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1 Introduction

Neutrinos are among the most mysterious particles of the Standard Model (SM). The
discovery of their flavour oscillations remains one of the strongest pieces of evidence for
new physics, since it requires neutrinos to be massive [1, 2]. In the SM, however, neutrinos
are described by a purely left-handed spinorial field forming part of an SU(2)L doublet [3],
which, by the principles of gauge invariance, disallows a mass term for neutrinos at the
renormalisable level. Hence, the neutrino sector has inspired a myriad of extensions beyond
the SM (BSM) (see, for example, ref. [4] for a review).

A convenient parametrisation of new physics in neutrino interactions has been estab-
lished in terms of the low-energy effective field theory (EFT) of non-standard interactions
(NSI) [5–12]. This formalism contemplates modifications to neutrino interactions with SM
particles while respecting the SM vector current structure. Over the last decades, a variety
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of experimental bounds have been derived for the NSI couplings [13–54], most importantly
from neutrino oscillation and spallation source experiments. The latter have recently suc-
ceeded in observing the coherent elastic scattering of neutrinos with nuclei (CEνNS) [55, 56]
with a rate consistent with the SM prediction [57, 58], providing stronger constraints on
new physics contributions (see, for example, refs. [59–65]).

Meanwhile, dark matter (DM) direct detection (DD) experiments have experienced
remarkable progress. Current detectors have significantly increased their target size and
sensitivity, to the point where they will be able to observe the scattering of solar neutrinos.
This constitutes a new background for DM searches, which leads to the so-called neutrino
floor (or fog) [66–68], but it also offers the unique opportunity to probe new physics with
these instruments [69–77]. Neutrinos can be observed in DD experiment through elastic
neutrino-electron scatting (EνES) or their coherent elastic scattering with nuclei. Due to
their larger target size, liquid noble gas detectors like LUX-ZEPLIN (LZ) [78], PandaX [79],
and XENONnT [80], are better positioned than other DD techniques to carry out this kind
of search. Indeed, the larger xenon-based DD experiments have thus far succeeded in
placing upper bounds on the 8B neutrino flux [81, 82]. The sensitivity of DD experiments
to these processes has already led to studies in which the expected solar neutrino scattering
rate has been used as a laboratory for gaining a deeper understanding of the nature of solar
physics, neutrino oscillations, and BSM neutrino physics [69, 70, 72, 74, 77, 83–91].

In this work, we set out to exploit the sensitivity of DD experiments to solar neutrino
scattering with the aim of exploring their impact on the NSI landscape. In the context of
dedicated neutrino experiments, NSI studies are numerous; however, the potential of DD
experiments has not been fully investigated. Previous works have pointed out that non-
zero NSI parameters could produce appreciable signals for both CEνNS and EνES [70, 74]
in DD, as well as potentially modify the neutrino fog [92, 93].

To this end, we will introduce a convenient parametrisation of NSI, extending the
framework of ref. [36] to include an explicit separation between NSI in the electron and
proton directions. This is needed to interpret the results of DD experiments. Ignoring
the electron contribution is a valid choice as long as one is mostly interested in matter
effects for oscillation experiments,1 but this is a non-general treatment. Striving for greater
generality, we allow for the possibility that the ‘charged’ neutrino NSI is shared between
both the proton and the electron. While the total charged contribution can be designed
to leave neutrino oscillations unchanged, allowing for electron NSI can instead lead to
changes in the EνES cross section. This, in turn, can affect the bounds set by oscillation
experiments, which could instead be dominated by NSI effects at the detection point [94].

Furthermore, as was recently pointed out in ref. [95], when new physics introduces
potential flavour-changing neutral currents (FCNC), the full flavour structure of the cross
section must be retained when dealing with a neutrino flux composed of an admixture of
flavour eigenstates. This is in contrast with the SM, where interactions are diagonal in
the flavour basis. Thus, in the general NSI case, it is no longer appropriate to project

1Non-standard matter effects enter the matter Hamiltonian via a contribution from the neutron and an
overall charged contribution from both the proton and the electron.
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the neutrino state that reaches Earth onto any one particular flavour state and convolve
the result with flavour-pure cross sections, as neutrinos arrive in a superposition of flavour
eigenstates.2 Instead, we must consider the full flavour-structure of both the cross section
and the density matrix describing the evolution of the initial neutrino state.

The rate of neutrino events in a generic neutrino scattering experiment is then de-
scribed by the expression [95],

dR
dER

= NT

∫
Emin
ν

dφν
dEν

Tr
[
ρ

dζ
dER

]
dEν , (1.1)

where NT is the number of targets, φν is the neutrino flux at the source,3 ρ is the neutrino
density matrix at the experiment and ζ is a generalised scattering cross section in the
neutrino-flavour space, encoding correlations between scattering amplitudes of neutrinos
with different flavours. Here, Eν is the energy of the incident neutrinos and Emin

ν is the
minimum Eν required to produce a target recoil energy of ER.

Using this generalised framework, in this paper we study how DD experiments will
constitute a valuable complementary probe of the NSI landscape. To do this, we first
explore how previous limits derived from oscillation and spallation source experiments map
onto the full NSI parameter space. Then, we derive new limits from the recent data from
LZ and XENONnT onto the NSI parameters and make projections for their full exposure
runs, as well as for the future DARWIN experiment [96]. We demonstrate that xenon-
based DD experiments like XENON [81, 97, 98], DARWIN [96], PandaX [79, 99, 100] and
LZ [101–103] will be sensitive to generic NSI couplings in a competitive and complementary
way to oscillation, beam, and spallation source experiments. We do this by comparing our
results and projections to those derived in refs. [31, 36, 39, 74, 95]. Given that DD will be
sensitive to both CEνNS and EνES, we explore their limits and projections in our extended
parametrisation, emphasising the complementarity of both signals. Indeed, due to the high
flux of solar neutrinos and the excellent background reduction of DD experiments, their
sensitivity to electron NSI is remarkable and is competitive with that of conventional
neutrino oscillation experiments.

This article is organised as follows. In section 2, we introduce the framework of non-
standard neutrino interactions, explicitly incorporating interactions with electrons as well
as the impact of such NSI on solar neutrino physics. We then derive the relevant formal-
ism for computing the density matrix and the generalised cross section, both required to
compute the expected solar neutrino scattering rates. In section 3, we shed light on the
current landscape of NSI constraints derived from oscillation and spallation source exper-
iments, as well as their sensitivity to interactions with electrons. We present and discuss

2We stress that the simplified treatment of calculating the number of neutrino scattering events in the
presence of new physics, given by Nν ∝

∑
α
Peα dσναT /dER, where Peα is the transition probability to a

neutrino of flavour α, is only appropriate in two cases. Firstly, if the flux of neutrinos incident on a target
is only composed of one flavour. Secondly, if the new physics contribution is flavour-conserving.

3Of particular relevance to experiments sensitive to solar neutrinos is the fact that electron neutrino pro-
duction in the Sun proceeds through a series of charged-current interactions. Since we are only considering
neutral-current NSI, the electron neutrino flux produced in the Sun is unchanged.
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the results of our sensitivity study of DD experiments to NSI as the main results of this
work in section 4. Finally, we draw our conclusions in section 5.

2 Solar neutrino physics and Non-Standard Interactions

In this section, we introduce the framework of neutrino NSI and study their impact on solar
neutrino physics, both in propagation effects and in scattering with nuclei and electrons.
In doing so, we derive the relevant expressions for the solar neutrino density matrix, ρ,
and the generalised cross section, ζ, for CEνNS and EνES entering the rate in eq. (1.1).
For an explanation of the origin of this rate equation, we refer to appendix A.

2.1 NSI parametrisation

In order to understand how potential new neutrino interactions enter the scattering rate in
eq. (1.1), we need to specify a BSM model. Since we want to remain as general as possible
about the origin of such new physics, we will work in terms of a low-energy effective
theory. Making use of the framework of neutrino NSI [5, 12, 15, 104], we can parametrise
new physics effects in the neutrino sector by contact terms of the form4

LNSI = −2
√

2GF
∑

f=e,u,d
α,β=e,µ,τ

εfPαβ [ν̄αγρPLνβ ]
[
f̄γρPf

]
, (2.1)

where GF denotes the Fermi constant and P ∈ {PL, PR}. The NSI parameters εfPαβ ,
which are in general flavour-violating, quantify the strength of the interaction between
the neutrinos να and νβ and the pair of fermions f relative to the SM weak interaction,
characterised by GF . In this work, we will not consider any new source of CP-violation
and hence assume the parameters εfPαβ to be real. Furthermore, we have assumed that
the charged fermions f are identical, resembling the SM neutral current (NC) interaction.
However, charged current (CC) NSI could also exist, where the neutrinos couple to two
different charged fermions, f and f ′. Since these are, in general, subject to much harsher
constraints and DD experiments do not probe CC interactions in NRs, we do not consider
them here but rather direct the reader to, for example, refs. [25, 31, 104, 109–112].

To describe neutrinos interacting with ordinary matter (made up of electrons, protons
and neutrons), only interactions with the first generation of SM fermions need to be con-
sidered. If we assume that the neutrino flavour structure of the NSI is independent of the
charged fermion f that the neutrinos couple to, we can factorise the NSI coupling as [36]

εfPαβ = εη,ϕαβ ξ
fP , (2.2)

where ξfP describes the relative strength of the interaction with the fermions f ∈ {e, u, d}
and εη,ϕαβ denotes the overall strength of the NSI. We further define the vector and axial-

4Note that this parametrisation is not SU(2)L invariant and is mainly motivated by the structure of the
SM weak current. In order to systematically capture all gauge invariant dimension-six operators modifying
neutrino interactions, it is more suitable to consider a complete basis of EFT operators and map them onto
the enlarged basis of general neutrino interactions [105–108].
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ε̂eαβ

ε̂pαβ

ε̂nαβ

εαβ

η
ϕ

Figure 1. Extended NSI parametrisation. A given NSI is defined by the radial component,
√

5 εη,ϕαβ
(which can be either positive or negative), the angle between the charged (ε̂pαβ , ε̂eαβ)-plane and the
neutron direction, η, and the new angle ϕ, which defines the NSI direction along either the proton
or the electron component. The domains of these angles are η, ϕ ∈ [−π/2, π/2], as visualised by
the blue and red semicircles, respectively.

vector NSI couplings
εfαβ = εfLαβ + εfRαβ = εη,ϕαβ ξ

f ,

ε̃fαβ = εfLαβ − ε
fR
αβ = ε̃η,ϕαβ ξ̃

f ,
(2.3)

with ξf = ξfL + ξfR and ξ̃f = ξfL− ξfR. As matter effects are only sensitive to the vector
part of the interaction, we focus only on vector NSI in this work, setting ε̃αβ to zero. Since
we are ultimately testing neutrino interactions with matter, it is convenient to parametrise
the NSI with quarks in terms of proton and neutron NSI,

εpαβ = 2 εuαβ + εdαβ ,

εnαβ = εuαβ + 2 εdαβ .
(2.4)

Extending the parametrisation of ref. [36] by re-introducing the electron direction via a
second angle ϕ, the relative strengths of the electron, proton, and neutron NSI are writ-
ten as,5

ξe =
√

5 cos η sinϕ ,
ξp =

√
5 cos η cosϕ , (2.5)

ξn =
√

5 sin η .

5The normalisation factor of
√

5 was originally introduced in ref. [36] to have unit vectors ξu and ξd if
the NSI are entirely in the up- and down-quark direction, respectively. We cohere to this normalisation for
comparability of our results with the literature on NSI global fits.
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In figure 1, we illustrate our parametrisation of the three base NSI directions ε̂pαβ , ε̂nαβ and
ε̂eαβ . We define the angle η as the angle of general NSI coupling εαβ = (εpαβ , εnαβ , εeαβ) with
the plane of charged NSI (ε̂pαβ , ε̂eαβ). The second angle ϕ is defined as the angle between
the general NSI element εαβ and the plane of hadronic NSI (ε̂pαβ , ε̂nαβ). In order to match
our notation with the literature on global NSI fits [36, 39], we allow for both positive and
negative values for εη,ϕαβ . Thus, the azimuthal angle η only runs in the interval [−π/2, π/2]
to span the full two-dimensional plane of hadronic NSI (εpαβ , εnαβ). The second, polar angle
ϕ (taken from the hadronic NSI plane) also runs in the interval [−π/2, π/2] to cover the
full sphere. For example, η = 0 and ϕ = 0 corresponds to NSI only in the proton direction
ε̂pαβ , η = 0 and ϕ = π/2 to NSI only in the electron direction ε̂eαβ , and η = π/2 to NSI only
in the neutron direction ε̂nαβ .

