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1 Introduction

Quantum Chromodynamics (QCD) is the fundamental theory of the strong interaction of
quarks and gluons, which plays an essential role in studying hadron dynamics. However,
because of rapid increase of the running coupling constants at long distance and color
confinement, applying QCD to tackle the low-energy interactions of hadrons is challenging.
Effective field theories (EFT) of QCD are proposed to study the dynamics of hadrons in
the low-energy region. Chiral perturbation theory (ChPT) [1, 2] is such an EFT that works
in the low-energy region (E �Mρ) without resonance states appearing. The pseudoscalar
mesons are filled in an octet representation according to the chiral symmetry breaking of
QCD. It supplies a powerful theoretical framework [1, 2] to deal with low-energy hadron
decays and scatterings, e.g., ππ scatterings and weak pion decays. Nevertheless, ChPT
is a nonrenormalizable theory, as its power counting is based on momenta and masses of
pseudoscalars. As a result, the number of unknown couplings will increase if one wants
to refine the analysis by considering higher-order corrections. This makes it difficult to
predict reliably in the high-energy region. Therefore, in the middle energy region where
resonances appear (Mρ ≤ E ≤ 2GeV), neither QCD nor ChPT works. Resonance chiral
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theory (RChT) [3–8] is proposed to study physics in this middle-energy region, with the
resonances included as new dynamical degrees of freedom of the EFT and filled in the SU(3)
octets. The power counting is accomplished by large Nc (the number of colors) expansions.
Also, one should keep in mind that, upon resonance integration, ChPT is recovered. The
chiral countings on the light pseudoscalars would be restored, and the chiral low energy
constants (LECs) shift their values between these two theories. Besides, the unknown
couplings in RChT can be fixed by matching the Green functions of RChT with that of
QCD in the high-energy region and by fitting the experimental data.

In 2021, the Fermilab National Accelerator Laboratory (FNAL) presented its first re-
sults of the anomalous magnetic moment for the positive muon (aµ ≡ (g−2)µ/2). Combined
with the previous measurements of both muon and antimuon [9–12], the new experimental
average is aµ(Exp) = 116592061(41) × 10−11 (0.35 ppm) [13]. This increases the tension
between theoretical prediction from the standard model (SM) and experimental measure-
ment, with a discrepancy of 4.2 σ, implying the emergence of new physics beyond the
standard model (SM). The SM prediction can be separated into four parts: contributions
from Quantum Electrodynamics (QED), electroweak interactions (EW), hadronic vacuum
polarization (HVP), and hadronic light-by-light scatterings (HLBL). The contributions
from QED and EW dominate but have only minor uncertainties [14], and the primary
source of uncertainty is from the contributions of hadron interactions, HVP and HLBL.
HVP is related to the e+e− annihilation with the production of pseudoscalar mesons, giv-
ing the most significant hadronic contribution. The high-energy part (E ≥ 2GeV) can
be estimated from perturbative QCD, while the low-energy part is difficult to be fixed.
In the past decades, data-driven method [15–17] gave an overall estimation of the HVP
by focusing on the data directly,1 but it lacks a systematic theoretical tool to deal with
interactions of hadrons. For recent progress trying to refine HVP contributions, we refer to
refs. [22–26]. Furthermore, as has been pointed out by ref. [27], the most important con-
tributions come from the ρ, ω, φ region, and there are not enough high statistics datasets
in these energy regions. Some of the datasets even contradict each other. Thus, it is nec-
essary to construct a theoretical tool that can extend the EFT to the middle energy region
(Mρ ≤ E ≤ 2GeV) and fits the datasets well. This is realized by generalizing the RChT to
the higher-energy region with heavier resonances included [27, 28]. Here we will follow the
strategy and include more processes to refine our analysis of almost all the contributions
with two body final states. It is worth pointing out that a similar approach via the hidden
local symmetry type of Lagrangians is proposed and applied in phenomenology studies up
to E = 1.05GeV. See e.g., refs. [29, 30]. Note that the pion vector form factor is studied
within RChT in refs. [31, 32], too.

As is known, the processes of e+e− annihilation into two-body final states contribute
most to the HVP. Therefore, we will focus on the processes of e+e− → π+π−, K+K−,
K0
LK

0
S , π0γ, and ηγ. The first two processes have been studied in our previous work [27].

Here we include e+e− → K0
LK

0
S to give a complete analysis on the ππ − KK̄ coupled

1Notice that for the HVP contributions, the prediction from lattice QCD [18–20] and that from data-
driven method have a significant discrepancy. The reason is still unknown. Besides, the HVP contributions
estimated from τ decays would be much closer to that of lattice QCD [21].
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channels. The ρ − ω mixing mechanism has been modified a bit to be more consistent
with that of ref. [33]. Besides, there are new experimental measurements for the process
of e+e− → K0

LK
0
S , which should be included. At earlier times, the measurements from

CMD-2 [34], SND [35], OLYA [36], and DM1 [37] lack enough information around the
φ resonance region. The measurements of CMD-2 in 1996 [38] and SND in 2001 [39]
were partly improved, but they were still not precise enough. In the past decade, the
measurements by SND in 2016 [40] and BABAR [41] in 2014 supply high statistics cross
sections in the φ resonance region and make a precise analysis possible. There is also a
recent measurement in the high-energy region of [2.00-3.08] GeV by BESIII [42]. For the last
two processes of e+e− → π0γ and ηγ, they have not been studied in our approach before,
and we take them into the analysis for completeness. On the experimental side, in 2000,
SND started a measurement firstly in the energy region of [0.99-1.03] GeV for the process
of e+e− → π0γ [43]. It is updated in the energy region of [0.60-0.97] GeV in 2003 [44],
in the energy region of [0.6-1.35] GeV in 2016 [45], and in the energy region of [1.075-2.0]
GeV in 2018 [46]. CMD-2 performed a measurement for this process in 2004 [47], too.
For the process of e+e− → ηγ, there are only four datasets: that of CMD-2 in 2001 [48],
CMD-2 again in 2004 [47], SND in 2006 [49], with a big difference from the data of CMD-2
in 2001 and 2004, and SND in 2014 [50] in the energy region of [1.07-2.0] GeV. Since all
of these processes are combined together and analyzed based on the same framework of
RChT, it would be expected that the coupling constants are well determined. Also, the
cross sections around the ρ−ω region are very sensitive to the masses and widths of these
two resonances. A combined analysis would help to fix these resonance parameters, and
the prediction on HVP with the framework of RChT would be reliable.

The paper is organized as follows: first, we give an overview of the theoretical frame-
work based on RChT to calculate the amplitudes of the electron-positron annihilation
processes with two-body final states, as shown in section 2. With these amplitudes, we
give two analyses, one is from the threshold up to 1.1GeV, and the other is up to 2.3GeV,
with the latest experimental datasets fitted and the unknown couplings fixed. See section 3.
With the obtained hadronic vacuum polarization form factors, we predict the leading order
HVP contribution to muon g-2 in section 4. Finally, a summary is given in section 5.

2 Theoretical framework

2.1 Construction of the chiral effective Lagrangians

As discussed above, ChPT [1, 2] is a well-established EFT to describe the interactions of
light pseudoscalars in the low-energy region. The pseudoscalar mesons have small masses,
and they are regarded as Goldstone bosons generated by the spontaneous symmetry break-
ing of the chiral group G = SU(3)L × SU(3)R that is down to the subgroup SU(3)V . By
nonlinear realization, the dynamical variables of the pseudoscalar octet (π,K, η) can be
represented by

u(φ) = exp
{

i√
2F

Φ
}
,
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where F is the pion decay constant, given as F ≈ 92.2MeV [51]. Φ is the SU(3) matrix
of light pseudoscalar octet. The mixing mechanism of η − η′ states is defined through the
single angle mixing scheme,2 in terms of the mixing angle θP , η

η′

 =

 cos θP − sin θP
sin θP cos θP

 η8

η0

 . (2.1)

The other degrees of freedom in the EFT are about the resonances. They are filled in the
octet or singlet, taking into account their transformation under the subgroup SU(3)V . The
octet and singlet resonances are degenerate in the large Nc limit so that they can be filled
in the nonet,

R =
8∑
i=1

λi√
2
Ri + R0√

3
. (2.2)

Here we focus on vector meson resonances, of which the ω−φ are mixed with an angle θV , V 8

V 0

 =

 cos θV sin θV
− sin θV cos θV

 φ

ω

 . (2.3)

Following ref. [27], the isospin symmetry breaking caused by ρ − ω mixing is considered,
too. We adopt the momentum-dependent mixing mechanism as ∣∣ρ̄0〉

|ω̄〉

 =

 cos δ sin δ MV Γρ
M2
V −s+iMV Γρ

sin δ MV Γρ
M2
V −s−iMV Γρ cos δ


 ∣∣ρ0〉
|ω〉


≡

 cos δ − sin δω(s)
sin δρ(s) cos δ

 ∣∣ρ0〉
|ω〉

 . (2.4)

Here one can set MV = Mρ as usually done in RChT. This mixing mechanism will be
applied in all the processes of our analysis. The (M2

V − s) parts in the off-diagonal terms
now have an opposite sign with that of ref. [27], to make sure that eq. (2.4) will return
back to that of ref. [33] in the non-relativistic limit. As in ref. [27], the small quantities
Γω/Γρ and (Mρ −Mω)/MV are ignored.

With the fields defined above, the Lagrangians to be used can be written as

LRChT = LGB + LV
kin + LV−GB

int , (2.5)

where GB represents the lightest pseudoscalar mesons, π,K, η, η′. The relevant La-
grangians of these pseudoscalars are taken from ChPT at the lowest order

LGB
(2) = F 2

4 〈uµu
µ + χ+〉 (2.6)

2How well the double angles mixing scheme [52–55] would improve the model is unknown, but the single
angle mixing scheme (SAMS) describes the current data well and has only one parameter. Also, the SAMS
can give good solutions in some other analyses, e.g., e+e− → ηππ [56], and η′ → ππγ [57].
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with 〈. . . 〉 the trace in the SU(3) flavour space. The subscript ‘2’ in the bracket is of O(p2) in
the chiral counting. The chiral operators such as uµ and χ+ can be found in ref. [58]. Notice
that when integrating out one resonance in the LV−GB, one would obtain chiral terms of
light pseudoscalars with chiral counting no lower than O(p2) [59]. Hence, LV−GB would be
no less than O(p4) in pure chiral counting, and there is no double-counting problem here.
For the processes of e+e− annihilating into π0γ and ηγ, the leading contribution to LGB is
from Wess-Zumino-Witten (WZW) anomaly, which is of odd-intrinsic-parity at the chiral
counting O(p4) [60, 61]. The explicit expression relevant to this work is

LGB
(4) = −

√
2NC

8π2F
εµνρσ 〈Φ∂µvν∂ρvσ〉 (2.7)

with vν the external vector current. The LV
kin is the kinetic term of the vector resonance

field
LV

kin = −1
2
〈
∇λVλµ∇νV νµ

〉
+ 1

4M
2
V 〈VµνV µν〉 . (2.8)

The LV−GB
int is the interaction Lagrangian involved with vector resonances and light pseu-

doscalars, LV−GB
int = LV

(2) + LV
(4) + LVV

(2) . One has

LV
(2) = FV

2
√

2
〈Vµνfµν+ 〉+ i

GV√
2
〈Vµνuµuν〉 ,

LV
(4) =

7∑
j=1

cj
MV
OjVJP , LVV

(2) =
4∑
j=1

djOjVVP .

For details of the Lagrangians, we refer to ref. [28]. By integrating out vector resonances,
the Lagrangian LV

(2) will contribute at least O(p4) and the Lagrangians LV
(4) and LVV

(2) will
contribute at least O(p6).

The interaction Lagrangians discussed above are only for the lightest multiplet of the
vector resonances, which contains the dynamics below roughly 1GeV. To extend our form
factors up to ECM ∼ 2.3GeV, one needs to include two sets of heavier vector resonance
multiplets (V ′µν and V ′′µν). Here we follow refs. [27, 28], applying the extension to the
Breit-Wigner propagator

1
M2
V − x

→ 1
M2
V − x

+ β
′
X

M2
V ′ − x

+ β
′′
X

M2
V ′′ − x

, (2.9)

where the subscript ‘X’ represents the label of a different process. They are: β
′,′′
ππ ,

β
′,′′

KK , β
′,′′

K0
LK

0
S
, β

′,′′

π0γ , β
′,′′
ηγ . Notice that eq. (2.9) implies the assumption that the La-

grangians LV′−GB
int and LV′′−GB

int have similar forms as LV−GB
int . Consequently, the ampli-

tudes/formfactors will have similar forms as that calculated by LV−GB
int , with only different

couplings (e.g., F ′V , G′V , c′j , and d′j) and propagators of the resonances. The contributions
of heavier states can be absorbed into the β′X , β

′′
X and propagators of V ′, V ′′ without de-

structing the structure of the amplitudes/formfactors, which has been successfully applied
in the phenomenology analyses [27, 28].
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(a) (b)

P

P

P

P

Figure 1. Feynman diagrams contributing to the hadronization of the vector current in the pro-
cesses of e+e− → PP , with PP = π+π−, K+K−, and K0

LK
0
S , respectively. The intermediate

particle is the vector resonances, ρ(770), ω(782), φ(1020) and the relevant heavier states.

