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1 Introduction

Universal gravity and electrostatic forces are two known long-range forces in nature. They
can be united classically in Einstein-Maxwell (EM) gravity, which predicts the existence of
Reissner-Nordström (RN) charged black holes. Despite of the fact that it is unlikely for
them to exist in nature, RN black holes, especially in the extremal and near-extremal limits,
remain one of the favourite spacetime geometry for theoretic study. The perfect balance
between gravity and the electrostatic force is preserved in the extremal RN black holes
under the no force condition, where mass and charges are exactly the same. EM gravity can
be naturally embedded in supergravity, the low-energy effective theory of strings. In this
framework, the Maxwell field is not fundamental, but composite of appropriate components
such as D-branes and Kaluza-Klein monopoles, which can be described in STU supergravity
model [1]. This stringy framework provides the first example of counting the microscopic
entropy for (extremal) black holes [2]. The RN black hole also provides an excellent toy
model to test the weak gravity conjecture (WGC), which states that gravity should be weaker
than any of gauge interactions [3]. The no-force condition of the extremal RN black hole is
therefore expected to be broken under quantum effect so that gravity becomes weaker than
the electric force. This was indeed confirmed in the context of effective field theory under
the leading order correction [4]. By contrast, gravity becomes stronger than the centrifugal
repulsion under quantum correction in this setup of effective field theory [5]. The WGC
suggests that the zero-temperature particle-like extremal RN black hole, which can be large,
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will decay into smaller ingredients under quantum correction. It is thus natural to ask what
could be the concrete mechanism for such instability.

Charged black hole has an intriguing phenomenon called superradiant effect, see e.g. [6–9].
One can extract energy and charges from a charged black hole by throwing in a charged matter
fields such as a scalar, even though one imposes only the ingoing boundary condition on the
black hole horizon. This is analogous to the Penrose process and leads to a nature question:
will this superradiant effect cause instability of the black hole? Indeed such instability was
demonstrated in rotating black holes [10, 11]. However, It was convincingly argued in [12]
that the extremal RN black hole does not suffer from such instability under the charged
scalar perturbation. This result was later generalized to non-extremal RN black holes [13, 14],
which should be expected since gravity is stronger. This issue was later analysed [15, 16] in
the context of STU supergravity model, which involves four different Maxwell field strengths,
associated with different D-branes and Kaluza-Klein vectors. The RN black hole emerges as
a fine-tuned object when all the four charges are exactly the same. It was shown that the
charged black holes suffered from superradiant instability as long as not all the charges are
exactly equal, no matter how small their difference is [16]. This shows that the superradiant
stability of the RN black hole is a fine-tuning result of the general four-charge black holes
in the supergravity model.

In this paper, we shall study the nonlinear generalization of the Maxwell theory. The
best known example is the Born-Infeld (BI) theory. The analytic solution of charged black
hole in Einstein-Born-Infeld (EBI) theory has long been know [17, 18]. (See also e.g. [19–22]
for solutions with a cosmological constant.) We study the minimally coupled charged scalar
perturbation of the extremal black hole. Our motivation is twofold. One is to examine the
superradiant stability of the RN black hole in the context of a bigger theory, as this was done
in the STU supergravity model. The other is inspired by the WGC, since if we take Taylor
expansion of the BI coupling constant, the terms associated with the linear-order of the
coupling constant belong to a subset of the general four-derivative effective field theory that
describes the correction to the EM theory [4]. For the positive coupling, the perturbation
satisfies the WGC requirement, namely [4]

∆S > 0 , ∆M < 0 . (1.1)

Therefore, the extremal charged black holes in EBI gravity should be unstable no matter
how small the coupling constant is.

Our conclusion is that extremal charged black holes in EBI are all superradiantly unstable,
indicating again that the superradiant stability of the RN black hole is a fine-tuning result in
the context of EBI theory. However, the detailed results make the question subtle to answer
whether this instability is relevant to the WGC. Furthermore, the decay rate is extremely
small compared to previous examples of unstable QBS’s in literature.

The paper is organized as follows. In section 2, we review the EBI theory and its
charged black hole. We illustrate that the theory can be used as a toy model for testing
GWC. We consider charged scalar perturbations with the aim of constructing superradiantly
unstable quasi-bound states (QBS’s). We derive some necessary conditions for such states.
In section 3, we describe the two numerical methods to construct unstable QBS’s. One is
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the shooting-target method and the other is the Chebyshev spectral method. The reason for
using two methods to do crosscheck is that the imaginary part of the complex frequency of
the QBS’s is exceedingly small. In section 4, we present numerical results that indicate the
extremal charged black holes in EBI gravity are all superradiantly unstable. We conclude
the paper in section 5.

2 Charged black hole and charged scalar perturbation

In this section, we consider EBI gravity in four dimensions. We focus on electrically charged
black holes. The relevant part of the Lagrangian is

L =
√
−g

(
R + 2

β

(
1 −

√
1 + βF 2

))
, (2.1)

where F = dA is the Maxwell field strength and F 2 = F µνFµν . We ignore the (ϵµνρσFµνFρσ)2

term since it gives no contribution to equations of motion for purely electric ansatz. The
limit of the coupling parameter β → 0 yields EM gravity. Note that for convenience we take
β = 1/b as our coupling constant, where b is typically used in literature.

