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1 Introduction

The study of interacting fermions in two spacetime dimensions is absolutely important
for several reasons. In the context of high-energy physics, such systems have been vastly
used as a theoretical laboratory to test a number of non-perturbative aspects, shedding
light in the depths of quantum field theories [1]. In the realm of condensed matter, the
study of interacting fermions in one spatial dimension has led to the central concept of a
Luttinger liquid, and also has been used in the description of many experimental quasi-one
dimensional systems [2, 3].

In recent applications, fermionic one-dimensional systems have been used as the buil-
ding-blocks for the construction of higher-dimensional topological phases in the framework
of coupled quantum wires [4–6] (see also the review [7] and the references therein). The
basic idea is that a higher-dimensional topological phase, say a two-dimensional one, can be
seen as a set of one-dimensional quantum wires arranged in parallel. Interactions between
neighboring wires allow tunneling of electrons from one wire to another, effectively realizing
a two-dimensional phase. In addition to the technical advantage in treating the systems
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in this way, this type of approach is illuminating in that it provides a bridge between
the microscopic constituents and the remarkable emergent macroscopic physics like the
fractionalization of quantum numbers [8–11].

With this type of application in mind, we revisit the well-studied non-Abelian Thirring
model [12], which consists of fermions belonging to the fundamental representation of a
group G with a current-current interaction, where we choose the currents to belong to a
subgroup H of G. This model is used as an important ingredient (in the quantum wires
sense) for the construction of a class of non-Abelian spin liquids, whose edge states support
the minimal and the superconformal minimal models [13, 14]. We would like to emphasize
that, despite the fact that the non-Abelian Thirring model has been the subject of several
investigations over the years, we perform an analysis that connects many distinct results
within a single coherent framework, in addition to filling several gaps described below.

In the present work we pay special attention to the bosonization of the non-Abelian
Thirring model. We derive different but of course equivalent bosonized theories, which are
illuminating in several respects. First, the bosonic theories enjoy a remarkable strong/weak
duality [15]. Using one of the bosonic theories we derived, we establish such duality in
a regularization-independent way, in contrast with the original derivation of [15]. The
other form of the bosonized theory, in its turn, permits us to understand the approximate
version of the duality appearing in the large-level limit, discussed in a series of works [16–
22]. Furthermore, upon bosonization we are able to uncover exactly the fixed points of
the theory, which we connect directly with the respective values of the fermionic coupling
constant. The bosonic theory has three fixed points, but only two of them are identified
as the UV and IR fixed points of the fermionic counterpart. The remaining one is not
a feature of the fermionic theory, since the corresponding value of the fermionic coupling
constant lies outside its domain. Furthermore, using the duality we can see that even in
the bosonic theory this point seems to be problematic due to unitarity issues.

Proceeding with the bosonized theory, we study the renormalization group (RG) flow
between the UV and IR fixed points through the computation of the Zamolodchikov C-
function and of the β-function. The IR fixed point possesses a quite peculiar feature. It is
strictly unachievable via renormalization group flow due to an emergent gauge invariance
existing only at this point. This, in turn, implies an abrupt decoupling of degrees of
freedom, and consequently a discontinuity in the C-function. As a consequence, the IR
fixed point is infinitely far apart from the rest of the points of the parameter space [15].
Nevertheless, within the large-level expansion we discuss that the RG flow can reach close
enough to this point by means of the zoom-in limit [21–23]. All the aspects we consider in
this work are directly relevant to investigate the stability of the non-Abelian spin liquids
we mentioned previously, which will be addressed in a separate publication [24].

This work is organized as follows: we start in section 2 where we discuss different
ways to perform the bosonization of the non-Abelian Thirring model and how the duality
transformation acts on these partition functions. Then, we proceed to section 3 where we
use the bosonic partition functions to examine the fixed point structure of our theory. We
reproduce the free fermion fixed point, and find two new ones. We follow to section 4, where
we discuss the relation between the fixed points in the bosonic and fermionic descriptions
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of the Thirring model. We find that one of the fixed points is unphysical, so that we are
left only with the free fermion and an IR fixed point. In section 5 we examine the RG of
the theory through an analysis of the Zamolodchikov metric, β-function and C-function.
We find that the IR fixed point is inaccessible from the remaining RG flow. Nonetheless,
we are able to probe the IR limit by taking the IR and large-k limits together. At last, in
section 6 we present our final remarks.

2 Non-abelian Thirring model

We consider the task of discussing the generating functional of current-current correlation
functions of the following non-Abelian Thirring model in 2D Euclidean spacetime:

Z[B] =
∫
DψLDψR exp−

∫
d2z

[
ψ†

L (∂z − iBa
z t

a)ψL + ψ†
R (∂z̄ − iBa

z̄ t
a)ψR + λ

k
Ja

RJ
a
L

]
,

(2.1)
with ∂z ≡ ∂τ − i∂1 and ∂z̄ ≡ ∂τ + i∂1, and the spinors belong to the fundamental rep-
resentation of a group G. The objects JR/L are the fermionic currents of a subgroup H

of G:

Ja
R/L = ψ†

R/Lt
aψR/L, (2.2)

where the ta are the generators of H in the fundamental representation of G. Let taF
be generators of the subgroup H in its own fundamental representation. We adopt the
normalization of these generators to be

tr
(
taF t

b
F

)
= 1

2δ
ab. (2.3)

The parameter k is the index of the fermion representation: a positive integer defined by
tr
(
tatb

)
= k tr

(
taF t

b
F

)
.

One of our main goals is to investigate the existence of a non-trivial fixed point in
the IR limit, with central charge corresponding to the coset structure G/H. For λ = 0,
the theory (2.1) consists of a conformal model of a set of free fermions. According to the
Sugawara construction, the corresponding energy-momentum tensor can be decomposed as

TG = TG/H + TH , (2.4)

which implies the splitting of the central charge

cG = cG/H + cH . (2.5)

If we choose the sign of λ to be positive, the four fermion current-current interaction turns
out to be relevant [25]. Therefore, turning on this relevant operator, the degrees of freedom
partaking in the interaction open a mass gap and we end up with the conformal model
with a coset G/H structure in the IR regime.

In the following sections, we investigate this scenario by calculating the β-function of λ
up to the order of 1/k in a large-k expansion and use the C-theorem to explicitly construct
the C-function that interpolates between the UV and IR fixed points.
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2.1 Bosonization

In this section we discuss how to get bosonized versions of (2.1). Besides the fixed point
structure be significantly more transparent in terms of bosonic variables, we will be able
to show that there is an interesting duality in the Thirring model, which was already
investigated in [15], and will be useful in the investigation of β- and C-functions.

In order to bosonize the model (2.1), we first rewrite the generating functional by using
auxiliary vector fields valued in the algebra of the H-subgroup. Then, we get

Z[B] =
∫
DADψ exp−

∫
d2z

[
ψ∗

L (∂z − i (Aa
z +Ba

z ) taR)ψL + ψ∗
R (∂z̄ − i (Aa

z̄ +Ba
z̄ ) taR)ψR

+ 2k
λ
Aa

zA
a
z̄

]
, (2.6)

so that we recover (2.1) upon the integration of the auxiliary fields. We notice that, since
k/λ is positive, the gaussian integration actually converges. Furthermore, for the limit
λ→ 0 to be well-defined and commute with the integration of the auxiliary fields, we need
to impose that Az = Az̄ = 0 in this limit.

Redefining A→ A−B and integrating the fermion fields we obtain

Z[B] =
∫
DA Z[A] exp

∫
d2z

2k
λ

Tr (Az −Bz) (Az̄ −Bz̄) , (2.7)

where A ≡ −iAata, B ≡ −iBata, and

Z[A] = det (Dz) det (Dz̄) . (2.8)

The determinants of the covariant derivatives can be explicitly calculated [26]:

Z[A] = ZF exp k
[
W [M †] +W [M ] + b

π

∫
d2zTr (Az̄Az)

]
(2.9)

where W [M ] is the Wess-Zumino-Witten (WZW) action

W [M ] = 1
2π

∫
∂M

d2zTr
(
∂zM∂z̄M

−1
)

+ i

12π

∫
M

d3z ϵµνσTr
(
∂µMM−1∂νMM−1∂σMM−1

)
. (2.10)

In (2.9), ZF = det(∂z) det(∂z̄) is the partition funtion for a set of free fermions, and we
have used the parametrizations

Az = ∂zMM−1 and Az̄ = −M †−1∂z̄M
†, (2.11)

with M and M † being complex H-valued matrices. The parameter b incorporates the
regularization ambiguities in the bosonization procedure.

