompose as ∆dA

2 (R) = ∆d
C2

A
2 (R)C2

A +∆d
nf

2 (R)CATF nf . Explicitly, we find

∆d
C2

A
2 (R) =

(
−524

9 + 16π2

3 + 176
3 ln 2

)
lnR + 3220

27 − 44π2

9 − 560
9 ln 2− 176

3 ln2 2− 48ζ3

+ 17.9R2 − 1.28R4 − 0.0169R6 + 0.000402R8 − 2.62 · 10−5R10 ,

∆d
nf

2 (R) =
(184

9 − 64
3 ln 2

)
lnR − 1256

27 + 16π2

9 + 256
9 ln 2 + 64

3 ln2 2

− 0.706R2 + 0.0142R4 − 0.00217R6 + 0.000135R8 − 1.19 · 10−5R10 , (3.18)

which agrees with previous calculations [5].3 The extraction is less involved for the off-
diagonal channels, and in each case, we can write the final expression for the refactorised

3Note that [5] presents the difference to transverse-momentum resummation, whereas in our notation
∆dA

2 (R) refers to the difference to the integrated spectrum defined in (3.8).
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matching kernels in the form

∆I
(2)
i←j(z) = −δij ∆dRi

2 (R)
[ 1
1− z

]
+
+ δij ∆CRi

δ (R) δ(1− z) + Hi←j(z, R), (3.19)

where the coefficient of the plus-distribution is given by the anomaly exponent in the
representation Ri of the parton i, and the coefficient of the delta function has a similar
expansion in terms of colour factors and R-dependence. Particularly, we obtain for the
diagonal gluon channel

∆CC2
A

δ (R) =
(
−1622

27 + 548
9 ln 2 + 88

3 ln2 2 + 8ζ3

)
lnR − 19.0

+ 4.60R2 + 0.478R4 − 0.0535R6 − 0.00128R8 + 1.35 · 10−6R10 ,

∆Cnf

δ (R) =
(652

27 − 232
9 ln 2− 32

3 ln2 2
)
lnR + 1.27

+ 0.0538R2 − 0.0209R4 + 0.000599R6 − 0.000146R8 + 9.93 · 10−6R10 , (3.20)

and the corresponding expressions for the diagonal quark channel can be found in appendix C.
Finally, we obtain purely numerical results for the non-distributional terms Hi←j(z, R)
in (3.19) that depend on both the momentum fraction z and the jet radius R.

We conclude this section by noting that our semi-analytical approach is similar in spirit
to the method that was used in [30], but it differs in several technical aspects. First and
foremost, our calculation uses a different rapidity regulator, which is purely analytic, and
therefore all zero-bin subtractions are scaleless and vanish in our setup. Moreover, we use
slightly different techniques for computing the uncorrelated-emission contribution, as well
as a different reference observable than [30] as described above.

4 Results

In this section, we present our results for the non-logarithmic contributions to the renormalised
matching kernels I

(m)
i←j(z) that are defined in (2.15). Within our novel approach, we can

directly compute these kernels in momentum space, but for completeness, we also present
the respective Mellin-space results that were obtained with the method described in [29].
While we focus here on the gluon channels with i = g, our novel momentum-space results
for the quark kernels (i = q) are collected in appendix C. As QCD is invariant under charge
conjugation, the anti-quark kernels (i = q̄) directly follow from these expressions.

4.1 Momentum-space kernels

At NLO, the algorithmic nature of the jet veto does not show up yet, and the matching
kernels can be obtained analytically. Specifically, they read [2]

I(1)
g←g(z) = CA

{
− π2

6 δ(1− z)
}

,

I(1)
g←q(z) = CF

{
2z

}
, (4.1)

whereas the one-loop anomaly coefficient dA
1 vanishes at this order.
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Figure 1. Left: two-loop anomaly exponent dA
2 (R) = d

C2
A

2 (R)C2
A+d

nf

2 (R)CATF nf as a function of the
jet radius R. The dots show the result of our numerical approach, and the lines represent the expression
in (4.2). Right: the same for the coefficient of the delta function CA

δ (R) = CC2
A

δ (R)C2
A+Cnf

δ (R)CATF nf ,
where the lines refer to (4.5).

At NNLO, we first verify if our setup reproduces the known results for the two-loop
anomaly coefficient dA

2 and the non-cusp anomalous dimension γg
1 . As the former depends

on the jet radius, we evaluate it numerically for three different values of R ∈ {0.2, 0.5, 0.8}
using the method described in section 3.1. In the left panel of figure 1, we compare these
numbers that are indicated by the dots against the semi-analytical expression

dA
2 (R)=C2

A

(808
27 +4ζ3

)
+CATF nf

(
−224

27

)
+C2

A∆d
C2

A
2 (R)+CATF nf ∆d

nf

2 (R) , (4.2)

where the first two terms originate from the reference observable (3.8), and the latter
two terms were given in (3.18) above. The plot shows that the two calculations are in
excellent agreement within the uncertainties that are too small to be visible on the scale
of the plot. We also remark that the anomaly exponent exhibits Casimir scaling, and it
is therefore related to the anomaly coefficient in the fundamental representation dF

2 (R)
that is relevant for Drell-Yan production. On the other hand, the non-cusp anomalous
dimension is independent of the jet radius R and it is constrained by RG consistency. Writing
γg

1 = γ
C2

A
1 C2

A + γCATF
1 CATF nf + γCF TF

1 CF TF nf , we find

γ
C2

A
1 = −17.1956(141) [−17.1941] ,

γCATF
1 = 7.2870(6) [7.2882] ,

γCF TF
1 = 4.0000(1) [4] , (4.3)

where the numbers in square brackets show the known analytic results. The agreement
provides another strong check of our computation.

Coming to the renormalised matching kernels I
(2)
i←j(z), we first consider their distribu-

tion-valued component. To this end, we decompose the kernels in the form

I
(2)
i←j(z) = −δij dRi

2 (R)
[ 1
1− z

]
+
+ δij CRi

δ (R) δ(1− z) + I
(2,Grid)
i←j (z, R) , (4.4)

where the coefficient of the plus-distribution is given by the two-loop anomaly exponent in
the representation Ri of the parton i, and it thus carries no new information. The coefficient
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Figure 2. Grid contributions to the NNLO matching kernels defined in (4.4) and (4.6) for three
different values of the jet radius R.

of the delta function, on the other hand, is for the gluon channel given by

CA
δ (R) = C2

A

(
1214
81 − 67π2

36 + 5π4

72 + 11
9 ζ3

)
+ CATF nf

(
−328

81 + 5π2

9 − 4
9ζ3

)

+ C2
A ∆CC2

A
δ (R) + CATF nf ∆Cnf

δ (R) , (4.5)

with explicit expressions for the last two terms given in (3.20). Our numerical results for
these coefficients are compared to these semi-analytical expressions in the right panel of
figure 1, which again shows perfect agreement between the two calculations.

