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1 Introduction

Although the holographic principle has a well-understood manifestation in asymptotically
anti-de Sitter (AdS) spacetimes by way of the AdS/CFT correspondence [1], it has proved
challenging to extend this paradigm to asymptotically flat spacetimes. Nevertheless, a
holographic description of quantum gravity in asymptotically flat spacetimes seems plau-
sible due to some underlying similarities with AdS. Indeed, the gravitational Hamiltonian
is still a boundary term and the entropy of a black hole still scales like its area [2].

Historically, there have been two seemingly different approaches to flat space hologra-
phy. The first is a top-down construction provided by the Banks-Fischler-Shenker-Susskind
(BFSS) matrix model, which relates M-theory in flat spacetime to a theory of matrix quan-
tum mechanics describing non-relativistic D0-branes in type IIA string theory [3–11]. This
approach endeavors to provide a full non-perturbative duality for M-theory in flat space,
and several non-trivial consistency checks have been performed [10–17]. On the other hand,
there have only been a few tests of this duality, and most of them concern a very specific
setup: 2 → 2 elastic scattering in the eikonal limit. Moreover, recovering the symmetries
of M-theory in the dual description has remained a challenging open problem. Even the
simplest question of demonstrating that BFSS enjoys 11d Lorentz symmetry has previously
been elusive.

The other approach to flat space holography is celestial conformal field theory which
aims to use null infinity (I±) as the celestial hologram [18–23]. The kinematics of this ap-
proach to flat space holography are extremely well understood, in stark contrast with efforts
to analyze BFSS. The Lorentz group manifests itself as the conformal group in the bound-
ary theory, and certain so-called asymptotic symmetries, which generalize the Poincaré
group, play a natural role in the boundary description. Understanding the dynamics of the
duality is much more challenging, however. For the most part, this approach to flat space
holography is explicitly bottom-up, translating scattering amplitudes in a bulk quantum
theory to conformally-covariant correlation functions of operators which live on I±.1

The overarching goal of this work is to use concepts recently developed in the context of
celestial CFT to re-analyze certain properties of the BFSS matrix model. In particular, we
will discuss the infrared structure of M-theory and see how these features are manifested in
the matrix theory dual. This approach offers precise predictions about D0-brane quantum
mechanics; in so doing, it gives an additional route to test the BFSS duality which has been
previously unexplored in the literature. Notably, it gives a universal relation for D0-brane
scattering amplitudes and allows one to see how the whole asymptotic symmetry group
of M-theory (including, in particular, the full 11d Lorentz symmetry) is manifested in the
dual description. Much of the work is focused on translating concrete statements about the
infrared structure of M-theory to the D0-brane description by way of the BFSS duality;
however, we also offer several first-principle consistency checks of these conjectures. As
such, this manuscript gives a new, non-perturbative set of evidence for the BFSS duality
as a holographic model of flat space M-theory.

1See [24–29] for some attempts to give a top-down or non-perturbative description of the duality.
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The organization of the article is as follows. In section 2, we will review the BFSS
duality and survey how supergraviton scattering amplitudes in M-theory are realized in the
matrix quantum mechanics. In section 3, we will discuss the infrared structure of M-theory
with a focus on soft theorems, conserved charges, and their corresponding asymptotic
symmetries. In sections 4, 5, and 6, we will analyze the dual description for these three
concepts in the matrix model with an emphasis on demonstrating that BFSS scattering
amplitudes enjoy a full 11d Lorentz symmetry as implied by the existence of soft theorems.
The fact that the subleading soft graviton theorem implies Lorentz symmetry in generic
theories of gravity has only been recently appreciated and is the main conceptual insight
that we leverage to argue that 11d Lorentz symmetry is also enjoyed by the 0+1 dimensional
matrix model [30, 31].

This work is a continuation of [32], which gave the original statement of the soft
theorem in the matrix model and its relation to asymptotic symmetries of the RR 1-form
gauge field in type IIA string theory.

2 Review of the BFSS duality

The BFSS duality suggests that the full non-perturbative description of M-theory in 11d
Minkowski spacetime is captured by a certain non-relativistic limit of D0-branes in type
IIA string theory [3–9, 16, 17]. In this section, we review some salient aspects of this
duality; familiar readers may safely skip it.

2.1 The BFSS matrix model

We begin by considering M-theory in flat 11d spacetime in lightcone coordinates
(x+, x−, xI) where x± = 1√

2(x0 ± x10) are the so-called longitudinal coordinates and xI

are the transverse coordinates with I ∈ {1, . . . , 9}. In this setup, the longitudinal coordi-
nate x+ plays the role of time, and the momentum operator P− which translates between
surfaces of constant x+ is the Hamiltonian.

The BFSS Hamiltonian. The BFSS duality concerns the discrete lightcone quantiza-
tion (DLCQ) of M-theory where the other longitudinal coordinate is compactified and the
conjugate momentum is, therefore, quantized

x− ∼ x− + 2πR p+ = N/R. (2.1)

Here, N ∈ N is a positive integer parametrizing the total momentum of a particular M-
theory setup. The BFSS duality states that the sector of DLCQ M-theory with total
momentum p+ = N/R is dual to a model of matrix quantum mechanics where the funda-
mental degrees of freedom are N ×N Hermitian matrices. The dynamics of these matrices
are governed by the Hamiltonian

HBFSS = R

2 Tr
[
P IP I − 1

2[XI , XJ ][XI , XJ ]−ΨTΓI [XI ,Ψ]
]
, (2.2)
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where XI is a 9-component vector of SO(9) with P I its conjugate momentum, Ψα is a
16-component spinor of Spin(9), and ΓIαβ are the gamma matrices of Spin(9). All the fields
are valued in the adjoint representation of u(N). The physical Hilbert space of the theory
is subject to the Gauss-law constraint which forces physical states to transform as U(N)
singlets.

BFSS as a theory of non-relativistic D0-branes. The BFSS Hamiltonian has a
remarkable relationship with D0-brane quantum mechanics [33–38]. The matrices XI en-
code the positions of N D0-branes — an interpretation that becomes especially clear in the
classical limit. Classically, the bosonic potential V ∼ −Tr([XI , XJ ][XI , XJ ]) is minimized
when the XI matrices are mutually commuting. Therefore, they may be simultaneously
diagonalized with eigenvalues tracking the positions of the D0-branes. For example, N
non-interacting D0-branes with trajectories xI1(t), . . . , xIN (t) are classically described by
the diagonal matrices

XI
cl.(t) =


xI1(t)

. . .

xIN (t)

 . (2.3)

Quantum mechanically, the problem becomes much more subtle; the state is no longer
described by an individual matrix, XI

cl., but rather by a wavefunction over matrices Ψ[XI ].
This wavefunction is now supported on matrices of the form

XI(t) = XI
cl.(t) +

√
~∆XI(t), (2.4)

where the (i, j) component of the matrix of quantum fluctuations ∆XI(t) is due to inter-
actions between the ith and jth D0-branes via open strings stretched between the two. We
have explicitly inserted a factor of

√
~ into the above to emphasize that the fluctuations

are quantum corrections.

2.2 Asymptotic states and scattering amplitudes

Now that both sides of the duality have been stated explicitly, it is important to under-
stand precisely what observables agree between DLCQ M-theory and D0-brane quantum
mechanics. Principally, we will be concerned with how S-matrix elements in M-theory are
reproduced by corresponding S-matrix elements in BFSS.

In this work, we will only study scattering amplitudes among the supergraviton multi-
plet in M-theory and the corresponding states in the BFSS matrix model. This is because
the infrared structure of M-theory is determined entirely by its massless modes, whose
spectrum is captured by 11-dimensional N = 1 supergravity.

Supergraviton scattering in M-theory. Supergravitons in M-theory are labelled by
their energy-momentum vector, pµ, and polarization, Θ. It is convenient to parametrize
the energy-momentum vectors in Cartesian coordinates by an overall scale ω ∈ R≥0 and a
nine-dimensional vector vI ∈ R9 according to

pµ = ω√
2

(1 + v 2, 2vI , 1− v 2), (2.5)
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which satisfies the mass shell condition p2 = 0 for arbitrary (ω, vI). The polarization
Θ labels how the state transforms under its little group. The supergraviton multiplet
includes a graviton, a three-form gauge field, and a gravitino, which together transform in
the 44⊕ 84⊕ 128 representation of SO(9).

Defining S-matrix elements among supergraviton states in M-theory proceeds in
the usual way. One considers the overlap of an in-state composed of m widely
separated supergravitons |pµ1 ,Θ1, . . . , p

µ
m,Θm〉in and a similarly constructed out state

|pµm+1,Θm+1, . . . , p
µ
n,Θn〉out. This procedure can be mimicked for the discrete lightcone

quantized version of M-theory with scattering amplitudes defined by

ADLCQ(pµ1 ,Θ1, . . . , p
µ
n,Θn) = out〈pµm+1,Θm+1, . . . , p

µ
n,Θn|pµ1 ,Θ1, . . . , p

µ
m,Θm〉in. (2.6)

D0-brane scattering in BFSS. One can also define scattering amplitudes among D0-
branes and their bound states in an analogous manner [12, 13, 39–42]. Each D0-brane
bound state is labelled completely by the quantum numbers Nj (the number of D0-branes
in the bound state), vIj (the velocity of the D0-brane bound state in the nine spatial
directions), and Θj (a 28-dimensional polarization vector transforming in the 44⊕84⊕128
representation of SO(9)).