When we have fermions minimally coupled to gauge fields, it is natural to choose b = 1,
which ensures the vector gauge invariance of the fermionic model. However, in the present
case the fermion determinant Z[A] appears only as a piece of the complete Thirring model,
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which does not exhibit the mentioned gauge invariance due to the quadratic term in the
gauge field appearing in (2.7). Choosing b = 1 in (2.9) amounts to ensuring that (2.6)
has an emergent gauge invariance only for λ → ∞. A deviation from b = 1 can be
absorbed in the λ parameter causing a shift in the value at which the gauge invariance
arises without affecting the physics of the model. In other words, the specific value of
the fixed points of the theory are b-dependent (i.e., regularization-dependent), but their
existence is independent of the regularization choice. Nevertheless, as we shall see, to
obtain the different bosonized versions of the Thirring model we need to perform Gaussian
integrations whose convergences impose further restrictions on b.

The generating functional (2.7) together with the expression (2.9) for the fermion
determinants, and a further change of variables from Az and Az̄ to M and M †, can be seen
as a bosonized version of the Thirring model (2.1). We will return to this point later when
we discuss duality.

To proceed, we consider the following identities:

W [M †gM ]−W [M †]−W [M ] =W [g]− 1
π

∫
d2zTr

(
Azg

−1∂z̄g −Az̄∂zgg
−1 −Az̄gAzg

−1
)

(2.12)
and

W [M †g] +W [g†M ]−W [M †]−W [M ] =W [g] +W [g†]

− 1
π

∫
d2z tr

(
Azg

†−1∂z̄g
† −Az̄∂zgg

−1
)
,

(2.13)

with Az and Az̄ given by (2.11). These relations follow directly from the application of the
Polyakov-Wiegmann identity

W [gh] =W [g] +W [h]− 1
π

∫
d2zTr

(
g−1∂z̄g∂zhh

−1
)
. (2.14)

We can use the identities (2.12) and (2.13) to rewrite the Z[A] in (2.9) in two distinct
but equivalent forms. In the first one, we multiply and divide the r.h.s. of (2.9) by

Zk =
∫
Dge−kW [g] (2.15)

to get

Z[A] = ZF

Zk

∫
Dge−k(W [g]−W [M†]−W [M ]− b

π

∫
d2z Tr(Az̄Az)). (2.16)

Performing the change of variable g → M †gM , which has unit Jacobian by the invariance
of the Haar measure, and using the identity (2.12), we find

Z
(b)
1 [A] = ZF

Zk

∫
Dge−k(W [g]− 1

π

∫
d2z Tr(Azg−1∂z̄g−Az̄∂zgg−1−Az̄gAzg−1+bAz̄Az)). (2.17)

Alternatively, we can multiply and divide (2.9) by Z2
k given by (2.15), perform the

changes g → gM and g† → M †g†, and use the identity (2.13) to obtain

Z
(b)
2 [A] = ZF

Z2
k

∫
DgDg†e−k(W [g]+W [g†]− 1

π

∫
d2z Tr(Azg†−1∂z̄g†−Az̄∂zgg−1+bAz̄Az)). (2.18)
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In spite of using the labels “1” and “2” to identify these generating functionals, we empha-
size that they are equivalent.

If we insert Z(b)
1 in (2.7) and integrate in the auxiliary gauge fields, we have

Z[B] = ZF

Zk

∫
Dg

1
det k(ξ−1 −DT ) exp−k

{
W [g] +

∫
d2z

[
π

2J
a
R

(
ξ−1 −DT

)−1ab
Jb

L

− i
(
ξ−1 − b

)
2

(
Ba

z̄

(
ξ−1 −DT

)−1ab
Jb

R +Ba
z

(
ξ−1 −DT

)−1ab
Jb

R

)
+ξ

−1 − b
2π Ba

z̄

(
δab −

(
ξ−1 − b

) (
ξ−1 −DT

)−1ab
)
Bb

z

]}
, (2.19)

with the currents

JL = − 1
π
g−1∂z̄g and JR = 1

π
∂zgg

−1, (2.20)

and

Dab = 2Tr
(
tagtbg−1

)
, (2.21)

ξ = λ

λb+ 2π . (2.22)

We notice that for the integration leading from (2.7) to (2.19) to make sense, we need to
guarantee that the Gaussian integral converges. Since D(g) is an orthogonal matrix, its
eigenvalues all have unit modulus, and thus, we need that ξ−1 ≥ 1, or 0 ≤ ξ ≤ 1. The
relation (2.22) allows to express this restriction in terms of λ, namely,

−2π
b
≤ λ ≤ 2π

1− b , (2.23)

which implies that 0 ≤ b ≤ 1, with positive λ.
The model (2.19) is a bosonized version of Thirring model that enables us to make

contact with some works in the literature. Indeed, for small ξ it is in the class of deformed
sigma models, which are extensively studied in the refs. [16–23]. In those works, the authors
argue that (2.19) without the determinant in the denominator incorporates the quantum
corrections of the order 1/k in a large-k expansion of the Thirring model. We will discuss
this point in the next section.

An alternative bosonized version is obtained using Z2 in (2.7) and integrating in the
gauge fields:

Z[B] = ZF

Z2
k

∫
DgDg† exp−k

(
W [g] +W [g†] +

∫
d2z

[
π

2 ξJ
a
R (g) Ja

L

(
g†
)

+ i (bξ − 1)
2

(
Ba

z̄J
a
R (g) +Ba

zJ
a
L

(
g†
))

+ b (1− bξ)
2π Ba

z̄B
a
z

])
. (2.24)

In this case, the condition for the Gaussian integration convergence is ξ ≥ 0, which in terms
of λ implies −2π

b ≤ λ. In turn, this corresponds to the lower bound of the condition (2.23)
following from the duality (2.19). Therefore, the partition functions (2.19) and (2.24) are
valid bosonized versions of the Thirring model provided that 0 ≤ b ≤ 1.
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We would like to emphasize the difference between the bosonized versions of the
Thirring model expressed by (2.19) and (2.24). In (2.19) we have just one WZW model
deformed by a highly non-linear interaction, whereas in (2.24) there are two independent
WZW models with an interaction of the same type as the original fermionic model.

2.2 Duality

One of the great advantages of bosonizing the Thirring model is related to the presence of
an interesting duality in the theory, which in its bosonized version can be explicitly derived.

This can be attained by considering (2.7) with the explicit form of Z[A], given in (2.9),
and a further change of variables from Az and Az̄ to M and M † given by (2.11). As
is well known, the change of variables generates a non-trivial Jacobian given by a WZW
term [27, 28]

DAzDAz̄ = det (∂z∂z̄)adj e
2CH(W [M†]+W [M ])DMDM †, (2.25)

where CH is the quadratic Casimir invariant of the subgroup H in the adjoint representa-
tion. Possible regularization ambiguities are incorporated in the b parameter in (2.9). The
subscript adj of det (∂z∂z̄)adj stands for the adjoint representation of the H-subgroup that
the vector fields belong. Furthermore, in [15] it is shown that the change of variables needs
a further renormalization factor f(k) for the current coupling to Az and Az̄. This factor is
crucial for the presence of the duality. Therefore, we obtain

Z[B] = ZFZg

∫
DMDM †e−(k+2CH)(−W [M†]−W [M ])− kξ−1

π
(f(k))2 ∫ d2z Tr(M†−1∂z̄M†∂zMM−1)

× e
∫

d2z
kf(k)(ξ−1−b)

π
Tr(BzM†−1∂z̄M†−Bz̄∂zMM−1)− k(ξ−1−b)

2π
Ba

z Ba
z̄ , (2.26)

where Zg = det (∂z∂z̄)adj is a partition function that can be calculated in terms of an action
for ghost fields, given by

Sghost =
∫

d2z
dH∑
i=1

(
bi

z∂z̄ c̄
i + bi

z̄∂zc
i
z

)
, (2.27)

where dH is the dimension of the subgroup H. The ghost fields bi
z and bi

z̄ have conformal
weight one, while the fields ci and c̄i have conformal weight zero.

