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Abstract: We initiate the analytical functional bootstrap study of conformal field theories
with large N limits. In this first paper we particularly focus on the 1D O(N) vector
bootstrap. We obtain a remarkably simple bootstrap equation from the O(N) vector
crossing equations in the large N limit. The numerical conformal bootstrap bound is
saturated by the generalized free field theories, while its extremal functional actions do
not converge to any non-vanishing limit. We study the analytical extremal functionals
of this crossing equation, for which the total positivity of the SL(2,R) conformal block
plays a critical role. We prove the SL(2,R) conformal block is totally positive in the limits
with large ∆ or small 1 − z and show that the total positivity is violated below a critical
value ∆∗TP ≈ 0.32315626. The SL(2,R) conformal block forms a surprisingly sophisticated
mathematical structure, which for instance can violate total positivity at the order 10−5654

for a normal value ∆ = 0.1627! We construct a series of analytical functionals {αM} which
satisfy the bootstrap positive conditions up to a range ∆ 6 ΛM . The functionals {αM}
have a trivial large M limit. However, due to total positivity, they can approach the large
M limit in a way consistent with the bootstrap positive conditions for arbitrarily high
ΛM . Moreover, in the region ∆ 6 ΛM , the analytical functional actions are consistent
with the numerical bootstrap results, therefore it clarifies the positive structure in the
crossing equation analytically. Our result provides a concrete example to illustrate how the
analytical properties of the conformal block lead to nontrivial bootstrap bounds. We expect
this work paves the way for large N analytical functional bootstrap in higher dimensions.
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1 Introduction

The conformal bootstrap [1, 2] has been revived since the breakthrough work [3], which
shows that strong constraints on the parameter space of general conformal field theories
(CFTs) can be obtained merely from few consistency conditions. This approach has led
to remarkable successes in studying the strongly coupled critical phenomena, see [4, 5] for
comprehensive reviews. It is followed by an immediate question: how can such strong results
be obtained from such few inputs? The bootstrap results, or the “numerical experiments”
indicate certain mysterious mathematical structures in conformal theories which can play
key roles in determining the CFT landscape. Since the ingredients in conformal bootstrap
are just unitarity and the conformal blocks of the conformal group SO(D + 1, 1), the
unreasonable effectiveness of the bootstrap method is likely related to certain properties
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of the SO(D + 1, 1) conformal blocks. The goal of this work is to explore such presumed
mathematical structures. We will focus on 1D large N conformal bootstrap for which the
extremal bootstrap functional can be studied analytically. Moreover, we will clarify the
key mathematical property which makes our construction possible.

We will start with the 1D O(N) vector bootstrap in the large N limit. Under suitable
conditions the O(N) vector crossing equations are reduced to one of the simplest bootstrap
equations ∑

O∈S
λ2
O z
−2∆φ G∆(z)−

∑
O∈T

λ2
O (1− z)−2∆φ G∆(1− z) = 0, (1.1)

where G∆(z) is the 1D SL conformal block. The numerical bootstrap bound on the scaling
dimension of the lowest operator in the O(N) traceless symmetric sector (T ) is saturated
by the generalized free field theories, while its extremal functional actions do not have a
stable non-vanishing limit and decrease with higher numerical precision. We will attempt
to construct the analytical functionals for the above crossing equation (1.1). The extremal
analytical functional is expected to produce the spectrum of the 1D generalized free field
theories and also satisfy the bootstrap positive conditions. In our construction, we firstly
require the analytical functionals can generate the spectrum of the generalized free field
theories. Then we find such functionals can also satisfy the bootstrap positive conditions,
due to the total positivity of the SL conformal block. This is the key mathematical property
for the crossing equation (1.1) to be saturated by the generalized free field theories

Total positivity of the SL conformal block −→ Large N bootstrap bound.

We will show that the total positivity of the SL conformal block is true in the limits with
large ∆ or small 1− z, but for small ∆’s, it relates to a surprisingly delicate mathematical
structure. Based on the total positivity of the SL conformal block, we show that a series of
analytical functionals can satisfy the bootstrap positive conditions up to arbitrarily high
scaling dimension. In particular, this family of analytical functionals can generate the
spectrum of generalized free field theories but do not converge to any stable non-vanishing
limit, remarkably consistent with the numerical bootstrap results.

Our interests in the large N CFTs and their bootstrap studies are motivated by several
reasons.

The large N CFTs play fundamental roles in the AdS/CFT correspondence [6–8]. In
the large N limit, the conformal correlation functions are dominated by the generalized free
field theories, and they provide pivotal solutions to the conformal crossing equations [9–11].
Perturbative CFT data can be obtained by expanding the solutions to the crossing equa-
tions near generalized free field theories [12–14]. The role of large N CFTs in holography
has been extensively studied, e.g. [15, 16]. The generalized free field theories also provide
nice examples for the harmonic analysis of the Euclidean conformal group [17]. In this
work, we will show that the generalized free field theories are not just pivotal solutions
to the crossing equations, but can also saturate the bootstrap bounds. This indicates a
special positive structure in the generalized free field theories which restricts any dynami-
cal corrections to the bounded parameters are either vanishing or negative. Decoding this
positive structure is an interesting problem for bootstrap studies.
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We use O(N) vector bootstrap to study the large N CFTs. The O(N) vector boot-
strap plays a special role in conformal bootstrap with global symmetries. Due to novel
algebraic relations between crossing equations with different global symmetries [18, 19],
the non-O(N) vector crossing equations can be mapped to those of O(N) vector’s, and
their bootstrap bounds are identical or weaker than the O(N) vector bootstrap bounds.
On the physics side, the O(N) vector bootstrap bounds have close relation to several in-
teresting theories. For instance, the 3D O(N) vector bootstrap bounds have two types of
kinks [20, 21]. The type I kinks with an O(N) vector scalar φ near a free boson ∆φ = 1

2 are
related to the critical O(N) vector model [20], while the type II kinks with ∆φ near free
fermion bilinears also appear in general dimensions and show close relation with conformal
gauge theories [18, 21].

The analytical construction of the extremal bootstrap functional [22] provides a sub-
stantial approach to uncover the positive structure in conformal bootstrap. Analytical
extremal functionals have been firstly constructed in [23–25] for a 1D conformal boot-
strap problem, in which the bootstrap bound is saturated by the generalized free fermion
theory [26]. Analytical functionals for higher dimensional conformal bootstrap have been
studied in [27–29]. In [28] a family of functional basis dual to the generalized free field
spectrum has been constructed, which shows close relation to the conformal dispersion re-
lation [30]. Nevertheless, it is quite challenging to construct extremal analytical functionals
whose actions can satisfy positive conditions required by the conformal bootstrap. In this
work, we aim to answer this critical question for the large N analytical functional bootstrap
in a simplified laboratory, the 1D O(N) vector bootstrap. In 1D CFTs, there is only one
conformal invariant cross ratio (z) and the spectrum does not depend on spin. Interest-
ingly, although the crossing equations have been simplified notably in 1D, the bootstrap
bounds show similar patterns as their higher dimension analogues. Therefore we expect
the 1D analytical functional bootstrap studies are instructive for similar studies in higher
dimensions.

In addition, the 1D conformal bootstrap with global symmetries also corresponds to
many interesting physics problems. A large set of 1D CFTs are given by the line defects
of higher dimensional CFTs. Two typical examples are provided by the monodromy line
defect in the 3D Ising model [26, 31] and the Wilson lines in the 4D N = 4 SYM [32–36].
The 1D CFTs can also be realized as boundary theories of quantum field theories in AdS2
background [37, 38]. Recently, there are growing interests in the applications of 1D O(N)
symmetric CFTs in the celestial holography [39, 40]. Conformal bootstrap in 1D has been
a powerful approach to extract dynamical information in above theories.

Total positivity of the 1D SL conformal block will play a key role in constructing the
analytical functionals of the 1D large N bootstrap. In mathematics the total positivity has
been extensively studied since the early of 20th century. It has deep connections to quantum
field theories, see e.g. [41–44]. The possible role of total positivity in conformal bootstrap
has been proposed in [45], in which the authors focused on the geometrical configuration
supported by the SL conformal blocks. Due to total positivity, the 1D bootstrap equation
(without an O(N) global symmetry) admits a cyclic polytope structure which can lead to
nontrivial constraints on the CFT data, see also [46, 47]. In this work, we will focus on

– 3 –



J
H
E
P
0
7
(
2
0
2
3
)
1
6
7

a new 1D bootstrap equation (1.1) with a different approach, but we will reach a similar
conclusion that the total positivity of the SL conformal block can play a key role for the
bootstrap constraints.

This paper is organized as follows. In section 2 we study the 1D O(N) vector nu-
merical bootstrap with large N . We discuss similarities and differences between the 1D
and higher dimensional O(N) vector bootstrap. We obtain a simplified crossing equation,
which determines the first part of the O(∞) vector bootstrap bound and provides an ideal
example for analytical functional bootstrap study. In section 3 we study total positivity of
the SL conformal block, which will be important to construct the analytical functionals. In
section 4 we construct the analytical functionals for the 1D O(∞) vector bootstrap which
is saturated by the generalized free field theory. We firstly review the functional basis for
1D conformal block obtained from the dispersion relation. Then we explain how the total
positivity of the conformal block function can play a key role to construct the analytical
functionals satisfying the bootstrap positivity conditions. This work initiates a series of
analytical functional bootstrap studies of the large N CFTs and their holographic duals,
for which we briefly discuss in section 5.

2 Large N numerical conformal bootstrap in 1D

In this section we study 1D O(N) vector numerical conformal bootstrap in the large N limit.
The 1D conformal bootstrap has been studied in [26, 34, 36, 38, 48–51]. The 1D analytical
functional bootstrap with global symmetries has also been studied in [50]. Our interest
in the 1D O(N) vector bootstrap is from the observation that the 1D bootstrap bounds
share several key properties of the O(N) vector bootstrap bounds in higher dimensions,
thus it can provide a drastically simplified while still representative example to study
the underlying mathematical structures in conformal bootstrap. The numerical bootstrap
results provide insightful bases for analytical functional bootstrap study in section 4.

2.1 O(N) vector crossing equations in 1D

Let us consider an operator φi which forms a vector representation of the O(N) global
symmetry. Its four point correlation function is given by

〈φi(x1)φj(x2)φk(x3)φl(x4)〉 = 1(
x2

12x
2
34
)∆φ
Gijkl(z), (2.1)

where the variables xi are the 1D coordinates, xij = xi − xj and the conformal invariant
cross-ratio z is defined as

z = x12x34
x13x24

. (2.2)

When the external operators φi(xi) are in the ordered configuration x1 < x2 < x3 < x4, the
cross-ratio stays in the range z ∈ (0, 1). The stripped correlation function Gijkl(z) in (2.1)
can be analytically continued in the complex plane except the branch points at z = 0, 1,∞,
which correspond to coincidences of two operators. The Gijkl(z) is a holomorphic function
with two branch cuts at (−∞, 0] and [1,+∞). In the s-channel (12)(34) limit with z → 0,
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the conformal correlation function Gijkl(z) can be expanded in terms of the four point
invariant tensors of O(N) singlet (S), traceless symmetric (T ) and anti-symmetric (A)
representations

Gijkl(z) = δijδklGS(z) +
(
δikδjl + δilδjk −

2
N
δijδkl

)
GT (z) + (δilδjk − δikδjl)GA(z), (2.3)

in which GR denotes the series expansion

GR(z) =
∑
OR

λ2
ORG∆(z) (2.4)

of the s-channel SL conformal block [52]

G∆(z) = z∆
2F1(∆,∆, 2∆; z). (2.5)

Alternatively, one can expand the same correlation functions (2.3) in the t-channel (23)(41)
limit, which can be formally written as Gjkli(1 − z). The crossing symmetry of the corre-
lation function (2.1) identifies the s- and t-channel expansions

z−2∆φGijkl(z) = (1− z)−2∆φGjkli(1− z). (2.6)

Together with (2.3), above crossing equation leads to following independent equations

z−2∆φ

(
GT (z)− GA(z)

)
= (1− z)−2∆φ

(
GT (1− z)− GA(1− z)

)
, (2.7)

z−2∆φ

(
GS(z)− 2

N
GT (z)

)
= (1− z)−2∆φ

(
GT (1− z) + GA(1− z)

)
. (2.8)

Note to derive above crossing equations, we do not assume the statistical property of the
external operator φi, so they can be applied to both fermions and bosons in 1D.

