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1 Introduction

Stability is a subtle issue in a theory of gravity, ultimately because there is no meaningful
concept of a state of lowest energy. String theory, while offering a consistent framework for
a quantum theory of gravity, exhibits a variety of mechanisms that can generate unstable
behavior. In fact, tachyons serve as instability probes in string perturbation theory, but we
know that they are only part of the story. For instance, the open string spectrum of a system
comprising a brane and an anti-brane, which are subject to a mutual attraction, is free of
tachyons if their mutual separation is large enough. More catastrophic decays are possible,
through bubble nucleation [1] or via generalizations of Witten’s bubble of nothing [2].

We currently lack a worldsheet characterization of fully stable vacua, so that the space-
time picture is the main tool that can guide our investigations. Since one expects that in a
quantum theory any allowed physical process will eventually happen, the stability analysis
translates into the search for possible obstructions. In the low-energy quantum field theory
regime, this calls for vacuum-protecting symmetries and, in fact, supersymmetry is usually
the main culprit for the settings that we consider reliable. Then, it is not surprising that
severe backreactions typically accompany the breaking of supersymmetry. This is already
evident in ten dimensions, where dilaton tadpoles emerge in tachyon-free string theories
without supersymmetry: although these theories are originally formulated in flat space,
this is not a true vacuum for them.
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Understanding the most general types of obstructions remains an open question. We
know, for instance, that even supersymmetry does not suffice to guarantee the stability of
string vacua, and topological charges1 seem in general a necessary ingredient [3]. In this
work, we shall focus on the local conditions for stability. Leaving global and topological
considerations for future work, we shall attempt to identify a replacement for supersym-
metry when it is broken or absent. Our ultimate aim would be to attain a better under-
standing of string models with tadpole potentials, where the mechanism of [4, 5] should
resolve the effect of the runaway potential through deformations of the background. See for
instance [6, 7] for a string theory discussion regarding the models of interest in this paper.

Tadpole potentials are a generic hallmark in the absence of Fermi-Bose degeneracy,
since the corrections to the vacuum energy expected from quantum field theory are dressed
with exponentials of the dilaton. Our focus will be on the three ten-dimensional tachyon-
free models without supersymmetry: the heterotic SO(16)×SO(16) string [8, 9], the U(32)
orientifold [10–17] model [18, 19], and Sugimoto’s USp(32) orientifold [20]. However, our
approach could be extended to more general settings.

The feature that guides our analysis is that supersymmetric vacua can be identified
by solving first-order equations determined by supersymmetry transformations, since these
imply the equations of motion [21–23], up to subtleties on the time-space components of
the metric equations. This property is also the rationale behind the geometrical structures
that enter string compactifications and the spinorial definitions of energies [24, 25] that
control the dynamical stability. The method that we discuss in this paper is known in
the literature as fake supersymmetry [26–29]. Our strategy, inspired by [30], is to include
dilaton tadpoles of non-supersymmetric strings in a set of first-order equations that imply
the equations of motion. This procedure puts the dilaton potential on the same footing
as the lowest-order terms in the equations of motion and is most suitable for intrinsically
quantum vacua, using the terminology of [31].

In this paper, we shall be mainly interested in vacuum solutions for the non-
supersymmetric strings in the absence of fluxes and charged sources. The reasons are
technical, as we shall explain in section 2.3, but we are also motivated by the perturba-
tive stability [32] of the Dudas-Mourad vacuum [33], whose ultimate fate remains an open
question.

In section 2, we introduce the fake supersymmetry formalism and apply it to the
dilaton-gravity system that is relevant for the non-supersymmetric models of interest, com-
menting on the difficulties that one faces when R-R forms are present. Then, in section 3,
we recover the Dudas-Mourad solution in this new language, and in section 4 we define
a Witten-Nester two-form, following [30], which could play the role of an energy for the
codimension-one vacua. We comment on this interpretation in section 4.1.

1In our language, the spin structure, which obstructs the bubble of nothing of [2], is an example of a
topological charge.
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2 Fake supersymmetry

In a supergravity theory, setting to zero the supersymmetry variations of the Fermi fields
is the most convenient way to explore the supersymmetric landscape. As shown in [21–23],
if the Bianchi identities also hold, the equations of motion are automatically satisfied.2 In
the main portion of this paper, we shall not include form fluxes and gauge fields, so that in
a supersymmetric setup one would only impose the vanishing of the gravitino and dilatino
variations, δψM = 0 and δλ = 0. In this simple case, with only the metric field and the
dilaton, these schematically read

δψM = Dsusy
M ε = ∇Mε = 0 ,

δλ = Osusyε = dφε = 0 .
(2.1)

The aim of this paper is to modify the two first-order differential operators in such
a way as to include dilaton potentials in the equations of motion. In this basic setting
with gravity and the dilaton, this strategy has already been pursued in the literature,
and goes under the name of fake supersymmetry [29]. It is essential to understand that
this procedure has no physical implications because the new susy-like equations do not
correspond to any symmetry of the system. The modified operators DM and O that we
define are merely a technical tool, whose purpose is to recover the correct equations of
motion. This being said, we thus start with the two conditions

DMε = 0 ,
Oε = 0 ,

(2.2)

and deduce the form of the operators by demanding that they imply the equations of
motion in the presence of a non-trivial scalar potential.

In general, we expect that eqs. (2.2) yield only a subset of the solutions to the equations
of motion, but for this subset they allow a systematic way to engineer and analyze vacua,
as we shall explain. We shall comment further on these limitations in section 3.4.