In [15], the explicit expression f(k) =
√

k+2CH
k is obtained using a left-right symmetric

regularization in the functional integral manipulations. Here, we show that the same result
holds in any regularization. In fact, using f(k) =

√
k+2CH

k and identifying M and M † with
g and g†, respectively, we get

Z[B] = ZFZg

∫
DgDg† exp (k + 2CH)

(
W [g] +W [g†] + π

2 ξ
−1
∫
d2zJa

R (g) Ja
L

(
g†
))
×

× exp (k + 2CH)
[
i

(
ξ−1 − b

)
2

√
k

k + 2CH

(
Ba

z̄J
a
R (g) +Ba

zJ
a
L

(
g†
))

−
(
ξ−1 − b

)
2π

√
k

k + 2CH
Ba

zB
a
z̄

]
. (2.28)
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Comparing (2.24) with (2.28), we obtain the following duality relation between the two
models:

k → −k̃ = −k − 2CH , (2.29)
ξ → ξ̃ = ξ−1, (2.30)

Ba → B̃a = −1
ξ

√
k

k + 2CH
Ba. (2.31)

It is illuminating to compare our results with other similar discussions in the litera-
ture [16–19, 21, 22]. In particular, in [17], the authors consider the following model

S(k,ξ) = k

(
W [g] + πξ

2

∫
d2zJa

RJ
b
L

)
(2.32)

as the bosonized version of the Thirring model, and conjecture that

S
(k,ξ)
eff = k

(
W [g] + π

2

∫
d2zJa

R

(
ξ−1 −DT

)−1ab
Jb

L

)
(2.33)

is an effective action of the model (2.32) incorporating the contributions to all orders in
the interaction parameter but to leading order in 1/k expansion. In fact, one can show the
identity

S
(−k,ξ−1)
eff [g−1] = S

(k,ξ)
eff [g]. (2.34)

This gives rise to the duality: k → −k and ξ → ξ−1, which is the large-k limit of the
duality relations (2.29) and (2.30). Taking B = 0 in (2.19) and (2.24), we notice that the
model (2.32) differs from both of our bosonized actions. In fact, we could obtain (2.32)
directly from the fermionic Thirring model by using the non-Abelian bosonization rules for
free fermionic currents [29]. In this sense, (2.32) is justified perturbatively in ξ, which can
also be obtained by expanding (2.33) to first order in ξ. This is also consistent with our
results, since in the large-k limit we can discard the determinant factor in the denominator
of (2.19), resulting in the action (2.33) and showing that this is a large-k bosonic effective
action for the Thirring model.

In the following sections, the duality relations will be helpful to understand the fixed
point structure of the model as well as the analysis of the β- and C-functions.

3 Fixed points

By making B = 0 in (2.24) and (2.28) it is straightforward to verify which values of ξ lead
to a conformal field theory. These points are given by

ξ = 0 ←→ ξ̃ →∞; (3.1)
ξ = 1 ←→ ξ̃ = 1; (3.2)

ξ →∞ ←→ ξ̃ = 0. (3.3)

– 8 –
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One important check of the duality relations is the comparison between the central charges
of the dual models. We use the notation cξ and c̃ξ̃ for the central charges of the original and
dual model, respectively. The partition functions, whose central charges we will calculate,
will be formed from: free fermions, ZF ; ghosts, Zg; and level-k WZW partition functions,
Zk; with corresponding central charges

cF = N ; (3.4)
cg = −2dH ; (3.5)

ck = kdH

k + CH
. (3.6)

Let us analyse each one of the fixed points (3.1)–(3.3) below.

3.1 ξ = 0 ←→ ξ̃ →∞

For ξ = 0, the two WZW actions W [g] and W [g†] decouple and then the model is conformal.
The central charge can be calculated from the sum of the central charges of all decoupled
terms. Therefore, the total partition function is given by Z = ZF Z2

k

Z2
k

= ZF , with total
central charge

c0 = N − 2 kdH

k + CH
+ 2 kdH

k + CH

= N. (3.7)

In the first line we have explicited all the central charges for the separated pieces using the
expressions (3.4) and (3.6). The negative central charge corresponds to the two WZW mod-
els in the denominator of (2.24), whereas the last term corresponds to the two decoupled
WZW models in the numerator.

In the dual model, this point corresponds to ξ̃ =∞ in (2.28). Following the discussions
below equation (2.6), this limit produces the delta functions

lim
ξ̃→∞

e−
ξ̃

2π

∫
d2z Tr g†−1∂z̄g†∂zgg−1

∼ δ
(
∂zgg

−1
)
δ
(
g†−1∂z̄g

†
)
=
δ (g − 1) δ

(
g† − 1

)
det (∂z∂z̄)adj

. (3.8)

This identity in (2.28) cancels the WZW terms and the ghost partition function Zg, which
is the determinant of the partial derivatives in (2.25). Therefore, for the dual model we
only have the contribution of the free fermion ZF :

c̃∞ = N, (3.9)

agreeing with (3.7).

3.2 ξ = 1 ←→ ξ̃ = 1

For ξ = 1, we can use the Polyakov-Wiegmann identity (2.14) to rewrite the two WZW
models asW [g†g]. Making the change of variables g†g → g implies

∫
DgDg†=

∫
D
(
g†g
)
Dg†.

– 9 –
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The decoupled g† integration gives rise to an infinite gauge volume, which is due to an
emergent gauge invariance at this point:

g† → g†′ = g†Λ−1 (z, z̄) and g → g′ = Λ(z, z̄) g, (3.10)

with Λ ∈ H. Note that this is a peculiar feature of the model. This emergent gauge
invariance makes some degrees of freedom suddenly decouple from the spectrum. In this
way, the Zamolodchikov C-function that we shall compute shortly, and which quantifies the
number of degrees of freedom, is expected to be discontinuous. Fixing the gauge g† = 1,
one finally obtains the factorized partition function Z = ZF

Z2
k
Zk = ZF

Zk
, with the central

charge

c1 = N − kdH

k + CH
, (3.11)

which corresponds to the central charge for the coset structure G/H. For the dual model,
we also have ξ̃ = 1 in (2.28). Following a similar sequence of steps we did above, we get
Z = ZFZgZ−k−2c, with central charge

c̃1 = N − 2dH + (−k − 2CH) dH

(−k − 2CH) + CH
,

= N − kdH

k + CH
, (3.12)

which is the same as (3.11).

3.3 ξ →∞ ←→ ξ̃ = 0

We may wonder if ξ → ∞ corresponds to a fixed point. It is difficult to analyze this
limit directly in (2.24), as it seems to introduce divergences in the partition function.
Nonetheless, we are able to consider this limit by writing the partition function (2.24)
before the integration over the fields Az and Az̄:

lim
ξ→∞

ZF

Z2
k

∫
DgDg†DAe−k[W [g]+W [g†]− 1

π

∫
d2z Tr(Azg†−1∂z̄g†−Az̄∂zgg−1+ξ−1Az̄Az)]

=ZF

Z2
k

∫
DgDg†e−k(W [g]+W [g†])δ(∂zgg

−1)δ(g†−1∂z̄g
†). (3.13)

In this case, the analysis is similar to what we did for the ξ̃ →∞ in the dual model. Again
we get constraints making the currents to vanish, and using (3.8) in the above expression
we get Z = ZF

Z2
k

Zg
, which yields

c∞ = N − 2 kdH

k + CH
+ 2dH

= N + 2CHdH

k + CH
. (3.14)
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In the dual model we take ξ̃ = 0 to get Z = ZFZgZ
2
−k−2CH

with the same central charge

c̃0 = N + 2(k + 2CH) dH

k + CH
− 2dH

= N + 2CHdH

k + CH
. (3.15)

We would like to emphasize that, in spite of the fact that a conformal field theory
seems to emerge at ξ →∞, the theory at this point (actually in the entire strong coupling
region) has the potential to exhibit unphysical properties since it is dual to a theory with
negative levels at weak coupling. Furthermore, as we shall see in the next section, this
fixed point corresponds to a negative value of the fermionic coupling constant λ, which lies
outside the allowed values. We will also see that the problematic strong coupling region
ξ > 1 is safely inaccessible from 0 ≤ ξ < 1, which corresponds to the range of interest of
the original fermionic model. Therefore, our analysis in the remaining of this work will be
concerned with the region 0 ≤ ξ < 1.

4 Fixed points structure and duality in the fermionic theory

It is interesting to discuss the relation of these fixed points of the bosonic theories with
the corresponding fixed points in the fermionic Thirring model. As we already pointed
out, the comparison of the fermionic and bosonic models should be made with care due to
regularization ambiguities and convergence issues of functional integrations. To this end,
let us express the duality in terms of the fermionic parameters. First, we define λ̃ for the
dual model of (2.1) through the relation analogue to (2.22):

ξ̃ = λ̃

λ̃b+ 2π
. (4.1)

From (2.30) we can express the relation between the original parameter λ of the current-
current interaction in the Thirring model (2.1) and λ̃:

λ̃ = 2π (2π + bλ)
λ (1− b2)− 2πb. (4.2)

According to the discussion below (2.11), the original Thirring model does not possess any
gauge invariance for generic values of λ, and one can argue that there is no preferred choice
for the regularization parameter in the calculation of the fermion determinant. However,
in the light of our discussion, it is possible to explore the constraints on the parameters
of the theory due to the consistency of the duality web relating the fermionic and bosonic
models.