A family of unitary solutions to the O(N) vector crossing equations are provided by

GS(z) = 1 + 2
N
GT (z), (2.9)

GT (z) = 1
2z

2∆φ

(
(1− z)−2∆φ − λ

)
, (2.10)

GA(z) = 1
2z

2∆φ

(
(1− z)−2∆φ + λ

)
, (2.11)

in which λ = ±1 give the O(N) symmetric generalized free fermion and boson theories.
Above correlation functions can be decomposed into the 1D conformal blocks

GR(z) =
∞∑
n=0

cRn G2∆φ+n(z), (2.12)

where

cTn = (2∆φ)2
n

2n!(4∆φ + n− 1)n
(1− (−1)nλ), (2.13)

cAn = (2∆φ)2
n

2n!(4∆φ + n− 1)n
(1 + (−1)nλ). (2.14)
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For different λ’s (|λ| < 1), the correlation functions GS/T/A contain the same spectrum
∆n = 2∆φ + n, n ∈ N. An interesting question in CFT studies is that given the whole
spectrum of a CFT, can we determine the theory uniquely? The correlation function (2.9)–
(2.11) provides a counter example for this question.

The O(N) vector crossing equations (2.7), (2.8) have the same algebraic structure as
those in higher dimensions [20, 53]. However, in higher dimensions, there are spin selection
rules in different O(N) representations due to the boson symmetry of the external scalars.
The correlation function is invariant under permutation (i, x1)↔ (j, x2), which leads to

λφφOS = cS(−1)`λφφOS , λφφOT = cT (−1)`λφφOT , λφφOA = cA(−1)`λφφOA , (2.15)

where cS = cT = 1, cA = −1 are the signs from O(N) indices when permuting two φ’s.
Therefore only even (odd) spins can appear in the S/T (A) representations. While there
is no spin in 1D, do we have similar selection rules in different O(N) representations? The
answer is yes and it relates to the so-called S-parity symmetry [26, 31].

The action of the S-parity is

S : x→ −x, S O(x)S = (−1)SOO(−x). (2.16)

In 1D, the continuous part of the conformal symmetry preserves the cyclic order of the
three point function 〈O1(x1)O2(x2)O3(x3)〉 with x1 < x2 < x3. However, the cyclic order
can be modified by the S transformation

S : 〈O1(x1)O2(x2)O3(x3)〉 → (−1)SO1+SO2+SO3 〈O3(−x3)O2(−x2)O1(−x1)〉. (2.17)

Therefore in an S-parity invariant theory, we have

λO1O2O3 = (−1)SO1+SO2+SO3λO2O1O3 . (2.18)

In the 1D O(N) vector bootstrap, if the external operators φi are scalars, the boson sym-
metry between the two φ’s requires

λφφOS = (−1)SOSλφφOS , λφφOT = (−1)SOT λφφOT , λφφOA = −(−1)SOAλφφOA , (2.19)

which leads to
SOS = 1, SOT = 1, SOA = −1. (2.20)

While for the external fermions, the S-parity charges in the O(N) representations are
opposite

SOS = −1, SOT = −1, SOA = 1. (2.21)

In the generalized free boson theory, the S-parity of the double-trace operators On = φ∂nφ

is Sn = (−1)n. According to the S-parity charges in (2.20), the generalized free boson
theory has spectrum O2n with ∆ = 2∆φ+ 2n in the S/T sectors and spectrum O2n+1 with
∆ = 2∆φ + 2n+ 1 in the A sector. The spectra in S/T and A sectors are switched in the
generalized free fermion theory due to the S-parity charges (2.21).

The O(N) vector bootstrap plays a special role in bootstrapping CFTs with general
global symmetries. In [18, 19] it has been verified that for a large variety of symmetries G
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and representations R, the crossing equations of the four point correlator 〈RR̄RR̄〉 and
〈RRR̄R̄〉 can be linearly mapped into the O(N) symmetric form (2.7), (2.8) through a
transformation TR which is consistent with positivity conditions in the bootstrap algorithm.
The transformation TR is purely algebraic so can also be applied in 1D conformal bootstrap.
In consequence, the bootstrap bound on the lowest G singlet scalar coincides with the
bound on the O(N) singlet scalar, while the O(N) vector bootstrap bound on the lowest
T scalar can be interpreted as the bound on the lowest G non-singlet scalar appearing in
the bootstrap equations of R.

2.2 O(N) vector bootstrap bounds in the large N limit

In the large N limit, the O(N) vector crossing equations (2.7), (2.8) become

∑
O∈S

λ2
O

(
0

E∆(z)

)
+
∑
O∈T

λ2
O

(
F∆(z)

−E∆(1− z)

)
+
∑
O∈A

λ2
O

(
−F∆(z)
−E∆(1− z)

)
= 0, (2.22)

where

E∆(z) = z−2∆φG∆(z), (2.23)
F∆(z) = E∆(z)− E∆(1− z). (2.24)

Their bootstrap bound on the lowest non-unit O(N) singlet operator goes to infinity. A
solution to such bound is given by the correlation function (2.9)–(2.11) with N = ∞, in
which the only O(N) singlet operator is the unit operator, while all the double-trace singlets
have vanishing OPE coefficients and are decoupled in the crossing equation. Moreover,
without extra assumptions on the spectrum, there is no upper bound on the lowest operator
in the T or A representation. To show this, let us consider the bootstrap bound on the
scaling dimension of the lowest operator in the T sector, denoted ∆∗T . A solution to
the crossing equation (2.22) can be constructed as follows. Given a four point correlator
〈φ(x1)φ(x2)φ(x3)φ(x4)〉 ∼ G∗ which satisfies:

z−2∆φG∗(z)− (1− z)−2∆φG∗(1− z) = 0, (2.25)

the O(N) vector correlation functions

GA = GS = G∗, GT = 0 (2.26)

satisfy the crossing equation (2.22). In this solution the T sector is empty therefore cor-
responding to an infinity high upper bound ∆∗T = ∞. Due to the same logic there is no
upper bound on ∆∗A either. Note the unit operator is an indispensable ingredient in the
OPEs of the correlation functions G∗ and GS/A. It seems the 1D large N bootstrap is
too simplified to capture nontrivial dynamics and is not insightful for higher dimensional
bootstrap. However, this is not the case.

As discussed before, different O(N) representations carry different S-parity charges,
similar to the spin selection rules in higher dimensional bootstrap. With different S-parity
charges it is expected that the spectra in different sectors are notably different. Specifically,
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Δϕ0
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ΔT

Figure 1. 1D O(∞) vector bootstrap bound on the scaling dimension of the lowest operator in the
T sector. Gap assumption ∆A > 1.0 in the A sector. Λ = 20.
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Δϕ0

5
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15

ΔT

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Δϕ

5

10

15

ΔT

Figure 2. 2D (left) and 3D (right) O(∞) vector bootstrap bounds on the scaling dimensions of
the lowest scalars in the T sector. No gaps. Λ = 31.

in the O(N) vector bootstrap, to bound ∆∗T , we may expect a non-trivial gap for the lowest
operator in the A sector which has opposite S-parity. In the bootstrap studies of defect
CFTs, such gaps can be justified by the physical spectrum [26, 51].

With a gap assumption on the A sector spectrum, the bootstrap bound on ∆∗T can
be modified drastically. The result is shown in figure 1, in which we have introduced an
assumption that the lowest operator in the A sector satisfies ∆A > ∆c = 1.1 In the range
∆φ ∈ (0,∆c/2) the bootstrap bound on ∆∗T is given by ∆∗T = 2∆φ. It is followed by a sharp
kink at ∆φ = ∆c/2, where the bound on ∆∗T jumps to ∆∗T = 2∆φ + 1. The solution (2.26)
requires a unit operator in the A sector, therefore is excluded by the gap assumption. The
bootstrap bound on ∆∗T disappears near ∆φ = 0.744, which suggest an end of the scalar
bootstrap constraints.2

1Bootstrap bounds with different gaps ∆c are qualitatively similar to figure 1.
2Note the bound on ∆∗T provides the strongest constraint among the scalar bootstrap with global sym-

metries.
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The 1D O(∞) vector bootstrap bound is remarkably similar to the higher dimensional
O(∞) vector bootstrap bounds shown in figure 2. It has been known since [20] that in
3D, the O(N) vector bootstrap bounds show sharp kinks (type I) which are saturated by
the 3D critical O(N) vector models. Moreover, in [21] the author observed that besides
the type I kinks, the 3D O(N) vector bootstrap bounds also show another family of kinks
(type II) which approach the free fermion bilinear in the large N limit. The type II
kinks appear in general dimensions [18], and the kink in figure 1 at ∆φ = ∆c/2 could be
considered as their dimensional continuation in 1D. In higher dimensions the type II kinks
at finite N are conjectured to be related to the conformal gauge theories, while mixed with
the bootstrap bound coincidences due to a positive algebraic structure in the four point
crossing equations [19]. The numerical bootstrap results of the type II kinks are affected
by the numerical convergence issue and it is hard to evaluate the CFT data numerically.

One of the motivations of this work is to develop an analytical functional bootstrap
method to study the kinks in the O(N) vector bootstrap bounds and clarify their putative
connections to the conformal gauge theories. The higher dimensional bootstrap equations
relate to conformal blocks with two cross ratios z, z̄ and spins, which make the analytical
functional bootstrap more intricate. Here our results suggest that similar bootstrap bounds
can also be realized in 1D conformal bootstrap, with a drastically simplified bootstrap
setup. Therefore the 1D large N bootstrap can provide a key to unlock the large N

analytical functional bootstrap in higher dimensions.

2.3 Extremal solutions and the simplified bootstrap equation

We focus on the 1D large N bootstrap bound in the range ∆φ ∈ (0, ∆c/2). Spectrum of the
theory saturating the bootstrap bound can be obtained from the extremal functionals [22],
which are shown in figure 3 for ∆φ = 0.1, 0.3. In the S sector the spectrum is trivial with
only one first order zero at ∆ = 0, corresponding to the unit operator. Surprisingly, the
extremal functional in the T sector shows a first order zero at ∆ = 2∆φ, and double zeros
at ∆ = 2∆φ + n, n ∈ N+. Therefore the extremal spectrum is not from generalized free
boson or fermion alone, but is given by the correlation functions (2.9)–(2.11) with |λ| < 1.
Furthermore, action of the extremal functional in the A sector is the same as that of T
sector up to numerical errors! In the A sector, we only introduced the positivity constraint
above the gap ∆A > ∆c, while the extremal solution automatically satisfies the positivity
condition down to ∆ > 2∆φ!

Let us go back to the O(∞) vector crossing equation (2.22) and check what does it
mean by two “almost” identical actions in T and A sectors. Consider a linear functional ~α
for the O(∞) vector crossing equation (2.22)

~α · ~VT ≡ α1 · F∆(z)− α2 · E∆(1− z), (2.27)
~α · ~VA ≡ −α1 · F∆(z)− α2 · E∆(1− z). (2.28)

The observation ~α · ~VT = ~α · ~VA suggests α1 → 0 ! That is to say, to get the upper bound
in figure 1 for ∆φ < ∆c/2, the first row in the crossing equation (2.22) is not necessary!
The extremely small α1 has been verified in our numerical bootstrap results.
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Figure 3. Extremal functional spectra in the O(N) T sector (left) and S sector (right) at Λ = 48.

Without the first row of (2.22), the conformal blocks in the T and A sectors are the
same and the positivity constraint in the A sector

~α · ~VA > 0, ∀∆ > ∆c, (2.29)

is substituted by the positivity constraint in the T sector

~α · ~VT > 0, ∀∆ > ∆∗T , (2.30)

given ∆∗T < ∆c. While for ∆∗T > ∆c, the positivity constraints between the two sectors
are switched and the bootstrap bound in figure 1 suggests the first row of (2.22) becomes
important. The bootstrap constraints have a transition at ∆∗T = ∆c, corresponding to the
jump of the bootstrap bound at ∆φ = ∆c/2 in figure 1. We leave a detailed study of the
bootstrap bound with ∆φ > ∆c/2 for future work.

The correlation functions (2.9)–(2.11) with different |λ| < 1 have the same spectrum
while different OPE coefficients (2.13), (2.14). The extremal OPE coefficients c∗n are given
by the generalized free boson or fermion theories when |λ| → 1

c∗n = (2∆φ)2
n

n!(4∆φ + n− 1)n
. (2.31)

We have checked that our bootstrap bounds on the OPE coefficients of low-lying spectrum
∆ = 2∆φ + n are well consistent with (2.31) up to n = 9.