2.1 Tadpole potential in the string frame

Let us consider the following string-frame action in ten dimensions∫
d10x

√
−g

[
e−2φ

(
R+ 4(∂φ)2

)
− V (φ)

]
. (2.3)

With appropriate choices for the potential, this serves as the low-energy effective action of
the ten-dimensional non-supersymmetric strings, see [34] for a review. The equations of
motion read

RMN + 2∇M∇Nφ+ 1
2e

2φ
(
V + 1

2V
′
)
gMN = 0 ,

R+ 4∇2φ− 4(∂φ)2 + 1
2e

2φV ′ = 0 ,
(2.4)

2Ten-dimensional Majorana-Weyl spinors have a non-empty annihilator, and therefore some of the equa-
tions of motion are not implied by supersymmetry. However, when the metric ansatz is sufficiently symmet-
ric, for instance in compactifications with a maximally symmetric external spacetime, the missing equations
can be actually deduced from the others. We shall leave aside this technical discussion.
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where V ′ = ∂φV (φ). We define the two operators that should replace the gravitino and
dilatino variations as

DMε = (∇M +W(φ)ΓM ) ε ,
Oε = (dφ+ g(φ)) ε .

(2.5)

W(φ) is known as a fake superpotential because it enters the first equation as a supersym-
metric superpotential would. Note that it is not even necessary for the model to have a
gravitino or a dilatino, as happens for instance in type 0’B, because, as we already stressed,
the above equations are nothing more than a formal tool. There is also no restriction on the
spinor ε. We could consider an arbitrary number of spinors, adding an index to eqs. (2.5).
For the moment, let us consider the simplest possibility of a single spinor ε, with the
possible restriction to a Majorana-Weyl spinor, if needed.

In order to recover the first of eqs. (2.4), we employ an appropriate combination of the
above operators, following the supersymmetric procedure reviewed for instance in [35]:

0 = 2
[
ΓM [DM , DN ] + [DN ,O] + (W ′ − 2W)ΓNO

]
ε =

=
[
ΓM (RMN + 2∇M∇Nφ) + (36W2 + 2W ′g − 4Wg)ΓN+

+ (2g′ − 4W − 16W ′)∇Nφ
]
ε .

(2.6)

Similarly, for the second of eqs. (2.4),

0 =
[
(D −O)2−(∇M − 2∂Mφ)DM + (g′ − 2g − 9W ′ + 18W)O − (19W − 2g)D

]
ε

=
[
−1

4
(
R+ 4∇2φ− 4(∂φ)2

)
+ (−9W ′g + gg′ + 18Wg − g2 − 90W2)

]
ε ,

(2.7)

where D = ΓMDM . We then retrieve eqs. (2.4) from eq. (2.6) and eq. (2.7) provided

36W2 + 2W ′g − 4Wg = 1
2e

2φ
(
V + 1

2V
′
)
,

g′ − 2W − 8W ′ = 0 ,

−9W ′g + g′g + 18Wg − g2 − 90W2 = −1
8e

2φV ′ .

(2.8)

One of the three conditions is redundant, and in terms of

h(φ) ≡ g(φ)− 6W(φ) , k(φ) = g(φ)− 12W(φ) , (2.9)

the two independent equations take the form

hk = −1
4e

2φV ,

h− k = 2h′ + k′ .
(2.10)

Let us concentrate on the potentials that arise in non-supersymmetric strings,

V (φ) = Teαφ , (2.11)

– 4 –
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with α = 0 and −1 for the heterotic and the orientifold models respectively. Note that
the former value of α is appropriate for more general models in which there is a non-zero
one-loop vacuum energy contribution in the string frame. There is a sign ambiguity in
eqs. (2.10), namely (h, k) → (−h,−k), and for this reason we define additional functions
A(φ), B(φ) as

hk = −A , k

h
= −2B , (2.12)

so that A and B are always positive for the potentials of eq. (2.11). Then, eqs. (2.10) read

A = T

4 e
(2+α)φ ,

B′

B
+B′ = (1 + α)− (4 + α)B .

(2.13)

Depending on the value of α, there are different types of solutions to the second of
eqs. (2.13):

• For α < −4 and α > −1, the B equation has a constant solution

B = 1 + α

4 + α
. (2.14)

• For α = −4, one can rewrite the second of eqs. (2.13) in terms of the variable e−3φ,
discovering the differential equation that defines the Lambert W function,3 hence

B = W (e−3(φ−c)) , (2.15)

with c a constant.

• For α = −1, similar considerations for B−1 lead to

B =
(
W (e3(φ−c))

)−1
. (2.16)

• For α 6= −1,−4, one can integrate the second of eqs. (2.13) in order to obtain an
implicit definition of B:

1
1 + α

logB − 5 + 2α
(1 + α)(4 + α) log

∣∣∣∣B − 1 + α

4 + α

∣∣∣∣ = φ− c . (2.17)

We now focus on the relevant potentials. Two values of α, which are not our primary
interests but are still of physical concern, are α = −5

2 and α = −2. The former, which
reproduces a cosmological constant in the Einstein frame, simplifies eq. (2.17), so that
B = e−

3
2 (φ−c), and the fake superpotential is a sum of two exponentials. The latter,

relevant for non-critical strings, simplifies eq. (2.17), because when −4 < α < 1 we do not
need the absolute value, and yields B−1 =

√
1 + 2e2(φ−c) − 1.