We finally turn to the grid contributions, which we decompose further in terms of their
colour structure,

I(2,Grid)
g←g (z, R) = C2

A I
(2,C2

A)
g←g (z) + CATF nf I

(2,CATF nf )
g←g (z) + CF TF nf I

(2,CF TF nf )
g←g (z) ,

I(2,Grid)
g←q (z, R) = CF TF nf I

(2,CF TF nf )
g←q (z) + C2

F I
(2,C2

F )
g←q (z) + CF CA I(2,CF CA)

g←q (z) , (4.6)

where we kept the R-dependence of the individual kernels on the right-hand-side of this
equation implicit. We evaluated these kernels numerically for three different values of the
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Figure 3. Upper: ratio of the grid contributions between our numerical and our semi-analytical
results as defined in (4.7). We show two sample matching kernels for three values of the jet radius R.
Lower: the same for the ratio of the grid contributions between our numerical approach and the
results of [30] as defined in (4.8).

jet radius R ∈ {0.2, 0.5, 0.8} and 125 values of the momentum fraction z using the method
described in section 3.1. The results are displayed in figure 2, and they are also provided in
electronic form in the file that accompanies the present article. Specifically, one notices that
the off-diagonal kernel I

(2,CF TF nf )
g←q (z) does not show any dependence on the jet radius, since

it only receives real-virtual contributions, whereas all the other kernels exhibit a dependence
on R, which is more pronounced for small values of the momentum fraction z. Similar to the
plots in figure 1, the numerical uncertainties are not visible on the scale of the plots, with the
only exception being the low z-region of the off-diagonal I

(2,CF CA)
g←q (z) kernel. While these

uncertainties are generically at the sub-percent level, we observe accidental cancellations in
this case, which make them somewhat more pronounced for this particular kernel.

We next compare these numbers against the output of our semi-analytical approach.
For this purpose, we define the following ratios involving the grid contributions of the two
approaches,

ξ
(2,X)
i←j (z) =

[
I

(2,X)
i←j (z)

]
Numerical[

I
(2,X)
i←j (z)

]
Semi-analytical

, (4.7)
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Figure 4. Endpoint regions z → 0 (upper row) and z → 1 (lower row) for the same matching kernels
as in the lower panels of figure 3, where our results are shown in colour and the ones from [30] in gray.
The smallest z values (upper row) and the largest z values (lower row) of the grids provided in [30]
are indicated by the dashed vertical lines.

where the subscripts ‘Numerical’ and ‘Semi-analytical’ refer to the two setups of our calculation
described in section 3.1 and section 3.2, respectively, and the index X labels one of the
colour structures in the notation of (4.6). We present a template comparison for one diagonal
and one off-diagonal kernel in the upper panels of figure 3. In general, we find a very
good agreement between the two calculations, which supports our previous claim that the
uncertainties of our numerical approach are at the sub-percent level. This can clearly be
seen in the bulk of the distributions in the first panel of figure 3. In these plots one also
notices that the relative uncertainties are enhanced in those regions where the central values
of the kernels are close to zero. As argued above, the situation is special for the off-diagonal
channel that is shown in the right panel of figure 3 because of accidental cancellations, and
in this case one finds relative uncertainties of a few percent even in regions where the central
values of the kernels are not small. We remark, however, that these uncertainties are likely
to be overestimated, since the shifts of the central values are in all plots much smaller than
what is indicated by the error estimate.

As stated in the introduction, the jet-veto matching kernels were previously determined
to NNLO in [30]. Although our Mellin-space results for quark-initiated processes were already
available at that time [29], a comparison between the two calculations has not yet been
presented. Here we perform such a comparison. Note that this requires to recombine the
scheme-dependent kernels from [30] with the corresponding soft function [28] in order to
extract the refactorised matching kernels according to (2.4). Using (2.15) and (4.4) one
then determines the grid contributions I

(2,Grid)
i←j (z, R), which we use for the comparison.
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Specifically, we define the ratios

ξ̃
(2,X)
i←j (z) =

[
I

(2,X)
i←j (z)

]
Numerical[

I
(2,X)
i←j (z)

]
Ref. [30]

, (4.8)

which are displayed for two template kernels in the lower panels of figure 3. As is evident
from these plots, we find a very good agreement between the two calculations for all values
of the momentum fraction z (the pattern around the zeroes of the matching kernels being
similar to the one in the upper panels). In order to verify if this agreement persists in the
endpoint regions z → 0 and z → 1, where most of the kernels are enhanced, we show the
same matching kernels in those regions in figure 4. While it becomes hard to distinguish
our results (in colour) from the ones of [30] (in gray) in these plots, we find (i) that the
agreement extends nicely into both endpoint regions, and (ii) that our numbers are stable
even for extreme values of z, which allows one to sample these regions to very high accuracy.

4.2 Mellin-space kernels

In a previous study [29], a subset of the current authors computed the jet-veto matching
kernels for quark-initiated processes at NNLO directly in Mellin space. These kernels are
related to the refactorised matching kernels defined in (2.4) via

Îi←j(N, pveto
T , µ) =

∫ 1

0
dz zN−1 Ii←j(z, pveto

T , µ) , (4.9)

and one similarly denotes the Mellin transform of the non-logarithmic contribution in (4.4)
by Î

(2)
i←j(N). While our results from the previous section can in principle be used for this

conversion, the discretised grids would introduce systematic uncertainties in addition to the
statistical errors from the Monte-Carlo integration. We therefore follow the strategy outlined
in [29] here, and compute the Mellin-space kernels directly within our numerical approach
by including an additional integration over the variable z according to (4.9). At NLO this
integration can be performed analytically, and one obtains

Î(1)
g←g(N) = CA

{
− π2

6

}
,

Î(1)
g←q(N) = CF

{ 2
N + 1

}
. (4.10)

At NNLO, we then sample the Mellin-space kernels for ten values of the Mellin parameter
N ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20} as in [29]. Writing the Mellin-space kernels in the form

Î(2)
g←g(N) = C2

A Î
(2,C2

A)
g←g (N) + CATF nf Î

(2,CATF nf )
g←g (N) + CF TF nf Î

(2,CF TF nf )
g←g (N) ,

Î(2)
g←q(N) = CF TF nf Î

(2,CF TF nf )
g←q (N) + C2

F Î
(2,C2

F )
g←q (N) + CF CA Î(2,CF CA)

g←q (N) , (4.11)

we show our results for the individual coefficients in this decomposition in figure 5. We note
that the numerical uncertainties are again at the sub-percent level in this case, and they are
therefore not visible on the scale of the plots. The Mellin-space kernels are particularly useful
when the resummation is performed in Mellin space, as was done e.g. for joint threshold
and transverse-momentum resummation in [54].
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Figure 5. NNLO matching kernels for three different values of the jet radius R in Mellin space.