2.2 Three-flavour neutrino oscillations in the presence of NSI

With this extended framework, we can describe the evolution of neutrino and antineutrino
states during propagation in the Hamiltonian formalism by

Hν = Hvac +Hmat ,

H ν̄ = (Hvac −Hmat)∗ ,
(2.6)

where the standard vacuum Hamiltonian is given by

Hvac = UPMNS
1

2Eν

0 0 0
0 ∆m2

21 0
0 0 ∆m2

31

U †PMNS , (2.7)

with ∆m2
ij ≡ m2

i −m2
j and UPMNS being the PMNS matrix, defined as

UPMNS =

1 0 0
0 c23 s23
0 −s23 c23


︸ ︷︷ ︸

≡ R23

 c13 0 s13
0 1 0
−s13 0 c13


︸ ︷︷ ︸

≡ R13

 c12 s12 e
i δCP 0

−s12 e
−i δCP c12 0

0 0 1


︸ ︷︷ ︸

≡ U12

. (2.8)

Here, δCP is the CP-phase, and cij and sij refer to cos θij and sin θij , respectively.
The matter Hamiltonian, consisting of both the SM charged current and the NSI

neutral current contributions, is given by

Hmat =
√

2GF Ne(x)

1 + Eee(x) Eeµ(x) Eeτ (x)
E∗eµ(x) Eµµ(x) Eµτ (x)
E∗eτ (x) E∗µτ (x) Eττ (x)

 , (2.9)

with
Eαβ =

∑
f

Nf (x)
Ne(x) ε

f
αβ , (2.10)

where Nf (x) is the spatial fermion density in matter. With the definition of the nuclear
NSI couplings in eq. (2.4) and the fact that in neutral matter Np(x) = Ne(x), we can
express the dimensionless NSI matter Hamiltonian elements as

Eαβ = εeαβ + εpαβ + Yn(x) εnαβ = [ξe + ξp + Yn(x) ξn] εη,ϕαβ , (2.11)

– 6 –
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where Yn(x) = Nn(x)/Ne(x) denotes the fractional neutron density. In studying solar
neutrino propagation effects, we take Yn(x) from ref. [113].

In the context of solar neutrino physics, it is convenient to switch from the conventional
neutrino flavour basis to a new basis ν̂ = O†ν, which we will refer to as the solar neutrino
flavour basis, via the rotation O = R23R13. In this basis, the full Hamiltonian reads,

Hν = 1
2Eν

c
2
13Acc + s2

12 ∆m2
21 s12 c12 e

iδCP ∆m2
21 s13 c13Acc

s12 c12 e
−iδCP ∆m2

21 c2
12 ∆m2

21 0
s13c13Acc 0 s2

13Acc + ∆m2
31

+
√

2GF Ne(x)O†E O ,

(2.12)
where we have defined the matter potential Acc = 2EνVcc = 2Eν

√
2GFNe(x). From the

structure of the Hamiltonian above, we see that if ∆m2
31 � ∆m2

21, Acc, 2EνGF
∑
f Nf (x)εfαβ ,

the Hamiltonian is dominated by the third eigenvalue, ∆m2
31. In this case, it is effectively

block-diagonal, turning our 3ν problem into a 2ν one. In this rotated basis, the third mass
eigenstate decouples from the rest of the system and evolves adiabatically. Throughout
its journey from the Sun to the Earth, this third eigenstate can be well-approximated by
its vacuum mass eigenstate. Within this approximation, the Hamiltonian in eq. (2.12) is
transformed to an effective 2× 2 picture, where we only have to track the evolution of the
two lighter matter mass eigenstates.

The first condition, ∆m2
31 � ∆m2

21, is satisfied by current best-fits to oscillation
parameters [114]. The second is satisfied for solar neutrinos across the full range of solar
neutrino energies, Eν . 20 MeV. The third condition can be interpreted as one on the
value of εη,ϕαβ ,

εη,ϕαβ �
√

2 ∆m2
31

Acc(x) [ξe + ξp + Yn(x) ξn] . (2.13)

Taking the maximum of all these quantities, which occurs at the solar core, and using
Eν ∼ 20 MeV, we find that εη,ϕαβ . 3. We treat this as an upper bound on the value
of εη,ϕαβ , and we do not interpret our results above this value throughout our analyses.
Ultimately, for εη,ϕαβ ∼ 3 at these higher neutrino energies, which are relevant for NRs in
DD experiments, a full numerical simulation should be performed to more accurately model
neutrino oscillations. For the purposes of our sensitivity study, however, our approach is
sufficient.

Following the conventions of ref. [36] and setting δCP = 0 in this work, we can write
the effective Hamiltonian as Heff ≡ Heff

vac +Heff
mat, where

Heff
vac ≡

∆m2
21

4Eν

(
− cos 2θ12 sin 2θ12
sin 2θ12 cos 2θ12

)
, (2.14)

and

Heff
mat ≡

√
2GFNe(x)

[(
c2

13 0
0 0

)
+ [ξe + ξp + Yn(x) ξn]

(
−εη,ϕD εη,ϕN
εη,ϕN εη,ϕD

)]
. (2.15)

– 7 –
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The coefficients εη,ϕN and εη,ϕD are related to our parametrisation by

εη,ϕD ≡ c13 s13
(
s23 ε

η,ϕ
eµ + c23 ε

η,ϕ
eτ

)
−
(
1 + s2

13

)
c23 s23 ε

η,ϕ
µτ

− c2
13
2
(
εη,ϕee − εη,ϕµµ

)
+ s2

23 − s2
13 c

2
23

2
(
εη,ϕττ − εη,ϕµµ

)
,

(2.16)

and

εη,ϕN ≡ c13
(
c23 ε

η,ϕ
eµ − s23 ε

η,ϕ
eτ

)
+ s13

[
s2

23 ε
η,ϕ
µτ − c2

23 ε
η,ϕ
µτ + c23 s23

(
εη,ϕττ − εη,ϕµµ

)]
. (2.17)

Diagonalising Heff then allows us to find the matrix Um12 such that Um†12 H
effUm12 =

diag(Em1 , Em2 ). Typically, Um12 is parametrised as

Um12 =
(

cos θm12 sin θm12
− sin θm12 cos θm12

)
, (2.18)

for some matter mixing angle θm12. We find that the eigenvalues of the effective matter
Hamiltonian Heff are given by

Em1, 2 = c2
13Acc ∓

∆m2
21

4Eν

√
p2 + q2 , (2.19)

where we have defined the two quantities

p ≡ sin 2θ12 + 2 εη,ϕN [ξe + ξp + Yn(x) ξn] Acc
∆m2

21
,

q ≡ cos 2θ12 +
(
2 εη,ϕD [ξe + ξp + Yn(x) ξn]− c2

13

) Acc
∆m2

21
.

(2.20)

Thus, the energy difference between the two energy eigenvalues in matter, responsible for
the coherent mixing of the two matter mass eigenstates, is given by

∆Em21 ≡ Em2 − Em1 = ∆m2
21

2Eν

√
p2 + q2 . (2.21)

Moreover, we find that the matter mixing angle, θm12, obeys the relations

sin 2θm12 = p√
p2 + q2 ,

cos 2θm12 = q√
p2 + q2 ,

tan 2θm12 = p

q
.

(2.22)

With these expressions, we are in the position to describe the neutrino evolution in
the full 3× 3 picture. Using the notation of ref. [95] and the fact that solar neutrinos are
relativistic (such that t ' x), we can write the evolution equation in the solar neutrino
flavour basis as

i
d

dx

ν̂eν̂µ
ν̂τ

 =
(

Evol[Heff ] 0
0 exp[−i ∆m2

31
2Eν L]

)
︸ ︷︷ ︸

≡ S̃

ν̂eν̂µ
ν̂τ

 . (2.23)
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To obtain the evolved matter Hamiltonian, we can split up the distance of propagation
within the Sun into N equidistant slabs of thickness ∆x with approximate homogeneous
matter density. We can then obtain the evolved Hamiltonian by formally taking the limit

Evol[Heff ] = lim
∆x→0

N∏
n=0

UmPMNS(xn) exp
[
−i
(
Um†12 H

effUm12 − i U
m†
12 U̇m12

)
∆x
]
UmPMNS(xn)† ,

(2.24)
where U̇m12 = (d/dx)Um12 and xn = xn−1 + ∆x. From this, we can write the full evolution
equation in the conventional vacuum-flavour basis as

i
d

dx

νeνµ
ντ

 = O S̃ O†︸ ︷︷ ︸
S

νeνµ
ντ

 , (2.25)

with the rotation matrix O = R23R13. In this notation, the full S-matrix is thus given by

S = OU12︸ ︷︷ ︸
UPMNS

(
exp

[
−i

∫ L
0 D(x) dx

]
0

0 exp[−iΦ33]

)
Um12(x0)†O†︸ ︷︷ ︸
UmPMNS(x0)†

, (2.26)

with Φ33 = ∆m2
31L/(2Eν), where we evolve the neutrinos from their production point

within the Sun, x0, to their detection point at an experiment over the distance L. Finally,
the 2× 2 time-evolution matrix is given by

D(x) =
(
Em1 −i θ̇m12
i θ̇m12 Em2

)
. (2.27)

To simplify our analysis, we make the assumption that the two light matter mass
eigenstates of Heff , |ν1m〉 and |ν2m〉, propagate adiabatically within the Sun. As such,
the two eigenstates do not mix with one another as they travel to the surface of the Sun,
remaining eigenstates of Heff throughout their evolution. This assumption is appropriate
because the matter density within the Sun, described by Nf (x), varies slowly enough to
allow the matter eigenstates to adapt to the medium as they propagate through it. The
adiabatic approximation is valid if the adiabaticity parameter, γ, satisfies

γ ≡ |∆E
m
21|

2|θ̇m12|
� 1 , (2.28)

where ∆Em21 is given by eq. (2.21). In the adiabatic approximation, the matrix D(x) is
thus approximately diagonal, and after a common rephasing of the neutrino matter mass
eigenstates, the upper 2× 2 block in eq. (2.26) can be expressed as

exp
[
−i

∫ L

0
D(x) dx

]
≈
(
ei φ 0
0 e−i φ

)
, (2.29)

with φ =
∫ L

0 ∆Em21(x) dx. Since the neutrinos exiting the Sun will free-stream to the Earth,
there is no further evolution effect to be taken into account for the Sun-Earth propagation.
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However, in principle, there is a further propagation effect when neutrinos pass thor-
ough the Earth at night, which should be taken into account for a complete treatment. For
high-energy 8B neutrinos, for which Eν ∼ 10 MeV, this effect typically changes oscillation
probabilities only at the percent level [115–117]. In particular, Super-Kamiokande has de-
termined the day-night asymmetry to about −3.3% in 8B neutrinos [118], while Borexino
has found no asymmetry in 7Be neutrinos [119]. Therefore, in this work we neglect Earth
matter effects for simplicity.