Remarkably, according to our numerical bootstrap results, the 1D large N extremal
functional actions f ≡ ~α · ~VT do not converge to any stable limit to the best of our current
numerical precision. Instead, the magnitudes of the extremal functional actions keep on
decreasing with increasing numerical precision, as shown in figure 4. This suggests a
critical property of the extremal functionals that it can generate the higher spectrum of
the generalized free field theories, but the functional action does not admit a stable non-
vanishing limit. In section 4 we will study the large N crossing equation (2.22) analytically
and show that the numerical results in figure 4 are nicely consistent with a positive structure
of the SL(2,R) conformal block.
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Figure 4. Actions f ≡ ~α · ~VT of the extremal functional on the O(N) T sector conformal block
at ∆φ = 0.3 with different Λs. For comparison we have vertically shifted the numerical functional
actions. The functional actions with different ∆φ’s are qualitatively similar.

To summarize, the O(∞) vector bootstrap leads to a rather simple crossing equation

∑
O∈S

λ2
O z
−2∆φ G∆(z)−

∑
O∈T

λ2
O (1− z)−2∆φG∆(1− z) = 0. (2.32)

Bootstrap bound on ∆∗T from above crossing equation is given by ∆∗T = 2∆φ for general
∆φ, and its extremal spectrum is the same as those in figure 3. The O(∞) vector bootstrap
equation (2.22) is reduced to (2.32) in the range ∆φ < ∆c/2. For ∆φ > ∆c/2, the bootstrap
bound from (2.32) stays in the line ∆∗T = 2∆φ, see e.g. the extremal spectrum at ∆φ = 0.6
in figure 3, while the bound from (2.22) goes differently as the first row in (2.22) starts
to play a role. The rest part of this work aims to construct analytical functionals for the
crossing equation (2.32).

We would like to add comments on O(∞) vector bootstrap in higher dimensions [54]. In
the range between free boson and free fermion bilinear: ∆φ ∈

(
D−2

2 , D − 1
)
, the bootstrap

bound on ∆∗T is also saturated by the generalized free theory and the O(∞) vector bootstrap
equations are reduced to the higher dimensional form of (2.32)

∑
O∈S

λ2
O(zz̄)−∆φ G∆,`(z, z̄)−

∑
O∈T

λ2
O((1− z)(1− z̄))−∆φ G∆,`(1− z, 1− z̄)

−
∑
O∈A

λ2
O((1− z)(1− z̄))−∆φ G∆,`(1− z, 1− z̄) = 0, (2.33)

where G∆,`(z, z̄) are the SO(D + 1, 1) conformal blocks [52, 55]. Considering the close
relation between the O(∞) vector bootstrap in 1D and higher dimensions, the analytical
functional for 1D O(∞) vector bootstrap constructed in this work will be instructive to
construct analytical functionals in higher dimensions [54].
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3 SL conformal block and total positivity

The 1D large N bootstrap provides an ideal example to decode the underlying mathemat-
ical structures of conformal bootstrap. Considering there are only few ingredients in the
bootstrap crossing equation (2.32), it is expected that the presumed mathematical struc-
tures should be certain properties of the SL conformal block. In section 4 we will construct
the analytical functionals for the crossing equation (2.32) and show that the answer to this
riddle is total positivity. In this section we provide a brief explanation of total positivity
and study its relation to the conformal block G∆(z).

3.1 Total positivity: definition and theorems

Definition. A two-variable function K(x, y) defined on I × J with I, J ⊂ R is totally
positive of the order k, if for all 1 6 m 6 k, and arbitrary ordered variables x1 < . . . <

xm, y1 < . . . < ym, xi ∈ I, yj ∈ J , the following determinants are positive

||K(x, y)||m ≡ K
(
x1, . . . xm
y1, . . . ym

)
= det


K(x1, y1) . . . K(x1, ym)

...
...

K(xm, y1) . . . K(xm, ym)

 > 0. (3.1)

We are interested in the totally positive functions of the order infinity, which will be
assumed implicitly in the following part. For the finite sets I, J , the two-variable functions
K(x, y) are reduced to the matrices K(x, y) → Ki,j . In this case, the definition (3.1) for
totally positive matrices becomes that all the minors of the matrix K are positive.

From the definition (3.1), it is straightforward to show following rules for totally posi-
tive functions:

• If g(x) and h(y) are positive functions defined on I and J , respectively, and K(x, y)
is totally positive, then so is the function g(x)K(x, y)h(y).

• If g(x) ∈ I and h(y) ∈ J are defined on x ∈ U and y ∈ V , and monotone in the same
direction, and if K(x, y) is totally positive on I × J , then the function K(g(x), h(y))
is totally positive on U × V .

An important tool to study total positivity is the so-called “basic composition formula”.
It shows how to construct a new totally positive function from two such functions and
provides a powerful method to prove total positivity of certain functions.

Basic composition formula. Let K,L,M be two-variable functions which satisfy

M(x, y) =
∫
K(x, z)L(z, y)dσ(z), (3.2)

where σ(z) is a σ-finite measure and the integral converges absolutely, then the basic
composition formula suggests

M

(
x1, . . . xm
y1, . . . ym

)
=

∫
· · ·
∫

z1<···<zm

K

(
x1, . . . xm
z1, . . . zm

)
L

(
z1, . . . zm
y1, . . . ym

)
dσ(z1) . . . dσ(zm). (3.3)

A proof of this formula is sketched in [56].
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The convolution (3.2) of two kernels K(x, z) and L(z, y) can be considered as a contin-
uous version of the standard matrix product, then above basic composition formula (3.3) is
an extension of the Cauchy-Binet formula in matrix multiplication which expands subde-
terminants of Mij in terms of those of Kim and Lmj . The basic composition formula (3.3)
directly leads to following theorem.

Theorem. The convolution (3.2) of two totally positive kernels is also totally positive.

Variation Diminishing Property. Consider a function f : I → R, where I ⊂ R. The
number of sign changes of f on I, denoted S+

I (f), is defined as the maximum number
of sign changes in a finite sequence {f(x1), f(x2), . . . , f(xm)}, xi ∈ I, x1 < · · · < xm.3
Assume ZI(g) gives the number of zeros, counting multiplicity, of f in I. An important
property of the totally positive functions is given by [56]:

Theorem. For I, J ⊂ R, consider a totally positive kernel K : I ×J → R which is Borel-
measurable. Let σ(y) be a regular σ-finite measure on J and f : J → R be a bounded and
Borel-measurable function on J , so that the convolution of f(y) converges absolutely

g(x) =
∫
J
K(x, y)f(y)dσ(y). (3.4)

Then the number of sign changes of g(x) on I is not larger than that of f(y) on J :

S+
I (g) 6 ZI(g) 6 S+

J (f). (3.5)

Moreover, if S+
I (g) = S+

J (f), then the two functions f(y) and g(x) should have the same
arrangement of signs.

The variation diminishing property of totally positive functions will play a critical role
to construct analytical functionals of 1D large N bootstrap.

3.2 Total positivity of the Gauss hypergeometric function

The Gauss hypergeometric function 2F1(∆,∆, 2∆, z) appears in the SL conformal block
G∆(z). There is numerical evidence indicating that the function 2F1(∆,∆, 2∆, z) is indeed
totally positive in the region z ∈ (0, 1), ∆ > 0 [45]. We have also numerically verified
the total positivity of this function using a large set of data. While it is hard to obtain a
complete proof for the total positivity of 2F1(∆,∆, 2∆, z), we can get promising evidence
for this observation beyond the numerical checks.

Total positivity of 2F1(∆, ∆, 2∆, z) in the large ∆ limit. In the large ∆ limit,
the hypergeometric function 2F1(∆,∆, 2∆, z) has a much simpler asymptotic form, for
which the total positivity can be proved easily. Let us consider the integral formula of the
hypergeometric function

2F1(∆,∆, 2∆, z) = 1
B(∆,∆)

∫ 1

0
x∆−1(1− x)∆−1(1− zx)−∆dx, (3.6)

3The zeros in the sequence are discarded when counting the number of sign changes.
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where B(∆,∆) = Γ(∆)2

Γ(2∆) is the Euler Beta function. In the large ∆ limit above integration
can be solved using the method of steepest descent:∫ 1

0
x∆−1(1− x)∆−1(1− zx)−∆dx =

∫ 1

0

1
x(1− x)e

−∆ log
[

1−xz
x(1−x)

]
dx, (3.7)

which has a single stationary point x = 1−
√

1−z
z in the region x ∈ (0, 1). Then the integra-

tion (3.6) is approximately given by

2F1(∆,∆, 2∆, z)|∆→∞ ≈
1

B(∆,∆)

√
π

∆(1− z)−
1
4
(
1 +
√

1− z
)1−2∆

. (3.8)

We find above approximation is reasonably good even for ∆ = 5.
It is straightforward to prove the total positivity of the right hand side of (3.8). Since

the positive factors depending solely on z or ∆ have no effect on the total positivity, the
only relevant factor in the approximated formula is(

1 +
√

1− z
)−2∆

= ρ(z)2∆, (3.9)

where ρ(z) =
(
1 +
√

1− z
)−1 is a monotone increasing function in z ∈ (0, 1). Therefore

the asymptotic formula (3.8) has the same total positivity as the function z∆, which has
been proved in appendix A.1.

A sufficient condition for the total positivity of 2F1(∆, ∆, 2∆, z). Both the large
∆ approximation and numerical tests with small ∆’s suggest the hypergeometric function
2F1(∆,∆, 2∆, z) is totally positive. Here we discuss a sufficient condition which, if true,
can prove the totally positivity of 2F1(∆,∆, 2∆, z) for general ∆ > 0.

The hypergeometric function has a series expansion

2F1(∆,∆, 2∆, z) =
∞∑
i=0

(∆)2
i

(2∆)i
zi

i! , (3.10)

where (a)i is the Pochhammer symbol. Above expansion can be considered as a convo-
lution of K(∆, i) ≡ (∆)2

i /(2∆)i and f(i, z) ≡ zi/i! with a discrete σ-measure in (3.2).
Therefore according to the basic composition formula (3.3), the hypergeometric function
2F1(∆,∆, 2∆, z) is totally positive if both of the two functions K(∆, i) and f(i, z) are to-
tally positive. The function zi has been shown to be totally positive, see the appendix A.1.

The total positivity of the function K(∆, i) requires

||K(∆, i)||m = K

(
∆1, . . . ∆m

i1, . . . im

)
= det


(∆1)2

i1
(2∆1)i1

. . .
(∆m)2

i1
(2∆m)i1...

...
(∆1)2

im
(2∆1)im

. . .
(∆m)2

im
(2∆m)im

 > 0, (3.11)

with 0 6 ∆1 < · · · < ∆m, 0 6 i1 < · · · < im, ∆k ∈ R, ik ∈ N for any integer m. A
compact formula for above determinants with general m is not known. Here we show for
small m, above determinants are indeed positive.

– 14 –



J
H
E
P
0
7
(
2
0
2
3
)
1
6
7

Consider the determinant ||K(∆, i)||m=2 for general ∆k and ik in the domain of defi-
nition

||K(∆, i)||2 = det

 (∆1)2
i1

(2∆1)i1

(∆2)2
i1

(2∆2)i1
(∆1)2

i2
(2∆1)i2

(∆2)2
i2

(2∆2)i2


=

(∆2)2
i1(∆1)2

i2

(2∆2)i1(2∆1)i2

(
i2−i1−1∏
k=0

(∆2 + i1 + k)2(2∆1 + i1 + k)
(∆1 + i1 + k)2(2∆2 + i1 + k) − 1

)
. (3.12)

For each term in the product with k > 0, we have

(∆2 + i1 + k) 2 (2∆1 + i1 + k)− (∆1 + i1 + k) 2 (2∆2 + i1 + k) =
(∆2 −∆1) (2∆2∆1 + ∆1i1 + ∆2i1 + ∆1k + ∆2k) > 0, (3.13)

and consequently
(∆2 + i1 + k)2(2∆1 + i1 + k)
(∆1 + i1 + k)2(2∆2 + i1 + k) > 1. (3.14)

Therefore the right hand side of (3.12) is positive.
With higher m’s the determinant formula ||K(∆, i)||m is too complicated for a general

study. By choosing a specific set of ik’s one can evaluate the determinants explicitly. For
instances, taking ik = k, the determinants ||K(∆, k)||m are given by

||K(∆, k)||m=3 = (3.15)

(∆2 −∆1) (∆3 −∆1) (∆3 −∆2) ∆1∆2∆3
(∆1∆2 + ∆3∆2 + ∆1∆3 + 2∆1∆2∆3)

16 (2∆1 + 1) (2∆2 + 1) (2∆3 + 1)

for m = 3 and

||K(∆,k)||m=4 = (3.16)
(∆2−∆1)(∆3−∆1)(∆3−∆2)(∆4−∆1)(∆4−∆2)(∆4−∆3)∆1∆2∆3∆4

×(3∆1∆2∆3 (9∆3+∆1 (2∆2+3)(2∆3+3)+∆2 (6∆3+9)+13)+
(9∆3+∆1 (2∆2+3)(2∆3+3)+∆2 (6∆3+9)+13)(3∆2∆3+∆1 (3∆3+∆2 (8∆3+3)))∆4

+(2∆1+3)(2∆2+3)(2∆3+3)(∆2∆3+∆1 (∆3+∆2 (2∆3+1)))∆2
4

)
/64(2∆1+1)(2∆1+3)(2∆2+1)(2∆2+3)(2∆3+1)(2∆3+3)(2∆4+1)(2∆4+3)

for m = 4, both of which are obviously positive for ordered ∆i’s. In all similar checks we
find the results are well consistent with the total positivity. We conjecture this function is
totally positive at infinity order for general ∆ > 0.