5 Conclusion

We computed the beam-function matching kernels for jet-veto resummation to NNLO in QCD.
Building on our earlier study of the respective quark beam function [29], we provide the full
set of matching kernels in this work. To this end, we applied two different computational
methods, and we found perfect agreement between the two approaches. Our final results
are displayed in figure 2 and figure 7, and they are also provided in electronic form as
supplementary material to this paper.

The jet-veto matching kernels were previously determined to NNLO in [30]. We performed
a detailed comparison to these results, paying special attention to the endpoint regions z → 0
and z → 1, and found very good agreement for all kernels. This represents the first
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confirmation of the results in [30]. In addition, we for the first time computed the NNLO
matching kernels for the gluon channels in Mellin space.

Whereas our semi-analytical method is specific to the jet-veto observable, our numerical
approach is generic, and it can therefore be applied to a much broader class of observables.
In contrast to our previous study [29], in which we determined the matching kernels in Mellin
space to avoid distribution-valued expressions, we have extended our formalism in this work
such that it becomes capable of calculating the matching kernels directly in momentum space.
We view this extension as a major improvement of our framework, and we anticipate many
further applications in the future. In the long term, we plan to provide a public code for the
computation of NNLO beam functions in the spirit of the SoftSERVE distribution.
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A Anomalous dimensions and splitting functions

We define the coefficients in the perturbative expansion of the anomalous dimensions appearing
in the RG equations (2.5) and (2.8) via

ΓR
cusp(αs) =

∞∑
m=0

(
αs

4π

)m+1
ΓR

m , γi(αs) =
∞∑

m=0

(
αs

4π

)m+1
γi

m , (A.1)

and likewise for the QCD β-function

β(αs) = −2αs

∞∑
m=0

(
αs

4π

)m+1
βm . (A.2)

The relevant coefficients of the cusp anomalous dimension are given by

Γi
0 = 4Ci ,

Γi
1 = 4Ci

{(
67
9 − π2

3

)
CA − 20

9 TF nf

}
, (A.3)

where i = F refers to the fundamental and i = A to the adjoint representation. Up to
two-loop order, the collinear quark and gluon anomalous dimensions read [55, 56],

γq
0 = −3CF ,

γq
1 = C2

F

(
− 3

2 + 2π2 − 24ζ3

)
+ CF CA

(
− 961

54 − 11π2

6 + 26ζ3

)
+ CF TF nf

(130
27 + 2π2

3

)
,
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γg
0 = −11

3 CA + 4
3TF nf ,

γg
1 = C2

A

(
− 692

27 + 11π2

18 + 2ζ3

)
+ CATF nf

(256
27 − 2π2

9

)
+ 4CF TF nf , (A.4)

whereas we only need the one-loop coefficient of the QCD β-function, β0 = 11
3 CA − 4

3TF nf ,
in this work.
We furthermore expand the splitting functions entering (2.8) in the form

Pi←j(z, αs) =
∞∑

m=0

(
αs

4π

)m+1
P

(m)
i←j (z) . (A.5)

The relevant (non-vanishing) expressions at one-loop order are given by

P (0)
q←q(z) = CF

{ 4
(1− z)+

+ 3 δ(1− z)− 2(1 + z)
}

,

P (0)
q←g(z) = 2TF

{
z2 + (1− z)2

}
,

P (0)
g←q(z) = 2CF

{1 + (1− z)2

z

}
,

P (0)
g←g(z) = 4CA

{ 1
(1− z)+

+ 1
z
− 2 + z(1− z)

}
+ β0 δ(1− z) , (A.6)

whereas the two-loop splitting functions can be found in [57–59]. Decomposing

P (1)
q←q(z) = C2

F P (1,CF )
q←q (z) + CF CA P (1,CA)

q←q (z) + CF TF nf P
(1,nf )
q←q (z) + CF TF P (1,TF )

q←q (z) ,

P (1)
q←g(z) = CF TF P (1,CF )

q←g (z) + CATF P (1,CA)
q←g (z) ,

P
(1)
q←q̄(z) = CF (CA − 2CF ) P

(1,CAF )
q←q̄ (z) + CF TF P (1,TF )

q←q (z) ,

P
(1)
q←q′(z) = P

(1)
q←q̄′(z) = CF TF P (1,TF )

q←q (z) ,

P (1)
g←q(z) = CF TF nf P

(1,CF TF nf )
g←q (z) + C2

F P
(1,C2

F )
g←q (z) + CF CA P (1,CF CA)

g←q (z) ,

P (1)
g←g(z) = C2

A P
(1,C2

A)
g←g (z) + CATF nf P

(1,CATF nf )
g←g (z) + CF TF nf P

(1,CF TF nf )
g←g (z) , (A.7)

in analogy to (4.6) and (C.6), they read explicitly

P (1,CF )
q←q (z)=

(3
2−2π2+24ζ3

)
δ(1−z)−2(1+z) ln2 z− 8(1+z2)

1−z
lnz ln(1−z)

− 4(3+2z−2z2)
1−z

lnz−20(1−z) ,

P (1,CA)
q←q (z)=

(268
9 − 4π2

3

)[ 1
1−z

]
+
+
(17

6 +22π2

9 −12ζ3

)
δ(1−z)

+ 2(1+z2)
1−z

ln2 z+2(17+5z2)
3(1−z) lnz+2π2

3 (1+z)+ 106−374z

9 ,

P
(1,nf )
q←q (z)=− 80

9

[ 1
1−z

]
+
−
(2
3+

8π2

9

)
δ(1−z)− 8(1+z2)

3(1−z) lnz− 8(1−11z)
9 ,
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P (1,TF )
q←q (z)=−4(1+z) ln2 z+2(6+30z+16z2)

3 lnz+8(1−z)(10+z+28z2)
9z

,

P (1,CF )
q←g (z)= 2(1−2z+2z2)

(
ln2 z−4lnz ln(1−z)+2ln2(1−z)− 2π2

3

)
+4z2 ln2 z

+2(3−4z+8z2) lnz+16z(1−z) ln(1−z)+2(14−29z+20z2) ,

P (1,CA)
q←g (z)=−8(1+2z+2z2)

(
Li2(−z)+lnz ln(1+z)

)
−4(1+2z) ln2 z

−4(1−2z+2z2) ln2(1−z)+ 4(3+24z+44z2)
3 lnz− 8π2

3 z

−16z(1−z) ln(1−z)+ 4(20−18z+225z2−218z3)
9z

,

P
(1,CAF )
q←q̄ (z)= 2(1+z2)

1+z

(
4Li2(−z)+4lnz ln(1+z)−ln2 z+π2

3

)
−4(1+z) lnz

− 24
3 (1−z) ,

P
(1,CF TF nf )
g←q (z)=− 16(2−2z+z2)