States with multiple, widely separated D0-brane bound states can also be constructed
and are labelled respectively by the quantum numbers of the constituent particles. In this
way, one can define incoming states |N1, v

I
1 ,Θ1, . . . , Nm, v

I
m,Θm〉in and the corresponding

outgoing states |Nm+1, vm+1,Θm+1, . . . , Nn, vn,Θn〉out with N = N1 + · · ·+Nm = Nm+1 +
· · · + Nn. The outgoing states are related to the incoming ones via time evolution with
the BFSS Hamiltonian. Scattering amplitudes in the BFSS matrix model are defined by
considering the overlap of such states

ABFSS(N1, v
I
1 ,Θ1, . . . , Nn, v

I
n,Θn) (2.7)

= out〈Nm+1, v
I
m+1,Θm+1, . . . , Nn, v

I
n,Θn|N1, v

I
1 ,Θ1, . . . , Nm, v

I
m,Θm〉in.

The BFSS duality dictionary. It is no coincidence that the quantum numbers de-
scribing supergravitons and those describing D0-brane bound states are so similar. Indeed,
it is well-known that supergraviton states in DLCQ M-theory are dual to bound states
of D0-branes in the matrix model [3, 4, 16, 43]. The parameters are related via table 1.
Moreover, the duality asserts that supergraviton scattering amplitudes agree with D0-brane
scattering amplitudes when the parameters are related by this duality dictionary

ADLCQ(pµ1 ,Θ1, . . . , p
µ
n,Θn) = ABFSS(N1, v

I
1 ,Θ1, . . . , Nn, v

I
n,Θn). (2.8)

There have been several previous checks that scattering amplitudes in the two
theories agree (e.g. [10–15]); however, explicit calculations have only been performed in
the low-energy, elastic limit of supergraviton scattering in M-theory, and many puzzles
remain [7, 44–46].

In this article, we assume that BFSS provides an exact duality between scattering am-
plitudes in M-theory and those in D0-brane quantum mechanics. Specifically, even though
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M-Theory BFSS

p+
j ⇐⇒ Nj

R

pIj ⇐⇒
√

2Nj

R
vIj

p−j ⇐⇒ Nj

R
v2
j

Θj ⇐⇒ Θj

Table 1. Dictionary between the kinematic data of gravitons in M-theory and D0-brane clumps
in the matrix model. The relation concerning p−j is determined using the mass-shell condition for
M-theory gravitons 0 = −2p+

j p
−
j + pIjp

I
j .

a full understanding of BFSS is lacking, we will use equation (2.8) to infer conjectures
about the IR structure of the BFSS matrix model. Fortunately, we also provide significant
first-principle evidence for this IR structure which is agnostic to the BFSS duality and
does not presuppose equation (2.8). This, in turn, supplies additional consistency checks
of equation (2.8) and supports the veracity of the BFSS duality as a whole.

The decompactified M-theory limit. Up to this point, we have been equating am-
plitudes in the discrete lightcone quantization of M-theory with amplitudes in the BFSS
matrix model at finite N . To recover scattering amplitudes in uncompactified M-theory,
one sends the radius of compactification to infinity while holding the external momentum
fixed [3, 4]

R→∞ pµj = const. (2.9)

Concretely, we have the following relation among scattering amplitudes:

lim
R→∞

ADLCQ(pµ1 ,Θ1, . . . , p
µ
n,Θn) = AM(pµ1 ,Θ1, . . . , p

µ
n,Θn) (2.10)

Using the duality dictionary, we find that this is equivalent to the following scaling limit
of the matrix model where the number of D0-branes in a particular bound state becomes
infinitely large

R ∼ N ∼ Nj →∞ vIj = const. (2.11)

3 Infrared structure of M-theory

It is well-known that all gravitational theories in asymptotically flat spacetime exhibit
certain universal features. As M-theory includes gravitons, these universal results are ap-
plicable and provide interesting non-perturbative information about the infrared structure
of M-theory. In this section, we discuss how supergraviton scattering amplitudes obey
precise soft theorems. We also review how these soft theorems are equivalent to Ward
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identities enforcing the conservation of infinitely many charges associated to asymptotic
symmetries.2

3.1 Soft theorems

Consider a generic (n+1)-particle scattering amplitude which includes a graviton with mo-
mentum qµs and polarization tensor εµν among its external states. We write this amplitude
as AM(qµs , ε; p

µ
1 , . . . , p

µ
n) where pµ1 , . . . , pµn label the future-directed momenta of the other n

particles. We will focus on the case where the other particles are also supergraviton states,
though the result holds even outside of this setting.

The soft graviton theorem demonstrates that this amplitude obeys a universal factor-
ization property in the limit ωs/ωj → 0 where ωs (respectively ωj) is the overall scale of
qµs (respectively pµj ) as defined in equation (2.5) [1, 47–52]. This is the so-called soft limit,
and one may perform a series expansion of the amplitude in this ratio. The soft graviton
theorem states

AM(qµs , ε; p
µ
1 , . . . , p

µ
n) =

[
S(−1) + S(0) + · · ·

]
AM(pµ1 , . . . , pµn) where S(n) ∝

(
ωs
ωj

)n
(3.1)

and so relates an amplitude with a soft graviton to an amplitude without one. Moreover,
it has been demonstrated that S(−1) and S(0) take the following universal form [1, 52]

S(−1) = κ

2 εµν
n∑
j=1

ηsηj
pµj p

ν
j

qs · pj
S(0) = i

κ

2 εµν
n∑
j=1

ηsηj
pµj J

νρ
j qs,ρ

qs · pj
, (3.2)

where κ =
√

32πGN is Newtons’s constant, and we have defined ηj = −1 if particle j is
incoming and ηj = +1 if the particle j is outgoing (similarly for ηs). S(−1) is called the
leading soft term while S(0) is called the sub-leading soft term. Note that the leading soft
term has a pole ∝ (ωs/ωj)−1, so the amplitude diverges in the soft limit. Finally, Jµνj
is the generator of angular momentum of the jth particle and is composed of both orbital
and spin operators

Jµνj = Lµνj + Sµνj . (3.3)

In general, there will also be sub-subleading terms in the soft expansion which have positive
powers of (ωs/ωj) in the soft limit; however, these terms are theory dependent and won’t
play a role in our analysis.

3.2 Conservation laws

The leading and subleading soft graviton theorems have been shown to be equivalent to
Ward identities which enforce various symmetries in scattering amplitudes. To this end, it
is convenient to express the n-particle amplitude as the overlap of incoming and outgoing
multi-supergraviton states according to equation (2.6). To simplify the notation, we will

2Readers familiar with the infrared structure of a general gravitational theory may safely skip this section
as the focus is merely on translating certain universal features of gravity to the specific case of M-theory in
flat 11-dimensional spacetime.
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use the shorthand |in〉 = |pµ1 ,Θ1, . . . , p
µ
m,Θm〉in and |out〉 = |pµm+1,Θm+1, . . . , p

µ
n,Θn〉out to

stand in for these states.
Next, we define the creation operator G in†

IJ (ωs, vs) for an incoming graviton state with
momentum qµs parameterized by (ωs, vs) and polarization tensor εµν = (εIJ)µν . Here,
(εIJ)µν are defined by

(εIJ)µν = 1
2(εµI ε

ν
J + ενIε

µ
J)− 1

9δIJε
µ
Kε

Kν with εµJ = (vJs , δIJ ,−vJs ). (3.4)

They are symmetric and traceless in the I, J = 1, . . . , 9 indices and form a basis for the
graviton’s 44 polarization states. One may similarly define the operator Gout†

IJ (ωs, vs) which
is responsible for creating an outgoing graviton state.

It has been shown that the leading and subleading soft theorems are each equivalent to
the conservation of infinitely many charges. This correspondence has been demonstrated
explicitly by a number of authors, and we will forgo the derivation in this work [21, 30, 47,
50, 53–55]. Rather, we will merely quote the results.

Leading order. In particular, one may define charges Qin[f ] and Qout[f ] which are asso-
ciated to the leading soft theorem and respectively act on in and out states. These charges
are parametrized by an arbitrary function f : R9 → R and are conserved in all physical
processes. This conservation implies the following relation among scattering amplitudes

〈out|
(
Qout[f ]−Qin[f ]

)
|in〉 = 0. (3.5)

Both the in and the out charge split up into a sum of two terms: a hard term and a soft
term labelled by subscripts H and S respectively

Qin[f ] = Qin
H [f ] +Qin

S [f ]. (3.6)

These charges may be defined by their action on the asymptotic states. Specifically

Qin
H [f ]|in〉 =

∑
j∈|in〉

ωjf(vj)|in〉

Qin
S [f ]|in〉 = − 1

4κ lim
ωs→0

[
ωs

∫
d9vs f(vs) ∂vIs∂vJs G̃

(−1)in†
IJ (ωs, vs)

]
|in〉,

(3.7)

where (ωj , vj) label the momenta of the incoming supergraviton states according to equa-
tion (2.5). The out charges are constructed similarly. Here, G̃(−1)in†

IJ (ωs, vs) denotes a cer-
tain integral transform of the graviton creation operator Gin†

IJ (ωs, vs). This integral trans-
form is known as the shadow transform and is discussed in greater detail in appendix B.