3.3 Total positivity of the 1D SL conformal block

Now we study the total positivity of the fundamental ingredient in 1D conformal bootstrap,
the SL conformal block G∆(z) = z∆

2F1(∆,∆, 2∆, z), which is a product (but not convo-
lution) of two totally positive factors. However, it is not guaranteed that the product of
two totally positive functions is also totally positive, and indeed, the function G∆(z) loses
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its total positivity in the region with small ∆i. This surprising fact was firstly observed
in [45],4 which found that the total positivity of G∆(z) can be violated with small ∆’s.
Nevertheless, the total positivity of G∆(z) for general ∆ and z is still not studied yet, and
the possible critical value of ∆ below which the total positivity is violated remains unclear.
In this section, we study the total positivity of G∆(z) from several aspects. Specifically we
will show that in the large ∆ or small 1 − z → 0+ limit, the asymptotic behavior of the
conformal block G∆(z) is indeed totally positive. We will provide a careful study of the
total positivity of the function G∆(z) with small ∆ at the order 3, while a comprehensive
study for the total positivity of G∆(z) at higher orders is left for future work.

Total positivity of G∆(z) in the large ∆ limit. Using the asymptotic formula (3.8)
of the Gauss hypergeometric function, the large ∆ limit of the 1D conformal block is
given by

G∆(z)|∆→∞ ≈
1

B(∆,∆)

√
π

∆(1− z)−
1
4 z∆

(
1 +
√

1− z
)1−2∆

. (3.17)

The total positivity of above formula is determined by the factors depending on both z

and ∆:
z∆
(
1 +
√

1− z
)−2∆

= ρ̃(z)∆, (3.18)

where ρ̃(z) = z (1 +
√

1− z)−2,5 like ρ(z) in (3.9), is a monotone increasing function in
z ∈ (0, 1). Thus the 1D conformal block function is totally positive for sufficiently large ∆.
However, for small ∆, the large ∆ approximation (3.17) fails and it cannot say anything
about the total positivity of G∆(z) with small ∆.

Total positivity of G∆(z) in the limit z → 1−. In the limit z → 1−, the hyper-
geometric function 2F1(∆,∆, 2∆, z) approaches to its branch cut at z ∈ [1,+∞) with an
asymptotic formula

lim
z→1−

2F1(∆,∆, 2∆, z) = − 1
B(∆,∆) ln(1− z). (3.19)

In this limit, the SL(2,R) conformal block G∆(z) becomes

lim
z→1−

G∆(z) = − 1
B(∆,∆) ln(1− z) z∆. (3.20)

Both 1
B(∆,∆) and − ln(1− z) are positive factors of ∆ and z, therefore the total positivity

of the above asymptotic formula of G∆(z) follows the total positivity of the function z∆,
which has been proved in the appendix A.1.

A “fixed point” of the 1D conformal block G∆(z). We show an interesting property
of the conformal block G∆(z), though its physical correspondence is not clear yet.

The conformal blocks G∆(z) with different ∆’s are plotted in figure 5. A surprising
fact is that all these functions intersect near ∆ ∈ (0.62, 0.64) with G∆(z) ' 1. This tiny

4The author would like to thank Nima Arkani-Hamed for the inspiring discussion on this problem.
5Interestingly, the variable ρ̃ in (3.18) is just the variable ρ(z) in [57] motivated by different reasons.
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Figure 5. Plots for the conformal block functions G∆(z) with ∆ = 0.005, 0.05, 0.1, 0.3 (red curves),
∆ = 1 (blue curve) and ∆ = 2, 4, 10, 50 (Green curves).

intersection region looks like a “fixed point” of the conformal block G∆(z), besides another
trivial “fixed point” at z = 0. Why?

Let us first consider the large ∆ approximation of G∆(z) (3.17). The dominating part
of G∆(z) in this limit is

G∆(z)|∆→∞ ∼
1

B(∆,∆)

(
z

(1 +
√

1− z)2

)∆

≈ 4∆
(

1−
√

1− z
1 +
√

1− z

)∆

. (3.21)

Here we have used the Stirling’s formula for the Gamma function which gives B(∆,∆) ∼
4−∆. From (3.21) it is clear that in the large ∆ limit, the equation G∆(z) = 1, or
log(G∆(z)) = 0 has a ∆-independent solution at z = 0.64. Contributions from extra
factors are exponentially suppressed.

Then let us go to the small ∆ limit. With a small ∆ the Gauss hypergeometric function
is simplified to

2F1(∆,∆, 2∆, z)|∆�1 ≈ 1− ∆
2 log(1− z) +O(∆3) (3.22)

and the conformal block function G∆(z) becomes

G∆(z)|∆�1 ≈ 1 + ∆ log
(

z√
1− z

)
+O(∆2), (3.23)

in which the equation G∆(z) = 1 is solved by z = (
√

5− 1)/2 ≈ 0.618.
So both in the large and small ∆ limits, the equation G∆(z) = 1 has a solution

independent of ∆. The solution walks slowly from z ≈ 0.618 near ∆ = 0 to z = 0.64 near
∆ = ∞. Such a “fixed point” shows an interesting interplay between the factors z∆ and
the hypergeometric function 2F1(∆,∆, 2∆, z) in G∆(z). As will be shown below, the factor
z∆ also changes the total positivity of G∆(z) with small ∆i.

Loss of total positivity of G∆(z) with small ∆s. We show the total positivity is
violated by the 1D conformal block G∆(z) with small ∆i � 1 at the order 3. For sufficiently
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small ∆ it is convenient to take the lower order expansion (3.23) of G∆(z). Up to the order
∆2, it is given by

G∆(z)|∆�1 ≈ 1 + ∆ log
(

z√
1− z

)
−∆2 log(z) tanh−1(1− 2z) +O(∆3), (3.24)

Let us consider the determinant of G∆(z) at the third order

||G∆(z)||3 = det

G∆1(z1) G∆1(z2) G∆1(z3)
G∆2(z1) G∆2(z2) G∆2(z3)
G∆3(z1) G∆3(z2) G∆3(z3)

 (3.25)

= (∆2 −∆1) (∆3 −∆1) (∆3 −∆2)
4

(
log (z1) log

(
z1

1− z1

)
log

(
z2

3 (1− z2)
z2

2 (1− z3)

)

+ log (z3) log
(

z3
1− z3

)
log

(
z2

2 (1− z1)
z2

1 (1− z2)

)
+ log (z2) log

(
z2

1− z2

)
log

(
z2

1 (1− z3)
z2

3 (1− z1)

))
,

in which the ∆ factors are positive for the ordered ∆i. However, the zi-dependent factor is
not definitely positive. Considering zi = 1 + (i− 4)δ with a small variable δ, at the leading
order the z-dependent factor in (3.25) is(

log 4
3 log δ + log 2 log 3

)
δ +O(δ2), (3.26)

which is negative for 0 < δ < 2
− log 3

log 4
3 . A nonperturbative plot of the whole z-dependent

factor in (3.25) is shown in figure 6. This confirms that the total positivity is violated by
the function G∆(z) with sufficiently small ∆i and 1 − z.6 Note that we have shown the
asymptotic formula of G∆(z) in the limit z → 1− is indeed totally positive. This suggests
the two limits with small ∆ → 0 or z → 1− do not commute for the total positivity of
G∆(z).

Using the same approach one can compute the determinant at the forth order ||G∆(z)||4,
and its limit with small ∆ and 1− z is actually positive

||G∆(z)||4 ≈ 0.024 δ2 ∏
i<j

(∆j −∆i) . (3.27)

Non-positive determinants appear again at the fifth order. The ∆-expansion of G∆(z) at
the order O(∆4) is rather complicated and similar analytical results for ||G∆(z)||5 are not
available yet. Numerically one can show that for ∆i = 0.1 ∗ i, zj = 1 + 0.001(j − 6),
||G∆(z)||5 ≈ −8.7× 10−26.

Critical value ∆∗TP for the total positivity of G∆(z). Above computations show
the total positivity of G∆(z) is violated with small ∆ and 1 − z. In contrast, in the
large ∆ limit the 1D conformal block is totally positive. The non-positive determinants
||G∆(z)||m should disappear above certain threshold value ∆ > ∆∗TP. To determine ∆∗TP

6In contrast, the small ∆ expansion of the Gauss hypergeometric function 2F1(∆,∆, 2∆, z) does not
generate such negative determinants and is always totally positive.
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Figure 6. The z-dependent factor in (3.25) is negative in a small range 0 < δ < 0.047.

m 3 5 7 9 11 13 15
ε0 10−5000 10−3000 10−2500 10−1200 10−1000 10−800 10−600

∆c
TP ≈ 0.1627 0.1321 0.1080 0.0886 0.076 0.066 0.060

Table 1. Smallest ∆c
TP to have positive ||G∆(z)||m > 0 in the range 1− z > ε0 for any ∆ > ∆c

TP.
The numerical precision is 10−8888.

∆TP 0.01 0.1 0.14 0.15 0.16 0.162 0.1626 0.16264 0.1627
εc ≈ 10−2 10−4 10−9 10−15 10−67 10−245 10−1357 10−1949 10−5647

Table 2. Critical value εc for a given ∆TP with which ||G∆(z)||m=3 < 0 for ε < εc.

is of critical importance for conformal bootstrap study. Moreover, it uncovers a surprising
mathematical structure of the 1D conformal block.

We numerically evaluate the determinants ||G∆(z)||m using the exact formula of G∆(z)
(2.5). We firstly adopt evenly distributed data to compute ||G∆(z)||m and the determinants
with general data will be studied later:

∆i = ∆TP ∗ i, zj = 1 + ε (j −m− 1), 1 6 i, j 6 m. (3.28)

Numerical results show that the negative determinants appear for odd m with ∆TP < ∆c
TP

and ε < εc, in which the threshold values depend on m. The threshold value ∆c
TP for

||G∆(z)||m > 0 decreases with increasing m, and the maximum estimation ∆c
TP ≈ 0.1627

is obtained with m = 3, see table 1.
In table 2 we show the range of εc below which the third order determinant ||G∆(z)||m=3

becomes negative for a given ∆TP. Near the threshold value ∆∗TP ≈ 0.1627 the range of
variable |1 − z| = ε < εc for negative determinant becomes extremely small! At ∆TP =
0.1627 the positivity of the determinant ||G∆(z)||m=3 is only violated by a tiny factor at
the order

||G∆(z)||m=3 ≈ −1.5939× 10−5654 |∆TP=0.1627 . (3.29)
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The total positivity of 1D conformal block G∆(z) is so sophisticated that for a normal
parameter with four effective digits at the order 10−1, it is merely violated by a negative
3×3 determinant at the order 10−5654! Such a “hierarchy” naturally arising from the total
positivity of the 1D conformal block has a span of 5653 orders, drastically larger than the
famous hierarchy problem between the electroweak scale (102 GeV) and the Planck scale
(1019 GeV)! A not directly relevant but curious question is that could the hierarchy problem
in particle physics be related to certain positive structure in quantum field theories?

Behavior of ||G∆(z)||m=3 near the threshold value ∆c
TP can be studied analytically.