We will focus on the bosonic version (2.24) and its dual model (2.28). We already
obtained the constraint 0 ≤ b ≤ 1 as a consistency condition for these bosonic models to
describe the fermionic counterpart. Furthermore, the model possesses an emergent gauge
invariance as λ → ∞ if we choose b = 1 in (2.9). A different choice for b only hides this
fact by shifting the specific value of λ where this gauge redundancy emerges. Therefore,
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ξ λ ξ̃ λ̃

0+ 0+ ∞ −2π−

1− ∞ 1+ −∞
∞ −2π 0 0

Table 1. Fixed points in the non-Abelian Thirring model.

we will take b = 1 for simplicity. With this, all the range of 0 ≤ λ < ∞ of the fermionic
model is contained within the range 0 ≤ ξ < 1 of its bosonized version (2.24). In terms of
dual coupling λ̃, the relation (4.2) gives

λ̃ = − (2π + λ) . (4.3)

The range 0 ≤ λ <∞ then implies −∞ < λ̃ ≤ −2π for the dual fermionic model. This, in
turn, is contained within the range 1 < ξ̃ <∞ of the dual bosonic one (2.28).

Choosing b = 1 and using the relations (2.22) and (4.1) together with (3.1)–(3.3) we
have the relations, expressed in table (1), between the parameters of the models in the
fixed points analysed above.

From this table, we can also discuss the results of [12]. Through an operator analysis
the authors discuss the existence of possible conformal fixed points in the fermionic Thirring
model. Besides the trivial fixed point corresponding to free fermions, they find another
conformal point at a non-vanishing coupling constant. However, as it has been observed
in [30–32], this last fixed point is simply a different parametrization of the trivial one,
which can be interpreted as a dual description of free fermions. This fact matches with
the duality in the bosonic theories, which was used to find the relation (4.3), implying a
nonvanishing value of λ̃ when λ = 0.

Using the conventions of [12], the value of the coupling constant is 2π, which is the
same as the absolute value of the dual of the free fixed point in table 1. The sign difference
concerns their imposition of positive energy-momentum tensor and was already noticed
in [33], whose work also found this result. However, in [33], the duality relation considers
k → −k, since they use a bosonic model analogue to (2.33), which is only valid for large
k. The last fixed point in the table also deserves some comments. Notice that it implies a
negative value for the fermionic coupling constant λ, which lies outside the domain of the
fermionic Thirring model. Furthermore, even from the bosonic theory this seems to be a
problematic fixed point according to the discussion in the end of the previous section and
will be discarded in the following. To summarize, the bosonic versions describe the physics
of the fermionic Thirring model from the UV free fermion fixed point (ξ = 0) to the IR
one (ξ = 1) with central charge corresponding to the coset structure G/H.

5 Large-level expansion and C-function

The Zamolodchikov C-theorem [34] is one of the most precious gems of two-dimensional
quantum field theories. The theorem ensures the existence of a function C of the coupling
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constants, which is decreasing along the flow of the renormalization group and, at the fixed
points, its value coincides with the central charge of the system C(λ∗) = c. It is therefore
a formalization of the intuitive notion that as we go from higher to lower energies we are
integrating out degrees of freedom and hence losing information.

The C-function is defined as

C = (2π)2
[
2x4 ⟨T (x)T (0)⟩ − x3x̄ ⟨T (x)Θ(0)⟩ − 3

8x
2x̄2 ⟨Θ(x)Θ(0)⟩

]
, (5.1)

where T and Θ are combinations of the components of the energy-momentum tensor,
namely, T (x) ≡ Tzz(x) and Θ(x) ≡ ηµνTµν(x).

In this section we assume G = U(N) and H is a subgroup SU(Nc), with Nc being the
number of colors of each of the Nf = N/Nc fermions. We will compute the C-function for
the Thirring model using its bosonic version (2.28) considering the RG flow between the
fixed points ξ̃ = 1 and ξ̃ →∞. These fixed points satisfy

c
∣∣
ξ̃→∞ > c

∣∣
ξ̃=1. (5.2)

This relation shows indeed that ξ̃ →∞ is a UV fixed point while ξ̃ = 1 is an IR one. Our
motivation for choosing the dual version (2.28) is intended as a complementary discussion
and an additional check of the duality, since in refs. [20, 22] the C-function was calculated
from the action in (2.24) by using a different method of computation compared to our
approach below. Following the refs. [35] and [36], we place the model in a curved manifold,
from which we can obtain correlations of the energy-momentum tensor by taking derivatives
of the action with respect to the metric.

As the C-function is additive for decoupled theories, we can study the RG flow of the
contributions of the partition function (2.28) separately. The only nontrivial flux is due to
the part involving the fields g and g†. Taking B = 0 in (2.28), we then analyze the RG
flow generated by the SU(Nc) piece

ZSU(Nc) =
∫
DgDg† exp k̃

[
W [g] +W [g†]− ξ̃

π

∫
d2zTr

(
g†−1∂z̄g

†∂zgg
−1
)]

(5.3)

of the total partition function

Z = ZFZgZSU(Nc), (5.4)

with k̃ = Nf + 2Nc, since Nf is the index of the N = NfNc dimensional representation of
SU(Nc), and CSU(Nc) = Nc.

Going beyond the perturbative regime, this partition function can be evaluated in the
large-level limit. To this end, we parametrize the fields as

g† ≡ e
i√
2k̃

ϕ+
e

i√
2k̃

ϕ− and g ≡ e
− i√

2k̃
ϕ−
e

i√
2k̃

ϕ+
. (5.5)

These parametrizations are convenient as they make manifest the fact that at ξ̃ = 1 the
theory is written in terms of a single field ϕ+. According to the above expressions, this
implies the decoupling in all orders of the field ϕ−, namely, g†g = exp

(
i
√

2
k̃
ϕ+
)
.
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5.1 Leading order computation

The leading order contribution to the effective action is simply

e−S
(0)
eff =

∫
Dϕ+Dϕ− exp−

∫
d2z

1
4π
[(
1 + ξ̃

)
ϕa

+∇ϕa
+ +

(
1− ξ̃

)
ϕa
−∇ϕa

−

]
, (5.6)

where ∇ ≡ ηµν∂µ∂ν . The corresponding propagators are

〈
ϕa
±(x)ϕb

±(y)
〉
= 2π δab

1± ξ̃
G(x, y), (5.7)

where ∇G(x, y) = δ(2)(x − y). The singularity at ξ̃ = 1 is simply a reflex of the sudden
decoupling of degrees of freedom that become unphysical due to the emergent gauge invari-
ance (3.10). As discussed previously, this leads to a divergence in the partition function
that manifests here as a singularity in the propagator of ϕ−. We shall see below how to
deal with such behavior.

In addition to the singularity at ξ̃ = 1, the propagators of massless scalar fields in two
dimensions in (5.7) famously possess IR divergences that can be controlled through the
introduction of mass regulators,

Lct ∼ m2
+ϕ

a
+ϕ

a
+ +m2

−ϕ
a
−ϕ

a
−, (5.8)

where m2
± are small positive masses, which should be taken to zero at the end of the

calculations.
We shall consider then the properly regularized propagators〈
ϕa
±(x)ϕb

±0)
〉

reg
= ∓2πδa,b

∫ d2p

(2π)2
eipx

(ξ̃ ± 1)p2 +m2
±

= ∓ δa,b

ξ̃ ± 1
K0 (r±m±) , (5.9)

where Kn is a modified Bessel function of the second kind and we have defined the lengths

r± ≡
|x|√
ξ̃ ± 1

. (5.10)

Flowing from UV to IR amounts to running |x| from 0 to L, with L very large, and
accordingly ξ̃ from ∞ to 1 + ϵ, with ϵ very small. We have introduced the parameters L
and ϵ to keep track of the singularity at ξ̃ = 1. In terms of r±, this implies

r+
∣∣
UV = 0 and r+

∣∣
IR = L√

2 + ϵ
∼ L√

2
, (5.11)

and
r−
∣∣
UV = 0 and r−

∣∣
IR = L√

ϵ
. (5.12)

As we are working at the leading order, the action is quadratic in the fields and thus
the corresponding C-function can be obtained using the Noether theorem to compute the
energy-momentum tensor following from the action in (5.6). The result is

C
(0)
± (r±) =

(
N2

c − 1
) m4

±r
4
±

4
[
(K2(m±r±))2 + 2 (K1(m±r±)2 − 3 (K0(m±r±)2

]
. (5.13)
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Next we proceed by analyzing the limits m± → 0 and ϵ → 0 as we flow from the UV
to the IR. To this end, we need to recall the asymptotic behavior of Bessel functions,

Kn(x) ∼
√
π

2xe
−x, x→∞ (5.14)

and
K0(x) ∼ − ln

(
x

2

)
− γ and Kn>0(x) ∼

Γ(n)
2

(2
x

)n

, x→ 0, (5.15)

where γ is the Euler-Mascheroni constant.
With these behaviors, we see that the limit m+ → 0 can be straightly taken in C

(0)
+

independent of the limit ϵ→ 0, which leads to

C
(0)
+ (r+) = N2

c − 1, (5.16)

i.e., it remains constant along the RG flow. This is of course expected for the set of N2
c − 1

massless scalar free fields ϕa
+, whose propagator is not singular at ξ̃ = 1.