3The algebraic definition of the Lambert function is W (x) such that W (x)eW (x) = x.
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For α = 0, which is significant for the SO(16)×SO(16) string and for vacuum energies,
we have both a constant B solution and the non-trivial one from eq. (2.17). The former,
up to an overall sign in both W and g, is

W(φ) = 1
2

√
T

8 e
φ ,

g(φ) = 5
√
T

8 e
φ ,

(2.18)

and also applies to massive IIA supergravity, while its possible interpretation in the het-
erotic theory remains an open question [36]. The latter is more interesting from a non-
supersymmetric perspective, but B can be only expressed implicitly in eq. (2.17). This leads
to two possible behaviors, up to overall signs. One is a B that decreases monotonically from
infinity to 1

4 , corresponding to a W with a minimum. The other is a step-function-like B,
interpolating between 0 and 1

4 , which corresponds to a fake superpotential monotonically
increasing from 0 to infinity. We shall comment on their role in section 3.3.

For α = −1, omitting the overall sign ambiguity, eq. (2.16) gives rise to

W(φ) = 1
6

√
T

4 e
1
2φ

√W (e3(φ−c))
2 +

√
2

W (e3(φ−c))

 ,
g(φ) =

√
T

2 e
1
2φ

[√
W (e3(φ−c)) +

√
1

W (e3(φ−c))

]
.

(2.19)

The fake superpotential from eqs. (2.19) is relevant for the two orientifold non-
supersymmetric string models and has no critical points. In section 3, we will use this
explicit form to study the Dudas-Mourad solution. However, before proceeding, it is useful
to reformulate our results in the Einstein frame, in view of the energy considerations of
section 4.

2.2 Tadpole potential in the Einstein frame

With a mild abuse of notation, we use Einstein-frame operators with the same names as
the string-frame ones in eqs. (2.5). The metric and dilaton equations follow from the fake
supersymmetry equations if

g + 32W ′ = 0 ,
29(W ′)2 − 3225W2 = V ,

210W ′W ′′ − 3226WW ′ = V ′ .

(2.20)

The third of eqs. (2.20) follows from the second one, and g is proportional to the derivative
of W. Therefore, one is left with a single differential equation for W. The tadpole-inspired
exponential potential,

V = Teβφ , (2.21)
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induces different types of solutions depending on the value of β, reflecting the α dependence
of eqs. (2.13). Let

W(φ) = 1
12

√
T

2 e
β
2 φ sinh f(φ) . (2.22)

The differential equation reads

16(cosh f)2(f ′)2 + 16βf ′ sinh f cosh f + (4β2 − 9)(sinh f)2 = 9 , (2.23)

and

• For β2 > 9
4 , there is a constant solution, matching the behavior in eq. (2.14), with a

fake superpotential ∼ e
β
2 φ.

• The solution for β = −3
2 is the same as that for β = 3

2 if one sends φ→ −φ, therefore
we will only analyze the β = 3

2 case.

• For β = 3
2 , eq. (2.23) becomes[1

3(1 + e−2f )2f ′ + 1
] [1

3(1 + e2f )2f ′ − 1
]

= 0 . (2.24)

The two solutions of eq. (2.24) are interchanged by f ↔ −f , which reflects a sign
ambiguity in the definition of f , and hence of W. Therefore, up to this sign,

2f − e−2f = −3φ− 3c⇒ 2f = W (e3(φ−c))− 3(φ− c) . (2.25)

This is the same case as α = −1 in eq. (2.16).

• For β2 6= 9
4 , one can solve for f ′ in eq. (2.23) and, up to the usual f → −f sign

ambiguity,
f ′ = −1

2β tanh f − 3
4 , (2.26)

which leads to the implicit definition

− 3f + 2β log |2β sinh f + 3 cosh f | =
(9

4 − β
2
)

(φ− c) . (2.27)

This is the analogue of eq. (2.17), and for β2 < 9
4 one can remove the absolute value.

In this subclass, one can find the cosmological constant and the non-critical string
potentials, matching the results of the previous section.

The two exponents entering the non-supersymmetric string models are β = 3
2 and

5
2 , respectively for the orientifold and heterotic strings. For the orientifold case, using
properties of the W function, the fake superpotential, up to the overall sign, takes the form

W(φ) = 1
24

√
T

2 e
3
4φ
[(
W (e3(φ−c))

)− 1
2 −

(
W (e3(φ−c))

) 1
2
]
. (2.28)

It is a monotonically decreasing function with a non-vanishing first derivative. For the
heterotic case, we cannot be more explicit than in eq. (2.27), and, as in the string frame,
there are two possible behaviors.

– 7 –
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2.3 A comment on fluxes

In the previous sections, we have restricted our analysis to the metric and the dilaton. The
inclusion of form fields would be the natural and most interesting extension of the fake
supersymmetry equations. In this section, we elaborate on the obstacles that apparently
prevent us from obtaining a simple adjustment of eqs. (2.5). We shall work in the string
frame, and for definiteness we shall mostly focus on the Sugimoto model. We shall briefly
comment on the heterotic counterpart at the end of the section. Let us anticipate that
here, for simplicity, we shall refrain from introducing modifications to the kinetic terms,
and our strategy will eventually fail.