2.3 Solar neutrino density matrix

From the expression of the S-matrix in eq. (2.26), we can derive the expression for the full
three-flavour density matrix for solar neutrinos reaching the Earth. With the projector
onto the electron-neutrino flavour state, π(e) = diag(1, 0, 0), the density matrix reads,

ρ(e) = S π(e) S† =

 |S11|2 S11 S
∗
21 S11 S

∗
31

S∗11 S21 |S21|2 S21 S
∗
31

S∗11 S31 S
∗
21 S31 |S31|2

 . (2.30)

Since the density matrix is Hermitian, ραβ = ρ∗βα, the solar neutrino density matrix ρ(e) is
completely characterised by the three independent S-matrix components,

S11 = e−iΦ33 s2
13 + c2

13

(
ei φ c12 cm + e−i φ s12 sm

)
, (2.31)

S21 = c13
[
s13 s23 (eiΦ33 − ei φ c12 cm − e−i φ s12 sm) + e−i φ c23 (c12 sm − e2i φ s12 cm)

]
,

(2.32)

S31 = c13
[
s13 c23 (eiΦ33 − ei φ c12 cm − e−i φ s12 sm)− e−i φ s23 (c12 sm − ei 2φ s12 cm)

]
,

(2.33)

where cm and sm refer to cos θm12 and sin θm12, respectively. Given that we do not know
precisely where neutrinos are produced in the solar core, we must average over the neutrino
production positions. This effectively removes terms dependent on φ and Φ33 from the
density matrix. The six independent density matrix elements then read,

ρee = s4
13 + c4

13 P
2ν
ee , (2.34)

ρµµ = c2
13

[
c2

23

(
1− P 2ν

ee

)
+ s2

13 s
2
23

(
1 + P 2ν

ee

)
+ ∆

]
, (2.35)

ρττ = c2
13

[
s2

23

(
1− P 2ν

ee

)
+ s2

13 c
2
23

(
1 + P 2ν

ee

)
−∆

]
, (2.36)

ρeµ = c13 s
3
13 s23 −

1
2 c

3
13

[
2 s13 s23 P

2ν
ee + c23 sin (2θ12) cos (2θm12)

]
, (2.37)

ρeτ = c13 s
3
13 c23 −

1
2 c

3
13

[
2 s13 c23 P

2ν
ee − s23 sin (2θ12) cos (2θm12)

]
, (2.38)

ρµτ = 1
2 c

2
13

[
sin (2θ23)

( (
1 + s2

13

)
P 2ν

ee − c2
13

)
+ 2 cot (2θ23) ∆

]
, (2.39)
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where we have defined

P 2ν
ee = 1

2
(
1 + cos (2θ12) cos (2θm12)

)
, (2.40)

∆ = 1
2 sin (θ13) sin (2θ12) sin (2θ23) cos (2θm12) . (2.41)

Since neutrinos are produced within a finite volume of the Sun and the matter mixing
angle, θm12(x), depends on position, there is some ambiguity in what to take for the value of
cos(2θm12). We have taken its spatial average over the radius of the Sun as a representative
value, given by

〈cos 2θm12〉p ≡
∫ 1

0
cos 2θm12(x) fp(x) dx , (2.42)

where x is the fractional solar radius, p denotes a particular solar neutrino population,
and fp(x) is the spatial distribution function describing where in the Sun that popula-
tion is produced. These populations are labelled according to the reaction that generated
them, with p ∈ {pp, 8B, . . .}. The distributions fp(x) are SSM-dependent; we have used
the BP16-GS98 predictions calculated by ref. [120]. We have taken the values for each
oscillation parameter from the latest NuFIT results [114].

2.4 Generalised neutrino cross sections

Following our discussion of neutrino propagation in the presence of NSI and the relevant
formalism needed to derive the neutrino density matrix, ρ, we move on to find expres-
sions for the generalised scattering cross sections, dζ/dER, for both neutrino-nucleus and
neutrino-electron scattering.

Considering the process of elastic scattering of a neutrino ν off a target T with mass
mT via the matrix elementM, the general expression for the cross section reads

dσνT
dt = 1

16π
M∗M

(s−m2
T )2 . (2.43)

From this, we can define the generalised cross section correlating the matrix elements of
the flavour specific scattering processes να T → f T and νβ T → f T as( dζ

dER

)
αβ

=
(dζ

dt

)
αβ

dt
dER

= M
∗(να → f)M(νβ → f)

32πmT E2
ν

, (2.44)

where we have made use of the relations t = −2mT ER and s = m2
T+2mT Eν for relativistic

neutrino scattering. Note that the diagonal elements of the generalised cross section are the
conventional scattering cross sections of a neutrino of flavour α off the target material T ,( dζ

dER

)
αα

= dσναT
dER

. (2.45)

With the general expression of eq. (2.44), we can now derive the corresponding expressions
for the generalised CEνNS and EνES cross sections.
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2.4.1 CEνNS cross section

Following ref. [121], we can derive the expression for the generalised coherent elastic
neutrino-nucleus scattering cross section using the NSI formalism introduced in section 2.1.
The cross section reads(dζνN

dER

)
αβ

= G2
FMN

π

(
1−MN ER

2E2
ν

) ∑
γ

〈gs||ĜSM δαγ+ĜNSI
αγ ||gs〉〈gs||ĜSM δγβ+ĜNSI†

γβ ||gs〉 ,

= G2
FMN

π

(
1−MN ER

2E2
ν

)[1
4Q

2
νN δαβ−QνNGNSI

αβ +
∑
γ

GNSI
αγ G

NSI
γβ

]
F 2(ER) ,

(2.46)

where F (ER) is the Helm form factor [122, 123], and QνN = N − (1− 4 sin2 θW )Z is the
SM coherence factor. Furthermore, we have used the Hermiticity of the NSI nucleus cou-
pling, defined by

GNSI
αβ ≡

(
2 εuαβ + εdαβ

)
Z +

(
εuαβ + 2 εdαβ

)
N ,

= (ξp Z + ξnN) εη,ϕαβ . (2.47)

As observed in ref. [75], the BSM contribution can destructively interfere with the SM
one. Thus, there are regions in the NSI parameter space where, despite having a non-zero
NSI εαβ , the cross-section is the same as for the SM. In these blind spots, the presence of
new physics cannot be distinguished from the SM. Since the CEνNS rate is determined by
the trace over density matrix times cross section, the cancellation conditions are non-trivial.
We discuss them in greater detail in section 4.2.

2.4.2 EνES cross section

Similarly, following ref. [95] and by use of eq. (2.44), we can derive the expression for the
generalised neutrino-electron scattering cross section in the presence of NSI,
(dζνe

dER

)
αβ

= 2G2
Fme

π

∑
γ

{
GLαγG

L
γβ+GRαγGRγβ

(
1−ER

Eν

)2
−
(
GLαγG

R
γβ+GRαγGLγβ

)meER
2E2

ν

}
,

(2.48)
where we have defined the generalised neutrino-electron couplings as

GPαβ = gePαδαβ + εePαβ . (2.49)

The SM electroweak neutrino-electron couplings are given by

gePα =

1 + geL , if α = e and P = L ,

geP , otherwise ,
(2.50)

with gfP = T 3
f − sin2 θwQ

EM
f . In order to express the generalised neutrino-electrons cou-

pling in terms of their vector and axial-vector components with the parameterisation of
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section 2.1, we introduce

GVαβ = GLαβ +GRαβ , GAαβ = GLαβ −GRαβ , (2.51)

GLαβ = 1
2(GVαβ +GAαβ) , GRαβ = 1

2(GVαβ −GAαβ) . (2.52)

Effectively, this means that in eq. (2.48) we can make the replacements

GLαβ = (δeα + geL) δαβ + 1
2
(
εη,ϕαβ ξ

e + ε̃η,ϕαβ ξ̃
e
)
, (2.53)

GRαβ = geR δαβ + 1
2
(
εη,ϕαβ ξ

e − ε̃η,ϕαβ ξ̃
e
)
, (2.54)

where εη,ϕαβ denotes the vector component of the general NSI as before and ε̃η,ϕαβ denotes
the axial-vector component (which does not contribute to matter effects and CEνNS).
Note that if the NSI is only due to a vector interaction, we have εL = εR, such that the
axial-vector component vanishes, ε̃η,ϕαβ = 0. As stated before, we only focus on the vector
interaction for electron scattering. We do this because the results from oscillation and
coherent experiments will have no impact on ε̃η,ϕαβ . Furthermore, to accurately predict the
signal from the axial-vector interaction, one would have to use a different ionisation form
factor to that of the vector interaction.

3 Extending current constraints to the full NSI parameter space

With our extended formalism in place, we are ready to explore how previous NSI results
map onto the extended parameter space. Earlier constraints on NSI parameters derived
from spallation source [32, 39, 43, 56, 124, 125] and neutrino oscillation [36, 39, 95, 126]
experiments have assumed that the NSI contribution in the charged plane is entirely in
either the proton (ϕ = 0) or the electron (ϕ = ±π/2) directions. In the ϕ = 0 case, the
CEνNS cross section is maximally modified with no change to the EνES cross section,
leading to the strongest constraints on εη,ϕαβ from spallation source experiments and limits
from oscillation experiments that only arise from non-standard propagation effects. In
the ϕ = ±π/2 case, constraints from oscillation source experiments arise from propaga-
tion effects and a maximal change to the EνES cross section. However, the evolution of
these bounds with variable charged NSI contribution has not yet been studied, and our
parametrisation provides a convenient way to visualise this. Since we have no reason to
believe that charged NSI would lie preferentially in any direction, a general treatment must
be sought.

In this section, we recompute the bounds from spallation source and oscillation exper-
iments, allowing for ϕ to vary along its entire allowed range. In particular, we consider
the CENNS-10 LAr [124] and Borexino [127] experiments as our spallation source and os-
cillation experiment candidates, respectively. To demonstrate the non-trivial evolution of
previously computed constraints with variable ϕ, we take inspiration from earlier analyses,
showing how the same approaches can lead to very different results.
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3.1 The CENNS-10 LAr Experiment

The CENNS-10 LAr experiment [124] has measured the coherent elastic scattering of neu-
trinos with nuclei using a liquid argon scintillator target. The neutrino flux has three
components: a prompt flux of muon neutrinos generated by the decay of pions, and two
delayed fluxes of anti-muon and electron neutrinos, produced in the three-body decay of
anti-muons. Their normalised spectra are given by

fνµ(Eν) = δ

(
Eν −

m2
π −m2

µ

2mπ

)
,

fν̄µ(Eν) = 64
mµ

(Eν
mµ

)2(3
4 −

Eν
mµ

) ,
fνe(Eν) = 192

mµ

(Eν
mµ

)2(1
2 −

Eν
mµ

) ,
(3.1)

where, from kinematics, Eν ∈ [0,mµ/2]. The expected neutrino flux is then given by scaling
these spectra to account for the total beam luminosity and distance of the liquid argon
target from the source. This scaling is given by η ≡ r NPOT/(4πL2), where r is the number
of neutrinos produced per proton collision, NPOT is the number of protons on target, and
L is the length of the experimental baseline. This gives us the total expected neutrino flux,
φα(Eν) ≡ η fα(Eν), where α ∈ {νµ, ν̄µ, νe}. For the CENNS-10 LAr experiment, r = 0.08,
NPOT = 1.37× 1023 yr−1, and L = 27.5 m [124].

From these fluxes, we can retrieve the expected CEνNS rate spectrum. Since the
neutrino beam does not undergo significant decoherence over the experimental baseline, it
can be treated as being composed of independent νµ, νµ, and νe parts. This means that
the rate is given by the integral of the neutrino flux and the appropriately flavoured cross
section, as it is usually written. In our notation, this reads

dNα

dER
= Mdet

mN
ε(ER)

∫ mµ/2

Emin
ν

φα(Eν)
( dζ

dER

)
αα

dEν , (3.2)

where Mdet = 24 kg is the mass of the detector, mN is the mass of an 40Ar nucleus (for
which we assume 100% isotopic abundance), and ε(ER) is the energy-dependent efficiency
function, which we have taken from Analysis A of ref. [124]. Since this function is given
in units of electron-equivalent energy (keVee), we convert our spectrum into Eee energies
before folding in the efficiency function using the energy-dependent quenching factor [124]

QF (ER) = 0.246 + (7.8× 10−4 keV−1
nr )ER . (3.3)

Finally, the integral over neutrino energy runs from the minimum neutrino energy required
to cause a recoil of energy ER, Emin

ν ≈
√
mNER/2.