3z
ln(1−z)− 32(5−5z+4z2)

9z
,

P
(1,C2

F )
g←q (z)=−2(2−z) ln2 z− 4(2−2z+z2)

z
ln2(1−z)+2(4+7z) lnz

− 4(6−6z+5z2)
z

ln(1−z)−2(5+7z) ,

P (1,CF CA)
g←q (z)= 8(2+2z+z2)

z

(
Li2(−z)+lnz ln(1+z)

)
− 4(36+15z+8z2)

3 lnz

− 4(2−2z+z2)
z

(
2lnz ln(1−z)−ln2(1−z)

)
+4(2+z) ln2 z

+4(22−22z+17z2)
3z

ln(1−z)+ 4(9+19z+37z2+44z3)
9z

+8π2

3 ,

P
(1,C2

A)
g←g (z)=

(268
9 − 4π2

3

)[ 1
1−z

]
+
+
(32

3 +12ζ3

)
δ(1−z)− 4(25−11z+44z2)

3 lnz

+16(1+z+z2)2

z(1+z)
(
Li2(−z)+lnz ln(1+z)

)
+4π2(3+4z+2z2+2z3)

3(1+z)

− 16(1−z+z2)2

z(1−z) lnz ln(1−z)+ 8(1+z−z2)2

1−z2 ln2 z− 2(25+109z)
9 ,

P
(1,CATF nf )
g←g (z)=− 80

9

[ 1
1−z

]
+
− 16

3 δ(1−z)− 16(1+z)
3 lnz

− 8(23−29z+19z2−23z3)
9z

P
(1,CF TF nf )
g←g (z)=−4δ(1−z)−8(1+z) ln2 z−8(3+5z) lnz+16(1−12z+6z2+5z3)

3z
. (A.8)

The two-loop solutions of the RG equations given in (2.13) and (2.15) involve convolutions
of one-loop splitting functions. In the notation introduced in (2.14), which implies a sum
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over partons with index l, one has(
P

(0)
q←l ⊗ P

(0)
l←q

)
(z)

= C2
F

{
32
[ ln(1− z)

1− z

]
+
+ 24

[ 1
1− z

]
+
+
(
9− 8π2

3

)
δ(1− z)− 4(1 + 3z2)

1− z
ln z

− 16(1 + z) ln(1− z)− 4(5 + z)
}
+ CF TF

{
8(1 + z) ln z + 4(1− z)(4 + 7z + 4z2)

3z

}
,

(
P

(0)
q←l ⊗ P

(0)
l←g

)
(z)

= CF TF

{
8(1− 2z + 2z2) ln(1− z)− 4(1− 2z + 4z2) ln z + 8z − 2

}

+ CATF

{
8(1− 2z + 2z2) ln(1− z) + 8(1 + 4z) ln z + 4(4 + 3z + 24z2 − 31z3)

3z

}

+ β0TF

{
2− 4z + 4z2

}
,

(
P

(0)
g←l ⊗ P

(0)
l←q

)
(z)

= CACF

{
8(2− 2z + z2)

z
ln(1− z)− 16(1 + z + z2)

z
ln z − 4(31− 24z − 3z2 − 4z3)

3z

}

+ C2
F

{
8(2− 2z + z2)

z
ln(1− z) + 4(2− z) ln z + 8− 2z

}
+ β0CF

{
2(2− 2z + z2)

z

}
,

(
P

(0)
g←l ⊗ P

(0)
l←g

)
(z)

= C2
A

{
32
[ ln(1− z)

1− z

]
+
− 8π2

3 δ(1− z) + 32(1− 2z + z2 − z3)
z

ln(1− z)

− 16(1 + 3z2 − 4z3 + z4)
z(1− z) ln z − 16(1− z)(11 + 2z + 11z2

3z

}

+ β0CA

{
8
[ 1
1− z

]
+
+ 8(1− 2z + z2 − z3)

z

}
+ β2

0 δ(1− z)

+ CF TF nf

{
8(1 + z) ln z + 4(1− z)(4 + 7z + 4z2)

3z

}
, (A.9)

where the factor nf in the last line arises from a sum over intermediate massless quarks.
Similarly, the convolutions of the one-loop splitting functions with the one-loop jet-veto
matching kernels read(

I
(1)
q←l ⊗ P

(0)
l←q

)
(z)

= −π2

6 CF P (0)
q←q(z) + C2

F

{
2(1− z)

(
4 ln(1− z)− 2 ln z − 1

)}

+ CF TF

{
− 8z ln z + 8(1− z)(1− 2z − 2z2)

3z

}
,
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(
I

(1)
q←l ⊗ P

(0)
l←g

)
(z)

= −π2

6 CF P (0)
q←g(z) + CF TF

{
− 4(1 + 2z) ln z − 4(2− z − z2)

}
+ β0TF

{
4z(1− z)

}

+ CATF

{
16z(1− z) ln(1− z)− 32z ln z + 8(1− 3z − 15z2 + 17z3)

3z

}
,

(
I

(1)
g←l ⊗ P

(0)
l←q

)
(z)

= −π2

6 CAP (0)
g←q(z) + C2

F

{
8z ln(1− z)− 4z ln z + 2z + 4

}
,

(
I

(1)
g←l ⊗ P

(0)
l←g

)
(z)

= −π2

6 CAP (0)
g←g(z) + CF TF nf

{
8z ln z + 4 + 4z − 8z2

}
, (A.10)

where the factor nf in the last term again arises from a sum over all massless quark flavours.

B Details on the reference observable

Within the approach described in section 3.2, the jet-veto matching kernels are computed
starting from the difference (3.7) with respect to a reference observable, for which we use
the integrated qT -spectrum according to (3.8). One then needs to add the matching kernels
for this reference observable to the final expressions for the refactorised matching kernels
given in (3.19).