2.1 Electrically charged black hole

The theory admits an exact solution of electrically charged spherically symmetric and static
black hole

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
2 , A = a(r)dt ,

f = 1 − 2M

r
+ r2 −

√
r4 + 2βQ2

3β
+ 4Q2

3r2 2F1[1
4 , 1

2 ; 5
4 ,−2βQ2/r4] ,

a = −Q

r
2F1[1

4 , 1
2 ; 5

4 ;−2βQ2/r4] . (2.2)

The solution reduces to the standard RN solution in the β → 0 limit. The matter energy-
momentum tensor T µ

ν = diag{−ρ, pr, pT } of the BI field is given by

ρ = −pr =
√

2βQ2 + r4 − r2

βr2 , ρ + pT = 2Q2

r2
√

2βQ2 + r4 . (2.3)

Therefore we have also

ρ − PT =

(√
2βQ2 + r4 − r2

)2

βr2
√

βQ2 + r4 , ρ + pr + 2pT =
2
(√

2βQ2 + r4 − r2
)

β
√

2βQ2 + r4 . (2.4)

This implies that for β ≥ 0, both strong and dominant energy conditions are satisfied.
For β < 0, the dominant energy condition is violated, but the strong and weak energy
conditions remain satisfied.

The solution is asymptotic to Minkowski spacetime with the RN black hole as the
leading falloffs

f ∼ 1 − 2M

r
+ Q2

r2 + · · · , a ∼ −Q

r
+ · · · . (2.5)

We have chosen the gauge choice for the Maxwell field that the electric potential vanishes
at asymptotic infinity.
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The solution has two integration constants (M, Q), describing the mass and electric
charge of the spacetime. For sufficiently large M , there is an event horizon r+ which is the
largest root of f(r). The temperature, entropy and electric potential are

T =
r2

+ + β −
√

r4
+ + 2βQ2

4πβr+
, S = πr2

+ , Φ =
Q 2F1

(
1
4 , 1

2 ; 5
4 ;−2Q2β

r4
+

)
r+

. (2.6)

It is easy to verify that the first law dM = TdS + ΦdQ is satisfied for any f(r+) = 0. For
fixed (M, Q), we find that

S(M, Q, β) = S0 + βS1 + O(β2) , (2.7)

with

S0 = π

(√
M2 − Q2 + M

)2
, S1 = π

10Q2
((

4µ2 − 3
)

µ√
µ2 − 1

+ 1 − 4µ2
)

, µ = M

Q
≥ 1 .

(2.8)
Thus the requirement that ∆S = βS1 ≥ 0 imposes that β ≥ 0, in which case, the matter
energy-momentum tensor satisfies both the strong and dominant energy conditions.

For T ≥ 0, one must have

r+ ≥
√

Q2 − 1
2β . (2.9)

The saturation of the inequality gives rise to the extremal limit with T = 0. In this limit,
mass is no longer an independent parameter, but a function of the charge Q:

Mext =
2Q2 − β + 4Q2

2F1

(
1
4 , 1

2 ; 5
4 ;− 8Q2β

(β−2Q2)2

)
3
√

4Q2 − 2β

= Q − β

20Q
− β2

288Q3 − β3

1664Q5 + O
(
β4
)

. (2.10)

Thus we see that at the linear β order, ∆S > 0 requires β > 0 and consequently ∆M < 0,
i.e. gravity becomes weaker than the electric force under the perturbation. Thus we see that
at the linear order of β > 0, the BI theory satisfies the criteria of [4] as a good effective
theory. For this reason, we focus on the β > 0 case in this paper, but we also discuss what
happens when β is negative.

2.2 Charged scalar perturbation

A charged complex scalar under gauge field A satisfies the charged Klein-Gordan equation

(DµDµ − m2)Φ = 0 , Dµ = ∇µ − iqAµ , (2.11)

where (m, q) are the mass and charge of the fundamental scalar Φ. It is a standard procedure
to consider separation of variables, namely Φ = e−iωtR(r)Yℓ,m(θ, φ), where Yℓ,m are spherical
harmonics. The radial function R(r) satisfies

−∆ d

dr
∆ d

dr
R + UR = 0 , (2.12)
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with
∆ = r2f , U(r) = ∆ (mr2 + ℓ(ℓ + 1)) − r4(ω + qa)2 . (2.13)

We now study the boundary conditions both in the asymptotic infinity (r → ∞) and on the
horizon r = r+. The classical condition on the black hole horizon is that the scalar wave
must be ingoing. It is instructive to introduce the tortoise coordinate r∗ by dr∗ = dr/f . For
the extremal black hole we considered earlier, we have r∗ → −∞ on the horizon, and

rR ∼ e±(ω−ωc)r∗ , r∗ → −∞ , (2.14)

where ωc is

ωc = −qa(r+) = qΦ . (2.15)

The ingoing condition selects the minus sign in “±” above. In asymptotic region, for m > ω,
the scalar has the Yukawa falloff, namely

R ∼ e−
√

m2−ω2 r

r
, r∗ ∼ r → ∞ . (2.16)

In other words, the wave function is bounded from the asymptotically infinity. Such a
modes is called a quasi-bound states (QBS), and the frequency ω is necessarily discrete
and complex [15], i.e.

ω = ωr + i ωi . (2.17)

The real quantity ωc, depending on the parameters of the black hole and scalar equation, is
a critical value such that superradiant effects take place for ωr < ωc. Thus the necessary
condition for a QBS with superradiant effect is

ω < m and ωr < ωc . (2.18)

If the imaginary part of ω, i.e. ωi, were negative, then the QBS would be stable. However, it
was shown [16] that superradiant QBS’s, satisfying (2.18), necessarily have positive ωi, and
hence they are necessarily unstable. The focus of this paper is to search for the unstable
QBS’s for a wide range of the β parameter.