2.2 Formulas of cross-sections and hadronic vacuum polarization form factors

The amplitudes of e+e− → π+π−,K+K−,K0
LK

0
S are driven by the electromagnetic current〈

P1(p1)P2(p2)|(V3
µ + V8

µ/
√

3)eiLQCD |0
〉

= (p1 − p2)µFPPV (Q2) (2.10)

with V iµ = q̄γµ(λi/2)q, Q = p1 + p2 is relevant to the energy in the center of mass frame,
ECM ≡

√
Q2 and PP = π+π−,K+K−,K0

LK
0
S , respectively. The cross-sections of e+e− →

π+π−, K+K− and K0
LK

0
S are given by

σe+e−→PP = α2
e

π

3Q2

(
1− 4m

2
P

Q2

)3/2

|FPPV |2. (2.11)

The Feynman diagrams to calculate the form factors of FPPV are shown in figure 1. Note
that for e+e− → K0

LK
0
S , only the diagram of figure 1 (b) contributes. The form factors in

the ideal mixing case can be written as

F π
+π−

V = 1 + FVGVQ
2

F 2(M2
ρ −Q2) ,

FK
+K−

V =
FVGVM

2
ρ

2F 2(M2
ρ −Q2) + FVGVM

2
ω

6F 2(M2
ω −Q2) +

FVGVM
2
φ

3F 2(M2
φ −Q2)

,

F
K0
LK

0
S

V = −
FVGVM

2
ρ

2F 2(M2
ρ −Q2) + FVGVM

2
ω

6F 2(M2
ω −Q2) +

FVGVM
2
φ

3F 2(M2
φ −Q2)

, (2.12)

The detailed results of the vector form factors F π+π−
V , FK+K−

V , and F
K0
LK

0
S

V , including
the mixing angles, heavier states, final state interactions (FSI), and QCD high energy
constraints are given in appendix A.

The amplitude for the process of e+e− → Pγ is driven by the hadronization of the
electromagnetic current, in terms of transition form factors [62]:〈

P (Q− k)γ(k)|(V3
µ + V8

µ/
√

3)eiLQCD |0
〉

= FPγ∗γ(Q2)εµνρσενγ(k)Qρkσ , (2.13)

where one has P = π0, η. With these form factors, one obtains the cross-sections

σe+e−→Pγ(Q2) = 2π2α3

3
(Q2 −M2

P )3

Q6 |FPγ∗γ(Q2)|2 . (2.14)
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P P P P(a) (b) (c) (d)

Figure 2. Feynman diagrams contributing to the hadronization of the vector current in the scat-
tering processes of e+e− → Pγ, with P = π0, η. The ‘V’ are the vector resonances, ρ(770), ω(782),
φ(1020) and the relevant heavier states. Figure 2 (a) is from the WZW anomaly, given in eq. (2.7).
Figure 2 (b,c,d) are those in which the vector resonances are involved.

The Feynman diagrams to calculate the form factors FPγ∗γ are shown in figure 2. At low
energies, ECM � Mρ, the hadronization of the vector current is dominantly driven by
the anomaly. See figure 2 (a). At higher energies, ECM & Mρ, vector resonances appear
and would dominate the dynamics of the hadronization. See figures 2 (b)-(d). The form
factors FPγ∗γ in the ‘ideal’ case are listed below, where η′, ρ−ω mixing, and heavier vector
resonances V ′(′′) are ignored and θV = arcsin 1/

√
3. One has

FPγ∗γ(Q2) = FPa + FPb + FPc + FPd , (2.15)

with the form factors for the process of e+e− → π0γ given by

F πa = NC

12π2F
,

F πb = 2
√

2FV
3FMV

( 1
M2
ρ −Q2 + 1

M2
ω−Q2

)[
Q2(−c1 +c2 +c5−2c6)+m2

π(c1 +c2 +8c3−c5)
]
,

F πc = 2
√

2FV
3FMV

( 1
M2
ρ

+ 1
M2
ω

)[
Q2(c1−c2 +c5)+m2

π(c1 +c2 +8c3−c5)
]
,

F πd = −4F 2
V

3F

( 1
M2
ω(M2

ρ −Q2) + 1
M2
ρ (M2

ω−Q2)

)[
d3Q

2 +m2
π(d1−d3 +8d2)

]
, (2.16)

and the ones for the process of e+e− → ηγ given by

F ηa = NC

12
√

3π2F
,

F ηb = 2
√

2FV√
3FMV

( 1
M2
ρ−Q2 + 1

9(M2
ω−Q2)

)[
Q2(−c1+c2+c5−2c6)+m2

η(c1+c2−c5)+8c3m
2
π

]
− 8

√
2FV

9
√

3FMV (M2
φ−Q2)

[
Q2(−c1+c2+c5−2c6)+m2

η(c1+c2−c5)+8c3(2m2
K−m2

π)
]
,

F ηc = 2
√

2FV√
3FMV

( 1
M2
ρ

+ 1
9M2

ω

)[
Q2(c1−c2+c5)+m2

η(c1+c2−c5)+8c3m
2
π

]
− 8

√
2FV

9
√

3FMVM2
φ

[
Q2(c1−c2+c5)+m2

η(c1+c2−c5)+8c3(2m2
K−m2

π)
]
,

F ηd = −4F 2
V√

3F

( 1
M2
ρ (M2

ρ−Q2) + 1
9M2

ω(M2
ω−Q2)

)[
d3Q

2+(d1−d3)m2
η+8d2m

2
π

]
+ 16F 2

V

9
√

3FM2
φ(M2

φ−Q2)
[
d3Q

2+(d1−d3)m2
η+8d2(2m2

K−m2
π)
]
. (2.17)
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The equations above are for the form factors of e+e− → Pγ in the ideal mixing case.
Considering the mixing angles, the form factors will be much more lengthy. We put them
in the appendix B.

To reduce the unknown coupling constants of the RChT Lagrangians, we apply the
QCD high energy (Q2 → ∞) constraints which are established by matching the 〈V V P 〉
Green functions that are calculated by RChT with those calculated from perturbative QCD
with operator product expansion (OPE) at leading order. The high energy constraints for
the coupling constants appearing in our form factors are given as [63]:

c1 − c2 + c5 = 0 , (2.18)

c1 − c2 − c5 + 2c6 = − NCMV

32
√

2π2FV
, (2.19)

c1 + c2 − c5 + 8c3 = 0 , (2.20)

d1 + 8d2 − d3 = F 2

8F 2
V

. (2.21)

Since the photon meson transition form factors have the asymptotic behavior of 1/Q2 in
the high-energy region, it is convenient to implement that the form factors obtained in
RChT vanish at Q2 →∞ [64].3 One has

d3 = − NC

64π2
M2
V

F 2
V

, (2.22)

Another constraint is from the requirement that the two pion vector form factors should
vanish at Q2 →∞,

FVGV = F 2 .

Considering these high energy constraints, the unknown couplings of RChT are FV , d2,
c3, and αV . The masses of the lightest vector resonances are taken as Mρ = 773.80MeV,
Mω = 782.48MeV, and Mφ = 1019.20MeV, and the widths of them are taken as Γω =
8.67MeV and Γφ = 3.85MeV, which are compatible with those given by the PDG [65].4

In the low-energy region, the FSI is challenging to deal with in a model-independent
way. Dispersive approaches to deal with FSI are possible in some cases, e.g., refs. [68–74]
for some recent work. Here the situation is a bit more complicated. For example, the
resonance ρ appears in the intermediate states will contribute to the phase shift of ππ
P-wave, while the Omnès function [75], one kind of dispersion relation, is constructed by
phase shifts, too. This may cause ‘double counting’ on FSI. In this work, We apply the
method proposed in ref. [76] to handle the processes of e+e− → ππ,K+K−,K0

LK
0
S , where

the contribution of resonances has been matched with that of the Omnés function, and
there is no such double counting problem for the pion vector form factor. The details are
provided in the appendix C.

3Indeed, this is similar to what was done in ref. [28], where the form factors of two-point Green functions
of the vector current are taken to be vanished at Q2 →∞.

4We are aware that in refs. [66, 67], the mass splitting and the decay widths of the resonances can be
implemented by phenomenological chiral Lagrangians.
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At last, the only unknown couplings in these form factors will be FV , d2, c3, αV , β
′(′′)
X

from eq. (2.9) for the heavier resonance states, and the mixing angles between the octet
and singlet states, i.e., θP for η−η′ mixing, θV for ω−φ mixing, and δ for ρ0−ω mixing. To
extend the amplitudes to the high-energy region, we include the heavier vector resonance
states V ′(′′). Indeed, their masses and widths resemble well the vector resonance spectrum
of PDG [65]. In order to further determine the relevant parameters, we also calculated
the decay widths related to the resonance states and fitted them together with the cross-
sections of electron-positron annihilation. The specific expression of the decay widths is
given in appendix D. See discussions in the next section.

3 Fit results and discussions

Fittings to the cross sections for all processes of electron-positron annihilating into two-
body final states (ππ, K+K−,K0

LK
0
S , π0γ, and ηγ) and to the decay widths of V → Pγ,

P → V γ, and P → γγ are combined together to give an overall constraint to our solutions.
Following the strategy of ref. [27], we perform two fits for the analysis. One is to focus on the
energy region below 1.1GeV, where the ground vector states (ρ0, ω, φ) dominate without
heavier resonances V ′(′′) appearing. It is named Fit A, and all the β

′(′′)
X are set to be zero.

The other one is to extend our analysis up to ECM = 2.3GeV , where V ′(′′) are included,
and it is named Fit B. Similar to the previous work [27], we take datasets after the year 2000
into counting for the χ2 and superimpose the ones before 2000 for the reader’s convenience.

The fitting parameters are given in table 1. We apply the Bootstrap method [77] to
obtain the uncertainties of our solutions, which are calculated by varying the experimental
data within its errors and multiplying a normal distribution function. Indeed, there is
another source for the error, the statistical one from MINUIT [78]. However, this part is
much smaller, and it can be ignored. Note that in Fit B, β′′π0γ is set to be zero, as there
are only a few data points in the high energy region (1.8 ≤ ECM ≤ 2.3GeV), and they are
tiny and ignorable. See discussions below. The parameters of Fit II in ref. [27] and Fit IV
in ref. [28] and the masses and widths of the heavier vector resonances given by PDG [65]
are also listed in table 1 for comparison.

In Fit A, the parameter d2 has a discrepancy with that of refs. [27, 28].5 This is caused
by fitting the cross sections of e+e− → ηγ. The ρ−ω mixing angle δ is roughly the same as
that of ref. [27], though there is a difference in the off-diagonal matrix elements between the
two mixing mechanisms. A large discrepancy comes from the value of the parameter αV .
Here it is −0.00900± 0.00035, while it is almost vanished (−0.00113± 0.00014) in ref. [27]
and has a positive value, 0.0126± 0.007 in ref. [28]. As has been checked, a negative value
of αV can give better fits to the cross section data of e+e− → K+K− from BABAR [80].
Meanwhile, the peak φ(1020) will be decreased, and this is balanced by adjusting the values
of θV and Γφ. This is why the values of θV are smaller than that of refs. [27, 28]. All the
parameters of β′X and β′′X are relatively small, with magnitudes less than 0.3. This is
similar to what has been found for the processes with two-body final states [27], and it is
compatible with empirical assumptions of lowest resonance meson dominance [28, 81, 82].

5Notice that the values of d2 obtained in e+e− annihilation are much smaller than that of τ decays [79].
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Fit A Fit B Ref. [27] Ref. [28] PDG [65]
FV (GeV) 0.148(1) 0.138(1) 0.142(1) 0.148(1)

d2 0.00271(20) 0.00753(30) 0.0276(6) 0.0359(7)
c3 0.00161(10) 0.00211(10) 0.00435(13) 0.00689(17)
αV -0.0100(1) -0.00900(35) -0.00113(14) 0.0126(7)
θV (◦) 38.60(1) 38.62(1) 39.56(1) 38.94(2)
δ(◦) -1.80(1) -1.80(1) -1.80(1) —
θP (◦) -20.74(16) -20.50(30) -19.61(10) -21.37(26)
β′ππ — -0.0617(3) -0.0625(9) —
β′′ππ — 0.0188(2) 0.0118(7) —
β′KK — -0.195(3) -0.0712(40) —
β′′KK — -0.139(8) -0.197(5) —
β′
K0
LK

0
S

— -0.194(15) — —

β′′
K0
LK

0
S

— -0.033(36) — —

β′π0γ — -0.0902(48) — —
β′ηγ — -0.350(50) — —

Mρ′(GeV) — 1.519(1) 1.519(2) 1.550(12) 1.465(25)
Γρ′(GeV) — 0.381(3) 0.340(1) 0.238(18) 0.400(60)
Mω′(GeV) — 1.250(3) 1.253(3) 1.249(3) 1.410(60)
Γω′(GeV) — 0.290(2) 0.310(3) 0.307(7) 0.290(190)
Mφ′(GeV) — 1.656(3) 1.640(3) 1.641(5) 1.680(20)
Γφ′(GeV) — 0.136(1) 0.090(2) 0.086(7) 0.15(5)
Mρ′′(GeV) — 1.720(1) 1.720(1) 1.794(12) 1.720(20)
Γρ′′(GeV) — 0.250(1) 0.150(5) 0.297(33) 0.25(10)
Mω′′(GeV) — 1.725(2) 1.725(10) 1.700(11) 1.670(30)
Γω′′(GeV) — 0.400(1) 0.400(3) 0.400(13) 0.315(35)
Mφ′′(GeV) — 2.160(1) 2.126(25) 2.086(22) 2.162(70)
Γφ′′(GeV) — 0.105(10) 0.100(14) 0.108(17) 0.100(27)

Table 1. Parameters of Fits A and B. Comparison with that of Fit II of ref. [27], Fit IV of ref. [28]
and PDG [65] are also listed. The uncertainties of the parameters are taken from MINUIT.
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Width Fit A Fit B Ref. [27] Ref. [28] PDG [65]
Γρ→ee(10−6 GeV) 6.26±0.65 5.45±0.73 5.81±0.52 6.54 6.98±0.07
Γω→ee(10−7GeV) 7.81±0.78 6.81±0.88 7.60±0.65 6.69 6.25±0.13
Γφ→ee(10−6GeV) 0.81±0.10 0.72±0.10 0.86±0.08 1.20 1.26±0.01
Γρ→ππ(10−1GeV) 1.14±0.14 1.31±0.15 1.24±0.11 1.14 1.48±0.01
Γω→ππ(10−4GeV) 1.15±0.10 1.32±0.09 1.23±0.11 1.61 1.30±0.05
Γφ→ππ(10−7GeV) 1.80±0.22 1.60±0.22 1.91±0.18 2.66 3.10±0.55