Subleading order. One may also define charges Qin[Y I ] and Qout[Y I ] associated to the
subleading soft theorem. They are parametrized by an arbitrary vector field Y I : R9 → R9

and enjoy the conservation law

〈out|
(
Qout[Y I ]−Qin[Y I ]

)
|in〉 = 0. (3.8)

– 8 –
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These charges similarly decompose into hard and soft terms

Qin[Y I ] = Qin
H [Y I ] +Qin

S [Y I ], (3.9)

which may also be defined via their action on the asymptotic states

Qin
H [Y I ]|in〉 = i

∑
j∈|in〉

[
Y I(vj)∂vIj −

i

2∂vJj Y
I(vj)SIJj −

1
9∂vIj Y

I(vj)ωj∂ωj
]
|in〉

Qin
S [Y I ]|in〉 = − i

κ
lim
ωs→0

[ ∫
d9vs Y

I(vs) ∂vJs P G̃
(0)in†
IJ (ωs, vs)

]
|in〉,

(3.10)

where G̃(0)in†
IJ (ωs, vs) is a slightly different linear operator acting on Gin†

IJ (ωs, vs), P = 1 +
ωs∂ωs is responsible for projecting out the contribution from the leading term in the soft
expansion, and SIJj is the spin angular momentum acting on the jth particle. The out
charges are constructed similarly.

3.3 Asymptotic symmetries

These conserved charges are associated to certain symmetries present in an arbitrary
theory of gravity formulated in an asymptotically flat spacetime known as asymptotic sym-
metries. The asymptotic symmetries contain the Poincaré group as a subgroup, but have
an even richer structure. They are diffeomorphisms that preserve the asymptotic flatness
conditions of the metric, gµν , as r → ∞ for a suitably defined radial coordinate. Such
diffeomorphisms are infinitesimally generated by a vector field ξµ which is asymptotically
a Killing vector field.

This vector field is parameterized by an arbitrary function of the nine coordinates, vI ,
and an arbitrary vector field3

f : R9 → R
Y I : R9 → R9.

(3.12)

These are precisely the parameters that appear in the leading and subleading charges.
Because f and Y I are arbitrary, these asymptotic symmetries include two functions’

worth of degrees of freedom — we have an infinite-dimensional symmetry group containing
Poincaré. Though they are diffeomorphisms, because asymptotic symmetries have non-
trivial behavior at conformal infinity, they are genuine symmetries of a theory that act non-
trivially on its Hilbert space; therefore, they each have a corresponding conserved charge.

3For concreteness, we note that in the coordinates (u, r, ṽa), where u = t −
√
~x · ~x, r =

√
~x · ~x, and ṽa

are the coordinates on S9, the most general vector field is given by [56]

ξµ∂µ =
[
f(ṽ) + u

9DaỸ
a(ṽ)

]
∂u −

r

9DaỸ
a(ṽ)∂r + Ỹ a(ṽ)∂a + · · · (3.11)

where Da is the covariant derivative on the sphere, Ỹ a(ṽ) is related to Y I(v) through coordinate transfor-
mations, and ‘· · · ’ includes terms that are subleading order in a large r expansion.

Although the bmsd algebra for d > 4 is well understood, the extension of Ỹ a(ṽ) from conformal Killing
vectors on Sd−2 to generators of arbitrary diffeomorphisms of Sd−2 remains unsettled. Nevertheless, this
is often assumed, and we will permit such a general form of ξµ for our purposes of studying M-theory in a
flat background.

– 9 –
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If we set Y I(v) = 0, then we get the so-called supertranslations, which are associated to the
conserved charge Q[f ] and generalize translations. Setting f(v) = 0 instead gives the so-
called superrotations, which are associated to the conserved charges Q[Y I ] and generalize
rotations and boosts.

Poincaré subalgebra. As these symmetries generalize the Poincaré group, it is espe-
cially interesting to see how the Poincaré algebra is realized. Indeed, the vector field ξµ∂µ
of equation (3.11) reduces to generators of global translations (ξµ∂µ = ∂ν) and Lorentz
transformations (ξµ∂µ = xν∂σ − xσ∂ν) for specific choices of f and Y I .

The conserved charges Qin/out[f, Y I ] = Qin/out[f ] + Qin/out[Y I ] also reduce to the
Poincaré generators for precisely these f and Y I . Moreover, one can compute the left hand
side of

〈out|
(
Qout[f, Y I ]−Qin[f, Y I ]

)
|in〉 = 0, (3.13)

for these choices of f and Y I and demonstrate that these conservation laws reduce to
conservation of momentum Pµ and angular momentum Jµν . This is summarized in the
first three columns of table 2.

4 Soft theorems in the BFSS matrix model

In this section, we discuss the dual description for the leading and subleading soft graviton
theorems in the matrix model. We argue that a soft D0-brane bound state (dual to a
soft supergraviton) is one that contains Ns D0-branes with Ns � Nj where Nj labels the
number of D0-branes in the other bound states. Moreover, we show that this soft limit
is naturally related to the decompactified M-theory limit. We also demonstrate that the
soft expansion in M-theory is recast as a 1/N expansion in the matrix quantum mechanics
with the leading term scaling ∝ N which is responsible for a soft pole in the scattering
amplitude. In appendix A, we present first-principle evidence that D0-brane scattering
actually does obey precisely this soft expansion.

4.1 Soft expansion

M-theory scattering amplitudes in flat space have a soft expansion of the form given by
equation (3.1); however, upon performing discrete lightcone quantization, it is possible that
the various terms in the soft expansion will receive finite-R corrections which vanish in the
decompactification limit (see equation (2.10)). We will schematically refer to such terms
as O(1/R) corrections, though they need not vanish as fast as 1/R. Thus, we have

ADLCQ(qµs , ε; p
µ
1 , . . . , p

µ
n) =

[
S(−1) + S(0) + · · ·

]
ADLCQ(pµ1 , . . . , pµn) +O

( 1
R

)
(4.1)

where S(n) are the soft terms associated to flat space M-theory amplitudes (see equa-
tion (3.2)) with possible O(1/R) corrections stripped off. It follows by use of the duality
(equation (2.8)), that D0-brane scattering amplitudes in the BFSS matrix model have an
analogous soft expansion

ABFSS(Ns, v
I
s , ε;Nj , v

I
j ,Θj) =

[
S(−1) + S(0) + · · ·

]
ABFSS(Nj , v

I
j ,Θj)+O

( 1
R

)
, (4.2)
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where (Ns, v
I
s , ε) are the quantum numbers for the soft D0-brane bound state and

(Nj , v
I
j ,Θj) schematically denote the quantum numbers for the remaining D0-brane bound

states of which there can be several. It remains to find the kinematic regime for which an
external D0-brane may be considered ‘soft.’

4.2 Soft limit

Recall that the soft limit in M-theory is the one for which ωs/ωj → 0, where the scales ωs
and ωj are defined as in equation (2.5). One can verify that ωs and ωj are related to the
graviton’s momentum in the longitudinal direction via q+

s = ωs and p+
j = ωj . From the

duality dictionary, it follows that the soft limit in the matrix model is given by

Soft limit: Ns

Nj
→ 0 vIs , v

I
j = fixed. (4.3)

This implies that the number of D0-branes in a soft D0-brane bound state is dwarfed by
the number of D0-branes in the hard particle bound states. The soft expansion, is then an
expansion in Ns/Nj .

It was noticed in [32] that the soft limit can be achieved naturally in the M-theory
limit provided one holds Ns fixed. This implies that S(n) ∝ (Ns/Nj)n ∼ (1/N)n, so the
soft expansion in gravity gets recast as a 1/N expansion in the dual gauge theory with
leading term S(−1) ∝ N . Nevertheless, in this work, we will take

Ns ∼ N1−ε (4.4)

where ε is a small positive parameter. In this way, S(n) ∝ (Ns/Nj)n ∼ N−nε, which ensures
that there is always a separation of scales between the subleading corrections to the soft
expansion and the additional (much smaller) O(1/R) corrections in the soft expansion due
to DLCQ. Were we to hold Ns fixed, various terms in the soft expansion would be at risk
of being the same order as the O(1/R) corrections complicating subsequent analysis.

4.3 Leading and subleading soft terms

It remains to find the analogous expressions for S(−1) and S(0) in the matrix model. To this
end, one may use the duality dictionary to replace the M-theory quantum numbers with
the corresponding BFSS quantum numbers. Some simple algebra shows that the leading
soft term takes the following form in BFSS, (defining vsj ≡ vs − vj)

S(−1) = −2κ
n∑
j=1

ηsηj
Nj

Ns

eIJ v
I
sjv

J
sj

v2
sj

, (4.5)

where we have decomposed the polarization on the basis (3.4), εµν = (eIJ)εµνIJ . One may
perform an analogous computation for the subleading soft term. We find4

S(0) = κ

2

n∑
j=1

ηsηje
IJ
[
PKIJ(vsj)∂vKj + Nj

9R∂vKs P
K
IJ(vsj)∂Nj/R−

i

2∂v[K
s
PL]

IJ(vsj)Sj,KL
]
. (4.6)

4The derivation is slightly more technical than the leading soft theorem case due to the presence of the
11d orbital Jµνj and spin Sµνj angular momentum operators. Fortunately, the authors of [55] have already
performed a similar analysis in the context of celestial holography which outlines the procedure.
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The spin operator SIJj in the matrix model is just the spin part of the BFSS SO(9) gener-
ator, SIJ = (8R)−1Tr(ΨαΓ[IJ ]

αβ Ψβ), acting on the jth particle, and we have defined

PKIJ(v) = 1
2

(
vIδ

K
J + vJδ

K
I + 2

9v
KδIJ −

4
v2 v

KvIvJ

)
. (4.7)

Moreover, because Nj is quantized, the ‘derivative’ operator, ∂Nj/R, should be approxi-
mated by finite differences (this converges to the continuum derivative in the M-theory
limit).