Essentially, we must change the fake superpotential in such a way as to include the
R-R forms in the equations of motion. In type I supergravity, in the democratic formalism,
the gravitino and dilatino variations in the presence of non-vanishing R-R forms become,
in the notation of [35],

δψM = Dsusy
M ε =

(
∇M + 1

16e
φFΓM

)
ε ,

δλ = Osusyε =
(
dφ+ 1

16e
φΓMFΓM

)
ε ,

(2.29)

where F = F3 +F7. The few terms present in eqs. (2.29) provide the motivation for turning
to type II theories for richer string compactifications, because they allow for more classical
fluxes. From this perspective, the addition of a dilaton tadpole could be a blessing in
disguise.

Unfortunately, the rigid structure of the supersymmetry equations is an obstacle for
the type of extension that we have in mind. In fact, one can obtain the gravitational
equations of motion from

0 =
[
ΓM [Dsusy

M , Dsusy
N ] + [∇N ,Osusy]− 1

16e
φOsusyFΓN

]
ε =

=
[1

2(Gravity EoM)MNΓM + 1
16e

φ(dF )ΓN
]
ε ,

(2.30)

with F = F3 + F7 for type I, and the covariant derivative and the O operators defined in
eqs. (2.29). The equations of motion are

RMN + 2∇M∇Nφ−
1
4e

2φ(F 2)MN = 0 ,

R+ 4∇2φ− 4(∂φ)2 = 0 ,
(2.31)

and the crucial contribution, which is the quadratic term in the R-R fields, originates
from ΓM [Dsusy

M , Dsusy
N ] and eφOsusyFΓN . Our hope would be to define two operators, as in

eqs. (2.2), which imply the equations of motion with the tadpole potential:

RMN + 2∇M∇Nφ+ 1
2e

2φ
(
V + 1

2V
′
)
gMN −

1
4e

2φ(F 2)MN = 0 ,

R+ 4∇2φ− 4(∂φ)2 + 1
2e

2φV ′ = 0 .
(2.32)

– 8 –
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The new fake superpotential must then include the form fields, but working in full generality
as in the flux-free case is much more difficult. Terms of the type [DM , DN ] and eφOF ,
which would be relevant for the quadratic terms in the form fields, must produce the e2φ

factor in the first of eqs. (2.32). The recovery of the operator relevant for the dilaton
equation, which in the supersymmetric case is(

Dsusy −Osusy + 1
16e

φF

)
(Dsusy −Osusy)− (∇M − 2∂Mφ)Dsusy

M , (2.33)

rests on the property that D and O have the same eφ prefactor in front of the R-R form
fields. These considerations prompt us to define, in the simplest possible way,

DMε =
(
∇M +W(φ)ΓM + 1

16e
φFΓM

)
ε ,

Oε =
(
dφ+ g(φ) + 1

16e
φΓMFΓM

)
ε .

(2.34)

Unfortunately, these expressions do not imply the equations of motion. One can verify
indeed that

0 =
[
ΓM [DM , DN ] + [∇N +WΓN ,O]− 1

16e
φOFΓN + (W ′ − 2W)ΓNO

]
ε =

=
[1

2(Gravity EoM without V (φ))MNΓM + (∝ Bianchi identities)ΓN+

+ (18W2 +W ′g − 2Wg)ΓN + (g′ − 2W − 8W ′)∇Nφ+

+ 1
16e

φ
(
(8W − g)FΓN −WΓMFΓNΓM +W ′ΓNΓMFΓM )

) ]
ε .

(2.35)

The third line is the same contribution that appeared in eq. (2.6), leading to the tadpole
terms in the equations of motion if W and g are defined by eqs. (2.8). However, the last
line of eq. (2.35) does not vanish with these W and g. In fact, similar considerations hold
for the dilaton equation, generalizing eq. (2.33), for which one would need that

(10W − g)F + (g′ − 9W ′ −W)ΓMFΓM = 0 . (2.36)

Using the second of eqs. (2.8) in eq. (2.36), the vanishing of the last line of eq. (2.35) would
imply g =W = 0, an indication that this strategy only works for the supersymmetric case,
insofar as no other modifications are included beyond the tadpole potential itself.

There are in principle alternative routes, for instance increasing the number of spinors
εi, but the author has been unable to overcome the structural problems that led to the
ansatz in eqs. (2.34). One natural adjustment would be keeping the eφ in front of the
form fields, while leaving free numerical coefficients aFΓM , bΓMF , cΓMFΓM and dF in
the fake supersymmetry equations. However, one would thus generate terms of the type
(F 2)MN and F 2gMN in the metric equations of motion, obtaining two equations for the four
coefficients. Then, the requirement that D−O should not contain form fields would yield
two more equations, fixing a, b, c, d to the values that correspond to the supersymmetric
case, thus recovering eqs. (2.34).

– 9 –
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A similar fate emerges for the heterotic model, in which the 3-form field belongs to the
NS-NS sector and has no relative e2φ factor. The simplest attempt,

DMε =
(
∇M +W(φ)ΓM + 1

4HM

)
ε ,

Oε =
(
dφ+ g(φ) + 1

2H
)
ε ,

(2.37)

would be consistent with the equations of motion only for W = 0, which rules out the
scalar potential.

These considerations suggest that, if a first-order formalism including form fields exists,
it necessarily departs from the simple form of the supersymmetric variations. We suspect
that further progress will require that one reconsider the structure of the kinetic terms,
allowing in them more general scalar contributions. We plan to return to this point soon.