Γρ0→π0γ(10−5GeV) 6.61±0.81 7.60±0.90 5.38±0.64 5.96 6.95±0.89
Γρ+→π+γ(10−5GeV) 6.56±0.80 7.54±0.90 4.53±0.37 4.81 6.65±0.74
Γω→π0γ(10−4GeV) 6.13±0.74 7.05±0.83 4.07±0.35 4.43 7.13±0.19
Γφ→π0γ(10−6GeV) 8.20±1.49 9.54±1.72 9.17±1.30 7.34 5.52±0.21
Γρ→ηγ(10−5GeV) 4.10±0.46 5.09±0.75 4.32±0.38 4.85 4.43±0.31
Γω→ηγ(10−6GeV) 4.47±0.47 5.58±0.83 3.77±0.48 4.13 3.82±0.34
Γφ→ηγ(10−5GeV) 8.40±0.99 9.73±1.48 6.10±0.48 6.57 5.54±0.11
Γη′→ργ(10−5GeV) 1.54±0.29 2.60±1.28 5.10±1.10 5.37 5.66±0.10
Γη′→ωγ(10−6GeV) 2.12±0.39 3.43±1.58 5.52±0.94 5.12 4.74±0.13
Γφ→η′γ(10−7GeV) 4.67±0.55 5.53±0.70 3.36±0.44 3.93 2.64±0.09
Γη→γγ(10−6GeV) 1.40±0.07 1.54±0.18 — — 0.94±0.01
Γη′→γγ(10−6GeV) 6.51±0.66 8.33±2.69 — — 4.35±0.16

Table 2. Our results for decay widths, compared with that of Fit II in ref. [27], Fit IV of ref. [28],
and PDG [65].

The decay widths predicted by our model are given in table 2. Notice that these widths
have smaller weights than cross sections, where the latter dominates in constraining the
parameters given in table 1. In an overall view, the predicted widths are compatible with
that of PDG [65] and those given by refs. [27, 28], confirming the reliability of our model.
Since αV now has a minus sign, the width of φ → e+e− is a bit worse than that of the
previous works [27, 28]. However, as will be discussed in the next section, a minus αV gives
a better description of the cross sections.

Our fits for the cross sections of electron-positron annihilating into two pseudoscalars
are shown in figure 3, where the top four graphs are for e+e− → π+π−, and the bottom four
graphs are for e+e− → K+K−,K0

LK
0
S , respectively. For e+e− → π+π−, the experimental

datasets are from BaBar [83], KLOE [84–87], SND [88], BESIII [89], CLEO [90], CMD-
2 [91–93], DM2 [94], and CMD & OLYA [95].6 For e+e− → K+K−, the experimental

6After this work is done, CMD-3 announced their new measurements on e+e− → ππ [96]. But it would
not affect our solutions much as ours are obtained through a combined analysis of various kinds of processes
and datasets. Especially the e+e− → γP processes would constrain the resonance parameters, and the most
important contribution to HVP is from these resonances region.
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datasets are from SND [39, 97, 98], BaBar [80], CMD-2 [99], CMD-3 [100], and BESIII [101].
For e+e− → K0

LK
0
S , the experiment datasets are from SND [35, 39], BaBar [41], CMD-

2 [102], CMD-3 [40], BESIII [42], OLYA [36] and DM1 [37]. Notice that some of the
experimental datasets are given in terms of the dressed cross sections, and some others
are of the bare ones. For example, the following datasets are of bare ones: refs. [80, 84–
87, 89, 90] for π+π−, refs. [80, 101] for K+K−, and ref. [42] for K0

LK
0
S . We have changed

all the bare cross sections into the dressed ones to give a unified description. Among them,
some of the datasets for e+e− → π+π−, e.g., Babar [80], BESIII [89], and KLOE [84–87]
also include the final state radiation (FSR) effects, and we will remove them by dividing
the factor 1+δππadd.FSR [80]. Of course, for the charged kaons the FSR is ignorable. Some of
the datasets are given by Born cross sections with the effects of initial/final states radiation
removed. See e.g., ref. [88] for π+π−, refs. [97, 98] for K+K−, and ref. [40] for K0

LK
0
S . We

fit our solutions to these Born cross sections.
As can be found, our solutions fit the data rather well. Also, the solution of Fit A

(dash-dotted red lines) almost overlaps with that of Fit B (solid black lines) in these
processes with two final pseudoscalars. The only slight difference is for e+e− → K+K−

in the energy region of 1.05 − 1.1GeV. The reason is that Fit B has to balance the data
in higher energy regions. Moreover, our results of e+e− → π+π− improve a bit in the
energy region of ρ0 − ω mixing, compared with the previous analysis. This is benefited
from the modified mixing mechanism as given in eq. (2.4). The results of e+e− → K0

LK
0
S

are of high quality, and they help to refine our analyses due to coupled channels effects.
The uncertainty bands are calculated from the Bootstrap method [77] within 1 σ. It is
worth pointing out that the uncertainty bands are significant in the energy region of the
resonances, ρ0, ω, φ. The reason is that it lacks high statistical measurements in these
energy regions, and some of the data have apparent discrepancies with each other. It is
expected that future experiments will focus on these energy regions, and this will help to
fix the HVP contribution to the (g − 2)µ.

The results of the processes of electron-positron annihilating into one pseudoscalar
and one photon are shown in figures 4 and 5. For e+e− → π0γ, our results fit the
datasets well. To be more careful, it is found that Fit A does not fit better than Fit
B, though Fit A focuses on the low-energy region only. See e.g., the dash-dotted red
(Fit A) and solid black (Fit B) lines around the ρ0 peak. The reason is that including
the heavier vector resonances would improve the amplitudes according to the interference
between the contributions from ground states and heavier states. This is also presented in
ref. [28]. Besides, the ‘peak’ around ρ, ω region is sensitive to the couplings d2 and c3, and
masses and widths of ω and ρ. This is helpful in fixing the amplitudes of the processes
of e+e− → ππ. Interestingly, one would notice that the solutions on the left and right
side of the φ(1020) peak are not symmetric, with the ones on the left side region larger.
Conversely, the results of e+e− → K+K−,K0

LK
0
S on the left side of φ are smaller than

that on the right side. This indicates that the RChT is successful in describing the physics
in the energy region where resonances appear.

For e+e− → ηγ, the number of datasets is much less, and they are not precise enough.
Especially, the CMD-2 data in 2004 [47] are inconsistent with the other two datasets,
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Figure 3. Fits to the cross sections of e+e− → π+π−,K+K−,K0
LK

0
S . The dash-doted red lines

are for Fit A, and solid black lines (with the cyan bands being the uncertainty) are for Fit B.

– 13 –



J
H
E
P
0
7
(
2
0
2
3
)
0
3
7

0.2 0.3 0.4 0.5 0.6
0

100

200

300

(p
b)

e+e 0

0.60 0.65 0.70 0.75

2

4

6

8

10

(n
b)

e+e 0
SND_2016
CMD2_2005
SND_2003

0.77 0.78 0.79 0.80

50

100

150

200

(n
b)

e+e 0

0.80 0.85 0.90 0.95 1.00

1.5

3.0

4.5

6.0

(n
b)

e+e 0
SND_2000

1.00 1.01 1.02 1.03 1.04 1.05
Ecm(GeV)

2

4

6

8

(n
b)

e+e 0

1.2 1.4 1.6 1.8 2.0 2.2
Ecm(GeV)

0

50

100

150

200

(p
b)

e+e 0
SND_2018

Figure 4. Fits for the cross sections of e+e− → π0γ. The dash-doted red lines are for Fit A, and
the solid black lines are for Fit B, with the cyan bands the uncertainty of Fit B. The experimental
data displayed are from SND [43–46], CMD-2 [47].

and we do not include them in the fit. Correspondingly, the solutions here have the
largest uncertainty bands in all these processes. Nevertheless, ours fit the latest data of
SND [49, 50] well. In addition, the decay widths of η → γγ and η′ → γγ, ρ0γ, ωγ are also
fitted to constrain the unknown couplings, e.g., θP , d2, c3. Besides, the ‘peak’ around φ

region is sensitive to the couplings θV , d2, c3, and αV , and mass and width of φ, which
will be helpful in fixing the amplitudes of the processes of e+e− → K̄K. Similar to that
discussed in e+e− → π0γ, the solutions on the left side of φ are larger than that on the
right side. This can be checked by further experiments.

4 Leading-order HVP contributions to aµ

About the formalism of the leading order (LO) HVP correction to the muon anomalous
magnetic moment, aµ ≡ (g−2)µ/2, it has been given in ref. [27]. It can be obtained by the
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Figure 5. Fit results for the cross sections of e+e− → ηγ of Fit A (dash-dotted red line) and Fit B
(solid black line), the cyan bands correspond to the uncertainty of Fit B. The experimental data
for e+e− → ηγ are from SND [49, 50], CMD-2 in 2001 [48], and CMD-2 in 2004 [47].

cross sections of electron-positon annihilation into hadrons, through the optical theorem
and analyticity [103, 104]

aHVP, LO
µ = α2

e(0)
3π2

∫ ∞
sth

dsK̂(s)
s

Rh(s) , (4.1)

where αe(0) = e2/(4π) is the electromagnetic fine-structure constant, ‘th’ represents the
threshold, and K̂(s) is the kernel function,

K̂(s) =
[(

1 + x2) (1 + x)2

x2

(
ln(1 + x)− x+ x2

2

)
+x2

2
(
2− x2

)
+ 1 + x

1− xx
2 ln x

]
(4.2)

with

x = 1− ρµ(s)
1 + ρµ(s) , ρµ(s) =

√
1−

4m2
µ

s
. (4.3)

The (hadronic) R-ratio is estimated from

Rh(s) = 3s
4πα2

e(s)
σ
(
e+e− → hadrons

)
, (4.4)

where one has [14, 105]

αe(s) = αe(0)
1−∆α(s) , ∆α(s) = Π′γ(0)−Π′γ(s) , (4.5)
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with Πγ(s) the vacuum polarization operator. Its QED part up to one loop is given as [106]

ReΠ′γ l(s) = −αe(0)
4π

[
20
9 + 16m2

l

3s − 2[3− ρ2
l (s)]ρl(s)
3 ln ρl(s) + 1

ρl(s)− 1

]
. (4.6)

Its hadronic part can be obtained by dispersion relations:

ReΠ′γ had(s) = αe(0)s
3π P

∫ ∞
sth

R(s′)
s′(s′ − s)ds

′ , (4.7)

where ‘l’ is for different types of leptons, and ‘P’ is for the principal value. The R-ratio in
eq. (4.7) is from [65], where the linear interpolation method has been used to give results
between the nearby two data points. Notice that here the sth is started from m2

π, where the
R value between m2

π-4m2
π has been estimated from our analysis on e+e− → π0γ. Notice

that we also add the contributions of the narrow resonances in terms of Breit-Wigner
forms [107] for the R value

Π′γ res(s) = − 3s
αe(0)

∑
r

Γee0,r
Mr

1
M2
r − s− iMrΓr

, (4.8)

where r is for J/ψ, ψ(2S), Υ(1S), Υ(2S), and Υ(3S), respectively.
As is well known, due to the 1/s factor in eq. (4.1), the LO HVP contributions to ahad

µ

are dominated by the low-energy physics. In particular, the lowest-lying resonance ρ(770)
is coupled strongly to π+π− and the pion pair production gives roughly 73% contribution
to ahad

µ with 58% errors [16]. However, the resonance parameters are correlated in all the
processes discussed above. Especially, the processes of e+e− → π0γ, ηγ are helpful to fix
the resonance parameters of ρ, ω, φ, resulting in strong constraints on the amplitudes of the
processes of e+e− → ππ, K̄K. That is why we need an overall analysis of all these processes.
Nevertheless, we are in the position to determine the contributions to the muon anomalous
magnetic moment relevant to the two pseudoscalar final states that we discussed above.
The LO HVP contributions are shown in table 3, given as aCµ , with C the label of pro-
cess, i.e., C = ππ,KK,K0

LK
0
S , π

0γ, ηγ represent e+e− → π+π−,K+K−,K0
LK

0
S , π

0γ, ηγ,
respectively. Note that the aCµ cut at different energies is also given for comparison.

Summing over all the contributions from the five processes calculated in this paper,
the contributions from e+e− → πππ, ππη given by ref. [27],7 and the contributions of
the other channels given by ref. [16], we get the total contributions to the LO HVP as
aHV P,LOµ = (694.10 ± 3.14) × 10−10 for Fit B. The uncertainties are estimated by the
bootstrap method within 1 σ. At the end of the day, combining ours with the other
contributions such as QED, EW, NLO HVP, NNLO HVP, and HLBL within the SM [14],
we have a discrepancy of 4.5 σ for the anomalous magnetic moment of the muon between
theoretical prediction and the latest average value of experimental measurements [13].8

In addition, ours is indeed an improved data-driven method where RChT is applied, and
final state interactions are considered. It has an apparent discrepancy with that of the
lattice QCD [19], which needs further study.

7It should be noticed that in ref. [27], the correction of the fine structure constant is ignored, here we
correct it and the contribution to HVP is smaller.