On the other hand, the limit m− → 0 in C(0)
− requires some care because r−

∣∣
IR contains

an additional divergent factor of 1/
√
ϵ, so that the limits m− → 0 and ϵ → 0 do not

commute at the strict IR. In fact, if we first take ϵ → 0, which amounts to r−
∣∣
IR = ∞,

while keeping m− finite, the C(0)
− function gives

C
(0)
−

(
r−
∣∣
IR

)
= 0. (5.17)

Now, along the RG flow, as long as we do not reach the strict IR limit, we can take the
limit m− → 0, which implies that C(0)

− (r−) = N2
c − 1, except for r− = r−

∣∣
IR. This leads to

a discontinuity in the function C
(0)
− ,

C
(0)
− (r−) = (N2

c − 1)×
{
1 0 ≤ r− < r−

∣∣
IR,

0 r− = r−
∣∣
IR.

(5.18)

The presence of a small mass m− along the entire RG flow is a way to smooth the dis-
continuity of the function C

(0)
− induced by the singularity at ξ̃ = 1. Such behaviors are

illustrated in figure 1.
Taking into account the contribution of all pieces entering the partition function (5.4),

the full C(0)-function at leading order in the large-k̃ expansion is

C(0)(ξ̃) = cF + cghost + C
(0)
+ + C

(0)
− , (5.19)

where cF and cghost are constant terms given by (3.4) and (3.5).
At the fixed points, the C-function (5.19) leads to the central charges

C(0)(ξ̃ →∞) = N︸︷︷︸
fermions

− 2(N2
c − 1)︸ ︷︷ ︸

ghost

+2(N2
c − 1)︸ ︷︷ ︸

W ZW

= N (5.20)

C(0)(ξ̃ = 1) = N︸︷︷︸
fermions

− 2(N2
c − 1)︸ ︷︷ ︸

ghost

+(N2
c − 1)︸ ︷︷ ︸

W ZW

= N − (N2
c − 1). (5.21)

For the ghosts we used dSU(Nc) = N2
c − 1 in (3.5). These expressions reproduce correctly

the central charge of free fermions at the UV, and the central charge of (3.12) at the IR in
the large-k̃ expansion.
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C(0)− (r−)

r−
IR

Figure 1. The black line shows the discontinuity of the function C
(0)
− (r−) at r−

∣∣
IR. The red line

corresponds to the smoothing of the discontinuity due to the mass term.

5.2 Next order computation

Now we move to the computation of the C-function up to the subleading order 1/k̃. As
the corresponding contributions to the effective action are not quadratic in the fields, it is
no longer convenient to proceed like we did in the previous case.

The strategy consists of placing the theory in a curved background with metric γµν ,
so that the classical energy-momentum tensor can be computed as

Tµν(x) = −
2
√
γ

δS

δγµν(x) . (5.22)

Then, from the effective action

e−Seff[γ] ≡
∫
DgDg†e−S[γ,g,g†], (5.23)

we obtain the correlation functions of the energy-momentum tensor by taking functional
derivatives with respect to the metric. In particular, the two-point function reads

− 2
√
γ(x)

2
√
γ(y)

δ2Seff[γ]
δγµν(x)δγρσ(y) = ⟨Tµν(x)Tρσ(y)⟩ − ⟨Tµν(x)⟩⟨Tρσ(y)⟩

− 2
√
γ(x)

2
√
γ(y)

〈
δ2S

δγµν(x)δγρσ(y)

〉
. (5.24)

The C-function can be obtained from this relation as we take the flat space limit. The one-
point functions of the energy-momentum tensor do not contribute in the flat space limit,
whereas the term in the second line leads just to a contact term and also does not contribute
to the C-function, which is defined at separated points. Therefore, the C-function reduces
essentially to a combination of second derivatives of the effective action.

In the large-k̃ expansion, the correction of order 1/k̃ comes from

S
(1/k̃)
eff [γ] = ⟨S4⟩ −

1
2 ⟨S3S3⟩ , (5.25)

where S3 and S4 are the three and four fields terms of the action in (5.3) with the expan-
sion (5.5).
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Before writing the theory in a curved background, it is convenient to proceed momen-
tarily in the flat space to obtain explicit forms of S3 and S4 in terms of ϕ+ and ϕ−,

S3 = − 1
12π
√
2k̃

∫
d2z fabc

[
iϵµν

(
3(1− ξ̃)ϕa

+∂µϕ
b
−∂νϕ

c
− + (1 + 3ξ̃)ϕa

+∂µϕ
b
+∂νϕ

c
+

)
+ 3ηµν(1− ξ̃)ϕa

+∂µϕ
b
+∂νϕ

c
−

]
(5.26)

and

S4 = − 1
96πk̃

∫
d2z fabefcdeη

µν
[
(1− ξ̃)ϕa

−∂µϕ
b
−∂νϕ

c
−ϕ

d
− + 6(1− ξ̃)ϕa

−∂µϕ
b
−∂νϕ

c
+ϕ

d
+

+ (1 + 7ξ̃)ϕa
+∂µϕ

b
+∂νϕ

c
+ϕ

d
+

]
. (5.27)

In S4 we have neglected terms of the type ϵµνϕ+∂µϕ+∂νϕ−ϕ+, which do not contribute as
there is no correlation ⟨ϕ+ϕ−⟩. This type of term only contributes in higher orders in the
large-k̃ expansion.

Now we place the theory in the curved background, which means to introduce the
metric dependence in S3[γ] and S4[γ]. Then, taking the expected values we obtain the
contribution of order 1/k̃ to the effective action

S
(1/k̃)
eff [γ] = πNc(N2

c − 1)
3k̃

(
3ξ̃2 − 4ξ̃ − 1

)
(ξ̃ + 1)2(1− ξ̃)

∫
d2x
√
γγµν

[
∂x

µG∂
y
νG−G∂x

µ∂
y
νG
]

x=y
(5.28)

− 4πNc(N2
c − 1)

3k̃

(
3ξ̃2 + 3ξ̃ + 1

)
(1 + ξ̃)3

∫
d2x d2y ϵµνϵσρG∂x

µ∂
y
σG∂

x
ν∂

y
ρG

+
π
(
1− ξ̃

)
Nc(N2

c − 1)
2k̃(1 + ξ̃)2

∫
d2x d2y γ

1
2 (x)γ

1
2 (y)γµν(x)γσρ(y)

[
G∂x

µ∂
y
σG∂

x
ν∂

y
ρG

− ∂x
µG∂

y
σG∂

x
ν∂

y
ρG
]
,

where G is the propagator in the curved spacetime, namely,

1
√
γ
∂µ(
√
γγµν∂νG(x, y)) =

1
√
γ
δ(2)(x− y). (5.29)

All the integrals appearing in (5.28) can be expressed in terms of the Polyakov action

Γ[γ] ≡ 1
96π

∫
d2x d2y

√
γ(x)

√
γ(y)R(x)G(x, y)R(y). (5.30)

The manipulations involved in these computations are intricate so that we relegate the
details to the appendix A. The resulting effective action reads

S
(1/k̃)
eff [γ] = Nc(N2

c − 1)
k̃

f(ξ̃)Γ[γ], (5.31)

where

f(ξ̃) ≡ 2(2ξ̃ + 1)
(1− ξ̃)(1 + ξ̃)3 . (5.32)
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Employing (5.24), we can compute the two-point function of the energy-momentum
tensor simply by taking derivatives of Seff[γ] with respect to the metric and then taking
the flat space limit. This leads to

− 2
√
γ(x)

2
√
γ(y)

δ2Seff[γ]
δγµν(x)δγρσ(y)

∣∣∣
γ=η

=− 1
12π

[ 1
2π∂µ∂ν∂σ∂ρ ln |x−y| (5.33)

−(ηµν∂σ∂ρ+ησρ∂µ∂ν)δ2(x−y)+ηµνησρ∂
2δ2(x−y)

]
.

Picking specific indices, we can find the components entering the C-function (5.1), i.e.,

⟨T (x)T (0)⟩(1/k̃) = Nc(N2
c − 1)

8π2k̃
f(ξ̃) 1

x4 ,

⟨T (x)Θ(0)⟩(1/k̃) = 0,

⟨Θ(x)Θ(0)⟩(1/k̃) = 0. (5.34)

From these relations we can immediately read the contribution of order 1/k̃ to the C-
function,

C(1/k̃)(ξ̃) =
(
N2

c − 1
) Nc

k̃

2(2ξ̃ + 1)
(1− ξ̃)(1 + ξ̃)3 . (5.35)

There are several interesting points to notice in this expression. First, we see that both
C(1/k̃) and ∂ξ̃C

(1/k̃) vanish at the UV limit ξ̃ → ∞. This is a suitable behavior of the
C-function since it must be stationary at the fixed points and the zero order contribu-
tion (5.20) already exhausts the free fermion central charge. Furthermore, C(1/k̃) ap-
proaches to zero by negative values, ensuring that C(0) + C(1/k̃) < CUV is always satisfied
along the RG flow. On the other hand, the divergent behavior in the limit ξ̃ → 1 is even
more dramatic than the discontinuous zero order contribution. So the main question is how
close to the IR fixed point can we reach through RG flow? Relatedly, since (5.35) is negative
for ξ̃ slightly larger than one, this seems to violate the inequality CIR < C(0) + C(1/k̃).