3 Vacuum solutions

One of the most basic questions that one can ask in string compactifications is whether
there exists a vacuum solution, a set of relatively symmetric field profiles describing an
empty spacetime. This usually translates into a vanishing stress energy tensor, but for
non-supersymmetric strings we know that the tadpole potential cannot disappear. In some
sense, it is a cosmological constant with a non-zero coupling to the dilaton, so that a vacuum
solution should naturally involve a non-trivial profile for the dilaton. However, the form
of the potential and the absence of minima make the analysis more involved, and at the
same time more interesting, for instance possibly leading to the need for time dependence.

Before proceeding, let us review how vacuum solutions arise in the supersymmetric
case. One usually considers a metric ansatz with a four-dimensional extended maximally
symmetric space

ds2 = e2Ads2
4 + ds2

6 , (3.1)

with the warping function A and the dilaton φ depending on the coordinates of the six-
dimensional manifold. If one is interested in vacua with unbroken supersymmetry, the first
step is to realize how spinors decompose. The space of ten-dimensional spinors is a tensor
product between the spaces of four and six-dimensional spinors, therefore one can consider
Γ matrices of the form

Γµ = eAγµ ⊗ 1 , Γi = γ(4) ⊗ γi , (3.2)

with γ(4) the chirality matrix in four dimensions, along with the spinor decomposition

ε = ζ+ ⊗ η+ + ζ− ⊗ η− . (3.3)

The notation for the chiral spinors ζ and η is to be understood schematically, because
there might be additional indices representing the amount of supersymmetry, or ε might
even be defined as a sum over a set of ζI and ηJ . The Majorana property demands that
(ζ±)c = ζ∓, and the same for η. Then, because of the isometries of the vacuum solution, ζ
must live in the space of four-dimensional Killing spinors, and η must only depend on the

– 10 –
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internal coordinates. Therefore, defining ∇µζ± = µ
2γµζ∓ and assuming ∂iζ± = 0, unbroken

supersymmetry requires
∇Mε = 0 ,
dφε = 0 .

(3.4)

The first of eqs. (3.4), using the spinor ansatz in eq. (3.3), leads to

∇iη+ = 0 ,
µe−Aη+ − dA · η− = 0 .

(3.5)

Then, since η+ and γiη− are independent spinors, this is equivalent to

µ = 0 , dA = 0 , ∇iη+ = 0 . (3.6)

The preceding steps recover the well-known result that supersymmetric vacuum solutions
are unwarped four-dimensional Minkowski spaces with internal six-dimensional manifolds
with reduced holonomy [37]. The dilatino variation in eqs. (3.4) requires a constant dilaton,
which concludes the analysis.

Given the results of section 2, one might want to replicate the reasoning for the non-
supersymmetric strings employing our first-order formalism. However, there is a problem-
atic challenge that is not unexpected, due to the structure of the fake susy equations in
eqs. (2.5). In fact, in both equations, the new terms WΓM and g carry a number of gamma
matrices with opposite parity with respect to the potential-free case, therefore inducing too
many conditions on the spinor. Explicitly, assuming the same ansatz as before, in eq. (3.3),
eqs. (2.5) yield

µe−Aη− + dAη+ + 2Wη+ = 0 ,
∇iη+ +Wγiη+ = 0 ,

(dφ+ g)η+ = 0 .
(3.7)

In the third equation, η and γmη are independent, and the only possible solution requires
dφ = 0, which is however inconsistent with a non-zero g. Similarly, the first equation
requires µ = 0 and A = 0, which is again incompatible with the presence of W. We then
discover that the first-order formalism that we introduced does not contain any vacuum
solution analogous to the Minkowski × CY vacua of supersymmetric string theory.

There are various approaches that one might want to follow, after the failure of the
simplest procedure. One possibility would be to modify the spinor ansatz in eq. (3.3), mak-
ing the analysis less natural, or even to work in the four-dimensional low-energy effective
theory with non-trivial kinetic terms for the compactification scalars. A more basic possi-
bility would be to invoke the necessity of fluxes, abandoning the idea of susy-like vacuum
solutions from the first-order formalism. In this section, we shall instead explore a setting
that evades the above issues: codimension-one vacua.

3.1 Codimension one

Consider a codimension-one ansatz
ds2 = e2A(y)ηµνdx

µdxν + dy2 ,

φ = φ(y) ,
(3.8)
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with a ten-dimensional spinor ε(y) that depends on the coordinate y. This ansatz seems
more likely to produce a non-trivial solution of the first-order equations. In fact, the lit-
erature on fake supersymmetry is primarily devoted to the study of domain walls, with
asymptotically flat or AdS spacetimes. See for instance [29], where spinors are asymptoti-
cally Killing spinors and the fake superpotential becomes a constant. In our settings, we do
not have a clear understanding of the asymptotic boundary conditions, which will become
a problem in section 4, but for the moment we can still apply the first-order equations to
the codimension-one ansatz, at least far from the possible locations of domain walls.

We can safely consider eqs. (2.5) in either the Einstein or string frames, because our
choice of notation allows this ambiguity. Making use of the codimension-one ansatz for
metric, dilaton and spinor ε, the fake supersymmetry equations lead to

φ′(y) = ±g(φ) ,
∂yε = ±Wε ,

A′(y) = ±2W .

(3.9)

Then, one can write
ε = e

1
2A(y)ε0 , (3.10)

with ε0 a constant ten-dimensional spinor. These considerations are valid independently
of the explicit form of the scalar potential.