2.3 Necessarily conditions for unstable QBS’s

To examine the necessary condition for QBS, it is instructive to cast the scalar radial wave
equation (2.12) into the Schrödinger form. To do this, we define R̄ = ∆

1
2 R, and (2.12) becomes

−d2R̄

dr2 + VeffR̄ = ω2R̄ , (2.19)

where the effective Schrödinger potential is

Veff = ω2 − U

∆2 + 2∆′′∆ − ∆′2

4∆2 ,

= ω2 + m2

f
− (ω + qa(r))2

f2 + l(l + 1)
r2f

+ f
′′

2f
− f

′2

4f2 + f
′

rf
. (2.20)
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Figure 1. There could be two types of potential wells. αinf is negative in the first potential and
positive in the second potential. We find that only the first type exists for EBI black hole.

The range of this effective potential is from horizon r+ to asymptotic infinity. In this paper,
we focus on the extremal black hole, for which, we have

Veff ∼
{
− α+

(r−r+)4 , r → r+ , α+ = 4(ω−ωc)2

f ′′(r+)2 ;
m2 + αinf

r , r → ∞ , αinf = Mext(m2 − 2ω2) + 2Qqω .

The existence of QBS requires that Veff have a potential well. This however is not always
possible under the superradiant QBS condition (2.18). For example, for the RN black hole
with Mext = Q and ωc = q, it follows that Veff has no potential well, but only a maximum.
In particular, one has αinf > 0 under the condition (2.18).

In string theory, the RN black hole is a fine-tuned object of four-charge black holes in
STU supergravity model. The additional charge parameters in the STU black hole implies
that potential well could arise. There are two types, as shown in figure 1 [15]

The situation for EBI charged black hole is far more complicated, and we find that
for general β, the potential well of the second type does not exist, but the first type does,
which requires that αinf < 0. Note that αinf is an convex hyperbolic function of ω, which
has two roots

ω± =
qQ ±

√
q2Q2 + 2m2M2

ext

2Mext
, → ω− < 0 < ω+ . (2.21)

The condition αinf < 0 requires that ω > ω+. However, the superradiant condition requires
that ω < ωc. Thus the existence of the first-type trapping well potential requires

ω+ < ω < ωc . (2.22)

We find that for suitable parameters, we indeed have ωc/ω+ > 0. For example, for m = ωc,
we have

ω̃+ = ω+
ωc

=
3
(√

8
9((β̃ + 2)H(β̃) + 1)2 + 1

H(β̃)2 + 1
H(β̃)

)
4((β̃ + 2)H(β̃) + 1)

, (2.23)

where
H(β̃) =2 F1

(1
4 ,

1
2; 5

4;−β̃(β̃ + 2)
)

. (2.24)
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Note that we have introduced the dimensionless coupling constant β̃

β̃ = β

r2
+

. (2.25)

Under this parametrization and notation, we have

Mext = 1
3r+(1 + (β̃ + 2)H(β̃)) , Qext = r+

√
1 + 1

2 β̃ , ωc = q
√

1 + 1
2 β̃ H(β̃) . (2.26)

Note from (2.9) that for fixed Q, β must be bounded above. However, in the above parametriza-
tion, we have fixed r+, in which case, β̃ is unbounded above, but bounded below. It is easy to
establish as β̃ runs from 0 to infinity, the ratio ω̃+ monotonously decreases from 1 to 0.958176.

Of course, to have simply αinf < 0 does not guarantee that Veff yields a trapping well; it
could be a monotonous function of r. This is indeed the case for some large ω > ωc. We find
however that for the ω lying in the range (2.22), Veff always gives a trapping well potential
of the first type. Since the potential well of the first type can exist for small arbitrarily
small β, we examine whether we can consider linear approximation of β so that we can
simplify the radial scalar equation. The superradiant QBS condition (2.18) can be imposed
by parameterized (m, ω) in terms of two positive dimensionless parameters (x > 0, y > 0):

ωc = (1 + x)ω , m2 = (1 + y)ω2 . (2.27)

We now have

αinf = 2
3r+ω2

(
(β̃ + 2)(x − 1)H(β̃) + 3(y + 1)

H(β̃)
+ x − 1

)
. (2.28)

For small β̃, we have

αinf = 2
3r+ω2

(
3(x + y) + 3

5 β̃(x + y) + 1
75 β̃2(−5x − 6y − 1) + O

(
β̃3
) )

. (2.29)

Thus for fixed (x, y) > 0, β̃ cannot be too small to achieve negative αinf . However, β̃ can be
small when the x and y parameters behave like (x, y) ∼ (x̃, ỹ)β2, in which case, we have

αinf = 2
3r+ω2

c β̃2
(
3(x̃ + ỹ) − 1

75

)
+ O

(
β̃3
)

. (2.30)

Thus we need small (x, y) if we choose small β̃. In fact, if we set x = y = 0, then we have

γ = −2
3ω2

c r+

(
1 + (β + 2)H(β̃) − 3

H(β̃)

)
. (2.31)

This quantity vanishes at β = 0, but is always negative for β̃ > 0. Thus the trapping well
potential always exists for arbitrarily small but non-vanishing β; however, it does not occur
at the linearized level of β̃. The nonlinear effect of BI action plays an essential rule. Our
numerical results of small β̃ will confirm this indeed.