To compute the allowed regions for εη,ϕαβ , we perform a similar analysis to that of
ref. [43], with the key difference that we allow for the charged NSI contribution to lie
anywhere within the charged plane. Using a χ2 statistic, we compare the number of events
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Figure 2. The 90% CL allowed regions for each NSI parameter over ϕ from the CENNS-10 LAr
results [124]. The bounds usually quoted correspond to the NSI parameter values at ϕ = 0. We
have fixed η = arctan(1/2), corresponding to a pure up-quark NSI when ϕ = 0.
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measured by CENNS-10 LAr to the theoretical expectation given a particular choice for ϕ
and εη,ϕαβ . We fix η = tan−1(1/2) in order to match the analysis of ref. [43], equivalent to
having neutrino NSI with the up-quark only when ϕ = 0. Our χ2 statistic is given by

χ2(εη,ϕαβ , ϕ) = min
a

(Nexp − (1 + a)NCEνNS(εη,ϕαβ , ϕ)√
Nexp +Nbkg

)2

+
(
a

σa

)2
 , (3.4)

where Nexp = 159 is the number of measured events and Nbkg = 563 is the number of
background events (primarily from the beam-related neutron rate) [124]. The nuisance
parameter a acts as a pull parameter on the theoretical rate, allowing it to vary around
its central value. This accounts for the systematic uncertainties in its calculation, and we
take it to be σa = 8.5% [124]. The quadratic penalty term in eq. (3.4) penalises deviations
of size much greater than this.

To compute the 90% CL allowed regions, we vary one NSI parameter at a time for a
given angle ϕ and find those values of εη,ϕαβ for which ∆χ2(εη,ϕαβ ) ≡ χ2(εη,ϕαβ , ϕ)− χ2

min(ϕ) ≤
2.71, where χ2

min(ϕ) is the minimum χ2 optimised over εη,ϕαβ . We repeat this analysis over
the full range of ϕ, drawing the 90% CL allowed regions in figure 2. We also show our ∆χ2

plot for the extremal cases of ϕ = 0 and ϕ = π/2 in figure 6 of appendix B. We see that,
for εη,ϕee and εη,ϕµµ , these regions allow for two solutions: one that is consistent with the SM
(i.e. εαβ = 0) and one that is not. This first region is slightly displaced from εη,ϕαβ = 0 as
CENNS-10 LAr observed a slight excess of events over the SM expectation. The second
region is due to a cancellation between the interference and NSI-only terms in the cross
section, which can be seen by inspecting eq. (2.46) and is discussed in greater detail in the
context of DD experiments in section 4.2. While this second minimum occurs for all εη,ϕαβ ,
the effect is most pronounced for εη,ϕee and εη,ϕµµ , as can be seen from figure 6. Importantly,
no bounds can be placed on εη,ϕττ since the CENNS-10 LAr neutrino beam has a negligible
ντ component.

Typically, the intervals that would be quoted correspond to the allowed values at ϕ = 0.
This reflects the assumption that the charged NSI lies purely in the proton direction.
However, we see in figure 2 that these bounds generally worsen for increasing values of
|ϕ|. While this trend is partially led by our parametrisation (whereby the strength of
εη,ϕαβ required for a constant contribution should scale as 1/ cosϕ in any one of the proton,
neutron, or electron directions), the bounds do not vary via this same scaling. This is
particularly evident from the limits drawn for the second minima in the cases of εη,ϕee and
εη,ϕµµ , both of which deteriorate more rapidly than the first minima bounds. Moreover, the
constraints on the NSI contribution from the neutron, which is inherently independent of
ϕ in our formalism, would worsen for increasing |ϕ| (at fixed η), reflecting the requirement
for a stronger NSI with the neutron to account for the diminishing contribution from the
proton.

3.2 The Borexino experiment

The Borexino experiment, located at the Laboratori Nazionali del Gran Sasso, observes
solar neutrinos through their elastic scattering with electrons in its multi-ton scintillator
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Population
Phase-II Rate
[(100 ton day)−1]

Theoretical Rate
[(100 ton day)−1]

Fractional
Uncertainty

pp 134± 10 133 1.1%
7Be 48.3± 1.1 48.5 5.8%
pep 2.43± 0.36 2.78 1.5%

Table 1. Solar neutrino rates relevant for our Borexino analysis. Shown are the measured rates
from the Phase-II run of Borexino [128], our calculated theoretical rates, and the assumed fractional
uncertainties in our calculation.

target [127]. The differential scattering rate per target electron is given most generally
by eq. (1.1). In the case of Borexino, we consider the flux of solar neutrinos, which has
contributions from different populations of electron neutrinos depending on where in the
pp chain or CNO cycle they are produced. We take the spectrum for each population,
dφpνe/dEν , from the predictions of the B16-GS98 SSM [120], where p ∈ {pp, 8B, . . .}. In
the case of electron recoils, the minimum neutrino energy necessary to cause a recoil of
energy ER is given by

Emin
ν = 1

2

(
ER +

√
E2
R + 2meER

)
. (3.5)

Ignoring experimental effects, such as energy resolution and efficiency functions, the scat-
tering rate due to a particular neutrino population, p, is given by

RpBorexino =
∫ Ep,max

R

0

dRp

dER
dER , (3.6)

where Ep,max
R is the maximum possible recoil energy for the population p and dRp/dER is

the differential rate calculated from eq. (1.1). We take the number of target electrons in
the scintillator to be 3.307× 1031/(100 ton) [128].

We wish to explore the evolution of previous oscillation bounds in the full plane of
charged NSI, i.e. with variable angle ϕ at a fixed angle η. To this end, we perform a similar
analysis to that of ref. [126]. Namely, we consider how Borexino’s Phase-II measurements
of the pp, 7Be, and pep solar neutrino rates [128] can be used to constrain neutrino NSI
with our more general formalism. In conducting our analysis, we determine the bounds on
the off-diagonal matrix elements εη,ϕαβ (α 6= β), which were not computed in ref. [126]. This
is only possible through the correct treatment of the differential rate in eq. (1.1) using the
density matrix formalism. We note that a direct comparison between our results and those
of ref. [126] is particularly difficult due to our different treatments of the NSI Lagrangian.

The results from the Borexino’s Phase-II run, along with the results of our calculations
for the theoretical rate for each respective neutrino population, are shown in table 1. As
was done in ref. [126], we assume that the fractional uncertainties in the theoretical rates
for each solar neutrino population are the same in our calculation as those reported by
Borexino. Our results are in good agreement with the measured rate and the rate predicted
by the collaboration [128].
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To perform our statistical analysis, we construct a χ2 function similar to that of sub-
section 3.1:

χ2(εη,ϕαβ , ϕ) ≡ min
a

∑
p

(
RpBorexino − (1 + ap)RpTheo(εη,ϕαβ , ϕ)

σpstat

)2

+
(
ap

σpa

)2
 , (3.7)

where the sum is taken over each considered solar neutrino population, p ∈ {pp, 7Be, pep}.
The rates RpBorexino are the measured rates from the Phase-II run, with statistical uncer-
tainties σpstat, while R

p
Theo are our calculated rates given a choice of εη,ϕαβ and ϕ. We have

also introduced the pull parameters ap for each rate, the values of which we show in ta-
ble 1. To compute our χ2, we profile over the nuisance parameters a ≡ (app, a7Be, apep)T,
whose standard deviations are given in the last column of table 1. The 90% CL regions
are computed via the same prescription as in subsection 3.1.

We show the 90% CL allowed regions in figure 3 and the corresponding ∆χ2 values
for the extremal cases of ϕ = 0 and ϕ = π/2 in figure 7 in appendix B. The shapes of
these regions can be understood by expanding the trace of eq. (1.1) using the EνES cross
section of eq. (2.48) when only one εη,ϕαβ is turned on at a time. The resulting formula
for the rate then contains three types of terms: a propagation-only term, which contains
NSI effects only at the level of neutrino propagation; a term linear in ξeεη,ϕαβ , which can be
understood as an inteference term between the SM and NSI; and a positive-definite term
quadratic in ξeεη,ϕαβ , which encodes the pure NSI effect in the cross section. These terms
can be explicitly seen in eqs. (4.9) and (4.10) in the context of our DD analysis.

At ϕ = 0, the NSI effect is purely due to a change in the matter potential experienced by
neutrinos on their way out of the Sun, altering neutrino propagation as per the description
of subsection 2.2. This leads to constraints that are only due to propagation effects, with
the neutrino-electron cross section unchanged. Around ϕ = 0 and for εη,ϕαβ . 1, NSI effects
remain dominated by propagation-only effects, but non-standard cross section terms linear
in εη,ϕαβ ξe begin to contribute. While the impact on the expected rate due to propagation-
only effects in this regime is approximately symmetric under the exchange εη,ϕαβ → −ε

η,ϕ
αβ ,

the effect due to the term linear in εη,ϕαβ ξe is approximately symmetric under the combined
exchange {ϕ, εη,ϕαβ } → {−ϕ, −ε

η,ϕ
αβ }. This means that, depending on the sign of ϕ, cross

section and propagation-only effects will either positively or negatively interfere with one
another. For larger values of |ϕ|, NSI effects are predominantly due to changes in the
scattering cross section, which are dominated by the term quadratic in ξeεη,ϕαβ in the EνES
cross section for large values of εη,ϕαβ .

These effects are perhaps best evidenced by the lower-right panel of figure 3. For ϕ = 0,
propagation effects alone lead to rates that are irreconcilable with the data, allowing us to
constrain εη,ϕµτ without alterations to the EνES cross section. For small negative values of
ϕ, both cross section and propagation effects suppress the expected neutrino rate, leading
to a large overall predicted deficit and a more constrained allowed region. Beyond this,
terms quadratic in ξeεη,ϕµτ begin to dominate, reducing this deficit to momentarily retrieve
the SM expectation, but ultimately leading to a large predicted excess. This results in the
valley at negative ϕ values. On the other hand, for small positive values of ϕ, these two
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Figure 3. The 90% CL allowed regions for each NSI parameter along the angle ϕ from the Phase-
II run of the Borexino experiment. The bounds usually quoted correspond to the NSI parameter
values at ϕ = 0. We have fixed η = 0, corresponding to a pure electron NSI when ϕ = ±π/2.
The dark grey region shows where we conservatively assumed the adiabatic limit to break down
(γ < 100).
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effects destructively interfere with one another, resulting in a larger allowed region. For
negative values of εη,ϕµτ , the oscillation-only and quadratic terms reinforce one another, such
that this enlarged region quickly shrinks for large εη,ϕµτ and ϕ. For positive εη,ϕµτ , these two
terms instead cancel one another out.

Additionally, figure 3 contains a grey region for εη,ϕeµ where the adiabatic approximation
used to model matter effects in the Sun may be inappropriate [129, 130]. Within this
region, the adiabaticity parameter, defined in eq. (2.28), takes values γ < 100, where
we have calculated γ at Eν = 1 MeV, approximately corresponding to the highest energy
reached by 7Be neutrinos. We conservatively interpret these values to be in violation of the
adiabaticity condition, γ � 1, such that a full numerical calculation of the density matrix
elements would be required for an accurate analysis. This would be beyond the scope of our
work, and since the allowed NSI regions in figure 3 are almost entirely within the adiabatic
regime, we do not believe a numerical treatment is necessary. We have checked that the
we fulfil the adiabatic criterion for all other εη,ϕαβ .

Our analysis also shows that constraints are strongest for off-diagonal NSI. This is
because the trace in eq. (1.1) leads to two terms (which are equal in our case as δCP is
set to 0) contributing to the total NSI rate in the off-diagonal case, as opposed to a single
contribution arising from diagonal NSI. Thus, the allowed regions for off-diagonal NSI are
generally tighter than those for diagonal NSI. The exception to this is in the bounds for
εη,ϕee , which are highly constrained due to the enhanced EνES cross section arising from the
additional CC contribution via the W -boson exchange.

This enhanced cross section not only leads to much tighter bounds for εη,ϕee but also
allows for a finely tuned second minimum at non-zero εη,ϕee . With a non-zero εη,ϕee , the
differential rate spectrum is modified such that the total rate, given by integrating over all
recoil energies, coincidentally retrieves the SM expectation. The spectrum itself, however,
is significantly modified, and incorporating spectral information into our analysis would
ultimately prohibit this second solution.

Our results should not be taken as a dedicated Borexino analysis. Though we have
attempted to capture the variation in the calculated solar neutrino rates by introducing
pull parameters, as was done in ref. [126], this only accounts for the theoretical uncertainty
in these rates. Ultimately, a more sophisticated analysis would require a spectral fit of
Borexino’s data and allow for multiple NSI parameters to vary at a time. Such a fit should
then allow for the various background components inherent in the data to float and permit
correlations between all fit parameters. Such an analysis was recently done in the context of
neutrino NSI by ref. [95] assuming charged contributions only from the electron (ϕ = π/2).
Our results should instead be taken as a demonstration of how bounds on NSI can vary
dramatically depending on what one takes as the underlying charged NSI contribution.

