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1 Introduction

There is a rather widely accepted consensus that Quantum Gravity1 should give rise to a
quantum space-time at some effective regime. Various quantum space-times, conveniently
modeled in the framework of noncommutative geometry [2], have been considered in the
physics literature for a long time. Among them, those on which acts a deformed Poincaré
symmetry usually encoded in a Hopf algebra, which is interpreted as the quantum analog
of space-time symmetry, are regarded as physically promising. The deformation parameter
they involve is often assumed to be a new universal constant, possibly related to the Planck
mass.

Quantum space-times with “Lie algebra noncommutativity” have a preeminent place in
the physics literature devoted to the different approaches to Quantum Gravity and related
(noncommutative) field theories2 and gauge theories.3 Among them is the very popular κ-
Minkowski space introduced more than 30 years ago [5, 6]. It has been the subject of a huge
literature4 in view of its possible physical interest, providing in particular a realisation of
the Double Special Relativity [8]5 or in relationship with Relative Locality [10–12]. Recall
that the κ-Minkowski space is linked by a duality to a deformation of the Poincaré algebra
called the κ-Poincaré (Hopf) algebra. Field theories as well as gauge theories on this
quantum space have been studied [13]–[19]. R3

λ is another interesting quantum space based
on an su(2) noncommutativity. Fields theories, which are known to have in particular
relationships with a class of brane models [20] as well as with group field theory models [21]
have also received interest, [22]–[28].

Another deformation of the Minkowski space, called the ρ-Minkowski space, which
also is acted on by a deformation of the Poincaré algebra, called the ρ-Poincaré algebra,

1For a recent review see ref. [1].
2For a review see ref. [3].
3For a review see ref. [4].
4For a review on κ-deformation, see e.g. ref. [7].
5For a review on Doubly Special Relativity, see e.g. ref. [9].
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has received some attention more recently, albeit having been considered in an interesting
algebraic study a long ago [29]. See also [30]. Its physical relevance lies in its possible
relation to Relative Locality [10] and possible emergence in black-hole physics [31, 32].
The concepts of localizability and quantum observers have been examined in [33] (see
also [34]). Informally, the ρ-Minkowski space can be viewed as generated by the following
Lie algebra of coordinates

[x0, x1] = iρx2, [x0, x2] = −iρx1, [x1, x2] = 0, (1.1)

where ρ has the dimension of a length which is supplemented by another generator x3
which is central.6 The non-trivial part of (1.1) is the Euclidean algebra e(2).

Some quantum properties of a real-valued (massive) scalar field theory on the ρ-
Minkowski space with quartic interaction has been examined in [35],7 focusing on the
2-point function at the one-loop order. In this work, the star-product modeling the defor-
mation of the Minkowski space is obtained from a Drinfeld twist. One salient conclusion
of this work is that in 4 dimensions, UV/IR mixing occurs.

The purpose of the present paper is to extend the above work by examining the one-
loop properties of the 2- and 4-point functions of complex-valued scalar field theories on
ρ-Minkowski space with orientable or non-orientable quartic interactions. Recall that an
orientable interaction is such that the field and its conjugate, says φ and φ†, alternate (and
the converse for a non-orientable interaction). The star-product we will use is obtained by
adapting the construction carried out in the case of the κ-Minkowski space [17, 37] and
applied to [18, 19]. It is thus different from the one on which are based [31, 35]. It is obtained
by adapting the construction used in the case of the κ-Minkowski space [17, 37] inherited
from the old works [38, 39]. We stress that this is a natural construction of a star-product
on ρ-Minkowski in view of the common structures of the groups underlying respectively κ-
and ρ-Minkowski quantum spaces. The mathematical equipment is relatively modest and
is presented in section 2. The resulting star-product is used in section 3 to study one-loop
properties of complex-valued scalar field theories with orientable or non-orientable quartic
interactions. In section 4, we summarize and discuss the results and list interesting issues
to be examined.

2 Star-product for ρ-Minkowski from Weyl quantization

In this section, we will present the construction of a star-product for the ρ-Minkowski space.
The method we will follow is in fact very natural and is actually inherited from pioneering
works of von Neumann and Weyl [38, 39]. In modern language, it combines properties of the
convolution product defining the group algebra linked to the noncommutative coordinates

6Notice that one could interchange x0 and x3 which would not alter the result for the star-product,
apart from a mere change of notations but would correspond to a physically different situation where the
time x0 would stay “commutative”. In the following, we will not consider this possibility, thus staying with
a “noncommutative time”.

7See also [36].
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algebra with the Weyl quantization operator.8 This framework has been applied to obtain a
convenient star-product for the celebrated κ-Minkowski space [17, 37]. This latter was fur-
ther exploited to explore quantum properties of noncommutative scalar field theories and of
gauge theories on this quantum space [18, 19]. For more mathematical details, see e.g. in [4].