The above analysis was based on the assumption that ω is real. As we mentioned earlier,
it was proven that QBS must have complex frequency (2.17). In practice, as we shall see
from our numerical results, ωi ≪ ωr; therefore, the imaginary part of the ω does not affect
the essence of the above discussion.
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3 Numerical methods

In the previous section, we obtained the necessary condition for the unstable QBS’s. However,
having a trapping-well type of potential does not necessarily imply the existence of a bound
state. We need actually find this state. In this paper, we adopt two rather different numerical
methods to solve the radial charged scalar wave equation (2.12) for unstable QBS’s. One is
the shooting method and the other is the Chebyshev spectral method. The reason to adopt
two methods is that the imaginary part of the QBS are infinitesimally small and we would
like to use two independent methods to crosscheck our results.

3.1 Shooting method

Although the equation (2.12) cannot be solved exactly, it can be expressed in terms of power
series to arbitrarily higher orders around the horizon r+ or at the asymptotic infinity. For
the QBS boundary conditions, the function R(r) at the two boundaries behave like

R ∼

 (r − r+)−2iχ2e
i

(ω−ωc)r2
+χ1

r−r+
∑+∞

i=0 ai(r − r+)i , r → r+ ,

r−χ3e−
√

m2−ω2r ∑+∞
i=0

bi
ri , r → +∞ .

where

χ1 = 2
r2

+

1
f ′′(r) =

r2
+ + β

r2
+

, χ2 =
q
√

2r2
+ + β

2
√

2
+

3r4
+ + 3r2

+β + β2

3r+(r2
+ + β)

(ω − ωc) ,

χ3 = 1 − 2iχ2 +
2r+(m2 − 2ω2) + 3

√
2qω

√
2r2

+ + β

6
√

m2 − ω2

+
(m2 − 2ω2)(2r2

+ + β)2F1[1
2 , 1

4 ; 5
4 ,−β(2r2

++β)
r4

h
]

3rh
√

m2 − ω2
. (3.1)

The coefficients (an, bn) of the power series are determined by solving the equation order
by order, in terms of the leading coefficients (a0, b0), both of which can be set to 1 for our
linear differential equations.

We can use these two power series expansions at the both ends as spatial “initial” condition
and integrate outwards from horizon or inwards from some large r to obtain functions (R+, R−)
respectively. We then require that these two functions match in the intermediate middle
region r = ri. As a linear function, R+(ri) = R−(ri) can always be arranged by adjusting
(a0, b0) coefficients. The matching of their derivative gives the nontrivial condition. The
Wronskian condition that is independent of (a0, b0) is given by

W (ω) =
R′

+
R+

−
R′

−
R−

= 0 . (3.2)

This condition leads to a discrete set of complex ω of QBS’s if they exist. The implementation
of the shooting method numerically is rather straightforward. We find that the real part
of the unstable QBS’s are fairly straightforward to obtain, but the imaginary part can be
only determined with sufficient accuracy for intermediate values of β. For those values we
can determine in high accuracy, we can perform crosscheck with those determined by the
spectral method which we discuss below.
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3.2 Chebyshev spectral method

The use of Chebyshev spectral method to find QBSs or QNMs was well documented in
literature [23, 24]. In order to apply for the extremal charged black hole of this paper, we
change the radial coordinate from r to x = r−r+

r , and the dimensionless coordinate x ∈ [0, 1].
The boundary conditions are

R ∼

x−2iχ̄2ei
(ω−ωc)(1−x)r+χ̄1

x , x → 0 ,

(1 − x)χ̄3e−
√

m2−ω2 r+x

1−x , x → 1 ,

χ̄1 = χ1 , χ̄2 = χ2 , χ̄3 = χ3 + 2iχ2 . (3.3)

Where χ1, χ2, χ3 are from (3.1). The boundary conditions show that the function R oscillates
infinitely at both x = 0 and it exponentially decays at x = 1. We can take out these extreme
behaviors by redefining the radial function

R = x−2iχ̄2ei
(ω−ωc)(1−x)r+χ̄1

x (1 − x)χ̄3e−
√

m2−ω2 r+x

1−x u(x) . (3.4)

Here we also have multiplied the equation by (x−1)2

x2 to ensure that the coefficients of the
each derivatives do not diverge or become zero at both x = 0 and x = 1. Then we obtain
the equation for the function u in the x coordinate.

c2(ω, x)u′′(x) + c1(ω, x)u′(x) + c0(ω, x)u(x) = 0 . (3.5)

The goal is to solve this better behaved equation. In spectral methods, one can approximate
a function by a finite sum of certain appropriately (ω)-measured orthonormal polynomials

u(x) =
N∑

i=1
ūiPi(x) ,

∫
dx ω(x)Pi(x)Pj(x) = δij . (3.6)

This can be shown to be equivalent to constructing an interpolation polynomial in a grid
with N points, namely

u(x) =
N∑

i=1
u(xi)li(x) , li(x) =

N∏
j=0,j ̸=i

(
x − xj

xi − xj

)
. (3.7)

An equidistant grid may be the simplest choice, but it suffers from the Runge problem.
A better approach is to conduct the interpolation within a non-uniform grid, and the
optimal choice is to use Chebyshev points xi defined by the extremum points of Chebyshev
polynomials Ti, namely

xi = 1
2 + 1

2 cos((i − 1)π
N

) , Ti(x) = cos((i − 1) cos−1 x) , i = 1, 2, 3 . . . . (3.8)