Let us consider the small ε expansion of the conformal block G∆(1− ε)

Γ(∆)2

Γ(2∆)G∆(1− ε) = (3.30)

− 2ψ(0)(∆)− log(ε)− 2γ − ε∆(∆− 1)
(
2
(
ψ(0)(∆) + γ

)
+ log(ε)− 2

)
+O(ε2),

where γ is the Euler constant and ψ(0) is the zeroth order Polygama function. With the
data set (3.28), the sign of the determinant ||G∆(z)||3 is given by

||G∆(z)||3 ∝ ε (P(∆TP)−Q(∆TP) log(ε)) +O(ε2), (3.31)

where

Q(x) = 2x log (4/3)×(
ψ(0)(x)− 2ψ(0)(2x) + ψ(0)(3x)− x

(
5ψ(0)(x)− 8ψ(0)(2x) + 3ψ(0)(3x)

))
. (3.32)

In the limit ε→ 0, log(ε)→ −∞, the sign of ||G∆(z)||3 is determined by the factor Q(∆TP)
in (3.31). It is straightforward to check that the function Q(x) has a unique positive root
at xc ≈ 0.1627316 and is always positive for x > xc. Therefore in the small ε limit,
the determinant ||G∆(z)||3 with arguments (3.28) is positive for ∆ > ∆c

TP ≈ 0.1627316,
beautifully consistent with our high precision numerical results in tables 1 and 2.

Now let us consider the determinant ||G∆(z)||3 with more general ∆i and zj :

∆i = ∆TPwi, zj = 1 + ε yj , 1 = w1 < w2 < w3, y1 < y2 < y3 = −1. (3.33)

In the small ε limit the determinant ||G∆(z)||3 has similar formula as (3.31). In particular
its dominating part is also given by the term proportional to ε log(ε) and the function Q
is modified to

Q(x) = 2x (y1 log (y2/y3) + y2 log (y3/y1) + y3 log (y1/y2))×(
(w3 − w2)ψ(0)(x)− (w3 − 1)ψ(0) (xw2) + (w2 − 1)ψ(0) (xw3) + (3.34)

x
((
w2

2 − w2
3

)
ψ(0)(x)− (w2

2 − 1)ψ(0) (xw3) +
(
w2

3 − 1
)
ψ(0) (xw2)

))
,

in which the yi-dependent term is always positive. Note the non-even distribution of the
variables zj has trivial effect on the sign of Q(x), as in the small ε→ 0 limit, the factors yi
are decoupled from the dominating term ∝ log(ε). The equation Q(x) = 0 can be solved
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numerically or using small w2 − 1, w3 − 1 expansion. The equation has a unique solution
xc above which Q(x) > 0. The root xc depends on w2, w3 and it reaches the maximum
value in the limit w2, w3 → 1, which is given by the equation

2ψ(1)(x) + (1− 2x)ψ(2)(x) = 0. (3.35)

The solution to this equation is x∗ ≈ 0.32315626. It gives the maximum value of ∆TP to
have a negative ||G∆(z)||3 for general data set {∆i, zj}.

Let us summarize what we have obtained so far. From the evenly distributed data
{∆i, zj}, the numerical results suggest ||G∆(z)||m can have negative values below a thresh-
old value ∆TP < ∆c

TP for small 1 − z. The ∆c
TP decreases with larger m and obtains its

maximum value at m = 3:
∆c

TP|m=3 > ∆c
TP|m>3. (3.36)

From a careful analysis for ||G∆(z)||m with general {∆̃i, z̃j} at m = 3, we find the ∆c
TP

reaches its maximum value near the cusp 0 < w2−1 < w3−1� 1. If the inequality (3.36)
is also true for non-evenly distributed data {∆̃i, z̃j}

⋃
{∆i>3, zj>3}, then our results suggest

the solution x∗ is optimal and the 1D SL conformal block is totally positive for any ∆ >

∆∗TP ≈ 0.32315626; otherwise, the total positivity could be violated with larger ∆ > x∗ at
higher orders. We hope this puzzle could be addressed by a more comprehensive study of
the total positivity of G∆(z) in the near future.

Total positivity of the linear functional action on G∆(z). In section 4 we will
study the functional α′i whose action is given by

S(∆, i) ≡ α′i[G∆] =
∫ 1

0
xi+aG∆(x)dx. (3.37)

and it is important to know the total positivity of the function S(∆, i).
With sufficiently large ∆, the total positivity of the function S(∆, i) can be proved

using the basic composition formula (3.3). Since the function zi+a and G∆(z) with large
∆ are totally positive, their convolution is also totally positive. Note the total positivity
of G∆(z) is a sufficient but not necessary condition for S(∆, i) being totally positive, and
it could be totally positive with small ∆i though this is not the case for G∆(z). The
integration (3.37) can be evaluated using series expansion of G∆(z):

S(∆, i) =
∞∑
k=0

1
k!

(∆)2
k

(2∆)k
1

k + i+ a+ 1 . (3.38)

In the above formula, the function 1
k+i+a+1 is the modified Cauchy’s matrix which is totally

positive, see appendix A.2. For another relevant factor (∆)2
k

(2∆)k , we have provided promising
evidence for its total positivity before. Therefore the linear functional action S(∆, i) is also
expected to be totally positive for ∆ > 0, i ∈ N.
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4 Analytical functionals for the 1D O(N) vector bootstrap bound

In this section we construct the analytical functionals for the 1D large N bootstrap bound
with ∆ ∈ (0,∆c/2), which is saturated by the generalized free field theory with spectrum
∆n = 2∆φ + n, n ∈ N in the T sector. By constructing the analytical functionals for
this simple while representative bootstrap problem, we want to study the critical question
in conformal bootstrap: what is the mathematical structure responsible for the nontrivial
bootstrap constraints? To construct the analytical functionals, we utilize the functional
basis dual to the spectrum of generalized free field theories [28], for which we review in the
first part of this section.

4.1 Analytical functional basis

In section 2, the linear functionals are constructed based on the derivatives of variable
z at the crossing symmetric point z = 1

2 : α = ∑
i6Λ ci ∂

i
z · |z= 1

2
. These functionals are

convenient for numerical computations. Nevertheless, due to the singularities at z = 0, 1
of the conformal block G∆(z), the series expansion of G∆(z) only converges in the range
|z − 1

2 | <
1
2 . To construct functionals more effectively, it needs new basis which contains

information of the singularities of G∆(z), namely the analytical functional basis [23–25].
The analytical functional basis is dual to the function basis in terms of which the

conformal correlation functions can be expanded. The function basis can be provided by
the s- and t-channel conformal blocks

Gsn ≡ z−2∆φ G∆n(z), Gtn ≡ (1− z)−2∆φ G∆n(1− z), (4.1)

and their derivatives, associated with the spectrum of generalized free field theories, e.g.,
the generalized free boson ∆n = 2∆φ + 2n or fermion ∆n = 2∆φ + 2n + 1 [24, 25]. In
this work, inspired by the extremal functional spectrum in figure 3, we adopt a different
function basis for the conformal correlation function, which is given by the conformal blocks
Gsn, G

t
n without their derivatives, associated with the spectrum ∆n = 2∆φ + n, n ∈ N.

Consider a correlation function G(z) which is superbounded in the u-channel Regge limit
|z| → ∞:7

|G(z)| < |z|−ε (4.2)

with ε > 0, it admits a unique expansion in terms of the above function basis

G(z) =
∞∑
n=0

λsn G
s
n +

∞∑
n=0

λtn G
t
n ≡ Gs(z) + Gt(z). (4.3)

The basis Gsn is holomorphic away from z ∈ [1,+∞), so is Gs(z). Likewise, the function
Gt(z) is holomorphic away from z ∈ (−∞, 0]. The functional basis αs,tm dual to the above
function basis satisfies

αsm ·Gsn = δmn, αsm ·Gtn = 0, (4.4)
αtm ·Gtn = δmn, αtm ·Gsn = 0, (4.5)

7Here the correlation function G(z) is the correlation function G(z) in (2.1) dressed with a factor z−2∆φ .
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based on which the coefficients λs/tn in (4.3) can be extracted from the Regge superbounded
conformal correlator

λsn = αsn · G, λtn = αtn · G (4.6)

and the expansion (4.3) can be formally rewritten as

G(z) = Gs(z) + Gt(z) =
∞∑
n=0

(αsn · G) Gsn + (αtn · G) Gtn. (4.7)

Above formula has close relation with the dispersion relation of conformal correlation func-
tions [28, 58]. Here we sketch the main idea. Consider the Cauchy’s integral formula for
the conformal correlation function G(z):

G(z) =
∮
dw

2πi
1

w − z
G(w), (4.8)

in which the contour encircles w = z but does not contact the branch cuts (−∞, 0] and
[1,+∞). The contour can be deformed into contours wrapping the two branch cuts, denoted
C∓ and the arcs at infinity. For the Regge superbounded correlation functions which satisfy
G(w) = O(|w|−ε) in the Regge limit |w| → ∞, contributions from infinity vanish and the
integral of G(z) consists of two parts

G(z) = −
∫
C−

dw

2πi
1

w − z
G(w) +

∫
C+

dw

2πi
1

w − z
G(w) ≡ Gt(z) + Gs(z), (4.9)

in which the Gt(z) and Gs(z) are holomorphic away from z ∈ (−∞, 0] and z ∈ [(1,+∞),
respectively. The holomorphicity of the two terms in (4.9) suggests they can be decomposed
into the function basis of Gtn and Gsn, as in (4.3). Such decomposition can be alternatively
fulfilled with the expansion of the integral kernel 1

w−z

1
w − z

=
∞∑
n=0

Θn(w) z−2∆φG∆n(z) (4.10)

for integral along the contour C+ and

1
w − z

= −
∞∑
n=0

Θn(1− w) (1− z)−2∆φG∆n(1− z) (4.11)

for integral along the contour C−, in which

Θn(w) = (−1)n(2∆φ)2
n

n!(4∆φ + n− 1)n
1
w

3F2

(
1,−n, 4∆φ + n− 1; 2∆φ, 2∆φ; 1

w

)
. (4.12)

The integrals in (4.9) turn into

Gs(z) =
∫
C+

dw

2πi
1

w − z
G(w) =

∞∑
n=0

(∫
C+

dw

2πiΘn(w) G(w)
)
Gsn , (4.13)

Gt(z) = −
∫
C−

dw

2πi
1

w − z
G(w) =

∞∑
n=0

(∫
C−

dw

2πiΘn(1− w) G(w)
)
Gtn . (4.14)
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Comparing with the expansion (4.7), it gives explicit formulas for the actions of the func-
tional basis

αsn · G =
∫
C+

dz

2πiΘn(z) G(z), (4.15)

αtn · G =
∫
C−

dz

2πiΘn(1− z) G(z). (4.16)

By deforming the contours it is clear that the actions αsn ·Gtn = αtn ·Gsn = 0.
There are constraints the analytical functionals need to satisfy [24, 25, 59]. Here

Θn(z) ∼ O(|z|−1) in the Regge limit |z| → ∞, therefore the integrals (4.15), (4.16) only
converge for the functions G(z) ∼ O(|z|−ε) in this limit. The most general conformal
correlation functions have Regge limit G(z)→ |z|0 for which the integrals (4.15), (4.16) do
not converge. In this case one can use the subtracted functionals [28]

ᾱrn = αrn −
(−1)n(2∆φ)2

n

n!(4∆φ + n− 1)n
αr0, r = s, t, (4.17)

which correspond to new integral kernels with Regge behavior Θ̄n(z) ∼ O(|z|−2).

Actions of the functional basis on conformal blocks. The dual relations (4.4), (4.5)
show the actions of functional basis on the conformal blocks with ∆ = 2∆φ + n. For the
actions on conformal blocks with general ∆’s, we need to evaluate the integrals (4.15), (4.16)
with G = z−2∆φG∆(z) and G = (1− z)−2∆φG∆(1− z)

αsn ·
(
z−2∆φG∆(z)

)
≡ S(∆, n) =

∫ ∞
1

dz

2πiDisc[Θn(z)z−2∆φG∆(z)], (4.18)

αsn ·
(
(1− z)−2∆φG∆(1− z)

)
≡ T(∆, n) =

∫ ∞
1

dz

2πiDisc[Θn(z)(1− z)−2∆φG∆(1− z)].

(4.19)

The function Θn(z) is regular along z ∈ [1,+∞), while the conformal blocks acquire dis-
continuities between the two sides of the branch cut [1,+∞)

1
2πiDisc[z−2∆φG∆(z)] = Γ(2∆)

Γ(∆)2 z
−2∆φ−∆+1

2F1(1−∆, 1−∆, 1, 1− z),

1
2πiDisc[(1− z)−2∆φG∆(1− z)] = −sin(π(∆− 2∆φ))

π
(z − 1)∆−2∆φ 2F1(∆,∆, 2∆, 1− z).