The matching kernels for the reference observable can easily be derived from available
results for transverse-momentum resummation. As the latter are usually given in position-
space, one needs to Fourier-transform these expressions and to integrate them up to the
pveto

T cut. Specifically, logarithms in the transverse-momentum framework then translate
into pveto

T logarithms using the relation∫ pveto
T

0
dqT 2qT

1
4π

∫ ∞
0

dxT xT

∫ 2π

0
dφ eiqT xT cos φ lnn

(
x2

T µ2

4e−2γE

)

= pveto
T

∫ ∞
0

dxT J1
(
xT pveto

T

)
lnn

(
x2

T µ2

4e−2γE

)
, (B.1)

where J1(x) is a Bessel function. For n = 0, 1, 2 there is thus a one-to-one correspondence
between the two types of logarithms, whereas for n = 3, 4 they differ by certain ζ3 terms.
This implies that the refactorised matching kernels for the reference observable are not
precisely equal to the ones from transverse-momentum resummation for the diagonal channels.
Particularly, we find

I
ref,(2)
i←j (z) = I

qT ,(2)
i←j (z)− δij ζ3 Γi

0

{
2P

(0)
i←j(z) +

(
di

1 + 2γi
0 −

2
3β0

)
δ(1− z)

}
, (B.2)

where I
qT ,(2)
i←j (z) are the matching kernels for transverse-momentum resummation, for which

we use the explicit expressions provided in [39] (setting the RG logarithms therein to zero).
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Figure 6. Left: two-loop anomaly exponent dF
2 = dCF

2 C2
F + dCA

2 CF CA + d
nf

2 CF TF nf as a function
of the jet radius R. The dots show the result of our numerical approach, and the lines represent
the expression in (C.2). Right: the same for the coefficient of the delta function CF

δ (R) = CCF

δ C2
F +

CCA

δ CF CA + Cnf

δ CF TF nf , where the lines refer to (C.3).

C Quark beam function in momentum space

In [29] we presented the first computation of the quark beam function for jet-veto resummation
in Mellin space. Here we complement these results by calculating the matching kernels directly
in momentum space using the two approaches described in section 3.

At NLO the matching kernels can be obtained analytically. They read [9]

I(1)
q←q(z) = CF

{
−π2

6 δ(1− z) + 2(1− z)
}

,

I(1)
q←g(z) = TF

{
4z(1− z)

}
, (C.1)

whereas we decompose the NNLO kernels in terms of distributions and a grid contribution
according to (4.4). Our results for the coefficients of the distributions are shown in figure 6,
where the numbers indicated by the dots have been obtained within our numerical approach
from section 3.1, and the lines correspond to

dF
2 (R) = CF CA

(808
27 − 28ζ3

)
+ CF TF nf

(
− 224

27

)
+ C2

F

(
32ζ3

)
+ C2

F ∆dCF
2 (R) + CF CA ∆dCA

2 (R) + CF TF nf ∆d
nf

2 (R) , (C.2)

CF
δ (R) = CF CA

(
1214
81 − 67π2

36 + π4

18 + 11
9 ζ3

)
+ CF TF nf

(
−328

81 + 5π2

9 − 4
9ζ3

)

+ C2
F

(
π4

72

)
+ C2

F ∆CCF
δ (R) + CF CA ∆CCA

δ (R) + CF TF nf ∆Cnf

δ (R) , (C.3)

which were derived using the semi-analytical method from section 3.2. Explicitly, the various
terms in these expressions read

∆dCF
2 (R) = −32ζ3 +

8π2R2

3 − 2R4 ,

∆dCA
2 (R) =

(
−524

9 + 16π2

3 + 176
3 ln 2

)
lnR + 3220

27 − 44π2

9 − 560
9 ln 2− 176

3 ln2 2− 16ζ3

− 8.45R2 + 0.723R4 − 0.0169R6 + 0.000402R8 − 2.62 · 10−5R10 ,
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Figure 7. Grid contributions to the NNLO matching kernels defined in (C.6) for three different
values of the jet radius R.
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∆d
nf

2 (R) =
(184

9 − 64
3 ln 2

)
lnR − 1256

27 + 16π2

9 + 256
9 ln 2 + 64

3 ln2 2

− 0.706R2 + 0.0142R4 − 0.00217R6 + 0.000135R8 − 1.19 · 10−5R10 , (C.4)

for the anomaly exponent, and

∆CCF
δ (R) = 4.81R2 + 0.614R4 − 0.0764R6 − 0.000709R8 − 3.85 · 10−5R10 ,

∆CCA
δ (R) =

(
−1622

27 + 548
9 ln 2 + 88

3 ln2 2 + 8ζ3

)
lnR − 19.0

− 0.209R2 − 0.135R4 + 0.0228R6 − 0.000576R8 + 0.0000398R10

∆Cnf

δ (R) =
(652

27 − 232
9 ln 2− 32

3 ln2 2
)
lnR + 1.27

+ 0.0538R2 − 0.0209R4 + 0.000599R6 − 0.000146R8 + 9.93 · 10−6R10 , (C.5)

for the coefficient of the delta function. We recall that both of these coefficients are constrained
by Casimir scaling, and they are therefore related to the expressions in (3.18) and (3.20).
The agreement between our numerical and semi-analytical results provides a check of our
calculation.

We finally turn to the grid contributions, for which we use the same colour decomposition
as in [29],

I(2,Grid)
q←q (z, R) = C2

F I(2,CF )
q←q (z) + CF CA I(2,CA)

q←q (z) + CF TF nf I
(2,nf )
q←q (z) + CF TF I(2,TF )

q←q (z) ,

I(2,Grid)
q←g (z, R) = CF TF I(2,CF )

q←g (z) + CATF I(2,CA)
q←g (z) ,

I
(2,Grid)
q←q̄ (z, R) = CF (CA − 2CF ) I

(2,CAF )
q←q̄ (z) + CF TF I(2,TF )

q←q (z) ,

I
(2,Grid)
q←q′ (z, R) = I

(2,Grid)
q←q̄′ (z, R) = CF TF I(2,TF )

q←q (z) . (C.6)

In total there are thus seven independent kernels in this case, which implicitly depend on
the jet radius R. Our results for these kernels are shown in figure 7, and they are also
contained in the accompanying electronic file. We note that these numbers, which were
obtained with our numerical setup, have sub-percent uncertainties, and they show a similar
level of agreement in comparison with both our semi-analytical approach and the results
from [30] as for the gluon channels.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
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References

[1] A. Banfi, G.P. Salam and G. Zanderighi, NLL+NNLO predictions for jet-veto efficiencies in
Higgs-boson and Drell-Yan production, JHEP 06 (2012) 159 [arXiv:1203.5773] [INSPIRE].

[2] T. Becher and M. Neubert, Factorization and NNLL Resummation for Higgs Production with a
Jet Veto, JHEP 07 (2012) 108 [arXiv:1205.3806] [INSPIRE].

[3] F.J. Tackmann, J.R. Walsh and S. Zuberi, Resummation Properties of Jet Vetoes at the LHC,
Phys. Rev. D 86 (2012) 053011 [arXiv:1206.4312] [INSPIRE].

– 25 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP06(2012)159
https://doi.org/10.48550/arXiv.1203.5773
https://inspirehep.net/literature/1094890
https://doi.org/10.1007/JHEP07(2012)108
https://doi.org/10.48550/arXiv.1205.3806
https://inspirehep.net/literature/1115192
https://doi.org/10.1103/PhysRevD.86.053011
https://doi.org/10.48550/arXiv.1206.4312
https://inspirehep.net/literature/1118838


J
H
E
P
0
7
(
2
0
2
4
)
0
1
4

[4] A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet
veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].