2.1 General set-up

It is instructive to give a general construction which exploit standard properties of harmonic
analysis of semi-direct products of (locally compact) groups, a mathematically interesting
type of groups to which pertain the affine group and the Euclidean group, respectively re-
lated to the κ-Minkowski and ρ-Minkowski spaces. Both groups have the following semidi-
rect product structure

G := H nφ Rn (2.1)

n ≥ 1, where H is a subgroup of GL(n,R) and the (continous) morphism φ : H → Aut(Rd)
is defined by the usual action of any matrix in H ⊂ GL(n,R) on elements of Rn. This is
simply given by

φa(x) = ax, (2.2)

for any a ∈ H, x ∈ Rn. In (2.1), Rn is the additive group of real numbers. Recall that
it is acted on by φ (2.2) which will alter the structure of the group law, compared to an
usual direct product. The actual relation with κ-Minkowski or ρ-Minkowski depends on
the choice for H which will be given in a while.

Denoting by (a, x) the elements of G, the structure of the group G is defined by

(a1, x1)(a2, x2) = (a1a2, x1 + a1x2), (2.3)
(a, x)−1 = (a−1,−a−1x), IG = (IH , 0), (2.4)

where the action of φ on the second group factor is explicit in the r.h.s. of (2.3). To
illustrate these relations and for further convenience, it may be useful to introduce the
following faithful representation of G, γ : G →Mn+1(C)

γ : (a, x) 7−→
(
a x

0 1

)
(2.5)

for any a ∈ H, x ∈ Rn (the matrix is blockwise). Note that the action of any element
γ((a, x)) restricted on Rn is given by γ((a, x))y = ay + x for any y ∈ Rn.

Given a locally compact group G, the related convolution product is defined by

(F ◦G)(s) =
∫
G
dµ(t)F (st)G(t−1) (2.6)

for any F,G ∈ L1(G), s ∈ G, where dµ(t) denotes the left-invariant Haar measure. Recall
that this latter is related to the right-invariant Haar measure, says dν, by the expression
dν(s) = ∆(s−1)dµ(s) for any s ∈ G, where the group homomorphism ∆ : G → R+ is called

8This applied to the Heisenberg algebra yields the Moyal product, interpretable as a twisted convolution
product.
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the modular function. Whenever the group is unimodular, one has ∆(s) = 1 for any s ∈ G,
so that the left-invariant and right-invariant measures coincide.

From general properties on Haar measures on semidirect products, the left-invariant
Haar measure and modular function of a localy compact group of the form G := H nφ Rn

as given by (2.1), are respectively given by (in obvious notations)

dµG((a, x)) = dµRn(x) dµH(a) | det(a)|−1, (2.7)

and
∆G((a, x)) = ∆Rn(x) ∆H(a) | det(a)|−1 (2.8)

for any a ∈ H, x ∈ Rn. Plainly, dµRn(x) is the Lebesgue measure on Rn, usually noted
dnx, while dµH and det(a) depend on the choice of H assumed here to be a subgroup of
GL(n,R) which will be fixed in a while.

The related algebra, which will play a central role in the ensuing construction, is known
as the convolution algebra, denoted hereafter by C(G) := (L1(G), ◦,V ) which is a ?-algebra
thanks to the natural involution defined by

FV(x) = F (x−1)∆G(x−1) (2.9)

for any F ∈ L1(G), x ∈ G, where F is the complex conjugate of F . Given a unitary
representation of G, says πU : G → B(H), the induced ?-representation of C(G) on B(H),
π : C(G)→ B(H), is defined by

π(F ) =
∫
G
dµG(x)F (x)πU (x) (2.10)

for any F ∈ C(G)9 and is bounded and non-degenerate. Recall that

π(F ◦G) = π(F )π(G), π(F )‡ = π(FV) (2.11)

with F = Ff and G = Fg and π(F )‡ denotes the adjoint operator of π(F ).
Now, assume that the elements of C(G) are functions on a momentum space, i.e. any

F ∈ C(G) can be written as F = Ff where F denotes the Fourier transform.10 This,
combined with the Weyl quantization operator given by

Q(f) = π(Ff) (2.12)

generates a product on the algebra of functions which are the inverse Fourier transform of
the elements of C(G). In this respect, it is natural to interpret this algebra as an algebra
of functions of space(-time) coordinates and the product mentioned just above as the star-
product on the noncommutative (quantum) space modeled by this algebra. From (2.11)
and (2.12), one easily obtains

Q(f ? g) = Q(f)Q(g), (Q(f))‡ = Q(f †), , (2.13)
9F must have compact support. In addition, notice that πU must be strongly continuous, which will be

the case in the following analysis.
10Our convention for the Fourier transform is Ff(p) =

∫
ddx

(2π)d e−ipxf(x) and f(x) =
∫
ddp eipxFf(p).
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from which follow

f ? g = F−1(Ff ◦ Fg), f † = F−1(F(f)V). (2.14)

For more details on this construction, see in [4].
The actual nature of the above quantum space depends on the particular choice of H

as a subgroup of GL(n,R). This latter has many subgroups, each one possibly giving rise
to a particular quantum space whose interest in physics should be examined.