Applying above two formulas in (4.18) and (4.19) it gives

S(∆, n) = (−1)nΓ(2∆)Γ(n+ 2∆φ)2

Γ(n+ 1)Γ(∆)2Γ(−∆ + 2∆φ + 1)Γ(∆ + 2∆φ)(n+ 4∆φ − 1)n
× 3F2(1,−n, n+ 4∆φ − 1;−∆ + 2∆φ + 1,∆ + 2∆φ; 1), (4.20)

and

T(∆, n) = sin(π(∆− 2∆φ))
π

n∑
i=0

(−1)i+n+1Γ(2∆)Γ(∆− 2∆φ + 1)Γ(2∆φ + i)(2∆φ + i)2
n−i

Γ(n− i+ 1)(4∆φ + n+ i− 1)n−i
× 3F̃2(∆,∆,∆− 2∆φ + 1; 2∆,∆ + i+ 1; 1), (4.21)
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where 3F̃2 is the regularized generalized hypergeometric function. For ∆ = 2∆φ +m, m ∈
N, above formulas agree with the dual relation (4.4). Actions of the linear functionals αtn
on the s- and t-channel conformal blocks can be obtained from (4.20) and (4.21) through
z ↔ 1− z transformation.

For ∆φ = 1
2 the kernel Θs

n(z) in (4.4) is drastically simplified

Θn(z) = 1
z

(−1)nΓ(n+ 1)2

Γ(2n+ 1) 2F1

(
−n, n+ 1; 1; 1

z

)
. (4.22)

Its actions on conformal blocks are reduced to

S(∆, n)|∆φ= 1
2

= Γ(2∆)Γ(n+ 1)2 sin(π(∆− n− 1))
πΓ(∆)2(∆− n− 1)(∆ + n)Γ(2n+ 1) , (4.23)

and

T(∆, n)|∆φ= 1
2

= (−1)n(n!)2 Γ(2∆) Γ(∆)2

Γ(2n+ 1)
sin(π∆)

π

× 4F̃3(∆,∆,∆,∆; 2∆,∆− n,∆ + n+ 1; 1). (4.24)

Above formulas provide necessary ingredients to construct analytical functionals.

4.2 Analytical functionals for Regge superbounded conformal correlator

In section 2 we have shown that in the range ∆ < ∆c, the O(∞) vector bootstrap bound
on the scaling dimension of the lowest operator in the T sector ∆∗T is determined by the
crossing equation∑

O∈S
λ2
O z
−2∆φ G∆(z)−

∑
O∈T

λ2
O (1− z)−2∆φ G∆(1− z) = 0, (4.25)

which is saturated by ∆∗T = 2∆φ with extremal spectrum 2∆φ + n, n ∈ N. Consequently
the extremal functional α∗ should satisfy following positive conditions

α∗ ·
(
z−2∆φG∆(z)

)
= 0, for ∆ = 0, (4.26)

α∗ ·
(
z−2∆φG∆(z)

)
> 0, ∀ ∆ > 0, (4.27)

−α∗ ·
(
(1− z)−2∆φG∆(1− z)

)
= 01, for ∆ = 2∆φ, (4.28)

−α∗ ·
(
(1− z)−2∆φG∆(1− z)

)
= 02, for ∆ = 2∆φ + n, n ∈ N+, (4.29)

−α∗ ·
(
(1− z)−2∆φG∆(1− z)

)
> 0, ∀ ∆ > 2∆φ & ∆ 6= 2∆φ + n, n ∈ N+, (4.30)

in which the notation 0i refers to the zeros of order i. In (4.29) the zeros 02i with i > 1
also satisfy the positive condition, however, we will show that there are only second order
zeros in (4.29).

For the Regge superbounded conformal correlators, e.g., correlation functions (2.9)–
(2.11) with λ = 0, the bootstrap functional α can be expanded in terms of the functional
basis

α =
∞∑
n=0

cnα
s
n + dnα

t
n. (4.31)
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Considering the actions of the functional basis on Gs,tn (4.4), (4.5), the positive condi-
tion (4.27) of the extremal functional α∗ requires

cn > 0 ∀n ∈ N. (4.32)

Moreover, the conditions (4.28), (4.29) suggest

dn = 0 ∀n ∈ N. (4.33)

The positive coefficients cn in α∗ =
∞∑
n=0

cnα
s
n should be arranged so that the extra positive

conditions can be satisfied.
It is easy to verify that the positive condition (4.26) is satisfied by the functional

α∗ =
∞∑
n=0

cnα
s
n. For each αsn, its action is

αsn · z−2∆φ =
∫
C+

dz

2πiΘn(z) z−2∆φ , (4.34)

in which the integrand has a pole at z = 0 and is holomorphic for z ∈ [1,+∞) enclosed by
the contour C+. Therefore the action vanishes, as required by (4.26).

The critical constraints to solve cn are from (4.28), (4.29). In the action (4.21) of
functional basis αsn, the factor sin(π(∆−2∆φ)) generates single zeros at ∆ = 2∆φ+n with
n ∈ N. To further form double zeros for n ∈ N+, the coefficients cn should satisfy

∞∑
i=0
T (2∆φ + n, i) · c̃i = δn0, ∀n ∈ N (4.35)

in which the coefficients c̃i is
c̃i ≡ ci (−1)i Γ(i+ 1)2

Γ(2i+ 1) . (4.36)

and T is the stripped action

T(∆, i) = (−1)i+1 sin(π(∆− 2∆φ))
π

T (∆, i) Γ(i+ 1)2

Γ(2i+ 1) . (4.37)

One may expect the coefficients cn can be obtained by solving the whole infinite equation
group (4.35), like the remarkable work [23]. However, the solutions to the whole equation
group (4.35) lead to a trivial functional. We demonstrate this point using an example with
∆φ = 1

2 .

4.2.1 Solution of the infinite equation group

Solution to the linear equation group (4.35) is given by the inverse of the infinite matrix
T (2∆φ + n, i). For general ∆φ the matrix T (2∆φ + n, i) is quite complicated and hard
to solve directly. The formulas are notably simplified with ∆φ = 1

2 , see (4.22)–(4.24). In
this case it is convenient to take the variable transformation x = 1− z−1 [23]. The kernel
Θn(z) degenerates to the Legendre polynomials Pn(2x−1) and the stripped action T (∆, n)
becomes

T (∆, n) =
∫ 1

0
dx x∆−1

2F1(∆,∆, 2∆, x)Pn(2x− 1). (4.38)
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Since the Legendre polynomials Pn(2x− 1) are orthogonal under the inner product∫ 1

0
dx Pn(2x− 1)Pm(2x− 1) = 1

2n+ 1δn,m, (4.39)

the matrix T (m,n) can be interpreted as the coefficients of the following expansion

xm−1
2F1(m,m, 2m,x) =

∞∑
n=0

(2n+ 1)T (m,n)Pn(2x− 1). (4.40)

Thus the inverse matrix T −1 is given by the inverse expansion

Pn(2x− 1) = 1
2n+ 1

∞∑
m=1
T −1(n,m) xm−1

2F1(m,m, 2m,x). (4.41)

Let us compare the constant term on both sides for each n. The Legendre polynomial
satisfies Pn(2x − 1)|x=0 = (−1)n. While the function xm−1

2F1(m,m, 2m,x) is equal to 1
at x = 0 for m = 1 and vanishes at x = 0 for m > 1. Therefore the elements T −1(n, 1), as
well as the coefficients c̃n in (4.35) can be solved from (4.41):

T −1(n, 1) = c̃n = (−1)n(2n+ 1), (4.42)

which gives

cn = Γ(2n+ 2)
Γ(n+ 1)2 . (4.43)

A comment is that all the cn’s are positive, as needed to satisfy the positive condition (4.27).
The whole extremal functional α∗ is given by

α∗ · G(z) =
∫
C+

dz

2πiΘ
∗(z)G(z) (4.44)

with a kernel

Θ∗(z) =
∞∑
n=0

cnΘn(z) ∝
∞∑
n=0

(−1)n(2n+ 1)Pn(2x− 1)|x= z−1
z
≡ Θ̄∗(x). (4.45)

Using the generating function of Legendre polynomial

1√
t2 − 2tx+ 1

=
∞∑
n=0

Pn(x) tn, (4.46)

one can show

Θ̄∗(x) = 1− t2

(4tx+ (1− t)2)3/2

∣∣∣∣∣
t→1

. (4.47)

In the limit t→ 1, we have
Θ̄∗(x)|x 6=0 = 0. (4.48)

– 27 –



J
H
E
P
0
7
(
2
0
2
3
)
1
6
7

While with x = 0 the function Θ̄∗(x) has a pole at t = 1. Such “extremal” kernel behaves
like a Dirac δ-function δ(x). The action of functional α∗ on the t-channel conformal block
−(1− z)−2∆φG∆(1− z) with ∆φ = 1

2 becomes

−α∗ ·
(
(1− z)−1G∆(1− z)

)
=

sin(π(∆− 1))
π

∫ 1

0
dx

1− t2

(4tx+ (1− t)2)3/2 x
∆−1

2F1(∆,∆, 2∆, x)
∣∣∣∣∣
t→1

. (4.49)

Due to the pole at x = 0 with t = 1, above integral only gives a nonzero value for
∆ = 2∆φ = 1, while vanishes for ∆ > 1. Together with the factor sin(π(∆− 1)), the whole
action vanishes for all ∆ > 1. On the other hand, its action on the s-channel conformal
block

α∗ ·
(
z−1G∆(z)

)
= Γ(2∆)

Γ(∆)2

∫ 1

0
dx

1− t2

(4tx+ (1− t)2)3/2 2F1(∆, 1−∆, 1, x)
∣∣∣∣∣
t→1

(4.50)

vanishes at ∆ = 0 and is always positive for ∆ > 0.
To summarize, the functional constructed from the whole infinity set of equations (4.35)

is actually trivial due to its vanishing action on the t-channel conformal block, or the O(N)
T sector in (4.25). We expect this is the case for general ∆φ.

4.2.2 Solutions of the finite subset of equation group

Although the inverse of the whole equation group (4.35) leads to a degenerated functional,
surprisingly the inverse of the finite subset of the equation group can produce functionals
which satisfy all the positive conditions (4.26)–(4.30) within a range ∆ 6 ΛN . This allows
us to construct a series of functionals with arbitrarily high ΛN !

Instead of constructing a functional whose action on t-channel conformal block has
double zeros at ∆ = 2∆φ + n for all n ∈ N+, we would like to relax the restriction on the
double zeros. Specifically, we consider the functional

α′N =
N∑
n=0

cnα
s
n, (4.51)

whose action has a single zero at ∆ = 2∆φ and double zeros at ∆ = 2∆φ + n for each
integer 0 < n 6 N . This amounts to the following constraints

N∑
i=0
T (2∆φ + n, i) · c̃i = δn0, 0 6 n 6 N. (4.52)

It is straightforward to solve above equations for small N ’s. Taking N = 4, the matrix
T (n+ 1, i) is8

π2

6
1
6 (12− π2) 1

6 (π2 − 9) 1
18 (31− 3π2) 1

72 (12π2 − 115)
12− π2 5π2 − 48 129− 13π2 1

3 (75π2 − 739) 1
12 (4859− 492π2)

5(π2 − 9) 5(129− 13π2) 5(73π2 − 720) 5
3 (7492− 759π2) 5

12 (7932π2 − 78283)
70
9 (31− 3π2) 70

9 (75π2 − 739) 70
9 (7492− 759π2) 70

9 (4335π2 − 42784) 35
18 (679939− 68892π2)

35
4 (12π2 − 115) 35

4 (4859− 492π2) 35
4 (7932π2 − 78283) 35

4 (679939− 68892π2) 35(99003π2 − 977120)

 ,

8The cautious readers may notice that the matrix is symmetric up to certain numerical factors. It can
be proved that the matrix Mm,n ≡ Γ(m+1)2

Γ(2m+2)T (m+ 1, n) is indeed symmetric.
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Figure 7. Actions (denoted f) of the functionals α′N on the t-channel conformal block with N = 1
(left) and N = 4 (right). Note in the right plot, the y-axis is log(f) which has no real value for
negative f .