[5] T. Becher, M. Neubert and L. Rothen, Factorization and N3LLp+NNLO predictions for the
Higgs cross section with a jet veto, JHEP 10 (2013) 125 [arXiv:1307.0025] [INSPIRE].

[6] I.W. Stewart, F.J. Tackmann, J.R. Walsh and S. Zuberi, Jet pT resummation in Higgs
production at NNLL′ + NNLO, Phys. Rev. D 89 (2014) 054001 [arXiv:1307.1808] [INSPIRE].

[7] A. Banfi et al., Jet-vetoed Higgs cross section in gluon fusion at N3LO + NNLL with small-R
resummation, JHEP 04 (2016) 049 [arXiv:1511.02886] [INSPIRE].

[8] P.F. Monni, L. Rottoli and P. Torrielli, Higgs transverse momentum with a jet veto: a
double-differential resummation, Phys. Rev. Lett. 124 (2020) 252001 [arXiv:1909.04704]
[INSPIRE].

[9] D.Y. Shao, C.S. Li and H.T. Li, Resummation Prediction on Higgs and Vector Boson Associated
Production with a Jet Veto at the LHC, JHEP 02 (2014) 117 [arXiv:1309.5015] [INSPIRE].

[10] Y. Li and X. Liu, High precision predictions for exclusive V H production at the LHC, JHEP 06
(2014) 028 [arXiv:1401.2149] [INSPIRE].

[11] P. Jaiswal and T. Okui, Explanation of the WW excess at the LHC by jet-veto resummation,
Phys. Rev. D 90 (2014) 073009 [arXiv:1407.4537] [INSPIRE].

[12] T. Becher, R. Frederix, M. Neubert and L. Rothen, Automated NNLL + NLO resummation for
jet-veto cross sections, Eur. Phys. J. C 75 (2015) 154 [arXiv:1412.8408] [INSPIRE].

[13] Y. Wang, C.S. Li and Z.L. Liu, Resummation prediction on gauge boson pair production with a
jet veto, Phys. Rev. D 93 (2016) 094020 [arXiv:1504.00509] [INSPIRE].

[14] S. Dawson et al., Resummation of jet veto logarithms at N3LLa + NNLO for W +W−

production at the LHC, Phys. Rev. D 94 (2016) 114014 [arXiv:1606.01034] [INSPIRE].

[15] J.M. Campbell, R.K. Ellis, T. Neumann and S. Seth, Jet-veto resummation at N3LLp + NNLO
in boson production processes, JHEP 04 (2023) 106 [arXiv:2301.11768] [INSPIRE].

[16] A. Gavardi, M.A. Lim, S. Alioli and F.J. Tackmann, NNLO + PS W +W− production using jet
veto resummation at NNLL′, JHEP 12 (2023) 069 [arXiv:2308.11577] [INSPIRE].

[17] F.J. Tackmann, W.J. Waalewijn and L. Zeune, Impact of Jet Veto Resummation on Slepton
Searches, JHEP 07 (2016) 119 [arXiv:1603.03052] [INSPIRE].

[18] M.A. Ebert et al., Exploiting jet binning to identify the initial state of high-mass resonances,
Phys. Rev. D 94 (2016) 051901 [arXiv:1605.06114] [INSPIRE].

[19] B. Fuks and R. Ruiz, A comprehensive framework for studying W ′ and Z ′ bosons at hadron
colliders with automated jet veto resummation, JHEP 05 (2017) 032 [arXiv:1701.05263]
[INSPIRE].

[20] L. Arpino, A. Banfi, S. Jäger and N. Kauer, BSM WW production with a jet veto, JHEP 08
(2019) 076 [arXiv:1905.06646] [INSPIRE].

[21] C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and
soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

[22] C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory,
Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

– 26 –

https://doi.org/10.1103/PhysRevLett.109.202001
https://doi.org/10.48550/arXiv.1206.4998
https://inspirehep.net/literature/1119064
https://doi.org/10.1007/JHEP10(2013)125
https://doi.org/10.48550/arXiv.1307.0025
https://inspirehep.net/literature/1240691
https://doi.org/10.1103/PhysRevD.89.054001
https://doi.org/10.48550/arXiv.1307.1808
https://inspirehep.net/literature/1241817
https://doi.org/10.1007/JHEP04(2016)049
https://doi.org/10.48550/arXiv.1511.02886
https://inspirehep.net/literature/1403793
https://doi.org/10.1103/PhysRevLett.124.252001
https://doi.org/10.48550/arXiv.1909.04704
https://inspirehep.net/literature/1753579
https://doi.org/10.1007/JHEP02(2014)117
https://doi.org/10.48550/arXiv.1309.5015
https://inspirehep.net/literature/1254702
https://doi.org/10.1007/JHEP06(2014)028
https://doi.org/10.1007/JHEP06(2014)028
https://doi.org/10.48550/arXiv.1401.2149
https://inspirehep.net/literature/1276513
https://doi.org/10.1103/PhysRevD.90.073009
https://doi.org/10.48550/arXiv.1407.4537
https://inspirehep.net/literature/1306758
https://doi.org/10.1140/epjc/s10052-015-3368-y
https://doi.org/10.48550/arXiv.1412.8408
https://inspirehep.net/literature/1335724
https://doi.org/10.1103/PhysRevD.93.094020
https://doi.org/10.48550/arXiv.1504.00509
https://inspirehep.net/literature/1357608
https://doi.org/10.1103/PhysRevD.94.114014
https://doi.org/10.48550/arXiv.1606.01034
https://inspirehep.net/literature/1467241
https://doi.org/10.1007/JHEP04(2023)106
https://doi.org/10.48550/arXiv.2301.11768
https://inspirehep.net/literature/2627226
https://doi.org/10.1007/JHEP12(2023)069
https://doi.org/10.48550/arXiv.2308.11577
https://inspirehep.net/literature/2690111
https://doi.org/10.1007/JHEP07(2016)119
https://doi.org/10.48550/arXiv.1603.03052
https://inspirehep.net/literature/1427021
https://doi.org/10.1103/PhysRevD.94.051901
https://doi.org/10.48550/arXiv.1605.06114
https://inspirehep.net/literature/1463280
https://doi.org/10.1007/JHEP05(2017)032
https://doi.org/10.48550/arXiv.1701.05263
https://inspirehep.net/literature/1509917
https://doi.org/10.1007/JHEP08(2019)076
https://doi.org/10.1007/JHEP08(2019)076
https://doi.org/10.48550/arXiv.1905.06646
https://inspirehep.net/literature/1735247
https://doi.org/10.1103/PhysRevD.63.114020
https://doi.org/10.48550/arXiv.hep-ph/0011336
https://inspirehep.net/literature/537516
https://doi.org/10.1103/PhysRevD.65.054022
https://doi.org/10.48550/arXiv.hep-ph/0109045
https://inspirehep.net/literature/562452


J
H
E
P
0
7
(
2
0
2
4
)
0
1
4

[23] M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy
to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152]
[INSPIRE].