To address these issues, we notice that our large-k̃ computation of the C-function can
be organized in an expansion of the form

C(ξ̃) =
∞∑

n=0

(
Nc

k̃

1
1− ξ̃

)n

fn(ξ̃), (5.36)

where fn(ξ̃) is a smooth function at ξ̃ = 1 and fn(ξ̃ →∞)→ 0 for n > 0. Comparing with
the previous computations we see that

f0 = N and f1 = (N2
c − 1)2(2ξ̃ + 1)

(1 + ξ̃)3 . (5.37)

Now, the crucial point of (5.36) is that we can probe the IR limit if we consider at
the same time that k̃ is large enough, since the divergence in ξ̃ → 1 can be balanced
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for large values of k̃. This can be implemented in a systematic way through the zoom-in
limit [16–21, 21–23], in which we link the two limits ξ̃ → 1 and k̃ →∞ in the IR region,

ξ̃ = 1 + ϵ

k̃
, (5.38)

with ϵ being a positive parameter and ϵ ≪ k̃. With this, the C-function in (5.36) can be
expressed in terms of a double expansion

C(ϵ) =
∞∑

n=0

∞∑
m=0

αnm(−1)n
(
Nc

ϵ

)n ( ϵ
k̃

)m

, (5.39)

where presumably
Nc

ϵ
≲ 1. (5.40)

Therefore, we need
Nc ≲ ϵ≪ 2Nc +Nf , (5.41)

which can be easily satisfied simply by considering Nf ≫ Nc.
With these considerations it is interesting to compare the IR behavior of the C-function

in terms of the double expansion (5.39),

C(ϵ) = N − (N2
c − 1)

(
Nc

ϵ

)(3
4 −

5
8
ϵ

k̃
+ 3

8

(
ϵ

k̃

)2
+ · · ·

)
+ · · · , (5.42)

with the large-k̃ limit of the IR central charge, given by

cIR = N − (N2
c − 1) + · · · . (5.43)

Thus, no matter how close to ξ̃ = 1 we are able to reach through the limit of k̃ →∞, there
is a discontinuity in the C-function, which is a reflex of the emergent gauge invariance at
ξ̃ = 1. Physically, this means that some physical degrees of freedom are suddenly decoupled
from the model.

5.3 β-function

The C-function can also be used to compute the RG β-function according to

∂ξ̃C(ξ̃) = 24gξ̃,ξ̃βξ̃, (5.44)

where gξ̃,ξ̃ is the Zamolodchikov metric associated with current-current interactions [34].
For such case, the Abelian part of the metric is independent of k̃ and was first calculated
in [15], but a more recent discussion can also be found in the appendix of [16]. The result is

gξ̃,ξ̃ = 1
2
(N2

c − 1)
(1− ξ̃2)2 . (5.45)
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ξ10
Figure 2. The parameter space with the fixed points. We represent the unattainability of the IR
fixed point ξ = 1 as a point outside the one-dimensional parameter space.

An immediate problem in using this metric to compute the β-function is that it vanishes
at the UV fixed point ξ̃ = ∞. To circumvent this issue we can use the duality transfor-
mations (2.29) and (2.30). With these, the UV fixed point ξ̃ =∞ is mapped to the origin
ξ = 0, whereas the IR fixed-point ξ̃ = 1 is self-dual. Using the duality in (5.44), we obtain

β(ξ) = −Nc

k

ξ2

(1 + ξ)2 . (5.46)

This result agrees with the β-function computed in [22]. Note that the β-function (5.46)
has the trivial fixed point ξ = 0, whereas the value ξ = 1 does not show up as a fixed point.

It is interesting to analyze the IR fixed point from the perspective of a geodesic distance
in the parameter space, which is defined as [15]

∆S ≡
∫ ξ2

ξ1

√
gξ,ξ dξ =

√
2(N2

c − 1) log 1 + ξ

1− ξ

∣∣∣∣ξ2

ξ1

. (5.47)

We see that the IR fixed point ξ = 1 is infinitely far apart from any point of the parameter
space. This is illustrated in figure 2.

5.4 Deformation and emergent gauge invariance

With a slightly deformation of the theory we can follow closely the fate of the IR fixed
point and understand better its peculiar behavior. Consider the action

S[g, g†; k̃1, k̃2] = −k̃1W [g†]− k̃2W [g] +
ξ̃
√
k̃1k̃2

π

∫
d2xTrg†−1∂z̄g

†∂zgg
−1

= −k̃2

[
ξ̃2

0W [g†] +W [g]− ξ̃ξ̃0
π

∫
d2xTrg†−1∂z̄g

†∂zgg
−1
]
, (5.48)

where we have defined ξ̃0 ≡
√
k̃1/k̃2. Setting k̃1 = k̃2 (ξ̃0 = 1) we recover our original the-

ory (5.3). The action (5.48) possesses a generalized version of the duality (2.29) and (2.30).
In the large-k̃ limit, it reads [17]

k̃1 → −k̃2, k̃2 → −k̃1, and ξ̃ → 1
ξ̃
. (5.49)

The theory (5.48) has two fixed points at finite ξ̃, namely, ξ̃ = ξ̃0 and ξ̃ = ξ̃−1
0 . The

action in these cases acquires the respective forms

S[g, g†; k̃1, k̃2]
∣∣∣
ξ̃=ξ̃0

= −k̃1W [g†g]− (k̃2 − k̃1)W [g] (5.50)
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and
S[g, g†; k̃1, k̃2]

∣∣∣
ξ̃=ξ̃−1

0
= −k̃2W [g†g]− (k̃1 − k̃2)W [g†], (5.51)

where we have used the Polyakov-Wiegmann identity (2.14). It is interesting to compare
these actions with W [g†g]. Notice that, in contrast to W [g†g], the above actions do not
have the emergent gauge invariance (3.10), except when k̃1 = k̃2. Therefore, the theory
with k̃1 ̸= k̃2 should not be afflicted with the singular behavior at the fixed points ξ̃0 and
ξ̃−1

0 .
We can see this quite explicitly through the β-function, which has been computed

in [18] for the dual theory with different levels,

β(ξ) = − Nc√
k1k2

ξ2(ξ − ξ0)(ξ − ξ−1
0 )

(1− ξ2)2 . (5.52)

It shows explicitly the existence of fixed points at ξ0 and ξ−1
0 . Now we can see that they

disappear when ξ0 → 1 and ξ−1
0 → 1. In fact, in this situation the β-function reduces to

lim
ξ0→1

β(ξ) = −Nc

k

ξ2

(1 + ξ)2 (5.53)

which is precisely the result in (5.46).

6 Final remarks

Throughout this work we have examined several aspects of the non-Abelian Thirring model,
with the main purpose of studying its RG properties. One of the most direct ways to find
the fixed points is through bosonization, as they appear explicitly in the bosonic theory.
The bosonization route however is not unique, so that using suitable combinations of the
Polyakov-Wiegman identity, we are able to derive distintic, but equivalent, bosonic forms
of the model. These are interesting in their own since they enjoy a remarkable strong/weak
duality, and are the starting point of the computation of the C-function in the large-level
limit.

The RG flow of the non-Abelian Thirring model possesses a quite peculiar feature:
the IR fixed point is strictly unreachable through RG flow due to an emergent gauge
invariance. This property has interesting and unusual consequences. Specifically, it leads
to a discontinuity in the C-function, making the study of the flow to the IR subtle. We
discuss this point carefully from the perspective of the dual theory, and show that we can
reach close enough to the IR fixed point in the large-level limit. Indeed, this produces a
two-parameter expansion, which becomes more accurate as Nf ≫ Nc.

Our main motivation for this work is to employ it in the construction of topological
phases of matter in the framework of quantum wires. In that context, we usually start with
a set of one-dimensional free fermions, and then introduce interactions both along as well
as between neighboring wires. This sort of microscopic model is able to stabilize a two-
dimensional spatial phase if the interactions are relevant in the bulk, opening a gap in the
spectrum. Therefore, understanding the fate of the fermionic theory in the IR is a crucial
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ingredient in this construction. Fermions with an internal group structure interacting
through current-current operators are the basic building-blocks of this approach, and can
be modeled in terms of the non-Abelian Thirring theory. We address this problem in a
separate publication [24].