3.2 The Dudas-Mourad solution

The Dudas-Mourad solution [33] is a codimension-one vacuum for the tachyon-free non-
supersymmetric string theories in ten dimensions. It is the natural arena for the formalism
that we have developed, and being perturbatively stable [32], it is also an appropriate
example for the stability questions that we mentioned in the Introduction, and that we
shall explore further in section 4. We focus on the tadpole potential for the orientifold
models, both for definiteness and because this is the case in which we have an explicit
fake superpotential. The first comforting result comes from the differential equations for
the fake superpotential, because both eqs. (2.8) in the string frame and eqs. (2.20) in the
Einstein frame become the Dudas-Mourad equations of motion for A and φ in the gauge
B = 0, as expected from the general construction of section 2.

In order to explicitly compare the codimension-one vacuum of [33] with our fake su-
perpotential, we must turn to the appropriate gauge, B = −1

2φ in the string frame or
B = −3

4φ in the Einstein frame. We choose to work in the string frame, in which the
Dudas-Mourad solution reads

ds2
s =

√T

2 y

 4
9

e
1
2φ0e

T
8 y

2
ηµνdx

µdxν +

√T

2 y

− 2
3

e−φ0e−
3T
8 y2

dy2 ,

φ = φ0 + 3T
8 y2 + 2

3 log

√T

2 y

 .

(3.11)
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The second of eqs. (2.5), using the expression for g(φ) in eqs. (2.19), is

e
1
2φφ′γyε = ∓

√
T

2 e
1
2φ

[√
W (e3(φ−c)) +

√
1

W (e3(φ−c))

]
ε . (3.12)

The explicit dilaton profile in eqs. (3.11), along with some properties of the W function,
determines the integration constant c in terms of φ0 as c = φ0 + 2

3 log 2
3 . Then, eq. (3.12) is

equivalent to γyε = ∓ε, with γy the gamma matrix in flat space. The fake superpotential
and the g function, written in terms of φ0, read

W(φ) = ± 1
12
√
Te

1
2φ

√W (9
4e

3(φ−φ0))
2 +

√
2

W (9
4e

3(φ−φ0))

 ,
g(φ) = ±

√
Te

1
2φ

√W (9
4e

3(φ−φ0))
2 +

√
1

2W (9
4e

3(φ−φ0))

 .
(3.13)

We now turn to the first of eqs. (2.5) with M = µ, which is

1
2e

1
2φA′γyε = ∓ 1

12
√
Te

1
2φ

√W (9
4e

3(φ−φ0))
2 +

√
2

W (9
4e

3(φ−φ0))

 ε , (3.14)

and is also equivalent to γyε = ∓ε. On the other hand, the M = y equation contains the
y-dependence of the spinor, and produces

∂yε =
(
T

16y + 1
9y

)
ε . (3.15)

To summarize, our first-order formalism captures the Dudas-Mourad solution with
eqs. (3.13), and corresponds to a string-frame spinor

εS = e
T
32y

2

√T

2 y

 1
9

ε0 ,

γyε0 = ∓ε0 ,

(3.16)

with the two signs corresponding to the overall sign ambiguity of W. For completeness,
and in view of section 4, the Einstein-frame spinor in the gauge and the variables of [33] is

εE = e−
T
64y

2

√T

2 y

 1
36

ε0 ,

γyε0 = ∓ε0 .

(3.17)

3.3 Other solutions

In section 2, we studied a generic exponential potential. The codimension-one equations
of motion for these systems were recently analyzed in [38], and we might ask whether
those solutions are captured by the fake superpotentials that we obtained. The answer is
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positive, and in section 3.4 we shall mention the reason why this is not surprising. For the
time being, let us find the explicit matching.

A simple case is the superpotential corresponding to eq. (2.14), which provides the
supercritical solutions of [38] with linear A and φ. In fact, the gauge used in [38] is such
that the function f(y) of [38] is the same as the f(φ(y)) that we use in eq. (2.22), which
partly explains our notation in this paper. The differential equation (2.23) matches the
differential equation for f(y) in [38].

The correspondence survives in the generic case because the gauge B = −β
2φ in the

Einstein frame generates a (Dµ +WΓµ)ε = 0 equation, which, using eq. (2.22), reduces to

A′(y) ∝ sinh f(φ(y)) . (3.18)

Using the explicit results in [38], one can then verify that the matching is complete, provided
that the spinors are

ε(y) = e
A(y)

2 ε0 , (3.19)
in complete agreement with eqs. (3.9). In particular, the two non-trivial fake superpoten-
tials for the heterotic theory that we derived in section 2.1 correspond to the two indepen-
dent types of codimension-one solutions of [33], and the monotonic W represents the less
interesting unbounded solution.

A similar analysis could be accomplished with the scalar potentials of [39], computing
the fake superpotentials relevant in those cases, and we leave this investigation for future
work.

Note that even when T = 0 there exists a non-vanishing W, which in the Einstein
frame is W0e

± 3
4φ. This reproduces the uncharged codimension-one solutions of [36].