[24] T. Becher and M. Neubert, Drell-Yan Production at Small qT , Transverse Parton Distributions
and the Collinear Anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].

[25] T. Becher, G. Bell and M. Neubert, Factorization and Resummation for Jet Broadening, Phys.
Lett. B 704 (2011) 276 [arXiv:1104.4108] [INSPIRE].

[26] J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A formalism for the Systematic Treatment of
Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084 [arXiv:1202.0814]
[INSPIRE].

[27] G. Bell, R. Rahn and J. Talbert, Generic dijet soft functions at two-loop order: uncorrelated
emissions, JHEP 09 (2020) 015 [arXiv:2004.08396] [INSPIRE].

[28] S. Abreu, J.R. Gaunt, P.F. Monni and R. Szafron, The analytic two-loop soft function for
leading-jet pT , JHEP 08 (2022) 268 [arXiv:2204.02987] [INSPIRE].

[29] G. Bell, K. Brune, G. Das and M. Wald, The NNLO quark beam function for jet-veto
resummation, JHEP 01 (2023) 083 [arXiv:2207.05578] [INSPIRE].

[30] S. Abreu et al., Quark and gluon two-loop beam functions for leading-jet pT and slicing at NNLO,
JHEP 04 (2023) 127 [arXiv:2207.07037] [INSPIRE].

[31] G. Bell, R. Rahn and J. Talbert, Two-loop anomalous dimensions of generic dijet soft functions,
Nucl. Phys. B 936 (2018) 520 [arXiv:1805.12414] [INSPIRE].

[32] G. Bell, R. Rahn and J. Talbert, Generic dijet soft functions at two-loop order: correlated
emissions, JHEP 07 (2019) 101 [arXiv:1812.08690] [INSPIRE].

[33] G. Bell, B. Dehnadi, T. Mohrmann and R. Rahn, The NNLO soft function for N-jettiness in
hadronic collisions, arXiv:2312.11626 [INSPIRE].

[34] G. Bell, K. Brune, G. Das and M. Wald, Automation of Beam and Jet functions at NNLO,
SciPost Phys. Proc. 7 (2022) 021 [arXiv:2110.04804] [INSPIRE].

[35] G. Bell, K. Brune, G. Das and M. Wald, Automated Calculation of Beam Functions at NNLO,
PoS LL2022 (2022) 026 [arXiv:2208.04847] [INSPIRE].

[36] M. Wald, Factorisation: Applications in collider and flavour physics, Ph.D. thesis, Universität
Siegen, 57068 Siegen, Germany (2023) [INSPIRE].

[37] S. Catani and M. Grazzini, Higgs Boson Production at Hadron Colliders: Hard-Collinear
Coefficients at the NNLO, Eur. Phys. J. C 72 (2012) 2013 [Erratum ibid. 72 (2012) 2132]
[arXiv:1106.4652] [INSPIRE].

[38] S. Catani et al., Vector boson production at hadron colliders: hard-collinear coefficients at the
NNLO, Eur. Phys. J. C 72 (2012) 2195 [arXiv:1209.0158] [INSPIRE].

[39] T. Gehrmann, T. Luebbert and L.L. Yang, Calculation of the transverse parton distribution
functions at next-to-next-to-leading order, JHEP 06 (2014) 155 [arXiv:1403.6451] [INSPIRE].

[40] M.-X. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Quark Transverse Parton Distribution at the
Next-to-Next-to-Next-to-Leading Order, Phys. Rev. Lett. 124 (2020) 092001 [arXiv:1912.05778]
[INSPIRE].

[41] M.A. Ebert, B. Mistlberger and G. Vita, Transverse momentum dependent PDFs at N3LO,
JHEP 09 (2020) 146 [arXiv:2006.05329] [INSPIRE].

– 27 –

https://doi.org/10.1016/S0550-3213(02)00687-9
https://doi.org/10.48550/arXiv.hep-ph/0206152
https://inspirehep.net/literature/588622
https://doi.org/10.1140/epjc/s10052-011-1665-7
https://doi.org/10.48550/arXiv.1007.4005
https://inspirehep.net/literature/862424
https://doi.org/10.1016/j.physletb.2011.09.005
https://doi.org/10.1016/j.physletb.2011.09.005
https://doi.org/10.48550/arXiv.1104.4108
https://inspirehep.net/literature/896796
https://doi.org/10.1007/JHEP05(2012)084
https://doi.org/10.48550/arXiv.1202.0814
https://inspirehep.net/literature/1087437
https://doi.org/10.1007/JHEP09(2020)015
https://doi.org/10.48550/arXiv.2004.08396
https://inspirehep.net/literature/1791911
https://doi.org/10.1007/JHEP08(2022)268
https://doi.org/10.48550/arXiv.2204.02987
https://inspirehep.net/literature/2064338
https://doi.org/10.1007/JHEP01(2023)083
https://doi.org/10.48550/arXiv.2207.05578
https://inspirehep.net/literature/2110884
https://doi.org/10.1007/JHEP04(2023)127
https://doi.org/10.48550/arXiv.2207.07037
https://inspirehep.net/literature/2112455
https://doi.org/10.1016/j.nuclphysb.2018.09.026
https://doi.org/10.48550/arXiv.1805.12414
https://inspirehep.net/literature/1675795
https://doi.org/10.1007/JHEP07(2019)101
https://doi.org/10.48550/arXiv.1812.08690
https://inspirehep.net/literature/1710427
https://doi.org/10.48550/arXiv.2312.11626
https://inspirehep.net/literature/2738745
https://doi.org/10.21468/SciPostPhysProc.7.021
https://doi.org/10.48550/arXiv.2110.04804
https://inspirehep.net/literature/1943823
https://doi.org/10.22323/1.416.0026
https://doi.org/10.48550/arXiv.2208.04847
https://inspirehep.net/literature/2133910
https://inspirehep.net/literature/2780579
https://doi.org/10.1140/epjc/s10052-012-2013-2
https://doi.org/10.48550/arXiv.1106.4652
https://inspirehep.net/literature/914989
https://doi.org/10.1140/epjc/s10052-012-2195-7
https://doi.org/10.48550/arXiv.1209.0158
https://inspirehep.net/literature/1184204
https://doi.org/10.1007/JHEP06(2014)155
https://doi.org/10.48550/arXiv.1403.6451
https://inspirehep.net/literature/1287076
https://doi.org/10.1103/PhysRevLett.124.092001
https://doi.org/10.48550/arXiv.1912.05778
https://inspirehep.net/literature/1770431
https://doi.org/10.1007/JHEP09(2020)146
https://doi.org/10.48550/arXiv.2006.05329
https://inspirehep.net/literature/1800390


J
H
E
P
0
7
(
2
0
2
4
)
0
1
4

[42] M.-X. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Unpolarized quark and gluon TMD PDFs and
FFs at N3LO, JHEP 06 (2021) 115 [arXiv:2012.03256] [INSPIRE].