4.4 Evidence for the soft theorem

In this section, we have conjectured an explicit expression for scattering of soft D0-branes in
BFSS given by equation (4.2) where the leading and subleading terms in the expansion are
provided in equations (4.5) and (4.6). This conjecture crucially assumes that BFSS ampli-
tudes are related to M-theory amplitudes by the duality dictionary outlined in section 2.2.
However, this correspondence has only been checked in a very limited setting. As such,
it is paramount to give new first-principle evidence that D0-brane scattering amplitudes
genuinely obey this soft theorem.

In appendix A we provide a first-principle derivation of the soft theorem. Specifically,
we apply the standard soft graviton theorem to M-theory compactified on a spatial circle
to derive a soft theorem for D0-branes in type IIA string theory. Afterwards, we take the
BFSS limit of the type IIA picture wherein these D0-brane scattering amplitudes become
non-relativistic and precisely the BFSS scattering amplitudes by definition; in this limit,
one recovers exactly the soft factors of equations (4.5) and (4.6). This result bolsters
the claim that BFSS gives a holographic description of flat space M-theory with duality
dictionary given by table 1. Moreover, it is a crucial ingredient to demonstrating that BFSS
enjoys infinitely many conserved charges associated to asymptotic symmetries as will be
discussed in the following section.

5 Conserved charges in the BFSS matrix model

In this section, we will use the soft theorem in the matrix model to construct an infinite set
of conserved charges analogous to those charges associated to supertranslation and super-
rotation symmetry in M-theory. We show that a subset of these charges encode the conser-
vation laws associated to 11d Poincaré symmetry and imply, in particular, that scattering
amplitudes in the matrix model become Lorentz invariant in the large N limit. This Lorentz
symmetry has been long anticipated but previously unverified. Moreover, we show how
adding a soft D0-brane to a scattering amplitude can be equivalent to changing the positions
and velocities of the hard D0-branes by arbitrary, independent amounts analogous to how
a soft graviton can change the position a particle exits on the celestial sphere in M-theory.

Leveraging the soft theorems to construct an infinite family of conserved charges in
the BFSS matrix model follows almost an identical line of reasoning as in the M-theory
case. We begin by defining a creation operator for a soft, incoming D0-brane, Gin†

IJ (Ns, v
I
s),
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by its action on asymptotic states. This D0-brane operator should add Ns D0-branes to
an asymptotic state where Ns ∼ O(N1−ε) as in equation (4.4).5

By following the derivation that soft theorems imply conservation laws in gravitational
theories, one may define conserved charges at leading and subleading order which closely
resemble the corresponding conserved charges in M-theory. The main idea is that one can
apply a specific integral transform to equation (4.2) which allows one to recast the soft
theorem as a Ward identity associated to these conserved charges. A thorough description
of these charges and derivation of their conservation laws is presented in appendix B, and
we will summarize the results below.

5.1 Conserved charges: leading order

One may define charges Qin[f ] and Qout[f ] associated to the leading soft theorem and
respectively act on in and out states. The conservation of these charges now reads6

〈out|
(
Qout[f ]−Qin[f ]

)
|in〉 = O

( 1
N

)
. (5.1)

It follows that the leading soft theorem in the matrix model implies the existence of in-
finitely many conserved charges which are associated to supertranslations in the M-theory
picture; however, these charges are only conserved in the M-theory limit! This is a pleas-
ing result because DLCQ breaks the asymptotic symmetries of M-theory, so only in the
decompactified M-theory limit do we expect the infinite family of conserved charges to be
recovered.

Both the in and the out charge again split up into the sum of a hard and a soft term,
Qin[f ] = Qin

H [f ] +Qin
S [f ], which are defined by their action on the asymptotic states,7

Qin
H [f ]|in〉 =

∑
j∈|in〉

Nj

R
f(vj)|in〉

Qin
S [f ]|in〉 = − Ns

4κR

∫
d9vs f(vs) ∂vIs∂vJs G̃

(−1)in†
IJ (Ns, vs)|in〉.

(5.2)

Here, G̃(−1)in†
IJ (Ns, vs) is an integral transformation of Gin†

IJ (Ns, vs) described in appendix B.

5There is a small, technical subtlety because the total number of D0-branes is fixed by the rank of the
gauge group, N . This means that in order to “create” D0-branes, one must also remove several D0-branes
from one of the other bound states. Fortunately, this is of no consequence in the soft limit because one is only
removing O(N1−ε) D0-branes from a bound state which already contains O(N) D0-branes — a negligible
fraction as N →∞. Accordingly, scattering amplitudes can only be corrected by this negligible ratio.

6Just like how the O(1/R) corrections to the soft expansion in BFSS (equation (4.2)) are used to
schematically denote terms which vanish in the R → ∞ limit (albeit perhaps more slowly than 1/R), the
O(1/N) term on the right hand side of this expression schematically denotes terms which vanish in the
M-theory limit (albeit perhaps more slowly than 1/N). For technical details see appendix B.

7Note that we can choose any value for Ns ∼ N1−ε in our definition of the soft charge Qin
S [f ], presumably

leading to an extra infinity of distinct charges Qin[f ] — one for each value of Ns. These charges, while
distinct for finite N , are not conserved due to the O(1/N) corrections appearing in equation (5.1). As
N →∞, however, the charges all become indistinguishable when inserted in a scattering amplitude.
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5.2 Conserved charges: subleading order

Next, we define the subleading charges Qin[Y I ] and Qout[Y I ], whose conservation law reads

〈out|
(
Qout[Y I ]−Qin[Y I ]

)
|in〉 = O

( 1
N

)
. (5.3)

It follows that the subleading soft theorem in the matrix model implies the existence of
infinitely many more conserved charges which are associated to superrotations in the M-
theory picture; these charges are also only conserved in the M-theory limit!

As usual, the charges may be decomposed into hard and soft terms, Qin[Y I ] =
Qin
H [Y I ] +Qin

S [Y I ] which act on asymptotic states as

Qin
H [Y I ]|in〉 = i

∑
j∈|in〉

[
Y I(vj)∂vIj −

i

2∂vJj Y
I(vj)SIJj −

Nj

9R∂vIj Y
I(vj)∂Nj/R

]
|in〉

Qin
S [Y I ]|in〉 = − i

κ

∫
d9vs Y

I(vs) ∂vJs P G̃
(0) in†
IJ (Ns, vs)|in〉.

(5.4)

In addition, G̃ (0) in†
IJ (Ns, vs) is a particular integral transformation of G in†

IJ (Ns, vs) and P is
responsible for removing any contributions from the leading soft term. See appendix B for
details.

5.3 11d Poincaré symmetry

In section 3.3, we noted that for specific choices of f and Y I , the conservation laws for the
charges, Q[f ] and Q[Y I ], associated to the leading and subleading soft graviton theorem in
M-theory reduce to the conservation laws implied by Poincaré invariance. A similar effect
miraculously occurs in the matrix model dual. We begin by examining the conservation
law associated to the charges Qin/out[f, Y I ] = Qin/out[f ] +Qin/out[Y I ] for these f and Y I

〈out|
(
Qout[f, Y I ]−Qin[f, Y I ]

)
|in〉 = O

( 1
N

)
. (5.5)

One may use an integration by parts argument to demonstrate that the soft part of the
charge Qin/out

S [f, Y I ] vanishes identically for the pairs (f, Y I) discussed in section 3.3 and
presented in table 2. Moreover, the conservation equation reduces to several known conser-
vation laws for these pairs including: conservation of D0-branes, conservation of momen-
tum, conservation of energy, SO(9) rotational invariance, and Galilean boost invariance.
This is also summarized in table 2. These symmetries have been previously studied and
are known to exist in the matrix model — recapturing them provides a nice consistency
check of this formalism.

However, the charge conservation equation also implies two new sets of conservation
laws which are identified with the conservation of angular momentum J+I and J+− in
the M-theory description. Indeed, upon using the duality dictionary (table 1), the BFSS
conservation laws exactly match the conservation laws associated to Poincaré symmetry in
M-theory. For example, plugging f(v) = 0 and Y K(v) = vK into the M-theory conserved
charge Q[f, Y I ] yields the J+− conservation law

i
∑
j

ηj(vIj ∂vIj − ωj∂ωj )AM = 0. (5.6)
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f Y K∂K M-theory BFSS

1 0 P+ Number of D0-branes

√
2 vI 0 P I Momentum

v 2 0 P− Energy

0 −(vI∂J − vJ∂I) JIJ SO(9) Invariance

0 1√
2∂I J−I Galilean Boost Invariance

0 1√
2(v2∂I − 2vIvK∂K) J+I New Symmetry

0 vK∂K J+− New Symmetry

Table 2. Conservation laws associated to various choices of f and Y I in the M-theory description
and BFSS dual. The first five rows of these conservation laws reduce to the known global symmetries
of BFSS; however, the last two are new symmetries. The full set is equivalent to Poincaré symmetry
in the M-theory picture.

Doing the same for the BFSS charge Q[f, Y I ] yields the following conservation law, which
we interpret as implying the analog statement of J+− invariance in the large N limit of
BFSS

i
∑
j

ηj

(
vIj ∂vIj

−
Nj

R
∂Nj/R

)
ABFSS = O

( 1
N

)
, (5.7)

where we recall that the supergraviton energy scale ωj in M-theory is identified with the
number of D0-branes Nj/R in BFSS. Explicit expressions for conservation laws associated
to the other Poincaré generators are given in appendix C. Altogether, we have demonstrated
that the soft theorems in the matrix model imply that D0-brane scattering amplitudes in
BFSS enjoy a full 11d Poincaré invariance which is only realized in the N →∞ limit!