8Recently, Lattice QCD announced the latest results on hadronic light-by-light contribution to the muon
anomaly [108]. If we replace the result of HLBL in the standard model [14] with that of lattice QCD [108],
the final result of deviation of muon g − 2 is 3.9σ for Fit B.
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aCµ ×10−10 Ref. [15] Ref. [16] Ref. [27] Fit A Fit B
aππµ | ≤ 0.63GeV 132.8(0.4)(1.0) 130.10 ±0.67 130.70 ±0.02 129.91±0.19
aππµ | ≤ 1GeV 495.0(1.5)(2.1) 496.45 ±2.33 496.50±0.93 495.28±2.14
aππµ | ≤ 1.8GeV — 507.85±0.83±3.23±0.55 506.69 ±2.45 — 505.64±2.33
aππµ | ≤ 2.3GeV — 506.93 ±2.48 — 505.89±2.34
aKKµ | ≤ 1.1GeV — 19.88±0.88 18.92 ±0.41 19.42±0.15
aKKµ | ≤ 1.8GeV — 23.08±0.20±0.33±0.21 23.44 ±0.97 — 22.99±0.37
aKKµ | ≤ 2.3GeV — 23.52 ±1.01 — 23.03±0.43

a
K0
LK

0
S

µ | ≤ 1.1GeV — 11.79±0.27 12.02±0.11

a
K0
LK

0
S

µ | ≤ 1.8GeV — 12.82±0.06±0.18±0.15 — 12.67±0.24

a
K0
LK

0
S

µ | ≤ 2.3GeV — — 12.67±0.24
aπ

0γ
µ | ≤ 0.63GeV — 0.15±0.01 0.15±0.01
aπ

0γ
µ | ≤ 1GeV — 4.66±0.04 4.55±0.08

aπ
0γ
µ | ≤ 1.8GeV — 4.41±0.06±0.04±0.07 — 4.61±0.09
aπ

0γ
µ | ≤ 2.3GeV — — 4.61±0.10
aηγµ | ≤ 1GeV — 0.20±0.02 0.19±0.02
aηγµ | ≤ 1.8GeV — 0.65±0.02±0.01±0.01 — 0.66±0.06
aηγµ | ≤ 2.3GeV — — 0.66±0.06
aπππµ | ≤ 1.8GeV — 46.21±0.40±1.10±0.86 48.46±1.42
aπππµ | ≤ 2.3GeV — 48.68±1.45
aππηµ | ≤ 1.8GeV — 1.19±0.02±0.04±0.02 1.28±0.10
aππηµ | ≤ 2.3GeV — 1.49±0.12

aHV P.LOµ — 694.0±4.0 695.54±3.35 — 694.10±3.14
aSMµ — 11659183.1±4.8 11659183.4±3.7 — 11659182.0±3.5
∆aµ — 26.0±7.9(3.3σ) 22.7±5.5(4.1σ) — 24.1±5.4(4.5σ)

Table 3. Our predictions of muon anomalous magnetic moment, where other contributions are
from ref. [14] and references therein. Notice that we replace the results of ref. [16] with ours to
obtain aHV P,LOµ . The averaged experimental value is aexp

µ = 116592061(41)× 10−11 [13].

5 Conclusion

In the framework of resonance chiral theory, we have carried out a combined comprehen-
sive analysis of the processes with two final states: e+e− → ππ,KK,K0

LK
0
S , π

0γ, ηγ. The
final state interactions are considered. Two solutions are obtained: in Fit A, the focused
energy region is up to 1.1GeV, and in Fit B, it is up to 2.3GeV. Both solutions are of
high quality. With the obtained form factors, we evaluate the LO HVP contribution to
the muon magnetic anomaly, as shown in table 3. Although the contributions to the LO
HVP are tiny, the processes of e+e− → π0γ, ηγ are helpful to fix the resonance parameters,
resulting in a refined analysis of the processes of electron-positron annihilating into two
pseudoscalars, and further for the LO HVP estimation. Combining ours with the results of
electron-positron annihilation into three pseudoscalars, πππ and ηππ, and other processes
predicted by ref. [16], we get aHV P,LOµ = 694.10± 3.14. This gives ∆aµ = 24.1± 5.4 (4.5σ)
with the other contributions taken from the SM prediction [14], compared with the latest
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results from experimental measurements [13]. This large discrepancy between theoreti-
cal predictions and experimental measurements implies new physics beyond the standard
model. Further measurements of the electron-positron annihilation in the resonance region
would be essential to check the HVP contributions and the muon g − 2.
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A The vector form factors for e+e− → PP

The relevant vector form factors for the processes of e+e− → π+π−,K+K−,K0
LK

0
S , as

defined in eq. (2.10), are given as follows

Fπ
+π−

V =
(

1+ FVGV
F 2 Q2BWπ+π−

R [ρ,Q2]
(

1√
3

sinθV sinδρ+cosδ
)

cosδ

−FVGV
F 2 Q2BWπ+π−

R [ω,Q2]
(

1√
3

sinθV cosδ−sinδω
)

sinδω
)

×exp
[
−Q2

96π2F 2 Re
[
A(mπ,Mρ,Q

2)+ 1
2A(mK ,Mρ,Q

2)
]]
,

FK
+K−

V =
(
FVGV
24F 2

(
1+8

√
2αV

m2
π

M2
V

)
M2
ρBW

K+K−

R [ρ,Q2] (16
√

3cosδ sinδρ sinθV +6cos2δ

−6sin2 δρ cos2θV +6sin2 δρ+6)
)

exp
[
−Q2

96π2F 2 Re
[
A(mπ,Mρ,Q

2)+ 1
2A(mK ,Mρ,Q

2)
]]

+
(
FVGV
24F 2

(
1+8
√

2αV
m2
π

M2
V

)
M2
ωBW

K+K−

R [ω,Q2] (−16
√

3cosδ sinδω sinθV

−6cos2 δ cos2θV +3cos2δ+12sin2 δω+3)+ cos2 θV
2

FVGV
F 2

(
1+8

√
2αV

2m2
K−m2

π

M2
V

)
×M2

φBW
K+K−

R [φ,Q2]
)

exp
[
−Q2

64π2F 2 Re[A(mK ,Mρ,Q
2)]
]
,

F
K0
LK

0
S

V =
(
− FVGV24F 2

(
1+8

√
2αV

m2
π

M2
V

)
M2
ρBW

K0
LK

0
S

R [ρ,Q2] (−8
√

3cosδ sinδρ sinθV +6cos2δ

+6sin2 δρ cos2θV −6sin2 δρ+6)
)

exp
[
−Q2

96π2F 2 Re
[
A(mπ,Mρ,Q

2)+ 1
2A(mK ,Mρ,Q

2)
]]

+
(
FVGV
24F 2

(
1+8
√

2αV
mπ2

M2
V

)
M2
ωBW

K0
LK

0
S

R [ω,Q2] (−8
√

3cosδ sinδω sinθV

−6cos2 δ cos2θV +3cos2δ−6sin2 δω+3)+ cos2 θV
2

FVGV
F 2

(
1+8

√
2αV

2m2
K−m2

π

M2
V

)
×M2

φBW
K0
LK

0
S

R [φ,Q2]
)

exp
[
−Q2

64π2F 2 Re[A(mK ,Mρ,Q
2)]
]
.
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The loop functions in the above expressions are given by:

A(mP , µ,Q
2) = ln

(
m2
P

µ2

)
+ 8m2

P

Q2 −
5
3 + σ3

P ln
(
σP + 1
σP − 1

)
,

with the phase space factor σP ≡
√

1− 4m2
P /Q

2. ‘BW’ is the generalized Breit-Wigner
propagators of the resonances [28]

BW (MV ,ΓV , Q2) =
[
M2
V − iMV ΓV (Q2)−Q2

]−1
,

BWP
R [V, x] = BW [V, x] + β′PBW [V ′, x] + β′′PBW [V ′′, x] ,

BWP
RR[V1, V2, x, y] = BWP

R [V1, x]BWP
R [V2, y] , (A.1)

with the off-shell widths of the vector resonances taken from ref. [28]:

Γρ(q2) = Mρ q
2

96πF 2

[
σ3
π(q2) θ(q2 − 4m2

π) + 1
2σ

3
K(q2) θ(q2 − 4m2

K)
]
,

Γρ′(q2) = Γρ′0(M2
ρ′)
√
q2

Mρ′

(
σπ(q2)
σπ(M2

ρ′)

)3

θ(q2 − 4m2
π),

Γρ′′(q2) = Γρ′′0 (M2
ρ′′)
√
q2

Mρ′′

(
σπ(q2)
σπ(M2

ρ′′)

)3

θ(q2 − 4m2
π) ,

where θ(x) is the step function.

B The transition form factors for e+e− → Pγ

B.1 P = π0

The transition form factors relevant to the process of e+e− → π0γ, as defined by eq. (2.13),
are given as

F πV = F πa + F πb + F πc + F πd ,

with each part given as

F πa = NC

12π2F
,

F πb =
(
FV (1+8

√
2αV m2

π

M2
V

)

18FMV
BW π

R[ρ,s]
(
24
√

3cosδsinδρ(s)cosθV +16
√

6cosδsinδρ(s)sinθV

+3
√

2(2cos2δ−(1−2sin2δρ(s))+3)+12sin2δρsin2θV−6
√

2sin2δρ(s)cos2θV
)

+
FV (1+8

√
2αV m2

π

M2
V

)

18FMV
BW π

R[ω,s]
(
−24
√

3cosδsinδω(s)cosθV−16
√

6cosδsinδω(s)sinθV

+3
√

2(cos2δ−2(1−2sin2δω(s))+3)−6
√

2cos2δcos2θV +12cos2δsin2θV
)

+
2FV (1+8

√
2αV

2m2
K−m

2
π

M2
V

)

3FMV
BW π

R[φ,s]cosθV (
√

2cosθV−2sinθV )
)
CRπ(0,s),
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F πc =
(
FV (1+8

√
2αV m2

π

M2
V

)

18FMV
BW π

R[ρ,0]
(
24
√

3cosδsinδρ(0)cosθV +16
√

6cosδsinδρ(0)sinθV

+3
√

2(2cos2δ−(1−2sin2δρ(0))+3)+12sin2δρ(0)sin2θV−6
√

2sin2δρ(0)cos2θV
)

+
FV (1+8

√
2αV m2

π

M2
V

)

18FMV
BW π

R[ω,0]
(
−24
√

3cosδsinδω(0)cosθV−16
√

6cosδsinδω(0)sinθV

+3
√

2(cos2δ−2(1−2sin2δω(0))+3)−6
√

2cos2δcos2θV +12cos2δsin2θV
)

+
2FV (1+8

√
2αV

2m2
K−m

2
π

M2
V

)

3FMV
BW π

R[φ,0]cosθV (
√

2cosθV−2sinθV )
)
CRπ(s,0),

F πd =
(
−
F 2
V (1+8

√
2αV m2

π

M2
V

)2

9F BW π
RR[ρ,ρ,0,s]

(
cosδ(sinδρ(s)+sinδρ(0))

×(sinθV +
√

2cosθV )(12cosδ(sinδρ(s)+sinδρ(0))sinθV +
√

3(6cos2δ
−(1−2sinδρ(0)sinδρ(s))+7)−2

√
3sinδρ(0)sinδρ(s)cos2θV )

)
+
F 2
V (1+8

√
2αV m2

π

M2
V

)2

18F BW π
RR[ω,ω,0,s]

(
cosδ(sinδω(0)+sinδω(s))

×(sinθV +
√

2cosθV )(−24cosδ(sinδω(s)+sinδω(0))sinθV +2
√

3(cos2δ
−6(1−2sinδω(s)sinδω(0))+7)−4

√
3cos2δcos2θV )

)
−

2F 2
V (1+8

√
2αV m2

π

M2
V

)2

9F BW π
RR[ρ,ω,0,s](sinθV +

√
2cosθV )

×(cos2δ−sinδω(s)sinδρ(0))(−3sinθV (sin2δ+2sinδρ(0)sinδω(s)−1)
+2
√

3cosδ(−3sinδω(s)+sinδρ(s)sin2θV )+3cos2δsinθV )

−
2F 2

V (1+8
√

2αV m2
π

M2
V

)2

9F BW π
RR[ω,ρ,0,s](sinθV +

√
2cosθV )

×(cos2δ−sinδω(0)sinδρ(s))(−3sinθV (sin2δ+2sinδρ(s)sinδω(0)−1)
+2
√

3cosδ(−3sinδω(0)+sinδρ(s)sin2θV )+3cos2δsinθV )

−
4F 2

V (1+8
√

2αV m2
π

M2
V

)(1+8
√

2αV
2m2

K−m
2
π

M2
V

)

9F BW π
RR[ρ,φ,0,s]cosδcosθV

×(cosθV−
√

2sinθV )(3cosδ+
√

3sinδρ(0)sinθV )

−
4F 2

V (1+8
√

2αV m2
π

M2
V

)(1+8
√

2αV
2m2

K−m
2
π

M2
V

)

9F BW π
RR[φ,ρ,0,s]cosδcosθV

×(cosθV−
√

2sinθV )(3cosδ+
√

3sinδρ(s)sinθV )

+
4F 2

V (1+8
√

2αV m2
π

M2
V

)(1+8
√

2αV
2m2

K−m
2
π

M2
V

)

9F BW π
RR[ω,φ,0,s]sinδω(0)cosθV

×(cosθV−
√

2sinθV )(−3sinδω(0)+
√

3cosδsinθV )
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+
4F 2

V (1+8
√

2αV m2
π

M2
V

)(1+8
√

2αV
2m2

K−m
2
π

M2
V

)

9F BW π
RR[φ,ω,0,s]sinδω(s)cosθV

×(cosθV−
√

2sinθV )(−3sinδω(s)+
√

3cosδsinθV )
)
DRπ(0,s).