The interpolation maps u(x) → u = (u(x1), u(x2), . . . , u(xN )), and the equation (3.5) is
transformed into an algebraic system for the N -dimensional vectors, as the differential
operaters d

dx , d2

dx2 transform to the differential matrixs DN
1 , DN

2 . As long as the boundary
conditions at u(x1) and u(xN ) are taken into account, the problem reduces to an algebraic
eigenvalue problem in N × N dimensions, which can be solved by standard methods [23, 24],
such as Newton iteration method.
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Our goal is to find the discrete set of unstable QBS’s satisfying the appropriate boundary
conditions for give β. To perform the numerical calculation using the spectral method, we
need specify the grid point number N . If the QBS’s exist, it will yield a complex frequency
that depends on N , i.e. ω(N). When N increases, the value of ω(N) typically converges
quickly. Therefore, we obtain the numerical result with desired accuracy for a sufficiently
large N . For many such calculations in literature, black hole metrics are given in terms of
polynomials or rational polynomials of the coordinates, where it is commonly sufficient to
set N to be a few hundreds. In our case, the black hole metric involves a hypergeometric
function and it is therefore inherently more complicated. We find that our results requires
larger N . The convergent of the real part is relatively fast and it requires typically N be
over 1000, but not necessary be over 2000. The convergent of the imaginary part can be
significantly slower. For large or intermediate values of β, a few thousands would be sufficient
for N . Our computer power sets a limit of N = 10000. However, for small β, the convergence
requires N be hundreds of thousands. In this case, we can try to use data extrapolation to
yield a rough estimate. However, the explicit accurate result of the imaginary frequency is
not so essential since we can apply the powerful theorem established in [15] that states, if
the real part of frequency satisfy the superradiant condition, the QBS is necessarily unstable
with a positive imaginary part of frequency.

4 Numerical results

Numerical calculations require us to set parameters of the equations to some specific values.
The extremal charged black hole is specified by two parameters, the horizon radius and BI
coupling parameter β. After introducing the dimensionless β̃ in (2.25), we can set r+ = 1
without loss of generality. In this case, as was discussed earlier around (2.26), the parameter
β̃ is bounded below, but unbounded above. The linear scalar wave equation involves three
parameters, the dimensionless ℓ and two dimensionful (ωc, m). For simplicity, we consider
only the case with

ωc = m , ℓ = 1 . (4.1)

It is thus useful to introduce the dimensionless complex frequency, defined by

ω̃ = ω̃r + iω̃i ≡
ω

ωc
= ωr

ωc
+ i ωi

ωc
. (4.2)

Our task is to search for the unstable QBS’s (ωi > 0) numerically with one free dimensionless
parameter β̃. It was established that such a superradiant QBS does not exist when β̃ = 0,
corresponding to the extremal RN black hole. We focus on the case with β̃ > 0. Our data
indicate a general conclusion that unstable QBS’s exist for all β̃. Since the real part of ω̃ of
the unstable QBS’s can be very close to 1, it is useful to define η, by

η = 1 − ω̃r . (4.3)

4.1 Intermediate β̃

We shall first present the detailed results of the unstable QBS’s with two specific coupling β̃

of the intermediate size, namely β̃ = 10 and β̃ = 20. In each case, there exist more than just
one unstable QBS, and these discretized unstable QBS’s can be characterized by the overtone
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n β̃ = 10 β̃ = 20
1 0.99947 + 1.94607 × 10−43i 0.99824 + 1.10193 × 10−47i
2 0.99972 + 5.18693 × 10−47i 0.99905 + 2.10225 × 10−52i
3 0.99984 + 9.49056 × 10−50i 0.99941 + 4.24260 × 10−55i
4 0.99989 + 6.03056 × 10−52i 0.99960 + 7.56974 × 10−58i
5 0.99992 + 8.94163 × 10−54i 0.99971 + 3.54886 × 10−60i
6 0.99994 + 2.43761 × 10−55i 0.99978 + 3.43055 × 10−62i

Table 1. The dimensionless complex frequencies ω̃ of (4.2) for unstable QBS’s with low-lying overtones.

number n, which counts the number of the peaks of the radial wave function |R(r)|. The
n = 1 solution can be called the ground state while the higher overtone solutions are excited
states. In table 1, we give the dimensionless complex frequency ω̃ for some unstable QBS’s
with low-lying overtone number. Note that our calculation allows us to obtain accuracy over
more than 10 significant figures for some of these states, but we shall present data only with
five or six significant figures in this paper, so as not to overflow the text.

We see that the imaginary part ω̃i in table 1 are exceedingly small, which is a general
feature of all the unstable QBS’s. This is the primary reason why we adopt both shooting and
spectral methods for our numerical calculations, so that we can perform crosscheck. Generally
speaking, for low-lying overtone numbers, both methods are equally capable to obtain the real
part ω̃r in higher accuracy. The spectral method is better at getting the accurate imaginary
part, for intermediate or large β̃. In table 1, the ω̃i values are largely obtained by the spectral
method, and verified with appropriate accuracies by the shooting method. In particular, the
ground state (n = 1) with β̃ = 10 was double checked by both the shooting and spectral
methods, with accuracy up to 10 significant figures for both real and imaginary parts.

A further check on the unstable QBS’s listed in table 1 is to examine the shape of the
radial wave function R(r). For overtone n, the quantity |R(r)| should have n peaks. We draw
the |R(r)| for low-lying n examples in figure 2. In order to fit graphs in one plot for each
β̃, we use the logarithmic scale of the r coordinate. Note that the (linear) function R(r) for
each n is not normalized, but scaled appropriately for a better viewing effect.