It is instructive to close this subsection by briefly sketching the case H = aIn, a > 0,
which is isomorphic to R+, assuming in this case n = d − 1, . This diagonal subgroup
of GL(n,R) corresponds to the affine group R+ nφ Rd−1 of Rd−1 which is known to lead
to the d-dimensional κ-Minkowski space, see e.g. [17, 37]. Indeed, all the results relative
to the star-product and involution used in these latter references can be easily obtained
by first setting a = e−p0/κ in the above formulas, thus interpreting p0 as the time-like
component of the momentum. This combined with (2.2)–(2.8) gives immediately the left
Haar measure and the modular funtion respectively given by dµ = dd−1p dp0 e

(d−1)p0/κ and
∆ = e(d−1)p0/κ (signaling that the affine group is not unimodular), while the right Haar
reduces to the usual Lebesgue measure. Focusing on the right Haar measure as in [17, 37],
one easily deduces the expression for the convolution product and involution, namely

(Ff ◦ Fg)(p0, ~p) =
∫
Rd
dq0 d

d−1q Ff
(
p0 − q0, p− e(q0−p0)/κ~q

)
Fg(q0, ~q), (2.15)

FfV(p0, ~p) = e(d−1)p0/κ Ff(−p0,−ep0/κ~p). (2.16)

where F denotes the complex conjugation of F . Finally, the simple application of an inverse
Fourier transform on (2.15) and (2.16) yields the expression for the star-product for the
κ-Minkowski space derived in [17, 37], together with the corresponding natural involution.

2.2 Star product for ρ-Minkowski space

In the following, we will mainly consider a situation where H ⊂ O(2), a case which is ac-
tually connected to the 4-dimensional ρ-Minkowski space considered in [35]. We set n = 2.
Indeed, the non-trivial part of the coordinate algebra is the Euclidean algebra e(2), with Eu-
clidean group E(2) = O(2)nφR2. Recall that the Euclidean group E(n) = O(n)nφRn is the
group of isometries of the n-dimensional euclidean space involving translations, rotations
and reflections, where the (additive) group Rn is isomorphic to the translation group T (n).

From now on, we will focus on the orientation preserving isometries, thus assuming
H = SO(2) leading to the special Euclidean group

Gρ := SE(2) = SO(2) nφ R2. (2.17)

Then, assuming as in subsection 2.1 that the group elements describe a momentum space,
one can write any element of Gρ as (R(ρp0), ~p) with ~p ∈ R2. Here, R(ρp0) denotes a 2× 2
rotation matrix with defining (dimensionless) parameter ρp0, where ρ has inverse mass
dimension −1, to be identified with the deformation parameter of the Minkowski space,
and p0 is identified with the time-like component of a momentum (p0, ~p). Notice that the
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present convention for the parameter ρ is the same as the convention used e.g. in [35] where
the deformation parameter has also the dimension of a length, which physically may be
identified with the Planck length.

Then, eqs. (2.3) and (2.4) take the form

(R(ρp0), ~p) (R(ρq0), ~q) =
(
R(ρ(p0 + q0)), ~p+R(ρp0)~q

)
, (2.18)

(R(ρp0), ~p)−1 =
(
R(−ρp0),−R(−ρp0)~p

)
, I = I2, (2.19)

which characterize the structure of Gρ. Note that first order approximation of these group
relations agrees with equation (3) of [12].

It is known that Gρ is unimodular which can be easily recovered from (2.8), owing to
the unimodularity of R2 and SO(2) and the fact that ∆H(a) = | det a| for any a ∈ O(n).
From (2.7), one easily realizes that the measure on Gρ reduces to the usual Lebesgue
measure. We therefore set as usual

dµ = d2p dp0 = d3p, (2.20)

in obvious notations. The convolution product and involution can now be written as

(Ff ◦Fg)(p0,~p)=
∫
d3q Ff

(
R(ρ(p0+q0)),~p+R(ρp0)~q

)
Fg
(
R(−ρq0),−R(−ρq0)~q

)
(2.21)

Ff∗(p0,~p)=Ff
(
R(−ρp0),−R(−ρp0)~p

)
, (2.22)

for any Ff,Fg ∈ L1(Gρ).
We are done. Indeed, by simply combining the various Fourier transforms

in (2.21), (2.22) with (2.14), one obtains the expressions for the star-product and related
involution which define the noncommutative ρ-Minkowski space, namely

(f ?ρ g)(x0, ~x) =
∫
dp0
2π dy0 e

−ip0y0f(x0 + y0, ~x)g(x0, R(−ρp0)~x), (2.23)

f †(x0, ~x) =
∫
dp0
2π dy0 e

−ip0y0f(x0 + y0, R(−ρp0)~x), (2.24)

for any f, g ∈ L1(R3). The above resulting associative ∗-algebra can be extended to a
suitable multiplier algebra of tempered distributions as in the κ-Minkowski case [37]. Let
M3

ρ denotes this ?-algebra.
Some comments are now in order.
First, it can be easily verified that (2.23) leads to the following coordinate algebra

[x0, x1] = iρx2, [x0, x2] = −iρx1, [x1, x2] = 0, (2.25)

which is the non-trivial part of the coordinate algebra for the ρ-Minkowski space [31, 35].
The full algebra for ρ-Minkowski is obtained from (2.25) by supplementing the generators
x0, x1, x2 with a central element x3. The extension of the star-product to incorporate this
extra coordinate is straightforward.