5.4 Infinitely many new symmetries

Much like translations and rotations can be promoted to supertranslations and superro-
tations in M-theory, for a general function f and vector field Y I , the conserved charges
Qin/out[f ] and Qin/out[Y I ] generate an infinite dimensional symmetry group that can move
individual D0-brane bound states in arbitrarily different ways.

Consider a situation where there are n asymptotic D0-brane bound states. If we view
these bound states as being point-like objects travelling in the nine transverse directions
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Figure 1. (Left) Action of the unitary operator U1[f ] which translates the wavepackets by an
amount yj and so shifts their domain of central support in position space according to Ωj 7→ Ωj+yj .
(Right) Action of the unitary operator U1[Y I ] which boosts the wavepackets by an amount wj and
so shifts their domain of central support in momentum space according to Ω̃j 7→ Ω̃j + wj .

with positions xj ∈ R9 and velocities vj ∈ R9, the asymptotic states are Gaussian wavepack-
ets whose location in position space at some time is predominantly supported in the disjoint
regions Ω1, . . . ,Ωn ⊂ R9 (with Ωj centered around xj) and whose velocities are predomi-
nantly supported in the disjoint regions Ω̃1, . . . , Ω̃n ⊂ R9 (with Ω̃j centered around vj).

Because Ω̃j are disjoint, we may choose a function f(v) that is linear on the domains Ω̃j

f(v)|Ω̃j = yj · v, (5.8)

where y1, . . . , yn ∈ R9 are an arbitrary set of vectors. When yj are all the same, we may
simply take f(v) to be the globally-defined linear function f(v) = y·v. According to table 2,
the corresponding charge is just the BFSS momentum operator y · P which infinitesimally
translates all particles in the y direction by the same amount. When the constants yj differ,
however, the wavepackets get infinitesimally translated in different directions. For example,
if we define the unitary operator, Ua[f ], generated by the conserved charge Q[f ] as

Ua[f ] = exp(iaQ[f ]) = exp(iaQS [f ] + iaQH [f ]), (5.9)

then we observe that the hard term in Ua[f ] translates the jth particle according to
xj 7→ xj +ayj . Meanwhile, the soft term — being proportional to a soft D0-brane creation
operator — is responsible for creating a coherent state of soft D0-branes. Thus, we see
how adding soft D0-branes can be secretly equivalent to translating the hard D0-branes.

Similarly, we may choose the function Y I(v) such that it is constant on the domains Ω̃j

Y I(v)|Ω̃j = wIj , (5.10)

where w1, . . . , wn ∈ R9 are another arbitrary set of vectors. When wj are all the same,
we may take Y I(v) to be the globally defined linear function Y I(v) = wI . According to
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table 2, the corresponding charge is just the generator of Galilean boosts in the matrix
model w · K (see section 6.4) which infinitesimally changes the velocity of particles by an
amount w. When the constants wj differ, however, the wavepackets get infinitesimally
boosted by different amounts. If we define the unitary operator, Ua[Y I ], generated by the
conserved charge Q[Y I ] as

Ua[Y I ] = exp(iaQ[Y I ]) = exp(iaQS [Y I ] + iaQH [Y I ]), (5.11)

then we observe that the hard term in Ua[f ] changes the velocity of the jth particle accord-
ing to vj 7→ vj+awj . The soft term is again responsible for creating a coherent state of soft
D0-branes. Thus, we see how adding soft D0-branes can also be secretly equivalent to indi-
vidually boosting the hard D0-branes by specified amounts. This is summarized in figure 1.

Of course, one could choose even more complicated functions f(v) and Y I(v) which
will distort wavepackets of D0-branes in arbitrarily non-trivial ways. The cost of doing so is
integrating the soft D0-brane creation operator against these functions and then including
this particle as an asymptotic state in a scattering amplitude.

6 Asymptotic symmetries in the BFSS matrix model

In this section, we will interpret the aforementioned conservation laws in terms of asymp-
totic symmetries. Our main finding is that the asymptotic symmetries associated to the
11d large diffeomorphisms of M-theory are manifested in the D0-brane quantum mechanics
via the asymptotic symmetries of the metric and RR 1-form gauge field in type IIA string
theory. We offer several complementary perspectives and non-trivial consistency checks of
this conclusion. Along the way, we find explicit expressions for the hard charges QH in
terms of N ×N matrix degrees of freedom.

6.1 Coupling BFSS to a background 11d metric

BFSS gives a dual description of M-theory with flat space metric, ηµν . We begin by briefly
reviewing how the BFSS matrix model is deformed when one instead considers M-theory
with a weakly curved background 11d metric, ηµν + gµν , where gµν is independent of the
coordinate x− parametrizing the compact direction. In a series of papers on D0-brane
quantum mechanics, Taylor and Van Raamsdonk have argued that in the presence of such
a background field, the BFSS action gets modified by the following interaction term which
is valid to linear order in the metric perturbation [15, 57]8

Sint[gµν ] = 1
2

∫
dt

∞∑
m=0

1
m!
(
∂I1 · · · ∂Imgµν

)
Tµν(I1···Im). (6.1)

Here, ∂I1 · · · ∂Imgµν is a time-dependent coupling constant constructed from the background
field, gµν , and does not depend on the N×N matrix degrees of freedom. In particular, it is

8In this context, the time t appearing in the matrix theory action is identified with the M-theory time
x+ from lightcone quantization.
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defined as the Taylor expansion of the 11d fields about the spatial origin in the transverse
directions xI = 0

∂I1 · · · ∂Imgµν(t) = ∂

∂xI1
· · · ∂

∂xIm
gµν(x+, xI)

∣∣∣
xI=0, x+=t

. (6.2)

By contrast, Tµν is the matrix theory stress-energy tensor and Tµν(I1···Im) are its mul-
tipole moments. They are built out of the N × N matrix degrees of freedom, but have
no background dependence. Furthermore, the stress-energy tensor satisfies the following
conservation equation [15, 57, 58]

∂0T
+ν(I1···Im) = T I1ν(I2···Im) + · · ·+ T Imν(I1···Im−1). (6.3)

We will need explicit expressions for a few components of the stress-energy tensor. In
particular

T++ = 1
R

STr
(
1
)

T+I = 1
R

STr
(
∂tX

I)
T+− = 1

R
STr

(1
2∂tX

I∂tX
I − 1

4[XI , XJ ][XI , XJ ] + 1
2ΨαΓIαβ [XI ,Ψβ ]

)
,

(6.4)

where “STr” denotes the symmetrized trace of a product of matrices. The multipole mo-
ments of the matrix model stress-energy tensor are related to the zeroth order moments
according to

Tµν(I1···Im) = Sym(Tµν ;XI1 , · · · , XIm) + T
µν(I1···Im)
fermion , (6.5)

where the first term denotes that we should insert the bosonic matrices, XI , in the sym-
metrized traces considered in equation (6.4) and the second term gives additional contri-
butions to the multiple moments containing the fermions, Ψα. In particular, we will need
the expressions

T
++(J)
fermion. = 0

T
+I(J)
fermion. = 1

8RTr
(
ΨαΓ[IJ ]

αβ Ψβ)
T

+−(J)
fermion = 1

16RTr
(
Ψα[XK , XL]Γ[KLJ ]

αβ Ψβ + 2iΨα∂tX
KΓ[KJ ]

αβ Ψβ).
(6.6)

6.2 Asymptotic symmetries in BFSS

Now, we will consider a setup where the 11d metric is pure gauge and related to the flat
metric by an infinitesimal diffeomorphism generated by the vector field ξµ

gµν = ∂µξν + ∂νξµ. (6.7)

Moreover, we will study the situation where the gauge parameter ξµ is non-vanishing on I±

and is given by an expression of the form (3.11). It is known that in quantum field theory,
a large diffeomorphism like this only affects one’s action up to a possible boundary term.
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Such a boundary term is precisely the conserved charge Q[ξµ] described in equations (3.7)
and (3.10).

In the case of D0-brane quantum mechanics, the same effect miraculously appears. We
begin by considering Sint[∂µξν +∂νξµ]. One may use the conservation equation to integrate
this expression by parts. The resulting action can be written as the integral of a total
derivative; therefore, it reduces to the following boundary term

Sint[∂µξν + ∂νξµ] =
∞∑
m=0

1
m!
(
∂I1 · · · ∂Imξµ)T+µ(I1···In)

∣∣∣∣+∞
−∞

. (6.8)

As such, we may define the candidate incoming conserved charge, Qin
H [ξµ], by

Qin
H [ξµ] =

∞∑
m=0

1
m!
(
∂I1 · · · ∂Imξµ)T+µ(I1···In)

∣∣∣∣
−∞

. (6.9)

The candidate outgoing conserved charge is defined analogously. One can only recover the
hard part of the conserved charge because gµν is a non-dynamical background field in this
formalism.