An interesting question emerges. For given β̃, is the overtone number for excited unstable
QBS’s finite, or can there be an infinite number of such unstable states? One thing has
already been established that for any unstable QBS, we must have ω̃

(n)
r < 1, for any given

n. To be precise, it follows from (2.23) that we must have

β̃ = 10 : 0.98844 < ω̃(n) < 1 ; β̃ = 20 : 0.98287 < ω̃(n) < 1 . (4.4)

This implies that |ω(n+1)
r − ω

(n)
r | approaches zero as n approaches infinity, even if such

states with infinitely large overtone numbers actually exist. Therefore, it quickly becomes
an impossible task to construct such states with large overtone number, since numerically
they cannot be easily distinguished. In table 2, we list only the real part of ω̃ up to and
including n = 12 for both the β̃ = 10 and 20 cases. The data for n ≥ 6 were obtained
by the shooting method, since the spectral method becomes ineffective to distinguish two
adjacent QBS’s of large n.
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Figure 2. Examples of unstable QBS’s with low-lying overtone number n. To fit all the radial
wave functions in one plot for each β̃, we use logarithmic scale of the radial coordinate. The (linear)
functions are scaled so that they give a better viewing. The left panel has β̃ = 10 and the right
has β̃ = 20.

n 1 2 3 4 5 6
β̃ = 10 0.999437 0.999721 0.999835 0.999892 0.999924 0.999943
β̃ = 20 0.998246 0.999049 0.999413 0.999604 0.999716 0.999786

n 7 8 9 10 11 12
β̃ = 10 0.999956 0.999965 0.999972 0.999978 0.999982 0.999986
β̃ = 20 0.999834 0.999867 0.999891 0.999909 0.999927 0.999942

Table 2. The real part ω̃r of the complex frequency ω̃ for the unstable QBS’s of low-lying overtones.

The data suggests that we can perform data-fitting on the quantity η (4.3) in terms of
an inverse polynomial of n. For the best results, we find

β̃ = 10 : 104 η ∼ −0.221856 + 3.76694
n

+ 7.00194
n2 − 4.91735

n3 ,

β̃ = 20 : 103 η ∼ −0.0862095 + 1.5763
n

+ 1.7555
n2 − 1.49175

n3 . (4.5)

Both formulae can produce less than 1% of error for the 12 QBS’s given in table 2. What is
important is that the leading terms are negative, implying that n must be finite for η > 0.
For the above two examples, the maximum values of n are 18 and 19 respectively. It is
worth pointing out that if we consider polynomials up to a different order, we shall get less
accuracy in data fitting, but the leading order was always negative. This of course is not
a proof that the maximum n is finite, but it is highly suggestive.

For now on, we shall focus only on the ground states (n = 1), since the purpose of this
paper is not to classify the QBS’s, but to establish whether there exists an unstable QBS’s for
given β̃. In table 3, we list a variety of the ground unstable QBS’s for intermediate values of
β. All the real parts are verified by both the spectral and shooting methods. The imaginary
parts were verified by both methods for the listed states with β̃’s lying from 1 to 10. The ω̃i
values with β̃ less than 1 in table 3 were obtained using the shooting method only, since the
spectral method becomes very ineffective in computing the imaginary part (ω̃i) for small β̃.
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β̃ η = 1 − ω̃r ω̃i β̃ η = 1 − ω̃r ω̃i

10 5.63046 × 10−4 1.94607 × 10−43 9 4.59571 × 10−4 5.47987 × 10−43

8 3.62781 × 10−4 1.54294 × 10−42 7 2.74135 × 10−4 4.29799 × 10−42

6 1.95261 × 10−4 1.16133 × 10−41 5 1.27907 × 10−4 2.92884 × 10−41

4 7.38365 × 10−5 6.36014 × 10−41 3 3.45716 × 10−5 9.84205 × 10−41

2.5 2.07706 × 10−5 9.40010 × 10−41 2 1.08156 × 10−5 6.34651 × 10−41

1.5 4.46048 × 10−6 2.22304 × 10−41 1.25 2.48385 × 10−6 8.42189 × 10−42

1 1.18535 × 10−6 1.85839 × 10−42 0.9 8.29039 × 10−7 8.07937 × 10−43

0.8 5.52692 × 10−7 2.91427 × 10−43 0.7 3.46609 × 10−7 8.21418 × 10−44

0.6 2.00556 × 10−7 1.65277 × 10−44 0.5 1.03899 × 10−7 2.05663 × 10−45

0.4 4.58199 × 10−8 1.23607 × 10−46 0.3 1.56472 × 10−8 2.22977 × 10−48

Table 3. A list of ground states (n = 1) of the unstable QBS’s for intermediate values of β̃. We see
that the maximum value of ω̃i is in the vicinity of β̃ = 3.

As we can see from table 3, the real part ω̃r or η are monotonous function of β̃, but ω̃i is
a convex function with a maximum occurring in the vicinity of β̃ = 3. We select three points
β̃ = 2.5, 3, 4, and use a quadratic function of ˜logβ̃ to data-fit log(ω̃i), we find

log ω̃i ∼ −92.11 − 3.765(log β̃ − 1.041)2 + O((log(β̃ − 1.041)3) . (4.6)

According to this data-fitting function, the maximum value would occur at β̃ = 1.041,
i.e. β̃ = 2.832. We perform numerical calculation, and find the maximum imaginary part
occurs at β = 2.833, for which we have

ω̃i = (1 − 2.95275 × 10−5) + 9.96443 × 10−41 i , log(9.96443 × 10−41) = −92.1107 . (4.7)

Thus we see that the data-fitting function using only three data actually produces a quite
accurate value of β̃ for the maximum ω̃i. In the left panel of figure 3, all the ω̃i’s listed
in table 3, together with further data given presently, are plotted as a function of β̃. The
solid line describes the quadratic relation (4.6). We see that it fits with quite a few further
data away from the maximum point.