– 6 –
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Next, it can be easily verified that (2.23) and (2.24) reduce respectively to the usual
commutative product between functions and complex conjugation at the commutative limit
ρ→ 0.

Then, one observes that the star-product (2.23) is different from star-product used
in [35]. Instead, the structure of the integrand is rather close to the one of the star-product
for the κ-Minkowski space derived in [17, 37]. In particular, observe the second argument
of the rightmost function in (2.23) which represents the spatial coordinates acted on by
SO(2) ' S1. In the κ-Minkowski case, the SO(2) action is replaced by the action of R+, as
recalled in subsection 2.1. This can be expected from the common overall structure of the
groups underlying these star-products. Both groups are of the form (2.1), the only change
stemming from the choice of the subgroup H with corresponding change in the way the Rn

group factor in (2.1) is acted on.
The star-product for the ρ-Minkowski space derived above actually corresponds to a

3-dimensional situation, which is again apparent from the underlying group SO(2) nΦ R2,
leading to one dimension for SO(2) (as it is a one-parameter group) supplementing the
obvious two dimensions for the second group factor. In order to cope with 4-dimensional
situation, one way is to add a central element, says x3, to the coordinate algebra, as done
in [31, 35]. This is what we will do in the subsequent analysis. The corresponding extension
of the star-product together with the corresponding involution are simply given by

(f ?ρ g)(x0, ~x, x3) =
∫
dp0
2π dy0 e

−ip0y0f(x0 + y0, ~x, x3)g(x0, R(−ρp0)~x, x3), (2.26)

f †(x0, ~x, x3) =
∫
dp0
2π dy0 e

−ip0y0f(x0 + y0, R(−ρp0)~x, x3), (2.27)

for any f, g ∈M4
ρ, the 4-dimensional extension ofM3

ρ.
The natural measure to be used forM3

ρ is the 3-d Lebesgue measure (2.20) as discussed
at the beginning of this subsection which trivially extends to the 4-d measure in the case
of the 4-dimensional ρ-Minkowski spaceM4

ρ. From now on, we will denote generically the
multiplier algebra byMρ, irrespective of the dimension of the space.

We end up this subsection by giving some properties of the star-product ?ρ which will
be used in the next section.

First, it can be easily verified that the following formulas hold (x = (x0, ~x, x3))∫
d4x (f ?ρ g†)(x) =

∫
d4x f(x)g(x),

∫
d4x f †(x) =

∫
d4 f(x), (2.28)

which imply that ∫
d4x (f ?ρ f †)(x) =

∫
d4x f(x)f(x) ≥ 0 (2.29)

for any f, g ∈ Mρ. One concludes from (2.29) that the integral
∫
d4x defines a positive

map
∫
d4x :M+

ρ → R+ whereM+
ρ denotes the set of positive elements ofMρ.

It turns out that the Lebesgue integral
∫
d4x defines a trace w.r.t. the star-

products (2.23) and (2.26). This trace is not twisted contrary to the natural trace arising
in the description of the κ-Minkowski space recalled at the end of subsection 2.1. Hence,

– 7 –
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the usual cyclicity holds, namely∫
d4x (f ?ρ g)(x) =

∫
d4x (g ?ρ f)(x), (2.30)

for any f, g ∈Mρ, which can be easily verified from an elementary calculation.
In order to build action functionals, we will need a Hilbert product. It is defined by

〈f, g〉 :=
∫
d4x (f † ?ρ g)(x) =

∫
d4x f(x)g(x), (2.31)

for any f, g ∈ Mρ where the rightmost equality stems from the combination of (2.28)
and (2.30), which formally coincides with the usual L2 product.

Besides, one can check that

(f ?ρ g)†(x) = (g† ?ρ f †)(x) (2.32)

for any f, g ∈Mρ.
At this stage, one comment is in order. One observes that the star-product ?ρ is stricto

sensu not closed w.r.t. the trace
∫
d4x, since one has

∫
d4xf ?ρ g 6=

∫
d4x fg for arbitrary

complex-valued functions. However, this star-product becomes closed when the relevant
set of functions is restricted to real-valued functions. Roughly speaking, ?ρ is not far from
the closedness w.r.t. the trace.

It must be stressed that the above formulas are obviously valid in the 3-dimensional
case.

As a final remark, the coordinate algebra (2.25) in “Cartesian coordinates” can
be written in “cylindrical coordinates” via the change of variable xr =

√
x2

1 + x2
2 and

xϕ = exp
(
i arctan(x2

x1
)
)
, x0 and x3 being unchanged. With these new coordinates, the

relations (2.25) becomes

[x0, xϕ] = ρxϕ (2.33)

the other bracket being zero. One can then perform the same analysis as before with
H = U(1), the complex rotations. One obtains that rotations on R2 are now rotations of
U(1), explicitly R(−ρp0)~x now corresponds to eiρp0xϕ.