4 Direct detection experiments

Finally, we turn to the main motivation of this paper: determining the potential of DD ex-
periments within the NSI landscape using the extended framework introduced in section 2.
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DD experiments will provide a unique probe of neutrino interactions because they have
access to both CEνNS and EνES. This is due to the properties of the solar neutrino flux.
To produce a recoil in the energy range detectable in DD experiments (∼ 10 eV−100 keV)
EνES and CEνNS probe different solar neutrino populations. In particular, the main
contribution to NRs comes from 8B neutrinos, whereas for ERs it is pp and 7Be that
contribute the most. Thus, although the scattering cross-section for CEνNS is significantly
larger, the much larger pp neutrino flux compensates for the smaller EνES cross section.

As we saw in subsection 3.2, experiments such as Borexino have optimal sensitivity
when NSI occur purely with the electron, but they rapidly lose their constraining power
as ϕ → 0. On the other hand, CEνNS experiments such as CENNS-10 LAr, which we
explored in subsection 3.1, have excellent sensitivity when the charged NSI contribution is
wholly in the proton direction, but they lose this sensitivity as this contribution turns to
the electron. Moreover, having no ντ component, they are completely insensitive to εη,ϕττ .
Not only can DD experiments probe εη,ϕττ , but their ability to measure and discriminate
between NRs and ERs means that they retain their constraining power across the full range
of ϕ. When applied to specific BSM models, this can be crucial to identify the underlying
nature of the new physics scenarios (see e.g., ref. [75]).

In this work, we focus on the xenon-based DD experiments LZ [101–103], XENON [81,
97, 98], and DARWIN [96]. More specifically, we derive exclusions from the data reported
by the recent LZ WIMP search [78] and the XENONnT electron-recoil excess search [80].
We also determine the expected sensitivities of LZ, XENONnT and DARWIN, based on
their projections for their final experimental configurations. Similar results can be obtained
with PandaX [79, 99, 100].

4.1 Expected number of events and statistical procedure

To calculate our sensitivities, we consider the differential rate of eq. (1.1) and incorporate
detector effects, such as efficiency and energy resolution. The expected recoil rate from
neutrino scattering is then given by

dR
dER

=
∫ ∞

0

dR
dE′R

ε(E′R) 1
σ(E′R)

√
2π

e
−(ER−E′R)2

2σ2(E′
R

) dE′R . (4.1)

Here, dR/dE′R is given by eq. (1.1). When computing this rate, we use the solar neutrino
fluxes predicted by the B16-GS98 model [120], as we did for our Borexino analysis in
subsection 3.2. The integral over the expected energy, E′R, is the convolution that describes
the effect that the detector resolution, σ, has on the observed signal; we assume this to
be equivalent to a Gaussian smearing. This resolution is typically reported in terms of
the measured, electron-equivalent energy, so we first convert the CEνNS differential rate
and NR efficiency functions into electron-equivalent energies when considering NRs. We
do this by applying an energy-dependent quenching factor, which relates the two energy
scales via Eee = Q(Enr)Enr. We take this to be the Lindhard factor [131] with k = 0.1735,
reflecting the k-value found in the fit performed by the LUX collaboration [132]. Finally,
ε is the energy-dependent efficiency function.
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The differential rate depends on the number of targets per unit mass of the detector,
nT = NT /mdet. For NRs, we take this to be the number density of atoms in the detector,
nT = 1/mN , where mN is the nuclear mass of the relevant xenon isotope. For ERs, this
corresponds to the number of ionisable electrons given a recoil of energy ER, scaled to
agree with the ab initio calculations from the relativistic random-phase approximation for
xenon [133]. This takes into account the many-body dynamics involved in such collisions,
and they have shown a consistent suppression of the rate at low recoil energies [133, 134].

To compute the number of expected events within the ith bin, we integrate the differ-
ential rate in the energy window defined by the edges of the bin, [Ei1, Ei

2], and sum the
contributions from each nuclear isotope A multiplied by its corresponding relative isotopic
abundances, XA:

N i
ν = ε

∑
A

XA

∫ Ei2

Ei1

dRA
dER

dER . (4.2)

Here, ε is the experimental exposure and dRA/dER is the differential rate in eq. (4.1) due
to isotope A.

We determine our sensitivities using a series of log-likelihood-ratio tests in which we
vary only one NSI parameter at a time, fixing all others to zero.6 We construct our
likelihoods from a Poisson part and a Gaussian part, which we use to capture the effect
of uncertainties on nuisance parameters. For this latter part, we consider Gaussian dis-
tributed pull parameters serving to scale the number of expected neutrino events, as we
did for CENNS-10 LAr and Borexino, and the number of expected background events.
We respectively label these parameters as a and b, having standard deviations σa and σb.
Given some number of observed events in bin i, N i

obs, we define the likelihood function

L(εη,ϕαβ , η, ϕ, a, b) ≡
Nbins∏
i

Po
[
N i

obs | (1 + a)N i
ν(εη,ϕαβ , η, ϕ) + (1 + b)N i

bkg

]
(4.3)

×Gauss (a| 0, σa ) Gauss (b| 0, σb ) ,

where N i
bkg is the number of expected background events in the ith bin. The product is over

Nbins bins. The number of observed events for each of our analyses depends on whether
we compute exclusions based on data or derive projected limits. If the former, we take
the number of observed neutrino events reported in each bin. If the latter, we assume an
Asimov data set [135], such that N i

obs is set to the number of expected SM neutrino events
(εη,ϕαβ = 0) in the ith bin.

Finally, to derive our limits, we use eq. (4.3) to define the test statistic

qε ≡ −2 ln

L(εη,ϕαβ ; η = η0, ϕ = ϕ0, â, b̂)

L(ˆ̂εη,ϕαβ ; η = η0, ϕ = ϕ0, ˆ̂a, ˆ̂
b)

 , (4.4)

where hatted variables indicate quantities that maximise the likelihood given the param-
eter εη,ϕαβ and double-hatted variables indicate those quantities that maximise the overall,

6A global analysis in which all parameters are allowed to vary is beyond the scope of this article, where
our aim is to motivate next-generation and far-future DD experiments to be included in future such analyses.
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unconstrained likelihood. By fixing the angles to take some values η = η0 and ϕ = ϕ0,
we constrain only the parameter of interest, εη,ϕαβ , in each of our analyses. In practice, we
perform our analysis by only considering the most dominant nuisance parameter (either
a or b), which depends on the experiment and is discussed in detail below. The 90% CL
limits are then calculated by finding the value for qε, qlim

ε , for which∫ ∞
qlim
ε

f(qε) dqε = 0.90 , (4.5)

where f(qε) is the distribution of the test statistic. In the limit of high statistics and
that the true parameter value does not lie on the boundary of our parameter space, Wilks’
theorem tells us that this distribution asymptotically follows a χ2-distribution with number
of degrees of freedom k = 1.7 This leads to qlim

ε = 2.71, and our limits then follow from
finding that εη,ϕαβ which yields this value for the test statistic.

To implement the analysis in the sections that follow, we make use of SNuDD [136]8

(Solar NeUtrinos for Direct Detection), a novel code-base that we have developed. SNuDD
is a Python package that calculates the generalised cross section of subsection 2.4 and
the density matrix elements of subsection 2.3, combining them to compute the trace of
eq. (1.1) and arrive at a prediction for the expected solar neutrino rate at a DD experiment
while folding in detector efficiency and resolution effects. We will release it in a separate
publication. We hope that SNuDD facilitates future DD analyses in the NSI landscape.

Lastly, we have checked that our limits are not greatly impacted by uncertainties in
the neutrino oscillation parameters when these uncertainties are computed using standard
neutrino oscillations and interactions. While including NSI can significantly impact the
best-fit values of and uncertainties in these parameters, especially those derived from solar
neutrino experiments [36], we note that the future medium-baseline reactor experiment
JUNO [137] will be largely insensitive to the effects of NSI. In particular, the fits to the
solar neutrino parameters, θ12 and ∆m2

12, and the reactor neutrino angle, θ13, will be
robust in the presence of NSI [45]. Moreover, the atmospheric angle (θ23), which impacts
the muon and tau neutrino fractions, is not greatly changed by the inclusion of NSI [36].
Thus, we take the liberty of ignoring these systematics in this first study, taking the best-fit
values for these parameters from ref. [114]; a more comprehensive analysis that includes
these systematics is left for future work.

4.2 Sensitivities in the nucleon NSI plane

From the many existing DD NR constraints, we consider only the recent, leading LZ
result [78] to derive a bound in the NSI landscape. We take the efficiency function given in
ref. [78] and we model the energy resolution according to ref. [138]. For our signal region, we
use the 90% quantile of the nuclear recoil band in the S1c (scintillation) and S2c (ionisation)
event reconstruction space as shown in figure 4 of ref. [78]. For our analysis, we focus only
on the low-energy region ([5, 15] keV), which is sensitive to solar neutrinos, and we integrate
over it to constitute one bin. We take the number of expected background and observed

7We have checked that this holds true in all of our analyses.
8https://github.com/SNuDD/SNuDD.git.
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events to be 1 and 0, respectively (see ref. [139]). We have validated our procedure by
reproducing the WIMP-nucleon cross-section limit reported by the collaboration (figure 5
of ref. [78]) to a good agreement in the low and high DM mass values.

To assess the future prospects of detecting an NR signal, we plot the projected sensitiv-
ities for LZ, XENONnT, and DARWIN with the full exposures of 15.34, 20, and 200 ton yr,
respectively. We have taken a background-free scenario in the NR search, which is con-
sistent with experimental aims (for our analysis, the neutrino signal is not considered a
background). With no backgrounds, we then conservatively perform a one-bin analysis, us-
ing the total number of expected solar neutrino NR events as our observation.Additionally,
since the expected background is so low, the nuisance parameter that will have the largest
impact on our sensitivities will be associated with the solar neutrino flux, and hence we set
b = 0 in this case. For our remaining pull parameter in eq. (4.3), we assume an uncertainty
of σa = 12%, reflecting the 12% uncertainty in the theoretical value of the total 8B flux
in the B16-GS98 SSM [120]. We take the resolution function for LZ at full exposure to be
the same as that of their first result [78, 138], whereas for XENONnT and DARWIN we
use the resolution function given in ref. [81]. The NR efficiency functions, as presented by
the collaborations, reach 50% at 3.8 keVnr for LZ [102] and 5.7 keVnr for XENONnT and
DARWIN [97]. However, to explore how DD experiments could feasibly probe NSI in the
future, we take the liberty of further lowering these thresholds. This is to take advantage
of the higher 8B rate at these energies.