Notice that the functions such as CR and DR functions are defined in ref. [28]

CRπ(Q2, x) = (c1 − c2 + c5)Q2 − (c1 − c2 − c5 + 2c6)x+ (c1 + c2 + 8c3 − c5)m2
π ,

DRπ(Q2, x) = d3 (Q2 + x) + (d1 + 8d2 − d3)m2
π ,

CRη1(Q2, x,m2) = (c1 − c2 + c5)Q2 − (c1 − c2 − c5 + 2c6)x+ (c1 + c2 − c5)m2 ,

CRη2 = 8 c3 ,

DRη1(Q2, x,m2) = d3(Q2 + x) + (d1 − d3)m2 ,

DRη2 = 8 d2 .

The equations with superscript η will be applied in the process with final states ηγ.

B.2 P = η

The transition form factors relevant to the processes of e+e− → ηγ, as defined by eq. (2.13),
are given by

F ηV = F ηa + F ηb + F ηc + F ηd ,

with each part of them given as

F ηa = NC(cosθP−2
√

2sinθP )
12
√

3π2F
,

F ηb = −
2FV (1+8

√
2αV m2

π

M2
V

)

27FMV
BW η

R[ρ,s](3cosδ+
√

3sinδρ(s)sinθV )

×
(

(−3CRη1(0,s,m2
η))[
√

3cosδ(
√

2cosθP−2sinθP )

+2sinδρ(s)cosθV cosθP−sinδρ(s)sinθV (2sinθP +
√

2cosθP )]
+2CRη2sinδρ(s)m2

K(
√

2(3sin(θV −θP )+sin(θV +θP ))−4cos(θV +θP ))

−CRη2
2 m2

π[6
√

3cosδ(
√

2cosθP−2sinθP )

+sinδρ(s)(
√

2(9sin(θV −θP )+sin(θV +θP ))−4cos(θV +θP ))]
)

−
2FV (1+8

√
2αV m2

π

M2
V

)

27FMV
BW η

R[ω,s](
√

3cosδsinθV −3sinδω(s))
(

3
(
cosδ(2cosθV cosθP

−sinθV (2sinθP +
√

2cosθP ))−
√

3sinδω(s)(
√

2cosθP−2sinθP )
)
(−CRη1(0,s,m2

η))
+2CRη2cosδm2

K(
√

2(3sin(θV −θP )+sin(θV +θP ))−4cos(θV +θP ))+CRη2m
2
π(cosδ

×(2cos(θV +θP )+
√

2(4cosθV sinθP−5sinθV cosθP ))

−6
√

3sinδω(s)sinθP +3
√

6sinδω(s)cosθP )
)
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+
FV (1+8

√
2αV

2m2
K−m

2
π

M2
V

)

9
√

3FMV

BW η
R[φ,s]cosθV

(
6
(
cosθV (2sinθP +

√
2cosθP )

+2sinθV cosθP
)
(−CRη1(0,s,m2

η))−CRη2
(
3
√

2(4m2
K−3m2

π)cos(θV −θP )

+(4m2
K−m2

π)(4sin(θV +θP )+
√

2cos(θV +θP ))
))
,

F ηc =
2FV (1+8

√
2αV m2

π

M2
V

)

27FMV
BW η

R[ρ,0](3cosδ+
√

3sinδρ(0)sinθV )
(

3CRη1(s,0,m2
η)

×(
√

3cosδ(
√

2cosθP−2sinθP )+2sinδρ(0)cosθV cosθP−sinδρ(0)sinθV (2sinθP
+
√

2cosθP ))−2CRη2sinδρ(0)m2
K(
√

2(3sin(θV −θP )+sin(θV +θP ))−4cos(θV +θP ))

+CRη2
2 m2

π

(
6
√

3cosδ(
√

2cosθP−2sinθP )+sinδρ(0)(
√

2(9sin(θV −θP )

+sin(θV +θP ))−4cos(θV +θP ))
))

+
2FV (1+8

√
2αV m2

π

M2
V

)

27FMV
BW η

R[ω,0](
√

3cosδsinθV −3sinδω(0))
(

3CRη1(s,0,m2
η)

×
(
cosθP (2cosδcosθV −

√
2cosδsinθV −

√
6sinδω(0))−2sinθP (cosδsinθV

−
√

3sinδω(0))
)
−2CRη2cosδm2

K(
√

2(3sin(θV −θP )+sin(θV +θP ))−4cos(θV +θP ))

+CRη2
2 m2

π

(
cosδ(

√
2(9sin(θV −θP )+sin(θV +θP ))−4cos(θV +θP ))−6

√
3sinδω(0)

×(
√

2cosθP−2sinθP )
))

−
FV (1+8

√
2αV

2m2
K−m

2
π

M2
V

)

9
√

3FMV

BW η
R[φ,0]cosθV

(
6
(
cosθV (2sinθP +

√
2cosθP )

+2sinθV cosθP
)
CRη1(s,0,m2

η)+CRη2
(
3
√

2(4m2
K−3m2

π)cos(θV −θP )

+(4m2
K−m2

π)(4sin(θV +θP )+
√

2cos(θV +θP ))
))
.

F ηd = −
4F 2

V (1+8
√

2αV m2
π

M2
V

)2

27
√

3F
BW η

RR[ρ,ρ,0,s](3cosδ+
√

3sinδρ(0)sinθV )(3cosδ

+
√

3sinδρ(s)sinθV )
(3

4DRη1(0,s,m2
η)
(
cosθP (2cos2δ+2sinδρ(0)sinδρ(s)

×(2
√

2sin2θV +cos2θV )+(1−2sinδρ(s)sinδρ(0))+1)−2
√

2sinθP (cos2δ
−(1−2sinδρ(0)sinδρ(s))+2)

)
+DRη2sinδρ(s)sinδρ(0)m2

K(2cosθP (2
√

2sin2θV
+cos2θV −3)+sinθP (4sin2θV +

√
2cos2θV −3

√
2))

+DRη2
4 m2

π[ 12cos2δ(cosθP−
√

2sinθP )+sinδρ(0)sinδρ(s)(−4
√

2sin(2θV +θP )

−9cos(2θV −θP )+7cos(2θV +θP )+18cosθP ) ]
)
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−
4F 2

V (1+8
√

2αV m2
π

M2
V

)2

27
√

3F
BW η

RR[ω,ω,0,s](
√

3cosδsinθV −3sinδω(s))(
√

3cosδsinθV

−3sinδω(0))
(
− 3

4DRη1(0,s,m2
η)(cosθP (−2cos2δ(2

√
2sin2θV +cos2θV )+cos2δ

+2(1−2sinδω(0)sinδω(s))−1)+2
√

2sinθP (cos2δ−(1−2sinδω(0)sinδω(s))+2))
+DRη2cos2δm2

K(2cosθP (2
√

2sin2θV +cos2θV −3)+sinθP (4sin2θV +
√

2cos2θV

−3
√

2))+DRη2m
2
π

(1
4 cos2δ(−4

√
2sin(2θV +θP )−9cos(2θV −θP )

+7cos(2θV +θP )+18cosθP )+3sinδω(0)sinδω(s)(cosθP−
√

2sinθP )
))

+
4F 2

V (1+8
√

2αV
2m2

K−m
2
π

M2
V

)2

9
√

3F
BW η

RR[φ,φ,0,s]cos2θV

(
3(cosθV cosθP

×(2
√

2sinθV +cosθV )+
√

2sinθP )DRη1(0,s,m2
η)+DRη2m

2
K(2cosθP (2

√
2sin2θV

+cos2θV +3)+sinθP (4sin2θV +
√

2cos2θV +3
√

2))−DRη2
4 m2

π(4
√

2sin(2θV +θP )

+9cos(2θV −θP )−7cos(2θV +θP )+18cosθP )
)

−
4F 2

V (1+8
√

2αV m2
π

M2
V

)2

27
√

3F
BW η

RR[ω,ρ,0,s]cosδ(
√

3cosδsinθV −3sinδω(0))(3cosδ

+
√

3sinδρ(s)sinθV )
(

3DRη1(0,s,m2
η)[cosθP (−sinδω(0)

+sinδρ(s)sinθV (2
√

2cosθV −sinθV ))−
√

2sinθP (−sinδω(0)+sinδρ(s)) ]
+DRη2sinδρ(s)m2

K(2cosθP (2
√

2sin2θV +cos2θV −3)

+sinθP (4sin2θV +
√

2cos2θV −3
√

2))+DRη2
4 m2

π

(
−12sinδω(0)(cosθP−

√
2sinθP )

+sinδρ(s)(−4
√

2sin(2θV +θP )−9cos(2θV −θP )+7cos(2θV +θP )+18cosθP )
))

−
4F 2

V (1+8
√

2αV m2
π

M2
V

)2

27
√

3F
BW η

RR[ρ,ω,0,s]cosδ(
√

3cosδsinθV −3sinδω(s))

×(3cosδ+
√

3sinδρ(0)sinθV )
(

3DRη1(0,s,m2
η)(cosθP (−sinδω(s)+sinδρ(0)sinθV

×(2
√

2cosθV −sinθV ))−
√

2sinθP (−sinδω(s)+sinδρ(0)))+DRη2sinδρ(0)m2
K(2cosθP

×(2
√

2sin2θV +cos2θV −3)+sinθP (4sin2θV +
√

2cos2θV −3
√

2))

+DRη2
4 m2

π

(
−12sinδω(s)(cosθP−

√
2sinθP )+sinδρ(0)(−4

√
2sin(2θV +θP )

−9cos(2θV −θP )+7cos(2θV +θP )+18cosθP )
))

+
2F 2

V (1+8
√

2αV m2
π

M2
V

)(1+8
√

2αV
2m2

K−m
2
π

M2
V

)

27F BW η
RR[φ,ρ,0,s]sinδρ(s)cosθV

– 23 –



J
H
E
P
0
7
(
2
0
2
3
)
0
3
7

×(3cosδ+
√

3sinδρ(s)sinθV )
(

2DRη2(m2
K−m2

π)sinθP (
√

2sin2θV −4cos2θV )

−cosθP (2
√

2cos2θV −sin2θV )
(
3DRη1(0,s,m2

η)+DRη2(4m2
K−m2

π)
))

+
2F 2

V (1+8
√

2αV m2
π

M2
V

)(1+8
√

2αV
2m2

K−m
2
π

M2
V

)

27F BW η
RR[ρ,φ,0,s]sinδρ(0)cosθV

×(3cosδ+
√

3sinδρ(0)sinθV )
(

2DRη1(m2
K−m2

π)sinθP (
√

2sin2θV −4cos2θV )

−cosθP (2
√

2cos2θV −sin2θV )
(
3DRη1(0,s,m2

η)+DRη2(4m2
K−m2

π)
))

−
F 2
V (1+8

√
2αV m2

π

M2
V

)(1+8
√

2αV
2m2

K−m
2
π

M2
V

)

27F BW η
RR[φ,ω,0,s]cosδcosθV

×(2
√

3cosδsinθV −6sinδω(s))
(

cosθP (2
√

2cos2θV −sin2θV )(3DRη1(0,s,m2
η)

+DRη2(4m2
K−m2

π))−2DRη2(m2
K−m2

π)sinθP (
√

2sin2θV −4cos2θV )
)

−
F 2
V (1+8

√
2αV m2

π

M2
V

)(1+8
√

2αV
2m2

K−m
2
π

M2
V

)

27F BW η
RR[ω,φ,0,s]cosδcosθV

×(2
√

3cosδsinθV −6sinδω(0))
(

cosθP (2
√

2cos2θV −sin2θV )(3Dη1(0,s,m2
η)

+DRη2(4m2
K−m2

π))−2DRη2(m2
K−m2

π)sinθP (
√

2sin2θV −4cos2θV )
)
.

C Discussions on final state interactions

In this section, we discuss how to consider the final state interactions in our form factors.
In phenomenological analyses of scatterings and decays of hadrons, FSI should be taken
into account to describe the physics appropriately [70, 74, 109, 110]. The critical thought
of this work is following ref. [76], where the matching is performed between the two form
factors of ChPT and RChT in the low energy region. For γ∗ → π+π−, it has been discussed
in ref. [76]. For the processes of γ∗ → K+K−,K0

LK
0
S , one has such Feynman diagrams

given by ChPT. See figure 6. The form factors for each kind of diagram are given as

F a = 1 + 1
F 2
(
2L9Q

2 + 8L4m
2
K + 4m2

KL5 + 4m2
πL4

)
,

F b = 1
576π2F 2 (3(Q2 − 4m2

K)Br
0(Q2,m2

π,m
2
π)− 6Ar0(m2

π)− 12m2
π + 2Q2)

+ 1
288π2F 2 (3(Q2 − 4m2

K)Br
0(Q2,m2

K ,m
2
K)− 6Ar0(m2

K)− 12m2
K + 2Q2) ,

F c = Ar0(m2
π)

192π2F 2 + Ar0(m2
π)

24π2F 2 + Ar0(m2
K)

96π2F 2 + Ar0(m2
K)

12π2F 2 +
Ar0(m2

η)
64π2F 2 ,
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L2/L4

(a) (b) (c)

Figure 6. Feynman diagrams contributing to the hadronization of the vector current of γ∗ →
K+K−,K0

LK
0
S in ChPT.

where the function Br
0(Q2,m2

a,m
2
b) is defined as [111]

Br
0(Q2,m2

a,m
2
b) = λ1/2(Q2,m2

a,m
2
b)

Q2 ln
(√

Q2 − (ma +mb)2 −
√
Q2 − (ma −mb)2√

Q2 − (ma −mb)2 +
√
Q2 − (ma +mb)2

)

− ln
(
mb

2

µ2

)
+ 2 +

(
ma

2 −mb
2 + s

)
2Q2 ln

(
mb

2

ma
2

)
,

where λ(a, b, c) = (a+ b− c)2 − 4ab is the triangle function, and the renormalization scale
is fixed as µ = MV . Also, the wave function renormalization up to O(p4) is given as

ZK = 1− Ar0(m2
π)