6.3 Relation to RR 1-form and 10d metric

In [32], we have argued that the soft theorem in the BFSS matrix model may be understood
from the lens of studying asymptotic symmetries of the background RR 1-form gauge
field, Aµ, in type IIA string theory.9 This was originally noticed because the term Nj/R

appearing in the soft theorem is exactly the U(1) charge of a stack of D0-branes under Aµ.10

In the previous section, we have argued that the asymptotic symmetries of M-theory
are related to large diffeomorphisms of the 11d graviton field gµν . These two perspectives
reconcile because the 11d graviton field is broken down to a 10d metric perturbation, hµν ,
a RR 1-form gauge field, Aµ, and a dilaton, φ when compactified — thus, asymptotic
symmetries of M-theory are at least partially manifested in the asymptotic symmetries of
Aµ. The full 11d gravitational asymptotic symmetry group of M-theory is manifested in
D0-brane quantum mechanics dual via the asymptotic symmetries of hµν and Aµ.11

To see this, we note that the discrete lighcone quantization of M-theory may be viewed
as a particular limit of so-called M̂-theory, which is just ordinary M-theory compactified
along the x10 direction with radius of compactification Rc. M̂-theory is related to the
DLCQ of M-theory via a large boost in the x10 direction with parameter γ =

√
R2/2R2

c + 1
followed by taking the Rc → 0 limit [16]. The background metric perturbation in these
two theories are similarly related by a large boost, so the Lorentz transformation with
parameter γ maps gµν 7→ ĝµν and also ξµ 7→ ξ̂µ relating the 11d gauge parameters for the

9In this section, the Greek indices µ, ν will also be used to describe the 10d parameters in type IIA.
Whether µ, ν = 0, . . . , 10 or µ, ν = 0, . . . , 9 will be clear from context.

10Note that a stack of D0-branes is BPS, so its U(1) charge is also its mass; therefore, one might guess
that asymptotic symmetries of the 10d metric, hµν , in IIA play an equally important role.

11The 10d dilaton doesn’t enjoy a standard set of asymptotic symmetries and won’t play a role in our
story. See [59, 60] for details.
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background metric in the two descriptions. The Rc → 0 limit of M̂-theory is just type IIA
string theory with background fields [57]

hµν = ĝµν + 1
2 ĝ1010 Aµ = ĝ10µ φ = 3

4 ĝ1010. (6.10)

Plugging in the expressions for ĝµν in terms of gµν yields expressions for the type IIA
background field in terms of the original 11d metric (see [57])

If gµν is pure gauge, then ĝµν is similarly pure gauge, and the 10-dimensional type IIA
fields will necessarily be pure gauge as well

hµν = ∂µζν + ∂νζµ Aµ = ∂µλ, (6.11)

for some 10d gauge parameters (ζµ, λ). One can read off expressions for these gauge
parameters in terms of the 11d gauge parameter, ξ̂µ by plugging ĝµν = ∂µξ̂ν + ∂ν ξ̂µ into
equation (6.10).12

ζ0 = ξ̂0 = 1
α
√

2
ξ+ −

α√
2
ξ−

ζI = ξ̂I = ξI

∣∣∣∣
λ = ξ̂10 = 1

α
√

2
ξ+ −

α√
2
ξ− ,

(6.12)

where we have also related the 11d gauge parameter of M̂-theory, ξ̂µ, to the 11d gauge
parameter of M-theory, ξµ, via the aforementioned Lorentz boost. This expression depends
on the parameter α ≈ Rs/

√
2R→ 0. Though several terms in equation (6.12) appear to be

either vanishing or divergent in the α→ 0 limit, they always appear in finite combinations
due to an additional rescaling of parameters relating type IIA string theory to the BFSS
action (see [16, 57]).

In [32], we have shown that one may construct a hard charge associated to the 10d
gauge field, QH [λ], via a similar integration by parts procedure as the one outlined in
section 6.2. Moreover, this charge reproduces equation (5.2) when asymptotic states as-
sume the form given by equation (2.4). One can construct a similar charge for the 10d
metric, Qin

H [ζµ]. This gives additional evidence that the asymptotic symmetries of the 11d
metric are encoded in the D0-brane quantum mechanics picture through the asymptotic
symmetries of hµν and Aµ in type IIA string theory and further bolsters the claim that
Qin
H [ξµ] defined in equation (6.9) is the correct definition for the hard charge in the matrix

model. In [32], we also showed how adding a soft D0-brane can be viewed as turning on a
background, pure gauge Aµ field — this formalism makes clear that it should be interpreted
as turning on a background, pure gauge gµν field which decomposes into pure gauge IIA
Aµ and hµν fields according to equation (6.12).

12Defining the 10d background field Aµ as in equation (6.10) yields a function which may also depend on
the compact direction Aµ(t, xI , x10). However, these are supposed to be background fields in 10-dimensional
type IIA string theory. The correct prescription to remove the x10 dependence is to just average over the
compactified direction Aµ(t, xI) =

∫
dx10 ĝ10µ(t, xI , x10). This implies, in particular, that we may set

∂10 ξµ = 0 because
∫
dx10 ∂10 ξµ = 0.
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ξµ∂
µ M-theory: QH [ξµ] BFSS: QH [ξµ]

∂+ P+ T++ = N

R

∂I P I T+I = Tr(P I)
∂− P− T+− = HBFSS

xI∂J − xJ∂I JIJ T+J(I) − T+I(J) = J IJ

x+∂I − xI∂+ J+I −T++(I) = KI

x−∂I − xI∂− J−I -
x−∂+ − x+∂− J−+ -

Table 3. Correspondence between M-theory Poincaré generators and the dual BFSS generators
which are defined by QH [ξµ] for various choices of ξµ.

6.4 Construction of Poincaré generators in the matrix model

Equation (6.9) gives an explicit candidate for the hard charge, QH [ξµ], in the BFSS matrix
model associated to a large diffeomorphism in M-theory generated by the vector field
ξµ∂µ. As such, it is especially interesting to try to use QH [ξµ] to reproduce the generators
of global translations and Lorentz transformations in the matrix model in an effort to
identify how the 11d Poincaré algebra is actually manifested in terms of the N ×N matrix
degrees of freedom.

In the M-theory picture, the conserved charges associated to global translations are the
momentum operators P+, P I , and P−. In the BFSS picture, we expect the corresponding
charges to be N/R (due to the fact that we are working in a sector of M-theory where
P+ = N/R), the BFSS momentum operator Tr(P I), and the BFSS Hamiltonian which
generates time translations (and so plays a similar role to P− in the lightcone quantization
of M-theory). We also expect the M-theory Lorentz generator JIJ to be dual to the
generator of SO(9) rotations in the matrix model

J IJ = Tr
(
P IXJ − P JXI)+ 1

8RTr
(
ΨαΓ[IJ ]

αβ Ψβ), (6.13)

while the Lorentz generator J+I should be dual to the generator of Galilean boosts13

KI =
1
R

Tr(XI). (6.14)

It is encouraging to find that by plugging in appropriate choices of the vector field ξµ into
QH [ξµ], these expectations are exactly realized (see table 3)!

Unfortunately, one cannot construct the dual description of the M-theory generators
J−I and J+− using this technology. This is due to the fact that the background field

13Previous expressions for the SO(9) rotation generator and Galilean boost generator in terms of the
N ×N matrices are known (see [61, 62]); however, it is interesting to see them derived from a completely
different perspective.
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formalism we have been employing is incompatible with vector fields ξµ∂µ which vary non-
trivially in the compact x− direction [15, 57]. We hope that a suitable modification of the
above prescription will allow one to fully construct the 11d Lorentz generators using only
the N ×N matrix degrees of freedom.

Nevertheless, the correspondence between the symmetry generators of M-theory and
those of BFSS afforded by this formalism is a heartening result and offers a non-trivial
consistency check regarding how the asymptotic symmetries of M-theory are manifested in
the matrix model dual.

7 Discussion

In this work, we examined how the soft theorems and infinitely many conserved charges
associated to asymptotic symmetries in M-theory are manifested in the matrix model dual.
In particular, we made a conjecture about the structure of scattering amplitudes among
D0-brane bound states in the limit where the number of D0-branes in one particular bound
state is dwarfed by the number of D0-branes in all others. While this conjecture was based
on the original description of the BFSS duality, we presented a first-principle calculation
of it by considering the BFSS scaling limit of D0-brane scattering amplitudes in type IIA
string theory, thus providing a novel test of the BFSS duality in a completely new setting.
We showed how this soft theorem implies that BFSS enjoys conservation laws associated
to the counterpart of 11d supertranslation and superrotation symmetry in the M-theory
picture — these conservation laws are only realized in the large N limit of the matrix model,
which is necessary for consistency with the gravity description. Moreover, we interpreted
the infinite dimensional symmetry algebra of BFSS, which gives rise to these conservation
laws, in terms of the asymptotic symmetries of the metric and RR 1-form gauge field of
type IIA string theory, which appear as background fields. Finally, we showcased how these
perspectives reconcile to provide a consistent understanding of 11d Lorentz symmetry in
the matrix model. In particular, we have shown that BFSS scattering amplitudes exhibit
the full 11d Poincaré symmetry of M-theory which emerges only in the large N limit, a
claim which has been long anticipated but never verified.

We hope that this project will also springboard future studies of the matrix model and
the relationship between celestial holography and BFSS. Celestial holography provides a
natural framework for studying the symmetries of flat space, and it would be interesting
to see how these ideas are manifested in the matrix model [63–73]. For example, a w1+∞
holographic symmetry algebra associated to soft gravitons was recently identified [74–84].
It is known that the SU(N) ⊂ U(N) part of the BFSS symmetry algebra tends to the
w1+∞ algebra as N →∞ [17, 76]. It would be exciting to see if this concordance actually
encodes a deep connection.