A Effective action regularization

Here we want to discuss the procedure to regularize the effective action (5.28). This section
is intended to familiarize the reader with the methods we used in a convenient way, and
is largely based in previous works, namely [35, 37]. Before we do that, it is convenient to
review the free boson effective action

Γ = 1
2 tr ln−∇, (A.1)

where ∇ = 1√
γ∂ν

(√
γγµν∂ν

)
is the Laplace-Beltrami operator. We start by giving an

integral representation to the logarithm,

ln x = −
∞∫
ϵ

dt
t

[
e−xt − e−t

]
, (A.2)

where the limit ϵ→ 0 must be taken in the end of the calculations. Under an infinitesimal
scale transformation of the metric, γ′µν = eδω γµν , the Laplace-Beltrami operator transforms
as ∇′ = e−δω∇ and we can write the variation of the boson effective action as

δΓ = 1
2 tr

∞∫
ϵ

dt δω∇et∇ = 1
2 tr

∞∫
ϵ

dt δω d
dt
et∇ = −1

2 tr δωeϵ∇

δΓ = −1
2

∫
d2x
√
γδω(x)K(x, x, ϵ), (A.3)

where K(x, x, ϵ) is the heat kernel of the Laplace-Beltrami operator

K(x, y, t) = ⟨x|et∇|y⟩ , for t ≥ 0. (A.4)

In the limit ϵ→ 0, we can expand the heat kernel in powers of the infinitesimal time

δΓ = −1
2

∫
d2x
√
γδω(x)

( 1
4πϵ +

R(x)
24π

)
, (A.5)

where R(x) is the scalar curvature. The divergent term inside the bracket can be traced
back to our assumption that the manifold is finite, it has nothing to do with curvature. In
this way, the divergence can be eliminated by the addition of a local, field independent,
counterterm to the effective action. Now we integrate the effective action, as the metric
changes γ′µν = eωγµν so does the Ricci scalar R′ = e−ω (R−∇ω), such that the effective
action

Γ = − 1
96π

∫
d2x
√
γ (∂µω∂

µω + 2Rω) , (A.6)
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which can be checked to be equivalent to the usual free boson effective action [38],

Γ = 1
96π

∫
d2xd2y

√
γ(x)

√
γ(y)R(x)G(x, y)R(y). (A.7)

At this point we can relate the integrals in the two loops effective action (5.28) to
the free boson effective action (A.6), from which, we can derive the C-function by taking
metric derivatives. Let us start with the first term

I1 =
∫

d2x
√
γγµν

[
∂x

µG∂
y
νG−G∂x

µ∂
y
νG
]

x=y
. (A.8)

We start by separating the finite part of the propagator Ḡ

Ḡ(x, y) ≡ − 1
2π ln s(x, y) +G(x, y), (A.9)

such that at coinciding points

G(x, x) = Ḡ(x, x) + c ≡ Ḡ(x) + c, (A.10)

where s(x, y) is the geodesic distance between the points x and y and c ∝ (d − 2)−1 is a
constant. The logarithm term completely accounts for the divergence that is present in
the propagator, such that Ḡ(x, y) has no divergence. In the limit x = y we regularize the
divergence, in doing so G(x, y) → Ḡ(x, y). Furthermore, we can use the symmetry of the
propagator to show that

∂x
µG(x, y)

∣∣∣∣
x=y

= ∂y
µG(x, y)

∣∣∣∣
x=y

= 1
2∂

x
µḠ(x), (A.11)

At last, we need the identity

∇Ḡ(x) = 2
[
∇G(x, y) + ∂x

µ∂
µ,yG(x, y)

]
x=y

, (A.12)

from which we derive

∂xµ∂
yµG(x, y)

∣∣∣∣
x=y

= R

8π . (A.13)

Using the identities we rewrite

I1 =
∫

d2x
√
γ

[1
4∂µḠ∂

µḠ− 1
8π ḠR

]
= −1

4

∫
d2x
√
γ

[
Ḡ∇Ḡ+ 1

2π ḠR
]

= − 3
16π

∫
d2x ḠR. (A.14)

Let us recall that we are looking for correlations functions of the energy momentum tensor,
which can be obtained by extracting the metric dependence of the effective action. To this
end, we consider a conformal tranformation of the metric γµν → γ′µν = eωγµν , and look for
how I1 changes under such transformation. As expected, the Green function and the Ricci
scalar are sensitive to this transformation,

Ḡ′(x) = Ḡ(x)− ω(x)
4π + · · · and R′ = e−ω(R−∇ω), (A.15)

– 23 –



J
H
E
P
0
7
(
2
0
2
3
)
1
7
2

such that the integral undergoes the change

δωI1 = 3
16π

∫
d2x
√
γ

[ 1
4π∂µω∂

µω + ωR

4π + ω∇Ḡ
]
= 3

64π2

∫
d2x
√
γ [∂µω∂

µω + 2Rω] .

(A.16)

Comparing this with the free boson effective action, equation (A.6), leads us to

I1 ≈ −
9
2πΓ, (A.17)

where the symbol ≈ is meat to signify that the two sides have the same metric dependence.
The last integral in the effective action (5.28)

I3 =
∫

d2x d2y
√
γ(x)

√
γ(y)γµν(x)γσρ(y)

[
G∂x

µ∂
y
σG∂

x
ν∂

y
ρG︸ ︷︷ ︸

A

− ∂x
µG∂

y
σG∂

x
ν∂

y
ρG︸ ︷︷ ︸

B

]
= A−B

(A.18)

can be related to the individual terms of the integral I1 through partial integrations and
the propagator equation. We start by considering

B ≡
∫

d2x d2y
√
γ(x)

√
γ(y)γµν(x)γσρ(y)∂x

µG∂
y
σG∂

x
ν∂

y
ρG

= −
∫

d2x d2y
√
γ(x)

√
γ(y)γµν(x)γσρ(y)

[
∂x

µG∇yG∂x
νG+ ∂y

ρ∂
x
µG∂

y
σG∂

x
νG
]
. (A.19)

Notice that the last term in the integral equals B under the index change µ↔ ν, thus we
write

B = −1
2

∫
d2x d2y

√
γ(x)

√
γ(x)γµν∂x

µG∂
x
νG∇yG

= −1
2

∫
d2x d2y

√
γ(x)

√
γ(y)γµν∂x

µG∂
x
νGδ

(2)(x− y)

= −1
2

∫
d2x
√
γγµν ∂µG∂νG

∣∣∣∣
x=y

= − 3
4πΓ. (A.20)

Applying similar methods in A yields

A ≡
∫

d2x d2y
√
γ(x)

√
γ(y)γµνγσρG∂x

µ∂
y
σG∂

x
ν∂

y
ρG

= −
∫

d2x d2y
√
γ
√
γγµν

[
∂y

ρG∂
x
µ∂

y
σG∂

x
νG+G∂x

µ∇yG∂x
νG
]

= −B +
∫

d2x
√
γ(x)γµν(x)

[
∂x

µG∂
x
νG+G∇xG

]
x=y

= 9
4πΓ (A.21)

which also follows from the discussions of I1. At last, we return to the action (A.18) to
find

I3 = A−B = 3
π
Γ. (A.22)

The remaining term involves a much more complicated and lengthy calculation, which
is beyond the scope of this work. Here we reproduce the result of [35], which reads

I2 =
∫

d2x d2y ϵµνϵσρG(x, y)∂x
µ∂

y
σG(x, y)∂x

ν∂
y
ρG(x, y) =

3
4πΓ. (A.23)

– 24 –



J
H
E
P
0
7
(
2
0
2
3
)
1
7
2

Acknowledgments

This work is partially supported by Brazilian agencies CAPES and CNPq.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] Y. Frishman and J. Sonnenschein, Non-perturbative field theory: From two-dimensional
conformal field theory to QCD in four dimensions, Cambridge University Press (2014)
[DOI:10.1017/CBO9780511770838] [INSPIRE].

[2] T. Giamarchi, Quantum physics in one dimension, vol. 121, Clarendon press (2003).

[3] A.O. Gogolin, A.A. Nersesyan and A.M. Tsvelik, Bosonization and strongly correlated
systems, Cambridge university press (2004).

[4] C.L. Kane, R. Mukhopadhyay and T.C. Lubensky, Fractional Quantum Hall Effect in an
Array of Quantum Wires, Phys. Rev. Lett. 88 (2002) 036401.

[5] J.C.Y. Teo and C.L. Kane, From Luttinger liquid to non-Abelian quantum Hall states, Phys.
Rev. B 89 (2014) 085101.

[6] T. Iadecola, T. Neupert, C. Chamon and C. Mudry, Wire constructions of Abelian topological
phases in three or more dimensions, Phys. Rev. B 93 (2016) 195136.

[7] T. Meng, Coupled-wire constructions: a Luttinger liquid approach to topology, Eur. Phys. J.
ST 229 (2020) 527 [arXiv:1906.09771] [INSPIRE].