4.2 Large β̃

For large β̃, (e.g. β̃ > 10), the spectral flow method turns out to be very efficient for both
real and imaginary parts of the frequency. A grid point number N ∼ 1000, 2000 is quite
sufficient in these cases. We list the complex frequencies in table 4 for a large number of β̃,
up to and including β̃ = 200. We plot these results, together with other data, in figure 3
to give a direct picture of these numerical results.

4.3 Small β̃

For small β̃, both the spectral and shooting methods are ineffective in computing the imaginary
part of the frequency. However, the real part can still be obtained with high accuracy, by

– 13 –



J
H
E
P
0
7
(
2
0
2
4
)
0
0
3

β̃ η = 1 − ω̃r ω̃i β̃ η = 1 − ω̃r ω̃i

200 1.04935 × 10−2 1.38327 × 10−88 190 1.02976 × 10−2 5.19283 × 10−87

180 1.00887 × 10−2 2.14754 × 10−85 170 9.86532 × 10−3 9.86013 × 10−84

160 9.62561 × 10−3 5.07060 × 10−82 150 9.36748 × 10−3 2.95026 × 10−80

140 9.08841 × 10−3 1.96497 × 10−78 130 8.78536 × 10−3 1.51860 × 10−76

120 8.45466 × 10−3 1.38379 × 10−74 110 8.09179 × 10−3 1.51520 × 10−72

100 7.69116 × 10−3 2.03969 × 10−70 90 7.24573 × 10−3 3.47083 × 10−68

80 6.74660 × 10−3 7.72761 × 10−66 70 6.18230 × 10−3 2.35115 × 10−63

60 5.53805 × 10−3 1.03386 × 10−60 50 4.79483 × 10−3 7.07490 × 10−58

40 3.92916 × 10−3 8.33147 × 10−55 30 2.91666 × 10−3 1.94425 × 10−51

25 2.35173 × 10−3 1.28945 × 10−49 20 1.75356 × 10−3 1.10193 × 10−47

15 1.14120 × 10−3 1.25824 × 10−45 12.5 8.42938 × 10−4 1.51068 × 10−44

Table 4. For large β̃ values, the spectra method is very effective for finding the unstable QBS’s of
n = 1, and grid point number N = 1000 is sufficient. Here we list the complex frequencies ω̃ for a
variety of β̃.

β̃ 0.2 0.1 0.09 0.08 0.07
η 3.34458×10−10 2.26840×10−10 1.50076×10−10 9.44789×10−11 5.58489×10−11

β 0.06 0.05 0.04 0.03 0.02
η̃ 3.04011×10−11 1.47856×10−11 6.10785×10−12 1.94911×10−12 3.88319×10−13

β̃ 10−2 10−3 10−4 10−5 10−7

η 2.44793×10−14 2.46700×10−18 2.46892×10−22 2.46911×10−26 2.46914×10−34

Table 5. The real part ω̃r of the frequency of the unstable QBS’s for small β̃, given as η = 1 − ω̃r.
We see that η becomes very small for β̃ = 10−7, the last one in the list.

both methods. In table 5, we give only the real parts, via η, for a large span of the parameter
β̃. Together with the earlier data presented, we have the real part for β̃ ranging from 10−7

to 200. These data are pictured as dots in the right panel of figure 3.
As we can see in the left panel of figure 3, for small β̃ ≪ 1, the numerical data, depicted

as dots, behaves linearly. We select two data, associated with β̃ = 10−7 and β̃ = 10−5, and
derive a linear relation between log(η) and log(β̃). We find that it is given by

log(η) = −12.9117 + 4.00000 log(β̃) + · · · , when β̃ → 0 . (4.8)

This linear relation is drawn as the solid line in the right panel of figure 3. We see that
linear relation fits with the numerical data very well for β̃ < 0.01. This accurate numerical
data fitting indicates that the coefficient of log(β̃) is 4 up to six significant figures. We can
therefore confidently conjecture that it is exactly 4. This implies that for small β̃, the real
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Figure 3. The two panels show the all of our numerical data, pictured as dots, of the unstable ground
(n = 1) QBS’s. The left panel is about the real part ω̃r. The dashed line is the upper bound so that
the exicited states lie between the dashed line and the line connecting the dots.

4000 5000 6000 7000 8000 9000 10000
N

1.×10-57

2.×10-57

3.×10-57

ωi

˜

4000 5000 6000 7000 8000 9000 10000
N

0.0005

0.0010

0.0015

0.0020

δi

Figure 4. The left panel gives the imaginary part of the dimensionless ω̃ as a function of grid number
N , with N running from 3000 to 10000. The dots are the numerical data and the solid line is the
data-fitting function (4.10). The right pannel shows the error defined by (4.11).

part of the frequency is given by

η = 2.46906 × 10−6 β̃4 + · · · , β̃ → 0 . (4.9)

The dashed line in the right panel of figure 3 describes log(η+), with η+ = 1 − ω̃+,
where ω+ is given by (2.23). In other words, the dashed line represents the boundary values
of ω̃r for unstable QBS’s. While the dots are associated with ground states, the excited
unstable QBS’s with higher overtone n should lie in the region between the dashed line
and the line connecting the dots.