It would also be intriguing to investigate how these concepts are related to black holes
in the matrix model. In particular, the soft theorem describes how an O(1) number of D0-
branes can get dislodged in scattering amplitudes. This is remniscent of Hawking radiation
wherein individual D0-branes are the Hawking quanta of a Schwartzchild black hole, which
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is a Boltzmann gas of N D0-branes [85–88]. For additional work relating BFSS to black
holes, see [89–99].

Finally, this work leaves a number of interesting follow-up questions and calculations.
For example, one might hope to give a worldline proof of the soft theorem using the
matrix model Hamiltonian (2.2). Recovering the leading term ∝ N would complement
the derivation provided in appendix A and be a very interesting computation in its own
right. One could also try to understand how the soft theorems associated to the gravitino
and 3-form gauge field in 11d N = 1 supergravity are realized in BFSS. In this work, we
have only discussed soft theorems for D0-branes in the matrix model whose polarization
tensors correspond to gravitons in the M-theory description — examining soft theorems
for the other particles in the supermultiplet will likely shed light on new symmetries of the
matrix model which are only realized in the large N limit. A better understanding of the
compact direction and how one could use the formalism of section 6 to construct explicit
expressions for the complete set of Poincaré generators would also be desirable.
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A A first-principle argument for the soft theorem in BFSS

In this appendix, we provide a derivation that non-relativistic D0-brane scattering ampli-
tudes obey the soft theorem given by equation (4.2).

Soft theorems and S1 compactification. We will begin by revisiting the soft graviton
theorem in M-theory. This time, however, we will not consider the DLCQ of M-theory —
rather, we will work with the more familiar quantization on hypersurfaces of constant
time. The leading soft graviton theorem obeys the usual universal expression in the limit
ωs/ωj → 0 where the supergraviton momenta are parametrized by (2.5)

AM(qµs , ε; p
µ
1 , . . . , p

µ
n) =

[
S(−1) + · · ·

]
AM(pµ1 , . . . , pµn), (A.1)

where

S(−1) = κ

2 εµν
n∑
j=1

ηsηj
pµj p

ν
j

qs · pj
. (A.2)

For the moment, we will only focus on the leading term in the soft expansion.
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Next, we compactify on a spatial circle with radius of compactification Rc (in the x10

direction, for simplicity). Now the momentum in the compact direction is quantized

p10
j = ωj√

2
(1− v2

j ) = Nj

Rc
and q10

s = ωs√
2

(1− v2
s) = Ns

Rc
. (A.3)

While the above expression is universal in theories of gravity in flat space, it is a priori
unclear whether the leading soft term S(−1) is corrected upon compactification. For exam-
ple, the leading soft term may be spoiled by O(1/Rc) corrections. In [51], it was argued
that such terms do not arise when the soft particle is a KK zero-mode, with momentum
q10
s = 0. One may also demonstrate that one need not worry about any such corrections,
more generally.14 Thus, the expression (A.2) holds for theories of gravity even when they
have a compactified dimension.

It will be convenient to rewrite the leading soft term, S(−1) in terms of the quantum
numbers (ωj , vIj ),

S(−1) = −2κ
n∑
j=1

ηsηj
ωj
ωs

eIJ(vs − vj)I(vs − vj)J

(vs − vj)2 . (A.5)

At this point, we should still view the scattering amplitude as occurring in an 11-
dimensional theory of gravity with one compactified dimension. The only constraint on
the parameters (ωj , vIj ) is the quantization condition (A.3).

Soft theorems for D0-branes in type IIA string theory. Because the leading soft
term retains its universal form even when one of the directions is compactified, it follows
that soft theorems may be applied to KK modes as well. Specifically, we will consider a
situation where the soft particle has non-zero KK momentum, q10

s = Ns/Rc. The soft limit
now reads

ωs
ωj

= Ns

Nj

1− v2
j

1− v2
s

→ 0. (A.6)

We see that the limit Ns/Nj → 0 (keeping the parameters vs, vj fixed) recovers the soft
limit for KK modes.

14One can see that compactifying on a circle of radius Rc does not spoil the leading soft term with a
Feynman diagrammatic argument. Feynman diagrams for QFTs on tori have been well-studied in [100, 101].
The main difference is that p10 is now quantized, so integrals over p10 get replaced by discrete sums∫

dp10

2π 7→
1
Rc

∑
n∈Z

, (A.4)

where p10 = 2πn/Rc (here pµ is a general momentum) The Feynman propagators in momentum space
retain an identical form up to this substitution. Vertex interactions in the theory are also unchanged as
these are features of a local QFT and do not depend on the global topology of the space. One may now
reproduce the Feynman-diagrammatic derivation for the leading soft theorem in compactified space with
these modifications (see [1] for the uncompactified case). Because the structure of the Feynman diagrams
is essentially unmodified, the derivation for the leading soft theorem proceeds as usual, and we find that
S(−1) is also unmodified.
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Inserting equation (A.6) into the soft theorem (A.5), we find the following soft theorem
associated to scattering of graviton KK modes in the 10-dimensional type IIA string theory.
Now, the parameter Nj labels the KK mode of the corresponding particle,

S(−1) = −2κ
n∑
j=1

ηsηj
Ns

Nj

1− v2
j

1− v2
s

eIJ(vs − vj)I(vs − vj)J

(vs − vj)2 . (A.7)

The KK modes are just D0-brane bound states where the integer Nj labels the number
of D0-branes in a particular bound state. Thus, we have recovered a soft theorem for
D0-branes where the soft limit is precisely Ns/Nj → 0, just as it was in the BFSS case.

Soft theorem for non-relativistic D0-branes: the BFSS limit. Up to this point,
we have been studying D0-brane scattering in IIA where the D0-branes may be relativis-
tic. The BFSS matrix model concerns only non-relativistic D0-brane dynamics, however.
Fortunately, it is known how to rescale the parameters in type IIA string theory to recover
the BFSS action for these non-relativistic D0-branes [16]. Indeed, BFSS can be viewed
as a particular scaling limit of weakly coupled type IIA string theory, and the scattering
amplitudes of D0-brane bound states in the two descriptions should agree by definition —
this agreement is at the heart of our argument.15

For the leading soft term, S(−1), of equation (A.7) this rescaling amounts to taking the
non-relativistic limit vj 7→ εvj where ε → 0. In this non-relativistic limit, equation (A.7)
reads

S(−1)
BFSS = −2κ

n∑
j=1

ηsηj
Ns

Nj

eIJ(vs − vj)I(vs − vj)J

(vs − vj)2 . (A.8)

This is precisely the form for the leading soft theorem that we previously conjectured
for D0-brane scattering in BFSS via the duality dictionary! A similar computation may
be considered to show equality at subleading order, S(0). Though this calculation did not
involve working with the N×N matrix degrees of freedom familiar to BFSS, it is still a bona
fide non-relativistic D0-brane calculation in type IIA string theory and, thus, gives strong
evidence that the BFSS matrix model enjoys the soft theorems discussed in section 4.1.
Nevertheless, a direct computation using the D0-brane worldline Hamiltonian (2.2) would
be illuminating.

Note that while this argument also relies on the equivalence between M-theory com-
pactified on a small circle and type IIA string theory, it is qualitatively different from
Seiberg’s classic argument that the DLCQ of M-theory should be described by BFSS [16].
The latter invokes an infinitely large Lorentz boost which relates DLCQ M-theory to M̂-
theory (see section 6.3) compactified on a small spatial circle (and so their amplitudes,
being Lorentz invariant, might plausibly agree). This is not the spirit of our argument
— we instead give a first-principle computation of the relevant amplitudes in spatially
compactified M̂-theory without discussing amplitudes in DLCQ M-theory at all. This re-
quires us to take great care in showing that any possible O(1/Rc) corrections vanish for

15Concretely, the BFSS action is just a limit of the nonabelian DBI action describing N D0-branes in
type IIA string theory from which the D0-brane scattering amplitudes that we are discussing can ostensibly
be computed.
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the particular case of soft theorems but allows us to avoid discussing any thorny details
about possible convergence issues when infinitely large boosts are involved. Once we know
the relationship between D0-brane amplitudes with a soft D0-brane and those without one
in IIA, taking the BFSS limit wherin the external D0-branes are non-relativistic recovers
BFSS amplitudes tautologically.

B Derivation of conservation laws in the matrix model

In this appendix, we will detail how the leading and subleading soft theorem in the ma-
trix model implies the conservation of infinitely many charges Q[f ] and Q[Y I ] given in
sections 5.1 and 5.2.

Shadow transform details. The heart of this argument relies on an integral transfor-
mation known as the shadow transform. We define the shadow transform on the D0-brane
creation operator Gin†

IJ (Ns, vs) as

G̃ in,†
∆,IJ(Ns, vs) = N∆ δ

{K
{I δ

L}
J}

∫
d9ws

IKM (vs − ws)ILN (vs − ws)
(vs − ws)2(9−∆) G in†

MN (Ns, us), (B.1)

where {·, ·} denotes the symmetric traceless projection on the given indices, IIJ(v) =
δIJ − 2vIvJ/v 2 is the inversion tensor familiar from conformal field theory, and N∆ is a
normalization coefficient which regulates the integral

N∆ = (∆ + 1)(10−∆)Γ(∆)Γ(9−∆)
π9(∆− 1)(8−∆)Γ(9

2 −∆)Γ(∆− 9
2)
. (B.2)

Notice that applying the shadow transform to the D0-brane creation operator Gin†
IJ (Ns, vs)

does not affect the number of D0-branes added to the state — it will always be Ns. Rather,
it simply smears the velocity of the D0-branes which are added against some kernel. This
shadow transform is especially useful in celestial conformal field theory and plays a large
role in demonstrating that soft theorems are equivalent to conservation laws in general
gauge and gravitational theories.