64π2F 2 −
Ar0(m2

η)
64π2F 2 −

Ar0(m2
K)

32π2F 2 −
8
F 2 (2L4m

2
K + L4m

2
π + L5m

2
K) .

Combining all of these form factors, one can obtain the vector form factors of γ∗ → K+K−

within ChPT up to O(p4)

FChPT
K+K− = 1 + 2L9

F 2 Q
2 + −Q2

96π2F 2

(
A[mK ,Mρ, Q

2] + 1
2A[mπ,Mρ, Q

2]
)
. (C.1)

Note that L9 = F 2/(2M2
V ) [111]. In contrast, the vector form factors of γ∗ → K+K−

within RChT are given as

FRChT
K+K− =

M2
ρ

2(M2
ρ −Q2) + M2

ω

6(M2
ω −Q2) +

M2
φ

3(M2
φ −Q2)

. (C.2)

Notice that the form factor of RChT is calculated in the ideal mixing case through
eq. (2.12), setting the mixing angles δ = 0, ignoring η − η′ mixing, taking all the high
energy constraints on the couplings and setting αV = 0. Also, the total widths of the
resonances in the propagators have been ignored. However, in the ‘physical’ world, the
width of ρ is too large to be ignored, and only Γω and Γφ can be safely set to be zero.
Hence, we consider the FSI in the same way as ref. [76]

FRChT,phy
K+K− =

M2
ρ

2(M2
ρ−Q2−iMV Γρ(Q2)) exp

[
−Q2

96π2F 2Re

(
A[mπ,Mρ,Q

2]+ 1
2A[mK ,Mρ,Q

2]
)]

+
[

M2
ω

2(M2
ω−Q2) +

M2
φ

3(M2
φ−Q2)

]
exp

[ −Q2

96π2F 2 Re3
2A[mK ,Mρ,Q

2]
]
.
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Performing an expansion on the Q with the limit of Q → 0 and taking the SU(3) limit
Mρ = Mω = Mφ = MV , we have

FRChT,phy
K+K− =

(
1
2 + Q2

2M2
ρ

+ i
Γρ

2Mρ

)(
1+ −Q2

96π2F 2Re

(
A[mπ,Mρ,Q

2]+ 1
2A[mK ,Mρ,Q

2]
))

+
(

1
6 + Q2

6M2
ω

)(
1+ −Q2

96π2F 2Re
3
2A[mK ,Mρ,Q

2]
)

+
(

1
3 + Q2

3M2
φ

)

×
(

1+ −Q2

96π2F 2
3
2ReA[mK ,Mρ,Q

2]
)

= 1+ Q2

M2
V

− Q2

96π2F 2

(1
2A[mπ,Mρ,Q

2]+A[mK ,Mρ,Q
2]
)
.

It is the same as that of ChPT up to O(p4). Similar discussions can be made for the
vector form factors of γ∗ → K0

LK
0
S . In ChPT, one has

FChPT
K0
LK

0
S

= −Q2

96π2F 2

(1
2A[mK ,Mρ, Q

2]− 1
2A[mπ,Mρ, Q

2]
)
.

In the ideal mixing case of RChT and taking the same conditions as discussed in the
K+K− form factors to simplify the model, one has

FRChT
K0
LK

0
S

= −
M2
ρ

2(M2
ρ −Q2) + M2

ω

6(M2
ω −Q2) +

M2
φ

3(M2
φ −Q2)

.

The final state interactions are taken into account as

FRChT,phy
K0
L
K0
S

= −
M2
ρ

2(M2
ρ −Q2− iMρΓρ(Q2)) exp

[
−Q2

96π2F 2Re

(
A[mπ,Mρ,Q

2]+ 1
2A[mK ,Mρ,Q

2]
)]

+
(

M2
ω

6(M2
ω−Q2) +

M2
φ

3(M2
φ−Q2)

)
exp

[
−Q2

96π2F 2Re

(
3
2A[mK ,Mρ,Q

2]
)]

.

In the low energy expansion and taking SU(3) limit, one has

FRChT,phy
K0
LK

0
S

= −1
2 −

Q2

2M2
V

− iΓV
2MV

+ 1
2

Q2

96π2F 2Re

[
A[mπ,Mρ, Q

2] + 1
2A[mK ,Mρ, Q

2]
]

+1
6 + Q2

6M2
V

+ 1
6
−Q2

96π2F 2Re

[3
2A[mK ,Mρ, Q

2]
]

+1
3 + Q2

3M2
V

+ 1
3
−Q2

96π2F 2Re

[3
2A[mK ,Mρ, Q

2]
]

= − Q2

96π2F 2

[1
2A[mK ,Mρ, Q

2]− 1
2A[mπ,Mρ, Q

2]
]
.

Again, it is the same as that of ChPT up to O(p4).
For the transition form factor of γ∗ → π0γ, it is found that there is no need to include

the FSI. This is partly because the high energy constraints on the coupling constants are
obtained in the chiral limit, and the form factors will vanish at Q→∞. The terms violating
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these constraints are those involved with the pion mass, which is still suppressed by m2
π

and can be ignored. However, for the transition form factor of γ∗ → ηγ, the high energy
behavior of the form factors is not so well as the high energy constraints on the coupling
constants will be violated by the terms with the mass of mη

2, which are large and obvious.
Here we use an exponential regulator as applied in refs. [112, 113], f(Q) = exp

[
−Q6/Λ6]. Λ

is the cut-off, and we set it to be 2.3GeV. The merit of this regulator is that it behaves as a
step function with almost no effects in the low energy region (Q ≤ 1.7GeV ) but suppresses
the form factors strongly in the high energy region. Notice that the behavior is compatible
with the data [50], where the cross sections are tiny and ignorable above 1.7GeV.

D Decay widths involving vector resonances

The decay widths involving the lightest vector resonances are given below. Note that some
of them are only slightly different from the ones given in ref. [27], as only the ρ−ω mixing
mechanism has been changed.

Γρ→ππ =
G2
VM

3
ρ

48πF 4 cos2δ

(
1− 4m2

π

M2
ρ

) 3
2

,

Γω→ππ = G2
VM

3
ω

48πF 4 sin2δω(M2
ω)
(

1− 4m2
π

M2
ω

) 3
2

,

Γφ→ππ = α2πF 2
V

9Mφ

(
1+8
√

2αV
2m2

K−m2
π

M2
V

)2

cos2θV

(
1− 4m2

π

M2
φ

) 3
2

,

Γρ→l+l− = 4α2πF 2
V

3Mρ

(
1+8
√

2αV
m2
π

M2
V

)2(
cosδ+ 1√

3
sinθV sinδρ(M2

ρ )
)2(

1+ 2m2
l

M2
ρ

)(
1− 4m2

l

M2
ρ

) 1
2

,

Γω→l+l− = 4α2πF 2
V

27Mω

(
1+8
√

2αV
m2
π

M2
V

)2(√
3sinθV cosδ−3sinδω(M2

ω)
)2
(

1+ 2m2
l

M2
ω

)(
1− 4m2

l

M2
ω

) 1
2

,

Γφ→l+l− = 4α2πF 2
V

9Mφ

(
1+8
√

2αV
2m2

K−m2
π

M2
V

)2

cos2θV

(
1+ 2m2

l

M2
φ

)(
1− 4m2

l

M2
φ

) 1
2

,

Fρ0→π0γ = 2
√

2
3MV F

CRπ(0,M2
ρ )
(
cosδ+

√
3sinδρ(M2

ρ )(sinθV +
√

2cosθV )
)

−
4FV (1+8

√
2αV m2

π

M2
V

)
3FM2

ρ

cosδ[sinδρ(M2
ρ )+sinδρ(0)](sinθV +

√
2cosθV )

×(
√

3cosδ+sinδρ(0)sinθV )DRπ(0,M2
ρ )−

4FV (1+8
√

2αV m2
π

M2
V

)
3FM2

ω

DRπ(0,M2
ρ )

×(sinθV +
√

2cosθV )[cos2δ−sinδρ(M2
ρ )sinδω(0)](cosδsinθV −

√
3sinδω(0))

−
4FV (1+8

√
2αV 2m2

K−m
2
π

M2
V

)
3FM2

φ

DRπ(0,M2
ρ )cosδcosθV (cosθV −

√
2sinθV ),

Fω→π0γ = 2
√

2
3FMV

CRπ(0,M2
ω)
(√

3cosδ(sinθV +
√

2cosθV )−sinδω(M2
ω)
)

−
4FV (1+8

√
2αV m2

π

M2
V

)
3FM2

ρ

(sinθV +
√

2cosθV )(cos2δ−sinδρ(0)sinδω(M2
ω))
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×(
√

3cosδ+sinδρ(0)sinθV )DRπ(0,M2
ω)

+
4FV (1+8

√
2αV m2

π

M2
V

)
3FM2

ω

DRπ(0,M2
ω)cosδ(sinδω(0)+sinδω(M2

ω))(sinθV +
√

2cosθV )

×(cosδsinθV −
√

3sinδρ(0))+
4FV (1+8

√
2αV 2m2

K−m
2
π

M2
V

)
3FM2

φ

DRπ(0,M2
ω)sinδω(M2

ω)

×cosθV (cosθV −
√

2sinθV ),

Fφ→π0γ = 2
√

2√
3FMV

(cosθV −
√

2sinθV )CRπ(0,M2
φ)−

4FV (1+8
√

2αV m2
π

M2
V

)
3FM2

ρ

DRπ(0,M2
φ)

×cosδ(cosθV −
√

2sinθV )(
√

3cosδ+sinδρ(0)sinθV )+
4FV (1+8

√
2αV m2

π

M2
V

)
3FM2

ω

×DRπ(0,M2
φ)sinδω(0)(cosθV −

√
2sinθV )(cosδsinθV −

√
3sinδω(0)),

Fρ+→π+γ = 2
√

2
3MV F

CRπ(0,M2
ρ )−

4FV (1+8
√

2αV m2
π

M2
V

)
3FM2

ρ

DRπ(0,M2
ρ )(sinθV +

√
2cosθV )

×sinδρ(0)(
√

3cosδ+sinδρ(0)sinθV )−
4FV (1+8

√
2αV m2

π

M2
V

)
3FM2

ω

DRπ(0,M2
ρ )cosδ

×(sinθV +
√

2cosθV )(cosδsinθV −
√

3sinδω(0))

−
4FV (1+8

√
2αV 2m2

K−m
2
π

M2
V

)
3FM2

φ

DRπ(0,M2
ρ )cosθV (cosθV −

√
2sinθV ),

Fω→ηγ = 2
√

2
3MV F

CRη1(0,M2
ω,m

2
η)
{√

3sinδω(M2
ω)(−cosθP +

√
2sinθP )+cosδ[

√
2cosθV cosθP

−sinθV (cosθP +
√

2sinθP )]
}

+ 2
√

2
9MV F

CRη2

{
4cosδ(

√
2cos(θV +θP )−2cosθP sinθV

+cosθV sinθP )m2
K−(3

√
3sinδω(M2

ω)(cosθP−
√

2sinθP )+cosδ[
√

2cos(θV +θP )

−5cosθP sinθV +4cosθV sinθP ])m2
π

}

−
FV

(
1+8
√

2αV m2
π

M2
V

)
3
√

2M2
ρF

DRη1(0,M2
ω,m

2
η)(sinθV sinδρ(0)+

√
3cosδ)

{
(−4
√

2cosδ)

×
(
− 1

2 cos2θV cosθpsinδρ(0)+ 1
2 sin2θV cosθpsinδρ(0)−2

√
2sinθV cosθV cosθP

×sinδρ(0)+
√

2sinθP sinδρ(0)+ 1
2 cosθP sinδρ(0)−

√
2sinθP sinδω(M2

ω)+cosθP

×sinδω(M2
ω)
)}
−
FV

(
1+8
√

2αV m2
π

M2
V

)
9
√

2M2
ρF

DRη2(sinθV sinδρ(0)+
√

3cosδ)

×
{
−
√

2cosδ [m2
π(sinδρ(0)(4

√
2sin(2θV +θP )+9cos(2θV −θP )−7cos(2θV +θP )

−18cosθP )+12sinδω(M2
ω)(cosθP−

√
2sinθP ))−4m2

K sinδρ(0)(2cosθP

×(2
√

2sin2θV +cos2θV −3)+sinθP (4sin2θV +
√

2cos2θV −3
√

2))]
}
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−
2
√

2FV
(

1+8
√

2αV m2
π

M2
V

)
3M2

ωF
DRη1(0,M2

ω,m
2
η)(sinθV cosδ−

√
3sinδω(0))

×
{

cosθP [
√

2sinδω(0)sinδω(M2
ω)+cos2δsinθV (4cosθV −

√
2sinθV )]

−2[sinδω(0)sinδω(M2
ω)+cos2δ]sinθP

}

−
FV

(
1+8
√

2αV m2
π

M2
V

)
9
√

2M2
ωF

DRη2(sinθV cosδ−
√

3sinδω(0))
{

8cos2δ(cosθP (−3
√

2

+
√

2cos2θV +4sin2θV )+(−3+cos2θV +2
√

2sin2θV )sinθP )m2
K

+(12sinδω(0)sinδω(M2
ω)(
√

2cosθP−2sinθP )+cos2δ[−9
√

2cos(2θV −θP )

+18
√

2cosθP +7
√

2cos(2θV +θP )−8sin(2θV +θP )])m2
π

}

+

√
2FV

(
1+8
√

2αV 2m2
K−m

2
π

M2
V

)
3M2

φF
DRη1(0,M2

ω,m
2
η)[cosθV cosδcosθP (−4cos2θV

+
√

2sin2θV )]−

√
2FV

(
1+8
√

2αV 2m2
K−m

2
π

M2
V

)
9M2

φF
DRη2cosθV cosδ

{
4(2
√

2cos2θV

−sin2θV )sinθP (m2
K−m2

π)+cosθP (4cos2θV −
√

2sin2θV )(4m2
K−m2

π)
}
,

Fρ0→ηγ = 2
√

2
3MV F

CRη1(0,M2
ρ ,m

2
η)
{√

3cosδ(cosθP−
√

2sinθP )+sinδρ(M2
ρ )[
√

2cosθV cosθP

−sinθV (cosθP +
√

2sinθP )]
}

+ 2
√

2
9MV F

CRη2

{
4sinδρ(M2

ρ )
(√

2cos(θV +θP )