The structure equation of Gρ (2.18) and (2.19) then becomes

(eiρp0 , pϕ) (eiρq0 , qϕ) =
(
eiρ(p0+q0), pϕ + eiρp0qϕ

)
, (2.34)

(eiρp0 , pϕ)−1 = (e−iρp0 ,−e−iρp0pϕ), I = 1. (2.35)

Finally, we obtain the star-product and involution

(f ?ρ g)(x0,xr,xϕ,x3) =
∫
dp0
2π dy0 e

−ip0y0f(x0 +y0,xr,xϕ,x3)g(x0,xr,e
iρp0xϕ,x3), (2.36)

f †(x0,xr,xϕ,x3) =
∫
dp0
2π dy0 e

−ip0y0f(x0 +y0,xr,e
iρp0xϕ,x3). (2.37)

In view of the correspondence R(−ρp0)~x → eiρp0xϕ, the results of the section 3 will
be the same regardless the coordinate choice. Therefore, we will stick to the Cartesian
coordinates.
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One should note that the commutation relation (2.33) is similar to the 1+1-dimensional
κ-Minkowski one performing the change ρ → i

κ . The major difference being that here xϕ
is an angle and so has compact support. This can be traced back to the fact that 1 + 1-
d κ-Minkowski has matrix group H = R+, and cylindrical ρ-Minkowski has H = U(1).
Therefore, the second matrix group corresponds to a compactification of the first one.

This similarity between ρ and κ can go further as, upon the change ρ → i
κ and the

compactification, the star-product and involution (2.36) and (2.37) exactly corresponds to
the ones of κ-Minkowski obtained from (2.15) and (2.16).

3 Scalar field theories on ρ-Minkowski space

In this section, we will perform a first exploration of one-loop properties of scalar field
theories on ρ-Minkowski, paying attention to the possible occurrence of IR singularities in
the 2-point functions which may signal UV/IR mixing. A more detailed analysis of the
perturbative behaviour of the scalar theories will be published elsewhere.

We will consider mainly the following (positive) action in 4 dimensions

S(φ, φ) = 〈∂φ, ∂φ〉+m2〈φ, φ〉+ g〈φ† ?ρ φ, φ† ?ρ φ〉

=
∫
d4x (∂µφ∂µφ+m2φφ) + g

∫
d4x φ† ?ρ φ ?ρ φ

† ?ρ φ,
(3.1)

where the fields φ, φ and the parameter m have mass dimension 1 and g is a dimensionless
coupling constant, thus restricting the interaction term to a so-called orientable interaction
in the terminology of noncommutative field theories [18]. To obtain the expression in
the r.h.s. of (3.1), (2.31) has been used. Note that the formal commutative limit of the
action (3.1) coincides formally with an ordinary massive φ4 theory. From time to time, we
will compare the results to those obtained from a non-orientable interaction term (3.16).

The perturbative expansion is obtained from the generating functional of the connected
Green functions W (J, J), namely one has

eW (J,J) =
∫
Dφ Dφ e−

(
S(φ,φ)+Ss(J,J)

)
, (3.2)

where the source term Ss takes the form

Ss(J, J) = 〈J, φ〉+ 〈φ, J〉 =
∫
d4x Jφ+ Jφ. (3.3)

From the functional relation W (J, J) = W0(J, J) + ln
(
1 + e−W0(J,J)[e−Sint − 1]eW0(J,J)),

one infers that the relevant one-loop contributions are generated by

W(1)(J, J) = W0(J, J)− e−W0(J,J) Sint

(
δ

δJ
,
δ

δJ

)
eW0(J,J) (3.4)

up to an unessential additive constant, where W0(J, J) is the free generating functional of
the connected Green functions and Sint( δ

δJ ,
δ
δJ

) is obtained as usual from the interaction
term in (3.1) through the replacement φ→ δ

δJ
, φ→ δ

δJ .
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The free generating functional W0(J, J) is given by

eW0(J,J) = e
∫
d4p J(p)(p2+m2)−1J(p), (3.5)

where J(p) =
∫ d4x

(2π)4 e
−ipxJ(x).

The quartic interaction term Sint in the action (3.1) can be cast into the form

Sint = (2π)4
∫ ( 4∏

j=1
dkj

)
φ(k1)φ(k2)φ(k3)φ(k4) V (k1, k2, k3, k4), (3.6)

with again φ(p) =
∫ d4x

(2π)4 e
−ipxφ(x), where the vertex function is given by

V (k1, k2, k3, k4) = g δ(k0
1 − k0

2 + k0
3 − k0

4)δ(k3
1 − k3

2 + k3
3 − k3

4)

× δ2
(
R(ρk0

1)(~k1 − ~k2) +R(ρk0
4)(~k3 − ~k4)

)
.