[8] Y. Fuji and A. Furusaki, Quantum Hall hierarchy from coupled wires, Phys. Rev. B 99
(2019) 035130 [arXiv:1808.07648] [INSPIRE].

[9] W.B. Fontana, P.R.S. Gomes and C.A. Hernaski, From quantum wires to the Chern-Simons
description of the fractional quantum Hall effect, Phys. Rev. B 99 (2019) 201113.

[10] Y. Imamura, K. Totsuka and T.H. Hansson, From coupled-wire construction of quantum Hall
states to wave functions and hydrodynamics, Phys. Rev. B 100 (2019) 125148
[arXiv:1904.10404] [INSPIRE].

[11] J. Toledo, R. Lipinski Jusinskas, C.A. Hernaski and P.R.S. Gomes, Quantum wires,
Chern-Simons theory, and dualities in the quantum Hall system, Phys. Rev. B 106 (2022)
075122 [arXiv:2205.08488] [INSPIRE].

[12] R.F. Dashen and Y. Frishman, Thirring model with u(n) symmetry - scale invariant only for
fixed values of a coupling constant, Phys. Lett. B 46 (1973) 439 [INSPIRE].

[13] P.-H. Huang et al., Non-Abelian topological spin liquids from arrays of quantum wires or spin
chains, Phys. Rev. B 93 (2016) 205123 [arXiv:1601.01094] [INSPIRE].

[14] C.A. Hernaski and P.R.S. Gomes, Effective Theories for 2+1 Dimensional Non-Abelian
Topological Spin Liquids, JHEP 10 (2017) 021 [arXiv:1706.07113].

[15] D. Kutasov, Duality off the critical point in two-dimensional systems with non abelian
symmetries, Phys. Lett. B 233 (1989) 369.

[16] G. Georgiou, K. Sfetsos and K. Siampos, All-loop anomalous dimensions in integrable
λ-deformed σ-models, Nucl. Phys. B 901 (2015) 40.

– 25 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/CBO9780511770838
https://inspirehep.net/literature/858758
https://doi.org/10.1103/PhysRevLett.88.036401
https://doi.org/10.1103/PhysRevB.89.085101
https://doi.org/10.1103/PhysRevB.89.085101
https://doi.org/10.1103/physrevb.93.195136
https://doi.org/10.1140/epjst/e2019-900095-5
https://doi.org/10.1140/epjst/e2019-900095-5
https://arxiv.org/abs/1906.09771
https://inspirehep.net/literature/1741117
https://doi.org/10.1103/PhysRevB.99.035130
https://doi.org/10.1103/PhysRevB.99.035130
https://arxiv.org/abs/1808.07648
https://inspirehep.net/literature/1691160
https://doi.org/10.1103/PhysRevB.99.201113
https://doi.org/10.1103/PhysRevB.100.125148
https://arxiv.org/abs/1904.10404
https://inspirehep.net/literature/1730929
https://doi.org/10.1103/PhysRevB.106.075122
https://doi.org/10.1103/PhysRevB.106.075122
https://arxiv.org/abs/2205.08488
https://inspirehep.net/literature/2083243
https://doi.org/10.1016/0370-2693(73)90161-5
https://inspirehep.net/literature/95088
https://doi.org/10.1103/PhysRevB.93.205123
https://arxiv.org/abs/1601.01094
https://inspirehep.net/literature/1413784
https://doi.org/10.1007/JHEP10(2017)021
https://arxiv.org/abs/1706.07113


J
H
E
P
0
7
(
2
0
2
3
)
1
7
2

[17] G. Georgiou and K. Sfetsos, Integrable flows between exact CFTs, JHEP 2017 (2017) 1.

[18] G. Georgiou, K. Sfetsos and K. Siampos, λ-deformations of left–right asymmetric CFTs,
Nucl. Phys. B 914 (2017) 623.

[19] G. Georgiou, K. Sfetsos and K. Siampos, Double and cyclic λ-deformations and their
canonical equivalents, Phys. Lett. B 771 (2017) 576.

[20] G. Georgiou et al., The exact C-function in integrable λ-deformed theories, Phys. Lett. B
782 (2018) 613 [arXiv:1805.03731] [INSPIRE].

[21] B. Hoare, N. Levine and A.A. Tseytlin, Integrable sigma models and 2-loop RG flow, JHEP
2019 (2019) 1.

[22] G. Georgiou, E. Sagkrioti, K. Sfetsos and K. Siampos, An exact symmetry in λ-deformed
CFTs, JHEP 2020 (2020) 1.

[23] K. Sfetsos, Integrable interpolations: From exact CFTs to non-Abelian T-duals, Nucl. Phys.
B 880 (2014) 225 [arXiv:1312.4560] [INSPIRE].

[24] R.B. Corso, C.A. Hernaski and P.R.S. Gomes, Slightly Non-Abelian Spin Liquids, to appear.

[25] A.M. Tsvelik, Lectures on Non-Abelian Bosonization, Symmetry, Spin Dynamics And The
Properties Of Nanostructures — Lecture Notes Of The 11th International School On
Theoretical Physics (2015) p. 1.

[26] A.M. Polyakov and P.B. Wiegmann, Theory of Nonabelian Goldstone Bosons, Phys. Lett. B
131 (1983) 121 [INSPIRE].

[27] A.M. Polyakov and P.B. Wiegmann, Goldstone fields in two dimensions with multivalued
actions, Phys. Lett. B 141 (1984) 223.

[28] D. Cabra, E. Moreno and C. von Reichencach, Conformally invariant constrained fermion
models, Int. J. Mod. Phys. A 05 (1990) 2313.

[29] E. Witten, Nonabelian Bosonization in Two-Dimensions, Commun. Math. Phys. 92 (1984)
455.

[30] B. Schroer, A Trip to Scaling Land, in proceedings of 5th Brazilian Symposium on Theoretical
Physics dedicated to Guido Beck on his 70th Birthday, (1974) pp. 287–322 [INSPIRE].

[31] G.F. Dell’Antonio, Two-Dimensional Exactly Solvable Models-Some Remarks, Nuovo Cim. A
25 (1975) 303.

[32] M. Gomes, V. Kurak and A.J. Da Silva, Weyl fields, quantum integrability and conformal
invariant field theories, Nucl. Phys. B 295 (1988) 139 [INSPIRE].

[33] D. Karabali, Q.-H. Park and H.J. Schnitzer, Thirring Interactions, Nonabelian Bose-fermi
Equivalences and Conformal Invariance, Nucl. Phys. B 323 (1989) 572 [INSPIRE].

[34] A.B. Zomolodcshikov, “Irreversibility” of the flux of the renormalization group in a 2D field
theory, JETP Lett. 43 (1986) 730.

[35] H. Leutwyler and M. Shifman, Perturbation theory in the Wess-Zumino-Novikov-Witten
model, Int. J. Mod. Phys. A 07 (1992) 795.

[36] D.C. Cabra, Zamolodchikov’s c function for the chiral Gross-Neveu model, Phys. Rev. D 47
(1993) 3509.

[37] P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal Field Theory, Island Press (1996).

[38] A.M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981) 207.

– 26 –

https://doi.org/10.1016/j.physletb.2018.06.023
https://doi.org/10.1016/j.physletb.2018.06.023
https://arxiv.org/abs/1805.03731
https://inspirehep.net/literature/1672467
https://doi.org/10.1016/j.nuclphysb.2014.01.004
https://doi.org/10.1016/j.nuclphysb.2014.01.004
https://arxiv.org/abs/1312.4560
https://inspirehep.net/literature/1269758
https://doi.org/10.1016/0370-2693(83)91104-8
https://doi.org/10.1016/0370-2693(83)91104-8
https://inspirehep.net/literature/193163
https://doi.org/10.1142/S0217751X90001070
https://doi.org/10.1007/BF01215276
https://doi.org/10.1007/BF01215276
https://inspirehep.net/literature/94256
https://doi.org/10.1007/BF02729050
https://doi.org/10.1007/BF02729050
https://doi.org/10.1016/0550-3213(88)90248-9
https://inspirehep.net/literature/252320
https://doi.org/10.1016/0550-3213(89)90124-7
https://inspirehep.net/literature/267878
https://doi.org/10.1142/S0217751X92000387
https://doi.org/10.1103/PhysRevD.47.3509
https://doi.org/10.1103/PhysRevD.47.3509
https://doi.org/https://doi.org/10.1016/0370-2693(81)90743-7

	Introduction
	Non-abelian Thirring model
	Bosonization
	Duality

	Fixed points
	xi=0 longleftrightarrow tilde(xi) to infty
	xi=1 longleftrightarrow tilde(xi)=1
	xi rightarrow infty longleftrightarrow tilde(xi)=0

	Fixed points structure and duality in the fermionic theory
	Large-level expansion and C-function
	Leading order computation
	Next order computation
	beta-function
	Deformation and emergent gauge invariance

	Final remarks
	Effective action regularization