In particular, we augment the efficiency functions such that, for each future experiment,
the efficiency instead reaches 50% at 3 keVnr, which we consider to be a feasible future
goal. For instance, the xenon-based LUX experiment was able to reach thresholds as low
as 1.1 keVnr while retaining NR/ER discrimination [140]. The LUX collaboration has also
developed techniques allowing for single-photon sensitivities, resulting in sensitivities to
much lower recoil energies at the cost of a lower overall detection efficiency. Finally, the
XENON1T collaboration has recently performed a dedicated 8B search by lowering their
threshold to 1.6 keVnr, achieved by relaxing the necessity for a three-fold S1 coincidence in
the PMTs to a two-fold one [141]. Furthermore, taking the systematic 8B uncertainty to
be 12%, we find that lowering the threshold further provides little-to-no benefit in terms
of NSI sensitivity. For each future experiment, we take Emax

R = 30 keV.
We show our results in figure 4. The shaded areas represent the 90% CL limits set

by the different experimental configurations. From less constraining (smaller areas) to
more constraining (larger areas), we show the limits derived from the first LZ results
(turquoise with solid boundary) and the expected sensitivities of the full exposure of LZ
(baby blue, dashed), XENONnT (dark blue, dashed) and the proposed DARWIN (purple,
dashed). For comparison, we also show with red bars the NSI limits derived from the
global study of ref. [39], which included the results from COHERENT and a variety of
oscillation experiments, when NSI take place purely with the proton (η = 0), up-quark
(η = tan−1(1/2)) and down-quark (η = tan−1(2)). We extract the limits we have computed
using the LZ WIMP search data and tabulate them in table 2, contrasting them with the
results from the global fits of [39]. We see that, currently, DD experiments are not sensitive
to globally allowed NSI values, but our projections indicate that they will be in the near
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LZ 2022 (this work) Global Fits [39]

εuee [−0.545, 1.222] [−0.031, 0.476]
εuµµ [−0.971, 1.397] [−0.029, 0.068]⊕ [0.309, 0.415]
εuττ [−0.645, 1.598] [−0.029, 0.068]⊕ [0.309, 0.414]
εueµ [−0.630, 0.679] [−0.048, 0.020]
εueτ [−0.721, 0.558] [−0.077, 0.095]
εuµτ [−1.120, 0.518] [−0.006, 0.007]

εdee [−0.540, 1.084] [−0.034, 0.426]
εdµµ [−0.863, 1.233] [−0.027, 0.063]⊕ [0.275, 0.371]
εdττ [−0.576, 1.241] [−0.027, 0.067]⊕ [0.274, 0.372]
εdeµ [−0.542, 0.635] [−0.050, 0.020]
εdeτ [−0.655, 0.455] [−0.076, 0.097]
εdµτ [−0.982, 0.461] [−0.006, 0.007]

εpee [−1.805, 4.195] [−0.086, 0.884]⊕ [1.083, 1.605]
εpµµ [−3.330, 4.791] [−0.097, 0.220]⊕ [1.063, 1.410]
εpττ [−2.209, 5.710] [−0.098, 0.221]⊕ [1.063, 1.408]
εpeµ [−2.209, 2.249] [−0.124, 0.058]
εpeτ [−2.434, 2.006] [−0.239, 0.244]
εpµτ [−3.849, 1.772] [−0.013, 0.021]

εnee [−1.714, 2.915] —
εnµµ [−2.331, 3.282] —
εnττ [−1.564, 2.705] —
εneµ [−1.426, 1.846] —
εneτ [−1.829, 1.147] —
εnµτ [−2.275, 1.250] —

Table 2. 90% CL allowed intervals for NSI in the up quark, down quark, proton, and neutron
directions. Shown are the results from our analysis of the LZ 2022 data [78] and those of the global
fit study of ref. [39]. Note that the latter do not quote NSI in the neutron direction.

future.
Like in figure 3 of our Borexino analysis in subsection 3.2, figure 4 contains grey

regions, indicating those points in the parameter space where the adiabatic approximation
may be invalid. Within these regions, γ < 100, where in this case we have calculated γ at
Eν = 16 MeV, approximately corresponding to the highest energy reached for 8B neutrinos.
As current global fits show that the allowed values of the NSI parameters are firmly within
the adiabatic regime, we believe that our analytical approach is valid for the regions of
interest. However, it is important to keep in mind that our sensitivities may be inaccurate
within the grey bands.

Our limits exhibit many interesting non-trivial features. Specifically, we see that there
are regions in each NSI parameter space where every DD experiment loses sensitivity. The
two most remarkable of these regions are, firstly, the strong cancellation in the angle η
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Figure 4. The 90% CL limits set by multi-ton LXe DD experiments in the NSI parameter space
using NRs. Shown are the limits from the first results of LZ [78] (turquoise), the full LZ exposure
(baby blue), XENONnT (dark blue), and DARWIN (purple) in the typically assumed case that
ϕ = 0. The bounds from the global analysis of ref. [39] are shown for comparison (red bars). The
grey regions indicate where the adiabaticity parameter is such that γ < 100, where we consider the
adiabatic approximation to begin to falter [130].
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occurring at η ≈ −35◦ and, secondly, the band of insensitivity in εη,ϕαβ across the entire
range of η values (made manifest by the gaps in the projected sensitivity areas). These
blind spots present a challenge for DD experiments, and they should be understood if DD
experiments are to maximise their constraining power in the NSI landscape.

We first consider the cancellation in η, which occurs at the same point regardless of the
nature of the NSI. From eq. (2.46) and eq. (2.47), we see that the non-standard contribution
to the CEνNS cross section vanishes when ξpZ+ξnN = 0 , recovering the SM cross section
regardless of the value of εη,ϕαβ . For a given nuclear isotope, this occurs when9

η = tan−1
(
−Z
N

cosϕ
)
. (4.6)

This condition depends on the choice of target material. For composite materials or targets,
or non-mononuclidic targets, the cancellation is not exact, as the contributions from the
different isotopes must be added up in eq. (4.2). Yet, for xenon the ratio Z/N is very similar
in all its natural isotopes, and the observed rate is greatly reduced for η ≈ −35◦ when ϕ = 0.
Since stable nuclei tend to have similar Z/N fractions, the position of the blind spot does
not vary greatly for different target choices. Interestingly, argon (a target employed in
current detectors [143] and planned tonne-scale ones [144]) leads to a considerable shift,
with η ≈ −39◦. This could lead to a noticeable effect if a full spectral analysis is performed
of the observed signal, thus strengthening the notion of complementarity among DD targets.
This would be even more noticeable in light nuclei, such as He, F, Na, or Si, for which
Z/N ∼ 1 and the cancellation takes place for η → 45◦ (although a large detector would
still be needed).

The second blind spot occurs at intermediate values of εη,ϕαβ , stretching over the full
range of η values. These insensitivity bands arise due to interference effects, where the NSI
contribution is cancelled and thus the SM CEνNS differential rate is restored. The exact
location of these bands differs for flavour-conserving and flavour-violating NSI.

In the case of flavour-conserving NSI, we can derive a simple analytical formula for
the values of the NSI parameters leading to a non-trivial realisation of the SM differential
rate. This relation, which defines the centres of each of these insensitivity bands where the
NSI contribution exactly cancels, has previously been pointed out in ref. [74] and in our
framework is given by

εη,ϕαα = QνN
ξpZ + ξnN

. (4.7)

The dependence on η, encoded in ξp and ξn, gives us the band over different values of εη,ϕαα
as a function of η. Note that, as with the first blind spot, the locations of these bands
depend on the choice of the target material due to the dependence on Z and N . For η = 0,
for instance, eq. (4.7) gives εη,ϕαα ≈ 0.6 for xenon, whereas it yields the lower εη,ϕαα ≈ 0.5
for argon. Since the non-trivial cancellation occurs at different values for different targets,
this could be important in determining whether global minima are driven by data or just
artefacts of the blind spot that nuclei have, see for instance ref. [48]. Considering different

9This cancellation was used in direct dark matter detection to argue that dark matter particles might
escape detection in some specific targets (see e.g., ref. [142]).

– 27 –



J
H
E
P
0
7
(
2
0
2
3
)
0
7
1

materials thus gives us one possible avenue to mitigate this particular loss of sensitivity,
though we note that the blind spots of xenon and argon move closer together as η → π/2.

In the case of flavour-changing NSI, the cancellation condition becomes more compli-
cated and is only retrieved in the (correct) basis-independent formulation of the scattering
rate in terms of the trace Tr [ρ dζ/dER] in eq. (1.1). Due to the flavour-coherence effects,
we still expect regions where the SM-NSI interference term cancels the NSI-only term;
however, these regions now also depend on the density matrix elements. To investigate
this behaviour, we consider, as a simplification, the values of εη,ϕαβ for which the differential
rate spectrum returns to its expected SM value for a given recoil energy ER. This prescrip-
tion removes the need to integrate over ER to find the number of events. From eqs. (1.1)
and (2.46), we find that in general, for α 6= β, the condition for restoring the SM rate reads

∫
Emin
ν

dφνe
dEν

(
1− mNER

2E2
ν

) [
(ξpZ + ξnN)(ραα + ρββ) εη,ϕαβ − 2QνN ραβ

]
dEν = 0 . (4.8)

The difference in the forms of the relations in eqs. (4.7) and 4.8 is why the positions of
these bands are different for flavour-conserving and flavour-violating NSI. In particular, we
note that, unlike in the case of the former, for the latter we have a flavour dependence
through the appearance of the density matrix elements. This is why, for instance, we see
a sign flip of the bands in the case of εη,ϕeτ and εη,ϕµτ with respect to εη,ϕeµ , as the relevant
off-diagonal density matrix elements ρeτ and ρµτ are negative in contrast to ρeµ.

As we can see from figure 4, the insensitivity bands for the off-diagonal NSI elements
εη,ϕeµ and εη,ϕeτ exhibit some interesting features at η ≈ −5/16π, where they seem to expose
a kink. The origin of these kinks in the off-diagonal NSI insensitivity bands can be traced
back to the appearance of the off-diagonal density matrix elements, ραβ , in the CEνNS
cancellation condition. These kinks arise because the last term in eq. (4.8) proportional to
ραβ undergoes a qualitative change of behaviour at η ≈ −5/16π.

We will discuss the behaviour of the kinks using the insensitivity band for εη,ϕeµ in the
top right plot of figure 4 as an example. At very negative angles η ≈ −π/2, the off-diagonal
interference term in eq. (4.8) proportional to ραβ has an extremum for positive εη,ϕαβ . In this
regime, the behaviour of the cancellation line (which occurs at negative εη,ϕαβ ) is entirely
dominated by the NSI-only term proportional to the diagonal density matrix elements, ραα.
However, at larger angles, η ≈ −5/16π, the extremum in the off-diagonal term shifts from
positive values of εη,ϕαβ to negative values, and it hence begins to dominate the behaviour of
the cancellation bands in eq. (4.8). This change of behaviour in the cancellation integral
leads to the appearance of the kinks in the insensitivity band.

For εη,ϕeτ , the same effect leads to the appearance of a kink, but with opposite signs of
εη,ϕαβ . In principle, the same reasoning holds for εη,ϕµτ ; however, in this case, the off-diagonal
term exhibits an almost negligible extremum, such that there is no visible kink. Finally,
the fact that the behaviour of the off-diagonal density matrix element ραβ is responsible
for the appearance of these kinks also explains why they are absent for the diagonal NSI
elements, εη,ϕαα , since there is no contribution from ραβ .
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4.3 Sensitivities in the charged NSI plane

While the EνES cross section will only be modified when εη,ϕαβ 6= 0 and ϕ 6= 0, even in the
case of pure nuclear NSI couplings (ϕ = 0), propagation effects within the solar medium
can still alter the expected ER rate in DD experiments. Thus, since the charged plane
contains proton NSI modifications, both ER and NR signals must be considered. There
is only one direction in which a non-zero NSI will not affect the NR signal, and that is
precisely the electron-only direction, ϕ = ±π/2 and η = 0. For this reason, in figure 5 we
include both the NR and ER analysis to show the projected sensitivities of DD when NSI
lie in the (εpαβεeαβ)-plane.

Currently, the world-leading DD constraint on ERs comes from XENONnT [80], which
has thus far reached an exposure of 1.16 ton yr. We have replicated this analysis by taking
the efficiency function, expected backgrounds, and observed number of events from ref. [80],
where, for the background model B0, we subtract their expected solar neutrino background
(figure 4 of ref. [80]). In the signal region of [0−140] keV, the SM counts predicted by SNuDD
is 274, which is lower than the quoted 300± 30 [80]. This could be due to the fact that the
neutrino signal in ref. [80] uses a simplified modelling of the neutrino spectrum. Specifically,
SNuDD uses the relativistic random phase approximation (RRPA) studied in ref. [133] along
with a series of step-functions to model the effect of electron binding energies in xenon.
This reduces the overall rate and introduces discontinuous jumps in the spectra when more
electrons can be ionised above certain energies. One such discontinuity is around ∼ 30 keV,
which does not appear to be present in figure 4 of ref. [80]. When we remove both RRPA
and the step function approximation in SNuDD to determine the expected number of solar
neutrino events with the same setup as ref. [80], we predict 299 solar neutrino events.