(3.7)

The two first delta’s express the conservation laws for the energy and third component of
the momentum which take the usual form. The last delta signals that the conservation law
for the 1 and 2 components of the momentum are altered by the deformation. One observes
that this “deformed” law bears some similarity with the corresponding law obtained for a
similar field theory on κ-Minkowski in e.g. [17] (see formula (3.41) of this reference) with
however the so-called modular factors ∼ e−p0/κ replaced by rotation operators. This can
be expected in view of the semidirect product structure of each of the groups underlying
the two noncommutative spaces, as discussed in subsection 2.1.

One should note that this vertex has the symmetries

V (1234) = V (4321), V (1234) = V (2143). (3.8)

Now, one combines

Sint

(
δ

δJ
,
δ

δJ

)
= (2π)4

∫ ( 4∏
j=1

dkj

)
δ

δJ(k1)
δ

δJ(k2)
δ

δJ(k3)
δ

δJ(k4)
V (k1, k2, k3, k4), (3.9)

with (3.4) and (3.5). After some algebra and making use of the Legendre transform J(p) =
(p2 + m2)φ(p), J(p) = (p2 + m2)φ(p) to obtain the 1-loop contributions to the effective
action whose general definition is

Γ(φ, φ) =
∫
d4k

(
J(k)φ(k) + J(k)φ(k)

)
−W (J, J), (3.10)

with

φ(k) = δW (J, J)
δJ(k) , φ(k) = δW (J, J)

δJ(k)
, (3.11)

we are lead to the quadratic part of the one-loop effective action Γ(2)(φ, φ) given by

Γ(2)(φ, φ) =
∫
d4k1 d

4k2 φ(k1)φ(k2)Γ(2)(k1, k2), (3.12)

– 10 –
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φ(k2)

φ(k1)

k3

V (1233)

φ(k1)

φ(k2)

k3

V (3312)
φ(k2) φ(k1)

k3

V (3213)

φ(k1) φ(k2)

k3

V (1332)

Figure 1. The four Feynman diagrams associated to the vertex functions of equation (3.13).

where, upon setting V (1234) := V (k1, k2, k3, k4), one has

Γ(2)(k1, k2) =
∫
d4k3 (k2

3 +m2)−1(V (3312) + V (1233) + V (1332) + V (3213)
)
. (3.13)

These 4 contributions, with external momenta k1 and k2, are pictured in figure 1. These
can be easily computed by simply dealing with the related delta functions.

Note that using the symmetries (3.8), one has V (1233) = V (3312) and V (3213) =
V (1332) so that the four contribution of figure 1 crumbles down to two contributions.

For instance, pick the first contribution V (3312) in (3.13), denoted hereafter by
Γ(2)

1 (k1, k2). From (3.7), one infers that the relevant delta’s are

δ(k0
1 − k0

2) δ(k3
1 − k3

2) δ2
(
R(ρk0

2)(~k1 − ~k2)
)

(3.14)

which, upon using the identity δ2(R~p) = | detR|−1δ2(~p), collapses to δ4(k1 − k2). Hence
one obtains

Γ(2)
1 (k1, k2) ∼

∫
d4k3

1
k2

3 +m2 . (3.15)

One would proceed in a similar way for the three other contribution, leading to the same
result.

Let us discuss this result. In view of (3.15) and the above result, the one-loop 2-
point function exhibits a UV quadratic divergence for the 4-dimensional theory, as its
commutative counterpart to which it is similar. The corresponding contributions are related
to planar diagrams so that they do not depend on the external momenta k1 and k2. Note
that planar contributions to the 2-point function arising in the (real-)scalar field theory on
ρ-Minkowski studied in [35] also diverge as the commutative φ4 theory.

Besides, no IR singularities appear in the 2-point function which could generate UV/IR
mixing. Only planar diagrams contribute to the 2-point function. Note that this can be
expected within a theory involving a complex scalar field with orientable interaction.

A similar conclusion holds for the 3-dimensional case, with however the UV divergence
being linear instead of the quadratic divergence in 4 dimensions.

It is instructive to study the 1-loop behaviour of the 2-point function that would arise
for a noncommutative complex scalar theory with a non-orientable interaction replacing
the quartic term in (3.1). For that purpose, we will consider an interaction term of the form

Sno
int = g〈φ ?ρ φ, φ ?ρ φ〉 = g

∫
d4x (φ† ?ρ φ† ?ρ φ ?ρ φ)(x), (3.16)

– 11 –
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φ(k4)

φ(k3)

k1

V no(3411)

φ(k3)

φ(k4)

k1

V no(1134)
φ(k4)

φ(k3)
k1

V no(1431)

φ(k3)

φ(k4)

k1

V no(3114)

Figure 2. The four Feynman diagram associated to the vertex functions of equation (3.19).

while the quadratic part of (3.1) remains unchanged. Then, the analysis performed
above can be thoroughly reproduced, the only change being the replacement of the vertex
function (3.7) by

V no(k1, k2, k3, k4) = g δ(k0
1 − k0

2 + k0
3 − k0

4)δ(k3
1 − k3

2 + k3
3 − k3

4)

× δ2
(
~k1 − ~k2 +R(ρk0

1)~k3 −R(ρk0
2)~k4

)
.