4.4 Extremely small β̃

As we have mentioned earlier, for extremely small β̃, i.e. β̃ ≤ 10−5, the real part of the complex
frequency ω̃ can be still easily determined as (4.9). The imaginary term is much tougher.
Here we discuss in some detail the calculation for β̃ = 10−7 case, where we obtained the
results for various grid point number N , from 1000 to 10000, which becomes the stretch of our
computer power. The real part converges quickly to the one given in the previous subsection.
The imaginary part refuses to converge yet, as depicted as dots in left panel of figure 4.

In order to extrapolate the ω̃i = ω̃i(N → ∞) from the limited data, we use Taylor
expansion of the inverse power of the grid point number N , and find that these data dots
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can be fitted with the following function

ω̃i(N)
ω̃i(∞) ∼ 1 + 8166.6

N
− 7.6951 × 108

N2 + 5.7386 × 1012

N3 − 1.2714 × 1016

N4 + 9.6909 × 1018

N5 ,

ω̃i(∞) ∼ 2.5246 × 10−58 . (4.10)

It can be seen from the solid line in the left panel of figure 4 that the function fits with
the numerical data (dots) quite well for N from 3000 to 10000. The errors at each data
point, defined by

δi = |ω̃i(N) − ω̃i|
ω̃i

, (4.11)

are depicted in the right panel of figure 4. They are all less than 0.3%. The function (4.10)
indicates that we need to have N to be a few tens of thousands in order to get ω̃i(N) close
enough to be the final convergent value, and it is beyond our computer power. It should
be pointed out that ω̃i(∞) obtained in the above can only be trusted by its magnitude
as around 10−58, not by its precise value, since the curve fitting by a different power of
1/N can alter the answer.

It is natural to ask the question, what is the ω̃i’s β̃ dependence as β̃ → 0? We find that
for a given N ≥ 2500, numerical data accurately indicate that

ω̃i(N, β̃) ∼ ω̃i(N)β̃6 , as β̃ → 0 . (4.12)

We verify this equation for β̃ = 10−3, 10−4, 10−5, 10−7, with N = 2500, 3000, 3000. Together
with the extrapolated result (4.10), we have

ω̃i ∼ ω̃0
i β̃6 , as β̃ → 0 , with , ω̃0

i ∼ 10−16 . (4.13)

Thus we see that when β̃ → 0, the real and imaginary parts of the dimensionless frequency
has β̃ dependence of β̃4 and β̃6 respectively.

4.5 Negative β̃

As we have discussed in section 2, when the coupling constant β becomes negative, the
dominant energy is violated, but both strong and weak energy still survive. However, the
theory is no longer a good effective theory from the point of view of WGC. We therefore do
not focus on the negative coupling constant. Nevertheless, we obtain the ground QBS for
β̃ = −1/2, by the shooting-target method. The complex frequency is

ω̃ = (1 − 2.49598 × 10−7) + 1.40462 × 10−32 i . (4.14)

Furthermore, since ω̃ is an even function of β̃ as it approach 0+, we expect the same result
as β̃ → 0−, and we verified with a few examples that this is indeed the case.
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5 Conclusions

One motivation of this work was inspired by the fact that although the extremal RN black hole
is superradiantly stable, in its STU supergravity generalization into four different constituents
as D-branes and KK monopoles, no matter how small the deviation is, the black hole becomes
superradiantly unstable, with both unstable QBS’s [15] and QNM’s [16]. We therefore
considered another bigger theory, namely the BI generalization of the Maxwell theory, which
has a continuous parameter deviating away from the Maxwell theory. We studied superradiant
instability of its charged extremal black hole, by a minimally coupled charged massive scalar
perturbation. Our data suggests that the charged extremal black hole in EBI theory are
always superradiantly unstable due to the existence of unstable QBS’s. Thus the stability
of the RN black hole is again a fine-tuned result from the point of view of EBI, as in the
case of the STU supergravity model.

Another motivation was inspired by the WGC, which states that quantum correction
should make gravity weaker than the gauge interaction; consequently, the extremal RN black
hole becomes unstable under the quantum correction and decay into smaller ingredients. The
WGC was illustrated to be true for EM gravity extended by the most general four-derivative
terms in the context of effective field theory as the leading-order correction [4]. At the linear
order of coupling β, BI action is the subset of the most general corrections considered in [4],
but it satisfies the WGC condition, namely ∆S > 0 and ∆M < 0 for β > 0. Therefore, it
can be used as a toy model to study the stability under quantum correction. The general
conclusion appears to be correct: no matter how small the dimensionless coupling β̃ is,
the extremal black is superradiantly unstable because of the existence of unstable QBS’s.
However, it should be pointed out, for reasons not entirely clear, that the imaginary part
of the complex frequency is exceedingly small, and hence it would take a long halftime for
the instability to take effect.

There is another subtlety in the detail. For small β̃, we find that the dimensionless
complex frequency of the unstable QBS’s has the β̃ dependence as

ω̃ ∼ (1 − 2.46906 × 10−6 β̃4) + 10−16β̃6 i , as β̃ → 0 . (5.1)

This implies that we would not have found these unstable QBS’s had we restricted ourself to
the linear order of β, as one would in the perturbative effective field theory approach. Our
analysis therefore provides another example of instability at the full nonlinear level, despite
being stable at the linear level. A further puzzling issue is that despite of the fact that gravity
becomes stronger than the electrostatic force at the long distance for negative β, the charged
extremal black holes still suffer from the superradiant instability. Our results indicate that
under full nonlinear effect, large extremal particle-like black holes may break up and decay
even when gravity is not the weaker force, presenting a challenge to the WGC statement.
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