Unlike in the NR case, the sizeable backgrounds for ERs mean that spectral information
should be used to harness greater sensitivity. Following XENONnT, our analysis uses
2 keV-width bins from [0 − 30] keV. We have refrained from using the entire signal region
because the backgrounds are at their lowest at low energies. Additionally, the backgrounds
below 30 keV are dominated by one source, 214Pb, which has an associated uncertainty
that we treat as a nuisance parameter. If we consider higher recoil energies, backgrounds
such as 124Xe, 83mKr and 136Xe become important, all of which have different associated
uncertainties. A dedicated experimental analysis would include all backgrounds and their
uncertainties to perform a multivariate fit to the observed events. We believe such an in-
depth study should be done in consort with the collaboration. The uncertainty we take for
the 214Pb dominated background is σb = 12.5% [80]. We consider this to be our dominant
nuisance parameter and find that if we instead perform the fit assuming the pp neutrino
flux is the dominant nuisance parameter (σa = 1% [95]) our limits for XENONnT see a
substantial improvement.

As mentioned above, the potential for future ER analyses relies primarily on the an-
ticipated background reduction. For the full XENONnT run, we take the backgrounds
from ref. [98], for LZ we use ref. [103], and for DARWIN we use the predictions given in
ref. [84]. Unlike with the NR signal, the ER neutrino spectrum does not fall off sharply
at ER ∼ keV, so we do not extend the ER efficiency functions to lower energies as we did
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for our NR projections. We use the efficiency functions given in ref. [102] for LZ, and in
ref. [81] for XENONnT and DARWIN, where they reach 50% at 1.46 keVee and 1.51 keVee,
respectively. For these projections, we also perform spectral analyses, binning with 2 keV-
width bins in the energy ranges [0−60] keV for XENONnT and DARWIN, but in the range
[0 − 30] keV for LZ. LZ’s maximum is limited by their reported efficiency function [102].
Additionally, we have assumed that these experiments will have a greater understanding
of their backgrounds and therefore consider the dominant nuisance parameter to be the pp
neutrino flux, σa = 1%. We believe this is an achievable goal for future DD experiments
and see our projected sensitivities as an additional motivation for improved understanding
and reduction of backgrounds. We also considered a far-future xenon detector with an
exposure of 103 ton yr as in ref. [74] and found that the pp flux uncertainty drives the
projected sensitivity to the extent that even with five times the exposure of DARWIN and
no backgrounds, only marginal improvements are made to the sensitivities.

We show our results in figure 5, where we have filled contours for ER (pink/red colours,
dotted lines for projections) and NR (blue/purple colours, dashed lines for projections)
analyses. In order to place these sensitivities in the wider experimental context, we take
the recent results of ref. [95], which used the spectral data from Phase-II of the Borexino
experiment [128] to constrain εeαβ . As ref. [95] does not mention the potential impact
of either proton or neutron NSI on neutrino oscillations, we assume that they have only
considered NSI with the electron, with no contribution from either the proton or the
neutron. As a result, we set η = 0, and we place their bounds at ϕ = ±π/2, corresponding
to electron-only NSI.

We note that, while previous studies have also constrained electron NSI, most of them
place individual bounds on the left- and right-handed components of the interaction [15,
21, 145, 146, 148]. For comparison with the previous literature, we tabulate many of
these results alongside the corresponding allowed intervals derived in this work from the
XENONnT ER data in table 3. In this context, it is worth noting that ref. [74] previously
considered the potential impact of including EνES data from DUNE and a theoretical high-
exposure DD experiment on global fit results of electron NSI. We investigate this impact
in more detail by computing the solar neutrino scattering rate via the coherent treatment
of oscillation effects in the density matrix formalism in eq. (1.1), considering both CEνNS
and EνES, and studying the non-trivial behaviour of DD sensitivities in the full plane of
charged NSI (εeαβε

p
αβ) by means of our parametrisation in figure 5. Finally, comparing

our XENONnT limits and future projections to the limits derived using Borexino data in
refs. [74] and [95], from table 3 we see that while current DD data sets are not able to
yield competitive bounds, next-generation and far-future DD experiments will be able to
improve on current limits.

As in figures 3 and 4, we show the points of parameter space where the adiabatic limit
may no longer be valid for neutrino propagation in the Sun. Since γ is energy-dependent,
this region is different for the values of Eν probed by NR and ER analyses. In light grey,
we show the regions relevant for NRs (Eν = 16 MeV as in figure 4) and in dark grey we
show the regions for ERs (Eν = 1 MeV), which roughly correspond to the highest energy
of 7Be neutrinos. This is not the primary neutrino source for the EνES signal (pp), but it
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Figure 5. Same as figure 4 but now fixing the NSI to lie in the (εpαβεeαβ)-plane (η = 0) and using
both NRs and ERs. The colour scheme for the NR results is the same as in figure 4. For the ER
analyses, we show the limits derived from the first set of data from XENONnT [80] (dark orange),
as well as projections for XENONnT (amber), LZ (light orange), and DARWIN (red). The bounds
from the global analysis of ref. [39] (red bars) and the Borexino analysis of ref. [95] (green bars) are
shown for comparison. The grey regions show where the adiabatic limit breaks down (γ < 100) for
energies relevant to NRs (light grey) and ERs (dark grey).
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L R V Ref.

εeee

[−0.021, 0.052] [−0.18, 0.51] – SK & KamLAND [21]
[−0.046, 0.053] [−0.21, 0.16] – Borexino Phase-I [145]

– – [−0.56, 0.24] Borexino & COHERENT [74]
[−1.37,−1.29] ⊕

[0.03, 0.06] [−0.23, 0.07] [−0.09, 0.14] Borexino Phase-II [95]

– – [−2.65, 0.78] XENONnT 2022 (this work)

εeµµ

– – |εeττ − εeµµ| < 0.097 SK atm. [146]
[−0.03, 0.03] [−0.03, 0.03] – react. + acc. [15, 147]

– – [−0.58, 0.72] Borexino & COHERENT [74]
[−0.20, 0.13] ⊕

[0.58, 0.81] [−0.36, 0.37] [−0.51, 0.35] Borexino Phase-II [95]

– – [−2.19, 2.34] XENONnT 2022 (this work)

εeττ

[−0.12, 0.060] [−0.99, 0.23] – SK & KamLAND [21]
[−0.23, 0.87] [−0.98, 0.73] – Borexino Phase-I [145]

– – |εeττ − εeµµ| < 0.097 SK atm. [146]
– – [−0.60, 0.72] Borexino & COHERENT [74]

[−0.26, 0.26] ⊕
[0.45, 0.86] [−0.58, 0.47] [−0.66, 0.52] Borexino Phase-II [95]

– – [−2.09, 2.20] XENONnT 2022 (this work)

εeeµ

[−0.13, 0.13] [−0.13, 0.13] – react. + acc. [147]
– – [−0.58, 0.60] Borexino & COHERENT [74]

[−0.17, 0.29] [−0.21, 0.41] [−0.34, 0.61] Borexino Phase-II [95]
– – [−1.03, 1.41] XENONnT 2022 (this work)

εeeτ

[−0.33, 0.33] [−0.28,−0.05] ⊕
[0.05, 0.28] – react. + acc. [147]

– [−0.19, 0.19] – TEXONO [148]
– – [−0.60, 0.62] Borexino & COHERENT [74]

[−0.26, 0.23] [−0.35, 0.31] [−0.48, 0.47] Borexino Phase-II [95]
– – [−1.26, 1.11] XENONnT 2022 (this work)

εeµτ

– – [−0.035, 0.018] SK atm. [146]
– – [−0.20, 0.07] MINOS [149]
– – [−0.018, 0.016] IceCube [150]
– – [−0.67, 0.62] Borexino & COHERENT [74]

[−0.62,−0.52] ⊕
[−0.09, 0.14] [−0.26, 0.23] [−0.25, 0.36] Borexino Phase-II [95]

– – [−1.57, 1.50] XENONnT 2022 (this work)

Table 3. Limits on electron NSI, most extracted from ref. [31]. The limits derived from our analysis
of the recent XENONnT ER results are highlighted in orange. The limits derived by ref. [95] using
the Borexino Phase-II data, which we compare to in figure 5, are highlighted in green.
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does contribute at higher energies. Taking this value is a conservative choice since higher
energies correspond to a greater violation of adiabaticity. This is reflected in the fact that
the dark grey regions, if present, are contained within the light grey regions in figure 5.

Figure 5 demonstrates that next-generation and far-future DD experiments will form
powerful probes of electron NSI, with almost all of our projections cutting into portions
of the bounds placed with the Borexino experiment. DARWIN can give us considerably
more sensitivity to all NSI parameters, showcasing its excellent potential in searching for
new physics in the neutrino sector. However, such potential exhorts substantial efforts
in background modelling and reduction, something which is already well underway in the
respective collaborations.

As in the CEνNS case, the limits for the EνES case exhibit blind spots where the
predicted rate is indistinguishable from the SM expectation. Once again, this weakens the
limits at certain values of ϕ and a series of bands where DD experiments appear to lose
sensitivity. Here, the complementarity with the NR analysis can be seen explicitly, since
at precisely ϕ = 0, the NSI effect on the NR signal is maximal. However, there are two
notable physical differences between the EνES case and the CEνNS case, arising from both
the different CEνNS and EνES cross sections and the way in which non-standard matter
effects enter.

Firstly, we have no strong cancellation in the ER limits. While one might expect a
complete loss of sensitivity when ϕ = 0, where the EνES cross section is unchanged by
the presence of NSI, neutrino oscillations are still impacted by the NSI contribution to the
matter Hamiltonian from the nucleons (in this case only the proton since η = 0). Thus,
for high enough values of εη,ϕαβ , the effect of NSI on the neutrino flavour fractions is large
enough to give us an observable deviation from the SM expectation. This is analogous to
what we saw in our Borexino analysis of subsection 3.2. Consequently, while we do lose
sensitivity in ERs as ϕ approaches zero, our limits ultimately reach a finite value.10

Secondly, we have fewer bands of insensitivity in ER over ϕ than we did for the NR case
over η. The location of these bands can be calculated through identical arguments to the
CEνNS case, whereby those values of the NSI parameters where the NSI-augmented rate
is equal to the expected SM rate, dR/dER − dR/dER|SM = 0, are found. The derivation
of these cancellation conditions again crucially hinges on the coherent treatment of the
neutrino propagation via the density matrix formalism in eq. (1.1). Critically, the condition
for cancellation in the off-diagonal NSI elements εαβ is completely missed in the simplified
treatment of the rate as the sum over the oscillation probabilities times scattering cross
section,

∑
α Peα dσναT /dER.

10Note that this is only possible as the cross section for electron neutrinos contains the extra CC con-
tribution, making it different from that of the muon and tau neutrinos. Changes in the electron neutrino
fraction then lead to measurable changes in the total number of CC interactions in the detector; the NC
interactions from all flavours, on the other hand, remain equal.
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In the case that only one diagonal NSI element, εη,ϕαα , is active, the cancellation equation
for the differential rate for EνES reads,

∫
Emin
ν

dφνe
dEν

ραα

{(
1− ER

Eν

(
1 + me − ER

2Eν

)) [
4 s2

W + ξe εη,ϕαα

]
ξe εη,ϕαα

+
(

1− meER
2E2

ν

)[
4 s2

W

ρee − ρSM
ee

ραα
+ (2 δαe − 1) ξe εη,ϕαα

]}
dEν = 0 . (4.9)

On the other hand, for off-diagonal NSI, εη,ϕαβ with α 6= β, the cancellation condition can
be expressed as

∫
Emin
ν

dφνe
dEν

{(
1− ER

Eν

(
1 + me − ER

2Eν

))[(
ξe εη,ϕαβ

)2
(ραα + ρββ) + 8 s2

W ξe εη,ϕαβ ραβ

]

+
(

1− meER
2E2

ν

) [
4 s2

W

(
ρee − ρSM

ee

)
− δαµδβτ 2 ξe εη,ϕαβ ραβ

]}
dEν = 0 , (4.10)

where the last term in the second line is only present for αβ = µτ . In the above expressions,
ρSM refers to the density matrix obtained in the SM case (i.e. εαβ = 0) and ρ to the one
obtained with non-zero NSI elements. As can be seen in figure 5, for EνES we obtain
insensitivity bands similar to those in the CEνNS case for the projected limits; however
we only see this for εη,ϕee and εη,ϕeµ . In most cases, DD sensitivities are not good enough to
reach these cancellation regions where the SM scattering rate is recovered.