There will be two particular shadow transforms that we need to extract details about
the leading and subleading soft theorems and to derive their associated conservation laws.
In particular, we define the leading shadow transformed creation operator and subleading
shadow transformed creation operator respectively as

leading: G̃ (−1) in†
IJ (Ns, vs) = lim

∆→1
G̃ in†

∆,IJ(Ns, vs)

subleading: G̃ (0) in†
IJ (Ns, vs) = lim

∆→0
G̃ in†

∆,IJ(Ns, vs).
(B.3)

Shadow transforms for the outgoing creation operators may be defined in an identical way.
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Derivation of leading-order conserved charges. We begin by restating the leading
soft theorem in the matrix model (equation (4.2) and (4.5))

Ns

R
〈out|12

[
Gout
IJ (Ns, vs)− Gin†

IJ (Ns, vs)
]
|in〉

= κ

2

[
− 2

n∑
j=1

ηj
Nj

R

(vs − vj)I(vs − vj)J

(vs − vj)2

]
〈out|in〉+O

(
Ns

R

)
+O

( 1
R

)

= κ

2

[
− 2

n∑
j=1

ηj
Nj

R

(vs − vj)I(vs − vj)J

(vs − vj)2

]
〈out|in〉+O

( 1
N

)
,

(B.4)

where the O(Ns/R) corrections on the second line are due to the subleading soft graviton
term, while the O(1/R) corrections are due to finite-R effects. If we scale Ns ∼ N1−ε as
in equation (4.4), both such terms vanish in the large N limit — as such, we schematically
group them into the O(1/N) term on the last line.16 It has been shown that one may apply
the shadow transform to both sides of this expression to find [50]

Ns

4R 〈out|
1
2∂vIs∂vJs

[
G̃ (−1)out
IJ (Ns, vs)− G̃ (−1) in†

IJ (Ns, vs)
]
|in〉

= κ

2

n∑
j=1

ηj
Nj

R
δ(9)(vs − vj)〈out|in〉+O

( 1
N

)
.

(B.5)

Though the right hand side of this expression has singular behavior when vs = vj , we may
smooth out this feature by integrating against an arbitrary function f(vs),

Ns

8R 〈out|
∫
d9vs f(vs)∂vIs∂vJs

[
G̃ (−1)out
IJ (Ns, vs)− G̃ (−1) in†

IJ (Ns, vs)
]
|in〉

= κ

2
∑

ηj
Nj

R
f(vj)〈out|in〉+O

( 1
N

)
.

(B.6)

Moving the first term on the right-hand side to the left hand side yields an expression that
vanishes as O(1/N). An immediate consequence is that the charges Qin[f ] and Qout[f ]
defined in equation (5.2) satisfy the conservation law

〈out|
(
Qout[f ]−Qin[f ]

)
|in〉 = O

( 1
N

)
. (B.7)

Derivation of subleading-order conserved charges. The first set of conserved
charges, Q[f ], were derived by considering the leading term in the soft expansion only.
To derive a second set, Q[Y I ], we wish to isolate the subleading term in the soft expansion.
One could do this by applying the following projection operator (1 + Ns

R ∂Ns/R) to the soft
expansion — this would project out the leading soft term but preserve the subleading cor-
rections. However, Ns ∈ N is quantized, so taking derivatives is ill-defined. Instead, we will
approximate this derivative operator by finite differences. Upon doing so, the projection
operator reads

PG in†
IJ (Ns, vs) = G in†

IJ (Ns, vs) +Ns

[
G in†
IJ (Ns + 1, vs)− G in†

IJ (Ns, vs)
]
. (B.8)

16Just as before, the O(1/N) terms need not vanish at the rate 1/N — they just must vanish in the
N →∞ M-theory limit.
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If we write the soft theorem schematically as

〈out|12
[
G out
IJ (Ns, vs)− G in†

IJ (Ns, vs)
]
in〉 = Nj

Ns
S(−1)〈out|in〉+ S(0)〈out|in〉+O

( 1
N

)
, (B.9)

one may quickly verify the following relation among the projected soft D0-brane creation
operators

〈out|12
[
PG out

IJ (Ns, vs)− PG in†
IJ (Ns, vs)

]
in〉

= S(−1)
(
Nj

N2
s

1
1 + 1/Ns

)
〈out|in〉+ S(0)〈out|in〉+O

( 1
N

)
= S(0)〈out|in〉+O

( 1
N

)
.

(B.10)

Thus, we have projected out the leading piece, as desired.
It has been shown that one may apply the shadow transform to both sides of this

expression to find [55].

〈out|12
[
∂vIs P G̃

(0)out
IJ (Ns, vs)− ∂vIs P G̃

(0) in†
IJ (Ns, vs)

]
|in〉

= κ

2

n∑
j=1

ηj

[
δ(9)(vs − vj)∂vJj + i

2∂vIs δ
(9)(vs − vj)SIJj + 1

9∂vJs δ
(9)(vs − vj)

Nj

R
∂Nj/R

]

× 〈out|in〉+O
( 1
N

)
, (B.11)

where the projection operator, P, acts on the shadow transformed creation operator as in
equation (B.8). Now, we smear both sides of this expression against the arbitrary vector
field, Y I to smooth over the delta-function singularity. The result is that the charges
Qin[Y I ] and Qout[Y I ] defined in equation (5.4) satisfy the conservation law

〈out|
(
Qout[Y I ]−Qin[Y I ]

)
|in〉 = O

( 1
N

)
, (B.12)

where now the O(1/N) terms on the right hand side may vanish slightly slower than 1/N ,
but still do vanish in the M-theory limit.

C Conservation laws for 11d Poincaré symmetry in M-theory and BFSS

In this appendix, we will consider the conservation equations associated to the leading and
subleading soft theorems in M-theory (equation (3.13)) and BFSS (equation (5.5))

M-theory: 〈out|
(
Qout[f, Y I ]−Qin[f, Y I ]

)
|in〉 = 0

BFSS: 〈out|
(
Qout[f, Y I ]−Qin[f, Y I ]

)
|in〉 = O

( 1
N

)
.

(C.1)

As discussed in section 5.3, for several choices of functions (f, Y I) the conservation laws
reduce to simple expressions. In the remainder of this appendix, we provide these expres-
sions and give their interpretations. These identities demonstrate that D0-brane scattering
amplitudes in BFSS enjoy the full 11d Poincaré symmetry in the large N limit.
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For f(v) = 1, Y K(v)∂K = 0,∑
j

ηjωjAM = 0 (conservation of P+)

∑
j

ηj
Nj

R
ABFSS = O

( 1
N

)
(conservation of D0-branes) (C.2)

For f(v) =
√

2vI , Y K(v)∂K = 0,

∑
j

ηj
√

2ωjvIjAM = 0 (conservation of P I)

∑
j

ηj
√

2
Nj

R
vIjABFSS = O

( 1
N

)
(conservation of momentum) (C.3)

For f(v) = v 2, Y K(v)∂K = 0,

∑
j

ηjωjv
2AM = 0 (conservation of P−)

∑
j

ηj
Nj

R
v2ABFSS = O

( 1
N

)
(conservation of energy) (C.4)

For f(v) = 0, Y K(v)∂K = −(vI∂J − vJ∂I),∑
j

ηj [−i(vIj ∂vJj − v
J
j ∂vIj

) + SIJj ]AM = 0 (conservation of JIJ)

∑
j

ηj [−i(vIj ∂vJj − v
J
j ∂vIj

) + SIJj ]ABFSS = O
( 1
N

)
(SO(9) Invariance) (C.5)

For f(v) = 0, Y K(v)∂K = 1√
2∂I ,

1√
2
∑
j

ηji∂vIj
AM = 0 (conservation of J−I)

1√
2
∑
j

ηji∂vIj
ABFSS = O

( 1
N

)
(Galilean boost invariance) (C.6)

For f(v) = 0, Y K(v)∂K = vK∂K ,

∑
j

ηji(vIj ∂vIj − ωj∂ωj )AM = 0 (conservation of J+−)

∑
j

ηji(vIj ∂vIj −
Nj

R
∂Nj/R)ABFSS = O

( 1
N

)
(new symmetry) (C.7)
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For f(v) = 0, Y K(v)∂K = 1√
2(v2∂I − 2vIvK∂K),

1√
2

∑
j

ηj [i(v2
j∂vI

j
−2vIj vJj ∂vJ

j
+2vIjωj∂ωj

)+2vJj SIJj ]AM=0 (conservation of J+I)

1√
2

∑
j

ηj [i(v2
j∂vI

j
−2vIj vJj ∂vJ

j
)+2vIj

Nj

R
∂Nj/R+2vJj SIJj ]ABFSS=O

(
1
N

)
(new symmetry) (C.8)

Note that the BFSS conservation laws follow from equation (5.5) which is a conse-
quence of the soft theorems discussed in section 4 and derived in appendix A. It follows
that these symmetries are actually manifested in the matrix model; our derivation does
not presuppose the BFSS duality relation among scattering amplitudes. Note the striking
similarity between the top and bottom lines of equations (C.2)–(C.8). The BFSS conser-
vation laws are nothing but the M-theory conservation laws after translating through the
duality dictionary. This gives definitive evidence that BFSS scattering amplitudes enjoy
11d Poincaré symmetry.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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