3.4 Some comments on the formalism

We have found an exact matching between codimension-one solutions obtained from the
equations of motion and from the fake supersymmetry approach. This is not coincidental,
and in fact in [40, 41] the authors found that, for a class of gravity solutions that depend
on a single coordinate, one can trade the second-order classical equations of motion for
the same number of first-order equations, together with a non-linear partial differential
equation. This non-linear differential equation connects, in fact, the scalar potential and
the corresponding fake superpotential. One can link the class of gravitational systems for
which this procedure is possible to the vanishing of a conserved charge in the Hamilton-
Jacobi formulation of the associated one-dimensional mechanical system.4

The present setting is more general, because the first-order equations of [41] need not
assume the form of eqs. (2.5). In fact, in the fake supersymmetry literature one usually
handles the differential equations for the fields entering the metric ansatz, while our first-
order formalism is supposed to work with any metric ansatz. This is ultimately the reason
behind the difficulty that we encountered with form fields, but if we managed to circumvent
the obstacles of section 2.3, it might open a new window into the non-supersymmetric string
landscape.

4See [41] for a detailed explanation of how this property is related to the factorization of Hamilton’s
principal function.
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4 Energy and stability

As we explained in the Introduction, our investigation attempts to replace supersymmetry
with other criteria granting the dynamical stability of string vacua.

Assessing the complete stability would require a proper control of quantum effects,
which is difficult to attain in general, and in particular in a theory of gravity, where our
physical intuition, however, can capture some details of the (semi)classical regime. In
regions of field space where perturbative string theory is a good description of quantum
gravity, the absence of tachyons in the spectrum characterizes stable compactifications
ending up in Minkowski space. The inclusion of non-perturbative effects is usually possible
only relying on non-renormalization properties of supersymmetric vacua, which can usually
upgrade some classical results to the quantum regime. The first-order formalism that we
developed in section 2, being only a formal tool, cannot replace supersymmetry in its
physical content. However, it can still play a role for stability, because it can effectively
mimic supersymmetry in the definition of a positive-definite quantity associated to vacua,
which one might interpret as an energy. This procedure is under control for asymptotically
flat or AdS vacua, but necessarily relies on non-trivial assumptions in all other cases. The
absence of a general definition of energy for a string vacuum5 motivates us to explore the
one that we can define with the operators DM and O.

The absence of a global group of isometries, in a generic curved spacetime, prevents
one from identifying the energy as the charge associated with time translations. In fact, the
type of energy that we shall use in this section for the dilaton-gravity setup with a tadpole
potential is inspired by the Witten-Nester formalism. The main idea is that, in a supersym-
metric theory, a preserved real supercharge Q is such that schematically 〈{Q,Q}〉 ≥ 0, and
a supersymmetric state saturates the bound. In [24], Witten used this spinor definition of
energy, motivated by the above supersymmetry argument, addressing the stability of pure
gravity. Indeed, the various spinors appearing in the formalism can be taken as auxiliary
objects, unrelated to any physical symmetries, and the only requirement is their existence.

Let us briefly review the general scheme in the case of four-dimensional asymptotically
flat spacetimes, following the conventions of [30], in which the authors proved the stability
of ten-dimensional supergravity vacua in analogous ways. The energy is

I(ε) ∼ 〈{Q,Q}〉 ∼
∫
∂Σ
?E2 , (4.1)

with a two-form
E2 = −1

2 ε̄ γµνρ∇
ρε dxµ ∧ dxν , (4.2)

where

• ε is a commuting Majorana spinor, which becomes a constant ε0 at infinity, up to
r−1 terms, where r is the radial distance.

5A string vacuum is a 2D SCFT, defining the background in which perturbative string theory lives. It
would then be interesting to define a notion of energy directly from the worldsheet, which should match
the known spacetime energies for the cases under control.
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• ∂Σ is the asymptotic boundary of a spatial slice. One can understand the surface Σ
as an initial-value surface.

This is a consistent notion of energy, because

I(ε) = I(ε0) = −ε̄0γ
µε0Pµ , (4.3)

with P the ADM four-momentum. In order to verify that I(ε) is positive definite, one can
apply Stokes’ theorem, assuming the appropriate levels of smoothness, and then

I(ε) =
∫

Σ
d ? E2 =

∫
Σ

(
∇ν ε̄γµνρ∇ρε+ 1

2

(
Rµν −

1
2Rgµν

)
ε̄γνε

)
nµ , (4.4)

where nµ is a time-like unit vector orthogonal to Σ. Consequently, the contribution pro-
portional to the equations of motion vanishes and, in a frame where nµ is directed toward
the time direction,

I(ε) =
∫

Σ
(∇iε)†(∇iε)−

∫
Σ
|γi∇iε|2 , (4.5)

where i denotes a spatial index. Positivity follows if

γi∇iε = 0 , (4.6)

which is known as the Witten condition. In a supergravity theory, this condition would
be equivalent to the choice of a transverse gauge for the gravitino, γiψi = 0. Therefore,
I ≥ 0, and I = 0 only when ∇iε = 0. Then, the arbitrariness of Σ implies that solutions
with zero energy are supersymmetric vacua δψµ = 0, concluding the proof of the positive
energy theorem for Minkowski spacetimes.

The results of section 2 prompt us to investigate a similar definition with a non-
vanishing dilaton tadpole, starting from our first-order formalism. In fact, the same inspi-
ration was the central topic of [26], which elaborated on the observation that the Witten-
Nester construction does not rely on supersymmetry, so that the spinors can be mere auxil-
iary variables. Therefore, having in mind the effective theories for the non-supersymmetric
strings with only gravity and the dilaton, in the Einstein frame, we can define

EMN = −ε̄ΓMNPDP ε . (4.7)

This is the equivalent of the Witten-Nester two-form, with DP the modified derivative
including the fake superpotential of eqs. (2.5).