Finally, it is worth noting that, for very small but non-zero ϕ, the line of exact cancel-
lation has a very sharp zero-transition from very large (positive) to very small (negative)
values of εη,ϕαβ (or vice versa) making it seem like there exists an asymptote at ϕ = 0. This
effect is similar to that exhibited by figure 3 in our analysis of Borexino data. In this region
of parameter space, the NSI-only term is negligible since it is quadratic in ξe, and thus ϕ.
The reason for this change in sign is a rapid flattening of the SM-NSI interference terms
in eqs. (4.9) and (4.10), which are linearly proportional to ξe, and thus ϕ. This flattening
leads to a rapid change in the value of εη,ϕαβ where the interference term cancels off the
residual SM-like term proportional to ρee − ρSM

ee and hence restores the SM neutrino rate.
The bounds from the global analysis of ref. [39] are shown in figure 5 as they were in

figure 4, but now only the proton direction (η = 0, ϕ = 0) is visible. By plotting the NR
analyses, we can see how the sensitivities of figure 4 extend into the ϕ direction. We observe
the same regions of nonzero εη, ϕαβ where our xenon-based DD experiments lose sensitivity.
For the diagonal elements, this region simply follows from eq. (4.7) and, for the off-diagonal
elements, the more complicated behaviour is expressed in eq. (4.8). Furthermore, the off-
diagonal elements again exhibit some non-trivial behaviour in the form of ‘kinks’ (see for
example εη, ϕeµ ≈ 1.0 and ϕ ≈ −5/16π). The appearance of these kinks is analogous to those
observed in the NR sensitivities in the nucleon plane, as described at the end of section 4.2.

We re-iterate that the limits presented in figures 4 and 5 have been calculated by
switching on only one NSI parameter at a time. Due to potential interference effects
between different NSI parameters, a global analysis that allows all NSI parameters to vary,
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before marginalising to compute the limits on any one parameter, would generally lead to
weaker bounds [74, 151]. However, the point of our study is to illustrate the potential of
DD experiments in this direction. Our study makes a strong case for their inclusion in
future global analyses.

4.4 Final remarks

Having access to both the NR and ER signals in one experiment makes DD incredibly
powerful as a probe for NSI. As far as we are aware, this is the only experimental technology
that is able to perform such simultaneous analyses. For example, if a signal inconsistent
with the SM is detected in the future, both channels would be pivotal for exploring the
possible values of η and ϕ, or, equivalently, the relative strength of NSI with electrons,
protons and neutrons. This will come in tandem with other more traditional searches for
new physics in the neutrino sector. However, given the number of parameters one is trying
to constrain or fit, the addition of DD will provide important input complementary to that
of oscillation and spallation source experiments.

Above, we have treated the NR and ER signals in DD experiments as separable.
Indeed, in the name of background discrimination for DM searches, DD experiments are
capable of this for large parts of the signal region. Taking into account experimental
inputs, as described in eq. (4.2), we are able to model NR and ER spectra accurately
without resorting to a full Monte Carlo simulation of the detector responses in terms of
S1 (scintillation) and S2 (ionisation) signals. Since detector responses from the point of
interaction, be it NR or ER, have been well studied and calibrated within experimental
collaborations, we are confident that introducing nonzero NSI will not alter the expectation
that future experiments will be able to resolve S1 and S2 signals.

Interestingly, many DD collaborations also perform S2-only analyses, which has the
benefit of lowering the experimental threshold Eth, increasing the sensitivity to lighter
DM values. However, this comes at the cost of losing NR/ER discrimination. In our NR
projections for future experiments, we took the liberty of lowering Eth in a modest way,
assuming that NR/ER discrimination was still possible, and indeed S2-only analyses boast
much lower thresholds. As this choice implies, reducing Eth is beneficial for the NR signal,
but not necessarily for the ER signal. This is because low-energy neutrinos are unable to
impart sufficient energy to excite the bound electrons. It is likely then that an S2-only
analysis will only improve the prospects of the NR signals, but one would then have to
account for larger background rates.

Furthermore, in our analysis of DD experiments, we have not included argon-based
liquid experiments. This direction is not without its potential, but we leave incorporation
of such experiments for future work. As can be seen in ref. [73], the prospects for argon
detectors are not as promising as those for xenon. However, ref. [73] only considered the
implications for specific BSM scenarios. The limiting factor for argon detectors seemed to
be the experimental threshold and increased ER backgrounds, both of which tend to be
much higher than their xenon counterparts. Recent progress from the DarkSide collabo-
ration indicates that argon detectors may be able to provide competitive bounds in the
future [152–154].
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To our knowledge, this work is the first to derive dedicated limits on NSI from both
CEνNS and EνES in DD experiments from the recent first results XENONnT [80] and
LZ [78]. Our analysis of future multi-ton LXe detectors in this section has exposed the
huge potential that DD experiments have in fully exploring the parameter space of NSI,
especially due to their increased sensitivity to EνES. While there have been some initial
studies considering the EνES signals for non-zero NSI [70, 74], we take a comprehensive
approach by considering the solar CEνNS and EνES signals, modelling the experimental
setups as close to the experimental collaborations as possible, and treating solar neutrino
propagation in the coherent density matrix approach. Combined with our convenient
parametrisation of the NSI parameter space, this allows us to derive an accurate overview
of DD sensitivities and blind spots in the entire NSI parameter space. Moreover, as we
pointed out in the previous section, since the blind spots for CEνNS and EνES do not
coincide in the charged NSI plane, DD experiments using a combination of both signatures
can effectively avoid these and remain sensitive for most of this region.

When presenting our extended parametrisation in section 2, we introduced the axial-
vector NSI coupling ε̃fαβ , only to set it to zero because it does not contribute to matter
effects. Similarly, the effect of ε̃fαβ on NRs will be minimal because of the coherent nucleon
number enhancement that the vector current receives over the axial-vector. This enhance-
ment is no longer present when one considers ERs, and would constitute an additional set
of parameters that one could probe. The sensitivity of DD experiments to such axial-vector
NSI is an interesting direction to be studied in future work.

Finally, we comment on the particle physics interpretation of the most promising pro-
jections we report in this work. Namely, the potential for a DARWIN-like experiment to
probe NSI at the level of εη, ϕee ∼ 10−2. Reinterpreting this value in a more canonical EFT
approach implies ΛNP/

√
C ∼ 1.8 TeV, where C is the Wilson coefficient of the four-fermion

operator. We see here that for C > 1 these experiments have the capability to probe new
physics above the TeV scale. In this context, it would presumably make the most sense to
embed NSI analyses within the more general SMEFT framework. It would be interesting
to study whether this can already be done in a consistent way. SMEFT observables are
typically at collider scales, while NSI studies are much below, so the effective approach is
appropriate for a greater range of ΛNP.

5 Conclusions

We have demonstrated that direct detection experiments will soon become powerful probes
of neutrino non-standard interactions, testing the parameter space in a complementary way
to spallation source and oscillation experiments. This owes to their simultaneous sensitivity
to nuclear and electron recoils and their unique capability to test tau neutrinos from the
solar neutrino flux.

To do so, we have developed an extension of an earlier NSI parametrisation, allowing for
non-standard interactions with nucleons and electrons simultaneously. Our parametrisation
captures the rich phenomenology that arises when one allows for NSI to impact both
neutrino propagation and neutrino scattering. We have shown that previous NSI limits
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from spallation source experiments, such as CENNS-10 LAr, and oscillation experiments,
such as Borexino, map non-trivially to this extended parameter space, demonstrating the
importance of allowing for a variable NSI contribution from the proton and the electron.

We have derived current direct detection constraints and projected the sensitivities of
future direct detection experiments on the NSI landscape using the expected solar neutrino
rate. We have thoroughly studied the resulting bounds in the different NSI directions by
taking into account both CEνNS and EνES signals, accurately modelling the experimental
setups and consistently treating the coherent neutrino propagation via the density matrix.
Furthermore, we have identified the potential blind spots where sensitivity is lost due to
cancellations in the expected rate.

While current leading constraints from LZ and XENONnT are not competitive in this
landscape yet, we have shown that those from future experimental runs and the projected
DARWIN detector will cut into new regions of the NSI parameter space. We believe that
the conclusion is clear: upcoming multi-ton, LXe-based DD experiments are poised to make
a considerable impact in the neutrino NSI landscape. We therefore recommend that they
be included in future global NSI studies, incorporating a more complete treatment of the
systematics.
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A Solar neutrino transition rate

In writing eq. (1.1), we automatically retain the full phase correlation of the different solar
neutrino flavour states reaching the detector. The way to understand how this formula
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comes about is to consider the amplitude for the combined propagation να → νγ of solar
neutrinos from the point of production to the detector, and the scattering νγ T → νf T

of the propagated neutrino νγ with the target material T into any final state neutrino νf ,
which is then lost. In quantum field theory, asymptotic in- and out-states are definite
momentum states of the free theory, and as such they are on mass-shell. Hence, they
describe well-defined mass eigenstates in the far past and far future. For our scattering of
the neutrino νγ on the target T , we thus have to sum over all possible mass eigenstates νi in
the out-state.11 Hence, the amplitude square of the process να →

∑
i νi can be written as

∣∣∣Aνα→∑i
νi

∣∣∣2 =
∑
i

|〈νi|S|να〉|2 =
∑
i

∣∣∣∣∣∑
β

U∗βi 〈νβ |S|να〉
∣∣∣∣∣
2

, (A.1)

where we have factored out the nuclear part of the elastic scattering process. Here, S is
the S-matrix for the full process, and we have decomposed the neutrino mass eigenstate νi
into its flavour components, |νi〉 =

∑
β Uβi|νβ〉, in terms of the PMNS matrix Uβi. Then,

the amplitude can be decomposed as

∣∣∣Aνα→∑i
νi

∣∣∣2 =
∑
i

∣∣∣∑
β

U∗βi 〈νβ |Sint

(∑
γ

|νγ〉〈νγ |
)
Sprop|να〉

∣∣∣2 (A.2)

=
∑

β,γ,δ,λ

δβλ︷ ︸︸ ︷∑
i

U∗βiUλi 〈νβ |Sint|νγ〉〈νγ |Sprop

(∑
ρ

|νρ〉〈νρ|
)
|να〉〈να|

(∑
σ

|νσ〉〈νσ|
)
S†prop|νδ〉

× 〈νδ|S†int|νλ〉 (A.3)

=
∑
γ,δ,ρ,σ

(Sprop)γρ π(α)
ρσ (Sprop)∗δσ︸ ︷︷ ︸

≡ρ(α)
γδ

∑
β

(Sint)∗βδ (Sint)βγ︸ ︷︷ ︸
M∗(νδ→f)M(νγ→f)

, (A.4)

where in the second to last line we have used the unitarity of the PMNS matrix,
∑
i U
∗
βiUλi =

δβλ. Here, π(α) is the projector onto the neutrino-flavour state |να〉. In the second line, we
have separated the S-matrix into Sprop, describing the propagation of the initial neutrino
να from the source to the detector, and Sint, describing the interaction with the detector
material. Thus, decorating the expression eq. (A.4) with the relevant phase-space factors
for the generalised cross section (cf. eq. (2.44)), we finally find that∣∣∣Aνα→∑i

νi

∣∣∣2 ∝ Tr
[
ρ(α) dζ

dER

]
. (A.5)

11We would like to express our special thanks to Thomas Schwetz for clarifying discussions on this point.
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B ∆χ2 Plots for CENNS-10 LAr and Borexino
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Figure 6. The variation in the ∆χ2 statistic in our CENNS-10 LAr analysis under two assumptions
for ϕ: ϕ = 0 (black) and ϕ = π/2 (red). We have fixed η = tan−1(1/2), corresponding to a pure
up-quark NSI when ϕ = 0. The dashed line shows where ∆χ2 = 2.71, where we draw our 90% CL
limit.
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Figure 7. The variation in the ∆χ2 statistic in our Borexino analysis under two assumptions for
ϕ: ϕ = 0 (black) and ϕ = π/2 (red). We have fixed η = 0, corresponding to a pure proton NSI
when ϕ = 0 and a pure electron NSI when ϕ = π/2. The dashed line shows where ∆χ2 = 2.71,
where we draw our 90% CL limit.
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