−2cosθP sinθV +cosθV sinθP
)
m2
K+

(
3
√

3cosδ(cosθP−
√

2sinθP )

−sinδρ(M2
ρ )[
√

2cos(θV +θP )−5cosθP sinθV +4cosθV sinθP ]
)
m2
π

}
−

2
√

2FV
(

1+8
√

2αV m2
π

M2
V

)
3M2

ρF
DRη1(0,M2

ρ ,m
2
η)(sinθV sinδρ(0)+

√
3cosδ)

{
cos2δ

×(
√

2cosθP−2sinθP )+sinδρ(M2
ρ )sinδρ(0)[cosθP sinθV (4cosθV −

√
2sinθV )

−2sinθP ]
}

−
FV

(
1+8
√

2αV m2
π

M2
V

)
9
√

2M2
ρF

DRη2(sinθV sinδρ(0)+
√

3cosδ)
{

8sinδρ(0)sinδρ(M2
ρ )

×
(

cosθP (−3
√

2+
√

2cos2θV +4sin2θV )+(−3+cos2θV +2
√

2sin2θV )sinθP
)

×m2
K+(12cos2δ(

√
2cosθP−2sinθP )+sinδρ(M2

ρ )sinδρ(0)[−9
√

2cos(2θV −θP )

+18
√

2cosθP +7
√

2cos(2θV +θP )−8sin(2θV +θP )])m2
π

}

−
FV

(
1+8
√

2αV m2
π

M2
V

)
3
√

2M2
ωF

DRη1(0,M2
ρ ,m

2
η)(sinθV cosδ−

√
3sinδω(0))

{
(−4
√

2cosδ)
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×
[
− 1

2 cos2θV cosθpsinδρ(M2
ρ )+ 1

2 sin2θV cosθpsinδρ(M2
ρ )−2

√
2sinθV cosθV

×cosθP sinδρ(M2
ρ )+
√

2sinθP sinδρ(M2
ρ )+ 1

2 cosθP sinδρ(M2
ρ )

−
√

2sinθP sinδω(0)+cosθP sinδω(0)
]}

−
FV

(
1+8
√

2αV m2
π

M2
V

)
9
√

2M2
ωF

DRη2(sinθV cosδ−
√

3sinδω(0))
{
−
√

2cosδ
[
m2
π

×
(
sinδρ(M2

ρ )(4
√

2sin(2θV +θP )+9cos(2θV −θP )−7cos(2θV +θP )−18cosθP )

+12sinδω(0)(cosθP−
√

2sinθP )
)
−4m2

K sinδρ(M2
ρ )(2cosθP (2

√
2sin2θV +cos2θV

−3)+sinθP (4sin2θV +
√

2cos2θV −3
√

2))
]}

+

√
2FV

(
1+8
√

2αV 2m2
K−m

2
π

M2
V

)
3M2

φF

×DRη1(0,M2
ρ ,m

2
η)cosθV cosθP sinδρ(M2

ρ )(−4cos2θV +
√

2sin2θV )

−

√
2FV

(
1+8
√

2αV 2m2
K−m

2
π

M2
V

)
9M2

φF
DRη2cosθV sinδρ(M2

ρ )
{

4(2
√

2cos2θV −sin2θV )

×sinθP (m2
K−m2

π)+cosθP (4cos2θV −
√

2sin2θV )(4m2
K−m2

π)
}
,

Fφ→ηγ = 2
√

2
3MV F

CRη1(0,M2
φ,m

2
η)
{
−
√

2cosθP sinθV −cosθV (cosθP +
√

2sinθP )
}

+
√

2
9MV F

CRη2

{
−4
(

3cos(θV −θP )+cos(θV +θP )+2
√

2sin(θV +θP )
)
m2
K

+
(

9cos(θV −θP )+cos(θV +θP )+2
√

2sin(θV +θP )
)
m2
π

}
+

√
2FV

(
1+8
√

2αV m2
π

M2
V

)
3M2

ρF
DRη1(0,M2

φ,m
2
η)(sinθV sinδρ(0)+

√
3cosδ)cosθP

×sinδρ(0)(−4cos2θV +
√

2sin2θV )

−

√
2FV

(
1+8
√

2αV m2
π

M2
V

)
9M2

ρF
DRη2(sinθV sinδρ(0)+

√
3cosδ)sinδρ(0)

{
4(2
√

2cos2θV

−sin2θV )sinθP (m2
K−m2

π)+cosθP (4cos2θV −
√

2sin2θV )(4m2
K−m2

π)
}

+

√
2FV

(
1+8
√

2αV m2
π

M2
V

)
3M2

ωF
DRη1(0,M2

φ,m
2
η)(sinθV cosδ−

√
3sinδω(0))cosδcosθP

×(−4cos2θV +
√

2sin2θV )

−

√
2FV

(
1+8
√

2αV m2
π

M2
V

)
9M2

ωF
DRη2(sinθV cosδ−

√
3sinδω(0))cosδ

{
4(2
√

2cos2θV

−sin2θV )sinθP (m2
K−m2

π)+cosθP (4cos2θV −
√

2sin2θV )(4m2
K−m2

π)
}

−
2
√

2FV
(

1+8
√

2αV 2m2
K−m

2
π

M2
V

)
3M2

φF
DRη1(0,M2

φ,m
2
η)

×cosθV
{
−cosθV cosθP (

√
2cosθV +4sinθV )−2sinθP

}
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−

√
2FV

(
1+8
√

2αV 2m2
K−m

2
π

M2
V

)
9M2

φF
DRη2cosθV

{
(
√

2cosθV −2sinθV )2(
√

2cosθP

−2sinθP )m2
π−4(

√
2cosθV +sinθV )2(

√
2cosθP +sinθP )(2m2

K−m2
π)
}
,

Fη′→ωγ = 2
√

2
3MV F

CRη1(0,M2
ω,m

2
η′)
{

cosδsinθV (
√

2cosθP−sinθP )+
√

2cosδcosθV sinθP

−
√

3sinδω(M2
ω)(
√

2cosθP +sinθP )
}

+
√

2
9MV F

CRη2

{
4cosδ(−3cos(θV−θP )

+cos(θV +θP )+2
√

2sin(θV +θP ))m2
K+(−6

√
3sinδω(M2

ω)(
√

2cosθP +sinθP )

−cosδ[−9cos(θV −θP )+cos(θV +θP )+2
√

2sin(θV +θP )])m2
π

}

−
FV

(
1+8
√

2αV m2
π

M2
V

)
3
√

2M2
ρF

DRη1(0,M2
ω,m

2
η′)(sinθV sinδρ(0)+

√
3cosδ)

{
(−4
√

2cosδ)

×{sinθP [sinθV sinδρ(0)(sinθV −2
√

2cosθV )+sinδω(M2
ω)]+

√
2cosθP (sinδω(M2

ω)

−sinδρ(0))}
}
−
FV

(
1+8
√

2αV m2
π

M2
V

)
9
√

2M2
ρF

DRη2(sinθV sinδρ(0)+
√

3cosδ)

×
{

(−2
√

2cosδ)
[

sinδρ(0)[2m2
K (cosθP (4sin2θV +

√
2cos2θV −3

√
2)

−2sinθP (2
√

2sin2θV +cos2θV −3))+m2
π (−2

√
2cos(2θV +θP )

−8sin2θV cosθP+(cos2θV−9)sinθP )]+6m2
π sinδω(M2

ω)(sinθP+
√

2cosθP )
]}

−
2
√

2FV
(

1+8
√

2αV m2
π

M2
V

)
3M2

ωF
DRη1(0,M2

ω,m
2
η′)(sinθV cosδ−

√
3sinδω(0))

×
{

sinδω(M2
ω)×sinδω(0)(2cosθP +

√
2sinθP )

+cos2δ[2cosθP +sinθV (4cosθV −
√

2sinθV )sinθP ]
}

−

√
2FV

(
1+8
√

2αV m2
π

M2
V

)
9M2

ωF
DRη2(sinθV cosδ−

√
3sinδω(0))

{
−4cos2δ(cosθP

×(−3+cos2θV +2
√

2sin2θV )−(−3
√

2+
√

2cos2θV +4sin2θV )sinθP )m2
K

+(6sinδω(M2
ω)sinδω(0)(2cosθP +

√
2sinθP )+cos2δ(4cos(2θV +θP )

+
√

2[8cosθP sin2θV −(−9+cos2θV )sinθP ]))m2
π

}

+

√
2FV

(
1+8
√

2αV 2m2
K−m

2
π

M2
V

)
3M2

φF
DRη1(0,M2

ω,m
2
η′){cosθV cosδsinθP

× (−4cos2θV +
√

2sin2θV )
}

−

√
2FV

(
1+8
√

2αV 2m2
K−m

2
π

M2
V

)
9M2

φF
DRη2cosθV cosδ

{
−4cosθP (2

√
2cos2θV

−sin2θV )(m2
K−m2

π)+(4cos2θV −
√

2sin2θV )sinθP (4m2
K−m2

π)
}
,
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Fη′→ργ = 2
√

2
3MV F

CRη1(0,M2
ρ ,m

2
η′)
{√

3cosδ(
√

2cosθP +sinθP )+sinδρ(M2
ρ )[
√

2cosθP sinθV

+(
√

2cosθV −sinθV )sinθP ]
}

+
√

2
9MV F

CRη2

{
4sinδρ(M2

ρ )
(
−3cos(θV −θP )

+cos(θV +θP )+2
√

2sin(θV +θP )
)
m2
K+

(
6
√

3cosδ(
√

2cosθP +sinθP )

−sinδρ(M2
ρ )[−9cos(θV −θP )+cos(θV +θP )+2

√
2sin(θV +θP )]

)
m2
π

}
−

2
√

2FV
(

1+8
√

2αV m2
π

M2
V

)
3M2

ρF
DRη1(0,M2

ρ ,m
2
η′)(sinθV sinδρ(0)+

√
3cosδ)

×
{

cos2δ(2cosθP +
√

2sinθP )+sinδρ(0)sinδρ(M2
ρ )[2cosθP

+sinθV (4cosθV −
√

2sinθV )sinθP ]
}

−

√
2FV

(
1+8
√

2αV m2
π

M2
V

)
9M2

ρF
DRη2(sinθV sinδρ(0)+

√
3cosδ)

{
−4sinδρ(0)

×sinδρ(M2
ρ )(cosθP (−3+cos2θV +2

√
2sin2θV )−(−3

√
2+
√

2cos2θV

+4sin2θV )sinθP
)
m2
K+
(

6cos2δ(2cosθP+
√

2sinθP )+sinδρ(0)sinδρ(M2
ρ )

×
(

4cos(2θV +θP )+
√

2[8cosθP sin2θV −(−9+cos2θV )sinθP ]
))
m2
π

}

−

√
2FV

(
1+8
√

2αV m2
π

M2
V

)
6M2

ωF
DRη1(0,M2

ρ ,m
2
η′)(sinθV cosδ−

√
3sinδω(0))

×
{

(−4
√

2cosδ){sinθP [sinθV sinδρ(M2
ρ )(sinθV −2

√
2cosθV )

+sinδω(0)]+
√

2cosθP (sinδω(0)−sinδρ(M2
ρ ))}

}

−

√
2FV

(
1+8
√

2αV m2
π

M2
V

)
18M2

ωF
DRη2(sinθV cosδ−

√
3sinδω(0))

×
{

(−2
√

2cosδ)
(

sinδρ(M2
ρ )[2m2

K (cosθP (4sin2θV +
√

2cos2θV −3
√

2)

−2sinθP (2
√

2sin2θV +cos2θV −3))+m2
π (−2

√
2cos(2θV +θP )

−8sin2θV cosθP+(cos2θV−9)sinθP )]+6m2
π sinδω(0)(sinθP+

√
2cosθP )

)}

+

√
2FV

(
1+8
√

2αV 2m2
K−m

2
π

M2
V

)
3M2

φF
DRη1(0,M2

ρ ,m
2
η′)
{

cosθV sinδρ(M2
ρ )

×(−4cos2θV +
√

2sin2θV )sinθP
}

−

√
2FV

(
1+8
√

2αV 2m2
K−m

2
π

M2
V

)
9M2

φF
DRη2cosθV sinδρ(M2

ρ )
{
−4cosθP (2

√
2cos2θV

−sin2θV )(m2
K−m2

π)+(4cos2θV −
√

2sin2θV )sinθP (4m2
K−m2

π)
}
,
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Fφ→η′γ = 2
√

2
3MV F

CRη1(0,M2
φ,m

2
η′)(
√

2cos(θV +θP )−cosθV sinθP )

+
√

2
9MV F

CRη2

{
8
(√

2cos(θV +θP )+cosθP sinθV −2cosθV sinθP
)
m2
K

+
(
−2
√

2cos(θV +θP )−9sin(θV −θP )+sin(θV +θP )
)
m2
π

}
+

√
2FV

(
1+8
√

2αV m2
π

M2
V

)
3M2

ρF
DRη1(0,M2

φ,m
2
η′)(sinθV sinδρ(0)+

√
3cosδ)

×
{

sinδρ(0)(−4cos2θV +
√

2sin2θV )sinθP
}

−

√
2FV

(
1+8
√

2αV m2
π

M2
V

)
9M2

ρF
DRη2(sinθV sinδρ(0)+

√
3cosδ)sinδρ(0)