The usual procedure that we reviewed would transform a codimension-two (hy-
per)surface integral into a codimension-one boundary integral, using Stokes’ theorem. How-
ever, this is consistent only when the codimension-one surface is non-singular, which is not
the case for the vacua of section 3 that we want to analyze. One can include horizons, and
even time-like singularities corresponding to BPS sources, but for the type of singularities
that we encounter in the non-supersymmetric strings, we are not allowed to use Stokes’
theorem. Therefore, we propose to write the energy directly in terms of an integral on a
codimension-one surface, as

I(ε) =
∫

Σ
∇NEMNdΣM . (4.8)
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The integral over Σ, in the cases of interest, still encloses singularities at the boundary, and
this will inevitably generate some problems of interpretation. Postponing this discussion
to section 4.1, from eq. (4.7) and eqs. (2.5) one can see that

∇MEMN = DMεΓMPNDP ε+ 1
2 ε̄ (Gravity EoM)MN ΓMε−

1
8OεΓ

NOε . (4.9)

In a frame where the surface is purely spacelike, the on-shell value of energy in eq. (4.8)
becomes

I(ε) =
∫

Σ
−DmεΓ0mpDpε+ 1

8OεΓ
0Oε ≥

∫
Σ
− (Dmε)† ΓmΓp (Dpε) . (4.10)

If we can impose the Witten condition with the new operator DM ,

ΓmDmε = 0 , (4.11)

eq. (4.10) provides a positive-definite quantity, with a natural interpretation as an energy.
We shall not address here the technical questions related to the existence, in general, of
such spinors. Note that I(ε) vanishes if and only if the fake supersymmetry equations are
satisfied, and we have seen that this is the case for the Dudas-Mourad vacuum.

4.1 Implications for codimension one

It is tempting to regard the analysis of the previous section as a proof that the Dudas-
Mourad solution of eqs. (3.11) is a stable vacuum of non-supersymmetric string theories.
We believe, however, that this implication would be too naive, for reasons related to the
boundary conditions. In fact, even assuming that eq. (4.8) serves as a definition of en-
ergy, we can only infer that zero-energy configurations are stable under decay processes
preserving the boundary conditions. In the Dudas-Mourad case, these contain the singular
endpoints of the compact interval. Accordingly, we can trust the stability claim only if the
timelike codimension-one singularities are physical and represent fixed boundaries. With a
change of perspective, one can reformulate the previous statement linking the stability of
the Dudas-Mourad solution to properties of the boundary. This agrees with similar claims
in the literature, and we think that our argument strengthens this physical intuition.

As a comment on the pivotal role of boundary conditions, we mention that even in
some less puzzling setups there are no implications for stability, despite the presence of
fake supersymmetry equations. In [29], the authors considered a cubic fake superpotential,
with the corresponding scalar potential yielding an AdS vacuum. They showed that, if the
AdS vacuum is not an extremum of the fake superpotential as well, tachyonic instabilities
below the B-F bound can arise. In this sense, the first-order formalism itself is not powerful
enough unless the boundary conditions are under control.

Before concluding, we note that interpreting the Dudas-Mourad vacuum as a sponta-
neous compactification on an interval, and studying the nine-dimensional resulting effective
field theory, as in [38], our proposal for the energy would become the usual Witten-Nester
energy for asymptotically flat spacetimes. In fact, the remarkable property of the spinor
ε(y) in eqs. (3.17) is that it is smooth, even though the gravity solution is singular. Then,
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integrating out the y-direction would lead to the nine-dimensional Witten-Nester energy,
taking ε0 as ε0(x). This proves, for instance, that if a bubble of nothing exists for this class
of vacua, it necessarily involves the y-interval in a non-trivial fashion.

5 Conclusions

This work is an attempt to setup a novel approach to the analysis of non-supersymmetric
string vacua, based on first-order susy-like equations. The basic formalism is not new, but
we have applied it in a different way to string models with tadpole potentials.

Codimension-one vacua are the natural arena for the first-order formalism, because of
the restriction to gravity and the dilaton. Unfortunately, this work did not generate so far
new classes of vacua, for the reasons explained in section 3.4. Nonetheless, it led us to a
peculiar definition of energy, which appears to encode useful information on vacuum sta-
bility in this context. At any rate, our study of exponential potentials in section 2, and the
explicit solution for the critical case in eqs. (2.19), are a step toward new ways to engineer
non-supersymmetric vacua without relying on the second-order equations of motion.

Adding fluxes to the fake supersymmetry equations would clearly represent a consider-
able advance. Our work in section 2.3 is not the most general approach, as we have stressed,
and generalizations could involve a different spinor ansatz or scalar-dependent extensions
of kinetic terms. We plan to return to this issue in future work. A similar approach might
be of interest in an effective field theory with more than one scalar, even in presence of a
non-trivial scalar-field geometry. A different question is what types of higher-derivative cor-
rections can be included in this formalism, in view of α′ corrections to the string equations
of motion. This could well impact the stability side, as is the case in other contexts.

As a final comment, we note that the flux solutions of [42] are either perturbatively or
non-perturbatively unstable [32, 43]. Therefore, if one could generalize eqs. (2.5) with the
inclusion of R-R and NS-NS forms, the first-order formalism should exclude these vacua.
The connection between this prediction and the general procedure described in [30] for
addressing the stability of non-supersymmetric vacua deserves further scrutiny.
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