(3.17)

The resulting 2-point function at one-loop takes the form

Γ(2)(φ, φ) =
∫
d4k3 d

4k4 φ(k3)φ(k4) Γ(2)no(k3, k4), (3.18)

with
Γ(2)no(k3, k4)

=
∫
d4k1 (k2

1 +m2)−1
(
V no(1134) + V no(3411) + V no(3114) + V no(1431)

)
.

(3.19)

This expression is actually similar to (3.13), upon replacing V by V no. Its vertices are repre-
sented in figure 2. By combining the delta’s appearing in the vertex functions, it can be eas-
ily seen that the two first contributions in (3.19) do not depend on the external momenta k3
and k4 and thus corresponds to planar diagrams, proportional to

∫
d4p (p2+m2)−1 and thus

are UV quadratically diverging (which become linearly diverging for 3-dimensional case).
Note that the symmetry (3.8) does not hold for the vertex V no (3.17), so that a priori

none of these diagrams could be equalized by symmetry arguments.
Unlike the planar contributions, the last two contributions depend on the external

momenta. They correspond to non-planar diagrams whose contributions may become
singular at zero external momenta, thus generating UV/IR mixing. Note that these latter
diagrams are somewhat comparable to the so-called type IV diagrams arising in non-
orientable scalar field theories on κ-Minkowski space [17].

To illustrate the appearance of IR singularities, consider for instance the third contri-
bution in (3.19). We assume ρ 6= 0 in the following. From (3.17), one can verify that the
delta’s in the vertex function are

δ2
(
~k3 − ~k1 +R(ρk0

3)~k1 −R(ρk0
1)~k4

)
δ(k0

3 − k0
4) δ(k3

3 − k3
4). (3.20)

Then, the integration over ~k1 produces

Γ(2)no
3 (k3, k4) ∼

∫
dk0

1
1

(k0
1)2 +K2

1 (~k3, ~k4, k0
1)
∣∣ det(R(k0

3)
∣∣−1 (3.21)
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φ(k2)

φ(k1)

φ(k3)

φ(k4)k5

k6

V (1256)V (3465) = V (1256)V (5643)
φ(k4)

φ(k3)φ(k2)
φ(k1)

k5

k6

V (5462)V (3615)

Figure 3. The two Feynman diagrams associated to the vertex (3.23) and (3.28).

where K2
1 (~k3, ~k4, k

0
1) is a function whose expression can be read off from the corresponding

delta and we have set
R(k0

3) = R(ρk0
3)− I2, (3.22)

which obviously vanishes for k0
3 = 0 thus generating an IR singularity in (3.21) which cannot

be compensated by the remaining integral over k0
1. This therefore signals that complex-

scalar field theories on ρ-Minkowski space with non-orientable interaction term generally
have UV/IR mixing. Note that the real-scalar field theory on ρ-Minkowski studied in [35]
exhibits necessarily non-planar contributions to the 2-point function which are also IR
singular so that both results agree.

As far as 2-point functions are concerned, one concludes that the UV behaviour of
the 2-point functions in both scalar theories qualitatively agree. Besides, we note that
the status of the complex-scalar field theories on ρ-Minkowski space is globally similar to
the one for their homologs on κ-Minkowski. Recall that among these latter, one family
with orientable interaction was shown to have a vanishing beta function at the one-loop
order, with corresponding one-loop corrections being UV finite [18]. This was due to the
particular nature of the interaction vertex combined with the behaviour of the propagator
exhibiting a rather strong UV decay.

For the sake of comparison, one interesting issue to investigate is the behaviour of the
one-loop 4-point function within the orientable complex-scalar field theories on ρ-Minkowski
space to which we turn now on.

To address this problem, consider the following diagram contribution, among the twelve
planar and non-planar contributions to the 4-point function

Γ(4)(k1, k2, k3, k4) ∼
∫
d4k5 d

4k6
1

(k2
5 +m2)(k2

6 +m2)
V (5462)V (3615), (3.23)

in which V is still given by (3.7) and the external momenta are k1, k2, k3, k4.
The integration over d4k6 yields

Γ(4)(k1, k2, k3, k4)

∼
∫
d4k5

1
(k2

5 +m2)
1

(k0
5 − k0

2 − k0
4)2 +

(
R5−2(~k5 − ~k4) + ~k2

)2 +m2

× δ(k0
1 − k0

2 + k0
3 − k0

4) δ(k3
1 − k3

2 + k3
3 − k3

4)

× δ2
(
~k3 − ~k2 +R5−2(~k5 − ~k4) +R5−3(~k1 − ~k5)

)
,

(3.24)
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where we set

Rj−l := R
(
ρ(k0

j − k0
l )
)
, Rj := R(ρ(k0

j )). (3.25)

Observe that the first two delta’s express the (“undeformed”) conservation of the energy
and the third component of the external momenta while the last one involves ~k5 whose value
will be uniquely fixed as a function of the external momenta (and k0

5) upon integrating over
~k5, except possibly for exceptional external momenta, as shown below.