×{−4cosθP (2
√

2cos2θV −sin2θV )(m2
K−m2

π)+(4cos2θV −
√

2sin2θV )

×sinθP (4m2
K−m2

π)}

+

√
2FV

(
1+8
√

2αV m2
π

M2
V

)
3M2

ωF
DRη1(0,M2

φ,m
2
η′)(sinθV cosδ−

√
3sinδω(0))

×
{

cosδ(−4cos2θV +
√

2sin2θV )sinθP
}

−

√
2FV

(
1+8
√

2αV m2
π

M2
V

)
9M2

ωF
DRη2(sinθV cosδ−

√
3sinδω(0))cosδ

{
−4cosθP

×(2
√

2cos2θV −sin2θV )(m2
K−m2

π)+(4cos2θV −
√

2sin2θV )sinθP (4m2
K−m2

π)
}

−
2
√

2FV
(

1+8
√

2αV 2m2
K−m

2
π

M2
V

)
3M2

φF
DRη1(0,M2

φ,m
2
η′)cosθV

×
{

2cosθP−cosθV (
√

2cosθV +4sinθV )sinθP
}

−

√
2FV

(
1+8
√

2αV 2m2
K−m

2
π

M2
V

)
9M2

φF
DRη2cosθV

{
(
√

2cosθV −2sinθV )2(2cosθP

+
√

2sinθP )m2
π−4(

√
2cosθV +sinθV )2(−cosθP +

√
2sinθP )(2m2

K−m2
π)
}
,

Fη→γγ = −NC(cosθP−2
√

2sinθP )
12
√

3π2F

−
2FV (1+8

√
2αV m2

π

M2
V

)
27FMVM2

ρ

(3cosδ+
√

3sinδρ(0)sinθV )
{

3CRη1(0,0,m2
η)[
√

3cosδ

×(
√

2cosθP−2sinθP )+2sinδρ(0)cosθV cosθP−sinδρ(0)sinθV (2sinθP
+
√

2cosθP )]−2CRη2sinδρ(0)m2
K(
√

2(3sin(θV −θP )+sin(θV +θP ))

−4cos(θV +θP ))+CRη2

2 m2
π[6
√

3cosδ(
√

2cosθP−2sinθP )+sinδρ(0)

×(
√

2(9sin(θV −θP )+sin(θV +θP ))−4cos(θV +θP ))]
}

−
4FV (1+8

√
2αV m2

π

M2
V

)
27FMVM2

ω

(
√

3cosδsinθV −3sinδω(0))
{

3
2CRη1(0,0,m2

η)[cosθP
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×(2cosδcosθV −
√

2cosδsinθV −
√

6sinδω(0))−2sinθP (cosδsinθV
−
√

3sinδω(0))]−Cη2cosδm2
K(
√

2(3sin(θV −θP )+sin(θV +θP ))

−4cos(θV +θP ))+CRη2

4 m2
π[cosδ(

√
2(9sin(θV −θP )+sin(θV +θP ))

−4cos(θV +θP ))−6
√

3sinδω(0)(
√

2cosθP−2sinθP )]
}

+
2FV (1+8

√
2αV 2m2

K−m
2
π

M2
V

)

9
√

3FMVM2
φ

cosθV
{

3CRη1(0,0,m2
η)(cosθV (2sinθP +

√
2cosθP )

+2sinθV cosθP )+CRη2

2 [3
√

2(4m2
K−3m2

π)cos(θV −θP )+(4m2
K−m2

π)

×(4sin(θV +θP )+
√

2cos(θV +θP ))]
}

+
4F 2

V (1+8
√

2αV m2
π

M2
V

)2

27
√

3FM4
ρ

(3cosδ+
√

3sinδρ(0)sinθV )2
{

sin2δρ(0)[−3DRη1(0,0,m2
η)

×(sin2θV cosθP +
√

2(sinθP−sin2θV cosθP ))+DRη2m
2
K

×(2cosθP (2
√

2sin2θV +cos2θV −3)+sinθP (4sin2θV +
√

2cos2θV −3
√

2))

+Dη2

4 m2
π(−4

√
2sin(2θV +θP )−9cos(2θV −θP )+7cos(2θV +θP )

+18cosθP )]+3cos2δ(cosθP−
√

2sinθP )(DRη1(0,0,m2
η)+DRη2m

2
π)
}

+
2F 2

V (1+8
√

2αV m2
π

M2
V

)2

27
√

3FM4
ω

(
√

3cosδsinθV −3sinδω(0))2
{

3DRη1(0,0,m2
η)

×[2cosθP (cos2δsinθV (2
√

2cosθV −sinθV )+sin2δω(0))+
√

2sinθP
×(−cos2δ+(1−2sin2δω(0))−2)]+2DRη2cos2δm2

K [2cosθP (2
√

2sin2θV
+cos2θV −3)+sinθP (4sin2θV +

√
2cos2θV −3

√
2)]

+DRη2

2 m2
π[cos2(δ)(−4

√
2sin(2θV +θP )−9cos(2θV −θP )

+7cos(2θV +θP )+18cosθP )+12sin2δω(0)(cosθP−
√

2sinθP )]
}

−
4F 2

V (1+8
√

2αV 2m2
K−m

2
π

M2
V

)2

9
√

3FM4
φ

cos2θV

{
3DRη1(0,0,m2

η)(cos2θV cosθP +
√

2

×(sin2θV cosθP +sinθP ))+DRη2m
2
K(2cosθP (2

√
2sin2θV +cos2θV +3)+sinθP

×(4sin2θV +
√

2cos2θV +3
√

2))−Dη2

4 m2
π(4
√

2sin(2θV +θP )+9cos(2θV −θP )

−7cos(2θV +θP )+18cosθP )
}

+
4F 2

V (1+8
√

2αV m2
π

M2
V

)2

27
√

3FM2
ρM

2
ω

cosδ(
√

3cosδsinθV −3sinδω(0))(3cosδ+
√

3sinδρ(0)

×sinθV )
{

3DRη1(0,0,m2
η)[cosθP (−sinδω(0)+sinδρ(0)sinθV (2

√
2cosθV −sinθV ))

−
√

2sinθP (−sinδω(0)+sinδρ(0))]+DRη2sinδρ(0)m2
K [2cosθP (2

√
2sin2θV

+cos2θV −3)+sinθP (4sin2θV +
√

2cos2θV −3
√

2)]+DRη2

4 m2
π[−12sinδω(0)
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×(cosθP−
√

2sinθP )+sinδρ(0)(−4
√

2sin(2θV +θP )−9cos(2θV −θP )

+7cos(2θV +θP )+18cosθP )]
}

−
2F 2

V (1+8
√

2αV m2
π

M2
V

)(1+8
√

2αV 2m2
K−m

2
π

M2
V

)
27FM2

ρM
2
φ

sinδρ(0)cosθV (3cosδ+
√

3sinδρ(0)

×sinθV )
{

2DRη2(m2
K−m2

π)sinθP (
√

2sin2θV −4cos2θV )−cosθP (2
√

2cos2θV

−sin2θV )(3DRη1(0,0,m2
η)+DRη2(4m2

K−m2
π))
}

+
F 2
V (1+8

√
2αV m2

π

M2
V

)(1+8
√

2αV 2m2
K−m

2
π

M2
V

)
27FM2

ωM
2
φ

cosδcosθV (2
√

3cosδsinθV

−6sinδω(0))
{

cosθP (2
√

2cos2θV −sin2θV )(3DRη1(0,0,m2
η)+DRη2(4m2

K−m2
π))

−2DRη2(m2
K−m2

π)sinθP (
√

2sin2θV −4cos2θV )
}
,

Fη′→γγ = −NC(sinθP +2
√

2cosθP )
12
√

3π2F
−

2FV (1+8
√

2αV m2
π

M2
V

)
27FMVM2

ρ

(3cosδ+
√

3sinδρ(0)cosθV )

×
{

3Cη1(0,0,m2
η′)[
√

3cosδ(
√

2sinθP +2cosθP )+sinδρ(0)(−
√

2cosθV sinθP

+2cosθV cosθP +2cosθV sinθP )]+2CRη2sinδρ(0)m2
K(4sin(θV +θP )

−3
√

2cos(θV −θP )+
√

2cos(θV +θP ))+CRη2

2 m2
π[6
√

3cosδ(
√

2sinθP +2cosθP )

−sinδρ(0)(4sin(θV +θP )−9
√

2cos(θV −θP )+
√

2cos(θV +θP ))]
}

−
2FV (1+8

√
2αV m2

π

M2
V

)
27FMVM2

ω

(
√

3cosδcosθV −3sinδω(0))
{

3CRη1(0,0,m2
η′)[2cosθP

×(cosδcosθV −
√

3sinδω(0))+sinθP (2cosδcosθV −
√

2cosδcosθV −
√

6sinδω(0))]
+2CRη2cosδm2

K(4sin(θV +θP )−3
√

2cos(θV −θP )+
√

2cos(θV +θP ))

+CRη2

2 m2
π[−6

√
3sinδω(0)(

√
2sinθP +2cosθP )−cosδ(4sin(θV +θP )

−9
√

2cos(θV −θP )+
√

2cos(θV +θP ))]
}

+
2FV (1+8

√
2αV 2m2

K−m
2
π

M2
V

)

9
√

3FMVM2
φ

cosθV
{

3CRη1(0,0,m2
η′)(2cosθV sinθP +cosθV

×(
√

2sinθP−2cosθP ))−4CRη2m
2
K(2cos(θV +θP )+

√
2(cosθV cosθP−2cosθV

×sinθP ))+CRη2m
2
π(2cos(θV +θP )+

√
2(4cosθV cosθP−5cosθV sinθP ))

}

+
4F 2

V (1+8
√

2αV m2
π

M2
V

)2

27
√

3FM4
ρ

(3cosδ+
√

3sinδρ(0)cosθV )2
{

3DRη1(0,0,m2
η′)

×[cos2δ(sinθP +
√

2cosθP )+sin2δρ(0)(cosθV sinθP (2
√

2cosθV −cosθV )
+
√

2cosθP )]−DRη2sin2δρ(0)m2
K [cosθP (4sin2θV +

√
2cos2θV −3

√
2)
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−2sinθP (2
√

2sin2θV +cos2θV −3)]+DRη2

2 m2
π[6cos2δ(sinθP +

√
2cosθP )

+sin2δρ(0)(2
√

2cos(2θV +θP )+8sin2θV cosθP−(cos2θV −9)sinθP )]
}

+
4F 2

V (1+8
√

2αV m2
π

M2
V

)2

27
√

3FM4
ω

(
√

3cosδcosθV −3sinδω(0))2
{

3DRη1(0,0,m2
η′)[cos2δ

×(cosθV sinθP (2
√

2cosθV −cosθV )+
√

2cosθP )+sin2δω(0)(sinθP +
√

2cosθP )]
−DRη2cos2δm2

K [cosθP (4sin2θV +
√

2cos2θV −3
√

2)

−2sinθP (2
√

2sin2θV +cos2θV −3)]+DRη2

2 m2
π[cos2δ(2

√
2cos(2θV

+θP )+8sin2θV cosθP−(cos2θV −9)sinθP )+6sin2δω(0)(sinθP +
√

2cosθP )]
}

+
4F 2

V (1+8
√

2αV 2m2
K−m

2
π

M2
V

)2

9
√

3FM4
φ

cos2θV

{
3DRη1(0,0,m2

η′)(
√

2cosθP−cosθV sinθP

×(2
√

2cosθV +cosθV ))+DRη2m
2
K(cosθP (4sin2θV +

√
2cos2θV +3

√
2)

−2sinθP (2
√

2sin2θV +cos2θV +3))+DRη2

2 m2
π(−2

√
2cos(2θV +θP )

−8sin2θV cosθP +(cos2θV +9)sinθP )
}

+
4F 2

V (1+8
√

2αV m2
π

M2
V

)2

27
√

3FM2
ρM

2
ω

cosδ(
√

3cosδcosθV −3sinδω(0))(3cosδ+
√

3sinδρ(0)cosθV )

×
{

3DRη1(0,0,m2
η′)(sinθP (−sinδω(0)+sinδρ(0)cosθV (2

√
2cosθV −cosθV ))+

√
2cosθP

×(−sinδω(0)+sinδρ(0)))−DRη2sinδρ(0)m2
K(cosθP (4sin2θV +

√
2cos2θV −3

√
2)

−2sinθP (2
√

2sin2θV +cos2θV −3))+DRη2

2 m2
π(cosθP (−6

√
2sinδω(0)

+8sinδρ(0)sin2θV )−6sinδω(0)sinθP +sinδρ(0)(2
√

2cos(2θV +θP )

−(cos2θV −9)sinθP ))
}

+
2F 2

V (1+8
√

2αV m2
π

M2
V

)(1+8
√

2αV 2m2
K−m

2
π

M2
V

)
27FM2

ρM
2
φ

sinδρ(0)cosθV (3cosδ

+
√

3sinδρ(0)sinθV )
{

sinθP (2
√

2cos2θV −sin2θV )(3DRη1(0,0,m2
η′)

+DRη2(4m2
K−m2

π))+2DRη2(m2
K−m2

π)cosθP (
√

2sin2θV −4cos2θV )
}

+
2F 2

V (1+8
√

2αV m2
π

M2
V

)(1+8
√

2αV 2m2
K−m

2
π

M2
V

)
27FM2

ωM
2
φ

cosδcosθV (
√

3cosδcosθV

−3sinδω(0))
{

sinθP (2
√

2cos2θV −sin2θV )(3DRη1(0,0,m2
η′)+DRη2

×(4m2
K−m2

π))+2DRη2(m2
K−m2

π)cosθP (
√

2sin2θV −4cos2θV )
}
,
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and the two-photon decay widths of the η, η′ are

ΓP→γγ = 1
4π

2α2m3
P |F |2 .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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