[43] S. Catani and P.K. Dhani, Collinear functions for QCD resummations, JHEP 03 (2023) 200
[arXiv:2208.05840] [INSPIRE].

[44] T. Becher and G. Bell, Analytic Regularization in Soft-Collinear Effective Theory, Phys. Lett. B
713 (2012) 41 [arXiv:1112.3907] [INSPIRE].

[45] M. Ritzmann and W.J. Waalewijn, Fragmentation in Jets at NNLO, Phys. Rev. D 90 (2014)
054029 [arXiv:1407.3272] [INSPIRE].

[46] D.A. Kosower and P. Uwer, One loop splitting amplitudes in gauge theory, Nucl. Phys. B 563
(1999) 477 [hep-ph/9903515] [INSPIRE].

[47] Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The infrared behavior of one loop QCD
amplitudes at next-to-next-to leading order, Phys. Rev. D 60 (1999) 116001 [hep-ph/9903516]
[INSPIRE].

[48] G.F.R. Sborlini, D. de Florian and G. Rodrigo, Double collinear splitting amplitudes at
next-to-leading order, JHEP 01 (2014) 018 [arXiv:1310.6841] [INSPIRE].

[49] J.M. Campbell and E.W.N. Glover, Double unresolved approximations to multiparton scattering
amplitudes, Nucl. Phys. B 527 (1998) 264 [hep-ph/9710255] [INSPIRE].

[50] S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the
next-to-next-to-leading order and beyond, Nucl. Phys. B 570 (2000) 287 [hep-ph/9908523]
[INSPIRE].

[51] S. Borowka et al., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals,
Comput. Phys. Commun. 222 (2018) 313 [arXiv:1703.09692] [INSPIRE].

[52] T. Hahn, CUBA: A library for multidimensional numerical integration, Comput. Phys. Commun.
168 (2005) 78 [hep-ph/0404043] [INSPIRE].

[53] T. Becher and G. Bell, NNLL Resummation for Jet Broadening, JHEP 11 (2012) 126
[arXiv:1210.0580] [INSPIRE].

[54] Z.-B. Kang, K. Samanta, D.Y. Shao and Y.-L. Zeng, Transverse momentum dependent
distribution functions in the threshold limit, JHEP 11 (2023) 220 [arXiv:2211.08341] [INSPIRE].

[55] T. Becher, M. Neubert and B.D. Pecjak, Factorization and Momentum-Space Resummation in
Deep-Inelastic Scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].

[56] T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory
Amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 11 (2013) 024] [arXiv:0903.1126] [INSPIRE].

[57] G. Curci, W. Furmanski and R. Petronzio, Evolution of Parton Densities Beyond Leading Order:
The Nonsinglet Case, Nucl. Phys. B 175 (1980) 27 [INSPIRE].

[58] W. Furmanski and R. Petronzio, Singlet Parton Densities Beyond Leading Order, Phys. Lett. B
97 (1980) 437 [INSPIRE].

[59] R.K. Ellis and W. Vogelsang, The evolution of parton distributions beyond leading order: The
Singlet case, hep-ph/9602356 [INSPIRE].

– 28 –

https://doi.org/10.1007/JHEP06(2021)115
https://doi.org/10.48550/arXiv.2012.03256
https://inspirehep.net/literature/1835581
https://doi.org/10.1007/JHEP03(2023)200
https://doi.org/10.48550/arXiv.2208.05840
https://inspirehep.net/literature/2134967
https://doi.org/10.1016/j.physletb.2012.05.016
https://doi.org/10.1016/j.physletb.2012.05.016
https://doi.org/10.48550/arXiv.1112.3907
https://inspirehep.net/literature/1081751
https://doi.org/10.1103/PhysRevD.90.054029
https://doi.org/10.1103/PhysRevD.90.054029
https://doi.org/10.48550/arXiv.1407.3272
https://inspirehep.net/literature/1306304
https://doi.org/10.1016/S0550-3213(99)00583-0
https://doi.org/10.1016/S0550-3213(99)00583-0
https://doi.org/10.48550/arXiv.hep-ph/9903515
https://inspirehep.net/literature/497475
https://doi.org/10.1103/PhysRevD.60.116001
https://doi.org/10.48550/arXiv.hep-ph/9903516
https://inspirehep.net/literature/497476
https://doi.org/10.1007/JHEP01(2014)018
https://doi.org/10.48550/arXiv.1310.6841
https://inspirehep.net/literature/1262127
https://doi.org/10.1016/S0550-3213(98)00295-8
https://doi.org/10.48550/arXiv.hep-ph/9710255
https://inspirehep.net/literature/449368
https://doi.org/10.1016/S0550-3213(99)00778-6
https://doi.org/10.48550/arXiv.hep-ph/9908523
https://inspirehep.net/literature/506347
https://doi.org/10.1016/j.cpc.2017.09.015
https://doi.org/10.48550/arXiv.1703.09692
https://inspirehep.net/literature/1519856
https://doi.org/10.1016/j.cpc.2005.01.010
https://doi.org/10.1016/j.cpc.2005.01.010
https://doi.org/10.48550/arXiv.hep-ph/0404043
https://inspirehep.net/literature/647621
https://doi.org/10.1007/JHEP11(2012)126
https://doi.org/10.48550/arXiv.1210.0580
https://inspirehep.net/literature/1189007
https://doi.org/10.1007/JHEP11(2023)220
https://doi.org/10.48550/arXiv.2211.08341
https://inspirehep.net/literature/2182362
https://doi.org/10.1088/1126-6708/2007/01/076
https://doi.org/10.48550/arXiv.hep-ph/0607228
https://inspirehep.net/literature/722046
https://doi.org/10.1088/1126-6708/2009/06/081
https://doi.org/10.48550/arXiv.0903.1126
https://inspirehep.net/literature/814859
https://doi.org/10.1016/0550-3213(80)90003-6
https://inspirehep.net/literature/152873
https://doi.org/10.1016/0370-2693(80)90636-X
https://doi.org/10.1016/0370-2693(80)90636-X
https://inspirehep.net/literature/155291
https://doi.org/10.48550/arXiv.hep-ph/9602356
https://inspirehep.net/literature/416166

	Introduction
	Theoretical framework
	Computational aspects
	Numerical approach
	Semi-analytical approach

	Results
	Momentum-space kernels
	Mellin-space kernels

	Conclusion
	Anomalous dimensions and splitting functions
	Details on the reference observable
	Quark beam function in momentum space