Now, the integration over d~k5 leads to

Γ(4)(k1, k2, k3, k4) ∼
∫
dk0

5
1

(k0
5)2 + (~k?5)2 +m2

× 1∣∣1− cos
(
ρ(k0

3 − k0
2)
)∣∣

× 1
(k0

5 − k0
2 − k0

4)2 +
(
R5−2(~k?5 − ~k4) + ~k2

)2 +m2

(3.26)

in which we have omitted the two delta’s related to the “undeformed” conservation laws
and ~k?5 is solution of

(R3−2 − I2)~k?5 = R3−2~k4 +R3−5(~k2 − ~k3)− ~k1, (3.27)

whenever k0
3 − k0

2 6= 0. Assume this condition holds. Then, at large k0
5, one infers that

~k?5 behaves as a function of the only external momenta. Hence, it can be seen that the
integrand behave as ∼

(
1
k0

5

)4
so that the remaining integral in (3.26) is UV finite.

Furthermore, in view of the last factor in (3.26), one concludes that the diagram is
singular when k0

3−k0
2 = 0 and in particular when both momenta are vanishing. Therefore,

dangerous IR singularities generating UV/IR mixing occur at one-loop in this contribution
to the 4-point function.

Consider now the following planar diagram contribution

Γ(4)
P (k1, k2, k3, k4) ∼

∫
d4k5 d

4k6
1

(k2
5 +m2)(k2

6 +m2)
V (1256)V (3465). (3.28)

By performing a computation similar to the one given just above, one obtains

Γ(4)
P (k1, k2, k3, k4)

∼
∫
d4k5

1
k2

5 +m2
1

(k0
1 − k0

2 + k0
5)2 +

(
~k5 +R2−5(~k1 − ~k2)

)2
+m2

× δ(k0
1 − k0

2 + k0
3 − k0

4) δ(k3
1 − k3

2 + k3
3 − k3

4)

× δ2(R3(~k3 − ~k4) +R2(~k1 − ~k2)
)
.

(3.29)

Compared to (3.24) where one delta function still involves the internal momentum which
thus will be (partly) fixed when integrated over, leading to an UV finite expression,
eq. (3.29) involves one remaining integration over d4k5 while the delta’s depend only on
the external momenta.

By a simple inspection, one then easily realizes that the integral is logarithmically
diverging in 4 dimensions. This is nothing but the UV behaviour of the commutative φ4
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theory. Note that this analysis can be straightforwardly extended to the 3-dimensional
case, leading to a UV finite contribution.

Although the full computation of the 1-loop corrections to the 4-point function is
beyond the scope of this paper, we may already indicates what would likely come out from
such a computation.

The main point is that one can expect that singularities as the one exhibited in (3.26)
will likely occur in the various diagrams. Furthermore, there is no apparent reason why
they might balance each other so that UV/IR mixing is expected to plague the scalar
theory with orientable interaction, originated by (IR) singularities in the one-loop 4-point
function. We regard the singularity in (3.26) as being already a sufficient evidence for the
occurrence of the mixing.

The UV behaviour of the model is similar to the one of the ordinary φ4 theory. Such a
result is not surprising regarding the UV decay property of the propagator of (3.1) which
is the ordinary one. Note that other kinetic operators built from various noncommutative
differential calculus and having a faster UV decay may obviously give rise to UV finitude
in 4 dimensions.

4 Conclusion

We have studied one-loop perturbative properties of complex-valued scalar field theories
on the ρ-Minkowski space. The corresponding star-product is different from the one used
in [31, 35] based on a Drinfeld twist or a Jordan-Schwinger map [30]. It is obtained by
adapting the construction used in the case of the κ-Minkowski space [17, 37] inherited from
the old works [38, 39]: the defining items of the convolution algebra of the Lie group linked
to the coordinate algebra of ρ-Minkowski are transferred by the Weyl quantization to the
star-product, the involution and the natural integration measure and trace which is not
twisted. This characterizes the associative algebra modeling ρ-Minkowski.

One-loop properties for the 2-point and 4-point functions are examined. Four di-
mensional scalar theory with quartic orientable interaction has one-loop UV quadratically
diverging 2-point function while no IR singularities generating UV/IR mixing appears.
Theory with quartic non-orientable interaction has a 2-point function plagued with IR
singularity thus generating UV/IR mixing.

The 4-point function for the theory with orientable interaction receives UV logarithmi-
cally diverging contributions. Furthermore, it involves IR singularities which thus signals
the appearance of UV/IR mixing.

While [35] and the present work provide a better insight on the landscape of field the-
ories on ρ-Minkowski space, two immediate issues should now be examined. One concerns
the effects of the changes of kinetic operator (propagator) on the UV as well as IR be-
haviour. The other one concerns the elaboration of a gauge theory model on ρ-Minkowski.
It turns out that both issues are obviously related to the types of noncommutative differen-
tial calculus which come into play. On a more algebraic viewpoint, it would be interesting
to identify a twist giving rise to the star-product used in the present study. We will return
to these questions in forthcoming publications.
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