N=10

N=15

N=20

N=30

N=40

10 20 30
n

10

20

30

40

50

|cn|

Figure 8. |c̃n| solved from (4.52) with finite N ’s. The straight line is |c̃n| = 2n+ 1.

which corresponds to the coefficients c̃i

c̃i ≈ (0.999753, −2.97534, 4.5689, −4.39935, 1.88092). (4.53)

It is impressive that the first few elements are close to the limit c̃n = (−1)−n(2n+ 1) even
for N = 4. In figure 8 we show more solutions of c̃n with larger N ’s.9 From these examples,
the coefficients |c̃n| with n 6 N/2 are close to the limit |c̃n| = (2n + 1), while for larger
n’s, |c̃n| deviates the straight line and decreases exponentially. Nevertheless, for all n’s the
coefficients c̃n have signs c̃n ∝ (−1)n. This suggests the coefficients cn ∝ (−1)nc̃n are all
positive, therefore satisfying the positive condition (4.27) up to ∆ < N + 1.

In figures 9 and 10 we show the actions (denoted f) of the functional α′N on the t-
channel and s-channel conformal blocks, respectively. The actions on the t-channel confor-
mal block have a single zero at ∆ = 1 and double zeros at ∆ = n+1 for integer 0 < n < N .

9To solve c̃n from (4.52) with large N , it is necessary to adopt high numerical precision, reminiscent of
the numerical conformal bootstrap with SDPB [60, 61].
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Figure 9. Actions of the functionals α′N on the t-channel conformal block.
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Figure 10. Action of the functional α′20 on the s-channel conformal block.

For 1 < ∆ < N + 1, the actions f decrease with larger N , and to produce higher spectrum
of the generalized free field theories, the functional actions do not converge to any stable
non-vanishing limit, in agreement with the behavior of the numerical extremal functionals
shown in figure 4. This is also consistent with our previous results that with N =∞, the
functional α∗ becomes trivial: f = 0 for ∆ > 2∆φ. The action on the s-channel conformal
block (N = 20) shown in figure 10 has a single zero at ∆ = 0, corresponding to the unit
operator, and is positive for 0 < ∆ < N + 1. The fact f(n) |n>20 = 0, n ∈ N is expected
since there is no αsn>20 in α′N=20. The numerical solutions of the equations (4.52) do satisfy
all the positive conditions (4.26)–(4.30) up to ∆ < N + 1 for finite N .
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4.2.3 Positivity from total positivity

Our goal is to generalize previous results to arbitrarily large N ∈ N+ with general ∆φ.
However, it requires highly nontrivial conditions to guarantee the strong positive con-
straints (4.26)–(4.30) for large ∆. The reason why our previous examples can satisfy the
positive conditions for ∆ 6 Λn is due to a simple fact: in the action

f(∆) ∝ sin(π(∆− 2∆φ))
N∑
n=0

c̃nT (∆, n), (4.54)

the sign of the function ∑N
n=0 c̃nT (∆, n) oscillates in phase with sin(π(∆ − 2∆φ)) in the

range 2∆φ < ∆ < 2∆φ +N . This is equivalent to the following properties of the function∑N
n=0 c̃nT (∆, n) with general N :

• The matrix T (2∆φ + n, i)|06n,i6N is non-degenerate and invertible.

• All the zeros at n = 1, . . . , N are of order 1 or higher odd numbers.

• There are no other zeros besides n = 1, . . . , N .

Any violations of above properties will necessarily break the positive conditions and invalid
the functionals constructed from (4.52). Surprisingly, above three properties are closely
related to the total positivity of the SL conformal block for which we have studied in
section 3.

Consider the equation (4.52) for general ∆φ. The left part corresponds to

g(∆) ≡
N∑
n=0

c̃nT (∆, n) = (4.55)

∫ 1

0
dx(1− x)2∆φ−1x−2∆φG∆(x)

N∑
n=0

c̃n 3F2(1,−n, 4∆φ + n− 1; 2∆φ, 2∆φ; 1− x),

where
c̃n = cn

(−1)n(2∆φ)2
n

n!(n+ 4∆φ − 1)n
. (4.56)

In (4.55), the total positivity of the factor (1 − x)2∆φ−1x−2∆φG∆(x) follows the total
positivity of the conformal block G∆(x) for ∆ > ∆∗TP. Therefore we have the Variation
Diminishing Property (3.5) that the sign changes and zeros of the functions g(∆) and
Θ̄(x) = ∑

c̃n 3F2 in (4.55) should satisfy the relation

S+(g) 6 Z(g) 6 S+(Θ̄) 6 N, (4.57)

i.e., the number of sign changes and zeros of g(∆) in ∆ ∈ (2∆φ,∞)10 is not larger than
the number of sign changes of Θ̄(x) in x ∈ (0, 1)! The third inequality in (4.57) is due to
the fact that Θ̄(x) is a polynomial of order N

Θ̄(x) =
N∑
n=0

anx
n, (4.58)

10In general the lower bound of ∆ should be the critical value ∆∗TP where G∆(x) loses its total positivity.
Here we assume 2∆φ > ∆∗TP and the problem with smaller ∆φ will be studied later.
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consequently including multiplicity, there are at most N zeros of Θ̄(x). Only the odd order
zeros relate to sign changes of Θ̄(x), therefore the polynomial Θ̄(x) can have at most N sign
changes, corresponding to N first order zeros. Moreover, in the extremal case S+(Θ̄) = N ,
according to the Descartes’ rule of signs, the number of positive roots of Θ̄(x) is at most
the number of sign changes in the sequence of its coefficients {an}, therefore there has to
be N sign changes in {an}, which requires an ∝ a0(−1)n.

The inequality (4.57) provides substantial restrictions on the solutions of the equation
group (4.52)! The function g(∆) has at most N zeros including multiplicity. Therefore the
N zeros specified in the equations (4.52) at ∆ = 2∆φ +n, n = 1, 2, . . . , N are all the zeros
allowed by the inequality (4.57). Moreover, they are single zeros! With S+(g) = S+(Θ̄),
the Variation Diminishing Property requires the function Θ̄(x) should have the same sign
arrangement in x ∈ (0, 1) as g(∆) in ∆ ∈ (2∆φ,∞), which is in the order {+,−, · · · }
according to the equation (4.52). This suggests a0 > 0 and consequently, an ∝ a0(−1)n ∝
(−1)n. In particular, we have

cN ∝ (−1)N c̃N ∝ (−1)NaN > 0. (4.59)

For small ∆φ, e.g. ∆φ = 0.1, the conformal block G∆(x) is not totally positive at
∆ = 2∆φ, and the sign inequality (4.57) only works for ∆ ∈ (∆∗TP,∞). At the order 3
we have ∆∗TP|m=3 ≈ 0.32315626 < 1, if the higher order total positivity is not drastically
modified, then it implies all the zeros of g(∆) specified in (4.52): ∆ = 2∆φ +n, 1 6 n 6 N

are above ∆∗TP and the inequalities (4.57) can prove that these zeros are of first order
and no other zeros in (∆∗TP,∞). Besides, one needs to show that there are no extra zeros
of g(∆) between (2∆φ,∆∗TP). We do not have a strict proof for this statement but have
verified it by numerically solving (4.52) with small ∆φ’s.

We also need to prove that there are indeed N zeros in g(∆), e.g., the equations (4.52)
have non-trivial solutions. This is equivalent to the statement that the matrix
T (2∆φ + n, i)|06n,i6N is invertible for any N , which can be proved within two steps based
on the assumed total positivity of the function f(∆, i) = (∆)2

i /(2∆)i. Firstly it can be
shown that the integral

P(∆, k) =
∫ 1

0
dx(1− x)2∆φ−1x−2∆φG∆(x)xk (4.60)

is totally positive, similar to (3.38). Therefore the determinant of its sub-matrices are
always nonzero. The determinant ||T (∆, k)||N is related to ||P(∆, k)||N through a non-
degenerate basis transformation {xk} → {Θk} and is also nonzero.

Therefore based on the total positivity of the SL conformal block, previous three
questions on the equation group (4.52) can be nicely addressed. It suggests that for general
N , the equations (4.52) always have nontrivial solutions, and the related function g(∆) only
has single zeros at ∆ = 2∆φ + n, n = 1, . . . , N . This guarantees the positive conditions
on the t-channel conformal block (4.28)–(4.30) for ∆ 6 2∆φ + N with arbitrary positive
integer N .

An interesting question is whether the matrix T (∆, n) is also totally positive. If true,
then it can prove that the coefficients cn solved from (4.52) are always positive. The
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Variation Diminishing Property tells us the signs of an in (4.58) with basis {xn}, which
can be used to verify the positive sign of cN (4.59). In future studies, it would be important
to provide quantitative estimations of c̃n’s for general N and explain the non-monotonic
shapes in figure 8.

Here we summarize the properties of the analytical functional α′N = ∑N
n=0 cnα

s
n con-

structed through the equations (4.52): for a given positive integer N , the functional α′N can
produce the spectrum consistent with the numerical bootstrap results up to ∆ 6 2∆φ+N .
It gives the unit operator in the O(N) singlet sector and double trace operators in the
O(N) T sector below 2∆φ + N . The actions of the functional satisfy the positive condi-
tions in both singlet and T sectors for ∆ < 2∆φ + N . Based on the total positivity of
the SL conformal block, such functionals exist for any finite N . The large N limit of the
functional lim

N→∞
α′N = α∗ is trivial, which produces zero action on the t-channel conformal

block. In contrast, the truly nontrivial point here is the way how the series of function-
als {α′N} approach the limit α∗: for any given large cutoff ΛN , one can construct α′N so
that its action satisfies the required positive conditions for any ∆ < ΛN . This explains,
for the Regge superbounded correlators, the numerical bootstrap bound of the crossing
equation (2.32), or the bound with ∆φ < ∆c/2 in figure 1.

4.3 Analytical functionals for general conformal correlators

The functional constructed in the last section scales as O(|z|−1) in the Regge limit and
only works for the superbounded conformal correlators, e.g. (2.9)–(2.11) with λ = 0. For
more general correlators, such as (2.9)–(2.11) with λ 6= 0, one can construct functionals
using the subtracted basis ᾱsn (4.17):

ᾱ′N =
N∑
n=1

cnᾱ
s
n. (4.61)

Above functional should satisfy the same positive conditions (4.26)–(4.30). Following the
same reasons for (4.52) we can get a similar equation group

N∑
i=1
T̄ (2∆φ + n, i) · c̃i = δn0, for n = 0, 1, . . . , N − 1, (4.62)

in which
T̄ (∆, i) = T (∆, i)− (−1)i(2∆φ)2

i

i!(4∆φ + i− 1)i
T (∆, 0) (4.63)

is invertible.
The solutions to the equations (4.62) and (4.52) are closely related with each other.

Note the equation (4.62) can be rewritten into a form similar to (4.52)
N∑
i=0
T (2∆φ + n, i) · c̃i = δn0, for n = 0, 1, . . . , N − 1, (4.64)

in which the coefficients c̃i are subjected to an extra constraint
N∑
i=0

(−1)i(2∆φ)2
i

i!(4∆φ + i− 1)i
c̃i = 0. (4.65)

– 33 –



J
H
E
P
0
7
(
2
0
2
3
)
1
6
7

For any given N = N0, the unique solution c̃i to the equation (4.62) can be constructed
from the solutions to the equation (4.52) as follows. Assume the equations (4.52) with
N = N0− 1 and N = N0 are solved by c̃i = c̃1

i and c̃i = c̃2
i , respectively. Then both c̃1

i and
c̃2
i satisfy the equation (4.64) with N = N0 but not (4.65)11

N0∑
i=0

(−1)i(2∆φ)2
i

i!(4∆φ + i− 1)i
c̃ai ≡ Ia 6= 0, a = 1, 2. (4.66)

Now it is easy to see the linear combination of the two solutions

c̃0
i ≡

I1c̃
2
i − I2c̃

1
i

I1 − I2
(4.67)

can satisfy both the equation (4.64) and (4.65), thus it provides the unique solution to the
equation (4.62) for N = N0.

Since c̃0
i is just a linear combination of the two solutions c̃1,2

i of the equation (4.52),
one may expect in the large N limit, the solution c̃0

i also leads to a degenerated functional,
like c̃1,2

i . Nevertheless, its strict proof requires a quantitative estimation of I1,2, which cor-
responds to the tails of the points in figure 8 and is beyond our current scope. Numerically
we have checked that the solution to the equation (4.62) indeed show similar pattern to
that of the equation (4.52), i.e., its large N limit leads to a degenerated functional.

Now a critical question is whether the rather complicated solution (4.67) can satisfy
the bootstrap positive conditions (4.26)–(4.30) up to ∆ = 2∆φ+N−1. The equation (4.62)
is related to the function ḡ

ḡ(∆) ≡
N∑
n=1
T̄ (∆, n)c̃n = (4.68)

∫ 1

0
dx(1− x)2∆φ−1x−2∆φG∆(x)

N∑
n=1

c̃n ( 3F2(1,−n, 4∆φ + n− 1; 2∆φ, 2∆φ; 1− x)− 1) .

Again we want to bound the number of zeros of the function ḡ(∆) by the number of sign
changes in the sequence of the polynomial Θ̃(x) = ∑

c̃n( 3F2 − 1). However, the function
ḡ(∆) is expected to have N − 1 zeros at ∆ = 2∆φ + n with n = 1, . . . , N − 1, while Θ̃(x)
remains an order N polynomial of x, which in principle could have N single zeros and
sign changes, indicating the function ḡ(∆) could have, including multiplicity, an extra zero
besides the N − 1 single zeros specified in (4.62). Solution to this puzzle is that the lowest
term of Θ̃(x), when expanded as an order N polynomial of (1−x), is linear in (1−x), while
the constant term has been canceled in the subtraction (4.17) for better Regge behavior.
Therefore this linear term can be factorized and ḡ(∆) becomes

ḡ(∆) =
∫ 1

0
dx(1− x)2∆φx−2∆φG∆(x)

N−1∑
n=0

λnx
n. (4.69)

The function (1− x)2∆φx−2∆φG∆(x) remains totally positive while the order of the poly-
nomial Θ̃(x) is reduced to N − 1, which can have at most N − 1 zeros and sign changes.

11Here we set c̃1N0 = 0.
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Thus according to the Variation Diminishing Property (3.5), the function ḡ(∆) can have
at most N − 1 zeros. This confirms the function ḡ(∆) has no other zeros besides 2∆φ + n,
n = 1, . . . , N − 1. Moreover, they are single zeros. It can be verified numerically that the
coefficients cn solved from (4.62) are all positive, corresponding to the positive actions of
ᾱ′N on the s-channel conformal block for ∆ ∈ (0, 2∆φ +N), similar to figure 10.

The upshot is that the subtraction (4.17) is consistent with Variation Diminishing
Property and the functionals ᾱ′N for the general conformal correlators have similar positive
properties as the functionals α′N for the Regge superbounded correlators.

To summarize, we have shown that the bootstrap crossing equation (4.25) admits a
family of analytical functionals {ᾱ′N} which satisfy the bootstrap positive conditions (4.26)–
(4.30) and can generate extremal spectrum of the 1D generalized free field theories up to a
range ∆ < 2∆φ+N . We have provided evidence indicating the SL(2,R) conformal block is
totally positive for large ∆, as a result, the analytical functionals {ᾱ′N} can be constructed
for arbitrarily large N . The analytical functional bootstrap study suggests the crossing
equation (4.25) is saturated by the 1D generalized free field theories while with extremal
functional action log[f ] unbounded from below. This is nicely in agreement with the
numerical bootstrap results shown in figures 3 and 4. At finite N (for analytical functional
bootstrap) and Λ (for numerical bootstrap), the difference is that the analytical functional
ᾱ′N has precise spectrum and satisfies the positive conditions up to the range ∆ 6 2∆φ+N ,
while the numerical bootstrap extremal functional αΛ satisfies the positivity for general
large ∆ but there are errors in the spectrum as compensation. In the region with finite
∆ < 2∆φ+N , both the analytical and numerical extremal functionals show the spectrum of
generalized free field theories and the functional actions decrease with increasing precision,
suggesting their behaviors are dominated by the same positive structure of the crossing
equation (4.25).

5 Conclusion and outlook

We have studied the 1D O(N) vector bootstrap in the large N limit. We obtained a re-
markably simple bootstrap equation (2.32), whose numerical conformal bootstrap bound is
saturated by the generalized free field theories. We also showed that the numerical extremal
functional actions do not converge to a stable non-vanishing limit, but keep on decreasing
with increasing numerical precision, see figure 3 and 4. The most interesting part of this
work is the construction of analytical functionals (4.51) and (4.61) for the large N boot-
strap equation (2.32). By requiring the analytical functionals can generate the spectrum of
the generalized free field theories, we obtained an infinite set of equations (4.52) or (4.62)
for the analytical functionals. Using a particular example we illustrated that the solutions
to the infinite set of equations lead to degenerated analytical functionals for the crossing
equation (2.32). Nevertheless, after truncating the equations to finite ranksM , we obtained
a series of analytical functionals {α′M} whose actions on the crossing equations can satisfy
the bootstrap positive conditions for ∆ < ΛM = 2∆φ +M . Although the large M limit of
the functionals {α′M} becomes trivial, they can approach the limit in a particular way so
that the bootstrap positive conditions can be satisfied up to arbitrarily high ΛM . Below
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ΛM the extremal spectrum and the large M behavior of the analytical functionals {α′M}
are well consistent with the numerical conformal bootstrap results, therefore it clarifies the
underlying positive structure of the crossing equation (2.32).

In our construction the total positivity of the SL conformal block plays a critical role
for the analytical functionals to satisfy the bootstrap positive conditions. We showed the
SL conformal block is totally positive in the limits with large ∆ or small 1 − z. With
small ∆ it relates to a sophisticated mathematical structure: at the order 3 the total
positivity is violated for ∆ < ∆∗TP ≈ 0.32315626. Numerically we did not find violations
of total positivity for ∆ > 1, but a solid conclusion needs to be studied further. This
work provides a concrete example to demonstrate the mathematical structure in conformal
bootstrap and the intriguing connections between mathematics and quantum field theories.

We believe this work opens the door towards more systematical studies for many
fascinating problems in quantum field theories and their connections to mathematics. Part
of these problems are explained below.

• The most fundamental question is the total positivity of the SL conformal block
G∆(z), which provides the key ingredient in bootstrap studies. We have proved the
SL conformal block is totally positive with large ∆ and showed the total positivity
is violated below a threshold value ∆∗TP ≈ 0.32315626. We have provided numerical
evidence indicating this estimation could be optimal but a strict proof is not available
yet. Moreover, we have observed that total positivity of the conformal block relates
to a special mathematical structure which can naturally generate a huge hierarchy
in the parameter space. It would be exciting to improve our understanding of this
mathematical structure and its applications in quantum field theories.

• In this work we have constructed the analytical functional for the first part of the
1D large N bootstrap bound before the kink in figure 1, which is saturated by the
generalized free field theory and the bootstrap equations are reduced to a simple
form (2.32). It is tempting to know the theories saturating the second part of the
bootstrap bound and construct the analytical functionals. Furthermore, the boot-
strap bound almost disappears after ∆φ > 0.75 in figure 1. Similar phenomenon
also appears in higher dimensions, see figure 2. It would be interesting to know the
reasons which dissolve the bootstrap restrictions.

• Conformal field theories with large N limits have close relation to the quantum field
theories in the AdS spacetime. Constraints on the CFT side can lead to nontrivial
restrictions on the theories in AdS, see e.g. [37, 38, 62–64]. It would be interesting to
explore the constraints of the analytical functional constructed in this work on the
S-matrices in AdS2. In particular, how does the total positivity affect the scattering
process in AdS2? Do the AdS analogs of the conformal blocks, the Witten diagrams
also satisfy total positivity? The role of total positivity in the 4D amplitude in flat
spacetime has been extensively studied recently [41–44]. Our results on the 1D CFTs
suggest that the AdS2 could provide another interesting and technically tractable
laboratory to explore the role of (total) positivity in quantum field theories. We
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hope to report the applications of analytical functionals and total positivity on AdS
physics in another work.

• Total positivity is powerful to analyze positivity of analytical functionals. In our
construction, the positivity of bootstrap functionals can be established based on
the total positivity of the SL conformal block while without solving the equation
groups (4.52), (4.62) explicitly. Nevertheless, it would be interesting to know more
concrete information on the analytical functionals {α′M}, such as the curves of the co-
efficients |c̃|n shown in figure 8. One may wonder if the equation groups (4.52), (4.62)
are easier to solve in Mellin space [65–67].

• The 1D large N vector bootstrap provides insights to study higher dimensional O(N)
vector bootstrap. There are solid evidence for close relations between the two prob-
lems. Firstly their bootstrap bounds have similar patterns, as shown in figures 1
and 2. Moreover, for the bootstrap bounds saturated by the generalized free field
theories, the O(N) vector bootstrap equations degenerate to similar forms in 1D and
higher dimensions. The functional basis dual to higher dimensional generalized free
field spectrum has been constructed in [28] and their relation to dispersion relation
has been studied in [29], see also [27, 68]. However, a crucial question is how to
organize the functional basis in order to satisfy the positive conditions. The method
developed in this work can be useful to construct analytical functionals with suitable
positive properties in higher dimensions. We leave this problem for future work [54].

• A more challenging problem along this direction is to construct the analytical func-
tionals for the O(N) vector bootstrap bounds with large but finite N . This was one
of the motivations for the author to start this work. In this case we need to go back
to the whole O(N) vector crossing equations (2.7), (2.8) and take the 1/N terms into
account. These 1/N terms and the crossing equation (2.7) will necessarily introduce
new ingredients responsible for the 1/N interactions in the underlying theories. The
related analytical functionals could provide a new nonperturbative frame to study
CFTs with large N limits, including the 3D critical O(N) vector models and the
conformal gauge theories in general dimensions.

• The series of analytical functionals {α′N} constructed in this work are sensitive to the
large ∆ spectrum. Associated with total positivity, they can be employed to detect
non-unitarity in the large ∆ region, which relates to the high energy dynamics in AdS.
We hope more systematical studies of the large N analytical functionals can provide
solid conclusions for some widely interested questions on the large ∆ spectrum of
large N unitary CFTs.
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A Examples of the totally positive functions

In this appendix we show some classical examples of the totally positive functions. Some of
the results in this part have been applied in our study of the total positivity of the Gauss
hypergeometric functions 2F1(∆,∆, 2∆, z) and SL conformal block functions G∆(z).

A.1 Example 1: f(∆, x) = x∆

The determinant formula (3.1) of the function f(∆, x) = x∆ is given by

||f(∆, x)||m ≡ f
(

∆1, . . . ∆m

x1, . . . xm

)
= det


x∆1

1 . . . x∆m
1

...
...

x∆1
m . . . x∆m

m

 . (A.1)

Taking ∆i = i− 1, above determinant goes back to the Vandermonde determinant, which
is given by

||f(∆, x)||m =
∏
i>j

(xi − xj) (A.2)

and is positive for the ordered variables 0 < x1 < · · · < xm. Then to prove the total
positivity of the function f(∆, x), one only needs to show that its determinant can never
be zero, which can be done by induction [45, 69].

The statement ||f(∆, x)|| 6= 0 is equivalent to the claim that for a given set of ci ∈ R,
the equation

hm(x) =
m∑
i=1

cix
∆i (A.3)

cannot have m solutions in the region x > 0. For n = 1, h1(x) = c1x
∆1 and there is no

positive solution for h. Assume above statement is true for hi(x) with i < n. If hn(x) has
n positive solutions, then according to Rolle’s theorem, the following function

(x−∆1hn(x))′ =
n∑
i=2

(∆i −∆1)ci x∆i−∆1 ∼ hn−1(x) (A.4)

can have n−1 positive zeros, which is inconsistency with our previous induction assumption
that hn−1(x) cannot have n−1 positive solutions. Therefore the function hn(x) should have
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positive solutions less than n. This completes the proof that the determinant ||f(∆, x)||m
can never be zero.

From the total positivity of the function x∆, one can show a family of totally positive
functions. For instances, the function exy = (ex)y is also totally positive.

A.2 Example 2: f(x, y) = 1
x+y

The determinant formula (3.2) for the function f(x, y) is

||f(∆, x)||m ≡ f
(
x1, . . . xm
y1, . . . ym

)
= det


1

x1+y1
. . . 1

x1+ym...
...

1
xm+y1

. . . 1
xm+ym

 . (A.5)

Above determinant can be solved in a compact form, i.e., the Cauchy formula

||f(∆, x)||m =

∏
i>k

(xi − xk)
∏
i>k

(yi − yk)
m∏

i,k=1
(xi + yk)

, (A.6)

which is positive for the ordered variables x1 < · · · < xm, y1 < · · · < ym.
The total positivity of f(x, y) can be alternatively proved using the basic composition

formula (3.3). The function can be rewritten as

1
x+ y

=
∫ ∞

0
e−(x+y)tdt =

∫ 1

0
uxuyd(log(u)). (A.7)

Due to the basic composition formula, the total positivity of above integral follows the
total positivity of the function ux.
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any medium, provided the original author(s) and source are credited.
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