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1 Introduction

Data show that CP is violated by the order-unity phase δCKM ∼ 1 in the CKM matrix, while
the upper bound on the neutron electric dipole [1] implies the smallness of the QCD angle

θ̄ = θQCD + arg detMq, |θ̄| ≲ 10−10 (1.1)
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where Mq is the mass matrix of quarks q and θQCD is the coefficient of the topological term
in the QCD Lagrangian

LQCD = q̄(i /D −Mq)q −
1
4 TrG2 + θQCD

g2
3

32π2 TrGG̃. (1.2)

This aspect of the Standard Model is puzzling, because a generic complex Mq leads to
δCKM, θ̄ ∼ 1. This puzzle has been interpreted in two different ways:

a) as a new light pseudo-scalar, the axion [2, 3], adjusting θ̄ = 0 dynamically; the axion is
so far not observed; special models are needed to avoid the ‘axion quality problem’ [3];

b) as special models that produce a large δCKM, a quark mass matrix Mq with real deter-
minant and θQCD = 0.

Models of type b) have been first realized by Nelson and Barr [4, 5] by the ad-hoc assump-
tion that CP is violated only by the mixings of SM quarks q with hypothetical extra heavy
quarks, and that the extended quark mass matrix has a special structure with vanishing
entries such that CP-violating terms don’t contribute to its determinant. To avoid that
higher-order corrections violate the needed structure, these models seem to need to oper-
ate at relatively low scale and supersymmetry broken at low energy in a CP-conserving
way, such as gauge mediation [6]. Other models assume real Yukawas and a complex
kinetic matrix in supersymmetry [7], parity suitably broken [8, 9], mirror sectors that
duplicate the SM [10, 11]; texture zeroes enforced via complicated patterns of symme-
try breaking [12], warped extra dimensions with extra structure [13–15]. Problems with
Planck-suppressed operators can be avoided assuming that these mechanisms operate at
low enough energy [16, 17].

QFT models where CP is imposed and broken cannot however go to the heart of the
problem: exploring if a theory that provides a fundamental origin of CP can select the spe-
cial configuration θ̄ ≪ δCKM. A candidate is string theory, where chiral fermions, CP and
its violation can arise geometrically from compactifications on a 6-dimensional space with
complex structure (e.g. [18, 19]). In the effective QFT below the string scale this physics
is described by CP-violating scalar moduli that control the shape of the compactification
space. In N = 1 supersymmetric toroidal compactifications the moduli that remain after
orbi-folding enjoy a special modular invariance of stringy origin [20, 21]. Modular invari-
ance is special because it arises as a symmetry of how strings experience the geometry
of the compactification space, and more generically because an infinite number of heavy
states are integrated out. It strongly constrains interactions among states, both at the
string level [22–25] and in the low-energy regime [26, 27].

Modular invariance has been recently studied, independently of its string motivation, to
build more predictive flavour models for neutrino, lepton and quark masses [28]. This profits
from the fact that finite copies of the modular group are isomorphic to the non-Abelian
finite symmetries previously used in neutrino flavour model-building. Such symmetries are
broken in a specific way that can be predictive, since the complicated symmetry-breaking
sector of the earlier model-building reduces to a single complex field, the modulus. For the
purpose of our present discussion, we do not need to consider finite modular symmetries.
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In section 2 we discuss how one modular symmetry non-anomalous under QCD neatly
explains θ̄ ≪ δCKM in the minimal MSSM with global supersymmetry, even allowing for
non-minimal kinetic terms. In section 3 we ‘deconstruct’ modular models for θ̄ ≪ δCKM,
showing how the key ingredients automatically provided by modular invariance could be
artificially implemented in simpler U(1) Froggatt-Nielsen-like models [29]. In section 4 we
implement the same basic idea in MSSM extensions with optional heavy quarks: integrating
them out leads to more general effective theories with apparently anomalous modular
symmetry and with modular forms replaced by singular modular functions, that still explain
θ̄ ≪ δCKM. Section 5 shows that the mechanism can be extended to supergravity, where
the gluino gets involved in modular transformations, making heavy colored states needed.
In section 6 we discuss the possibility of identifying such states as string states, speculating
that the proposed mechanism for θ̄ ≪ δCKM could arise in string theory. In section 7 we
discuss supersymmetry breaking and other effects that shift θ̄ away from 0. Conclusions
are given in section 8.

2 Modular invariance and global supersymmetry

2.1 Modular invariance

Here we consider an extension of the Standard Model with N = 1 global supersymmetry. As
usual the SM quarks are part of chiral multiplets Φ = {Q, uR, dR}, and two Higgs doublets
appear in chiral multiplets Φ = {Hu, Hd}.1 We assume an extra complex modulus τ , the
scalar component of another chiral multiplet τ . This is motivated by string theory, where
τ controls the geometry of the complex compactification space. For simplicity we assume a
single τ ; toroidal super-string compactifications tend to give multiple modular symmetries
and moduli. We ask the full low-energy effective physics to be invariant under

τ → aτ + b

cτ + d
(2.1)

where a, b, c, d are integers with ad− bc = 1. This defines the action of the modular group
SL(2, Z) on the modulus τ . We assume that the vacuum expectation value of τ is fixed
by some mechanism [30–33], though we do not need a special value of τ . Whatever value
τ takes, modular invariance is spontaneously broken by τ in a predictive way. In technical
language, the modular symmetry is non-linearly realized. The modulus τ takes values in
the upper half of the complex plane. In a modular-invariant theory, we can further restrict
this region to the fundamental domain, see figure 1.

The Kähler potential K(Φ,Φ†) (describing the kinetic terms), the super-potential
W (Φ) (describing the Yukawa couplings) and the gauge kinetic function f have the follow-

1In our notation they all contain left-handed Weyl fermions. In particular our qR corresponds to what
is more commonly denoted as qc

R or as qc.
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ing minimal form:

K = −h2 ln(−iτ + iτ †) +
∑
Φ

Φ†e2V Φ
(−iτ + iτ †)kΦ

, (2.2a)

W = Y u
ij (τ)HuuRiQj + Y d

ij(τ)HddRiQj , (2.2b)
f = f0, (2.2c)

where the ‘weight’ kΦ of Φ is a number (a rational number in string theory [27, 34]) and f0
is a constant. Similarly to the axion decay constant, h sets the scale of the dimension-less
field τ . The effective theory must be invariant under the modular group SL(2,Z). The
kinetic term of Φ is invariant if the vector multiplet V is invariant and Φ transforms as

Φ → (cτ + d)−kΦρΦ · Φ (2.3)

with ρΦ a phase, possibly depending on a, b, c, d.2 This applies to SM quarks and Higgses
Hu,d. The first term in K describes the special kinetic term for τ and transforms as

ln(−iτ + iτ †) → ln(−iτ + iτ †)− ln(cτ + d)− ln(cτ † + d) (2.4)

leaving K invariant up to a Kähler transformation K(τ, τ †) → K(τ, τ †)+ g(τ)+ g(τ †) that
has no effect in global supersymmetry. The Kähler potential of eq. (2.2a) is not the most
general one allowed by modular invariance and can be easily generalized to include non-
minimal (and non-diagonal) terms. Although in our discussion we adopt the minimal form
of eq. (2.2a), our results are not modified by choosing the most general Kähler potential,
as shown in section 2.3.

The Yukawa couplings Y must depend on the super-field τ such that the effective
theory is modular invariant. This means that each entry Y (τ) of the Yukawa coupling
matrices Y q

ij(τ) must transform as3

Y (τ) → (cτ + d)kY Y (τ) (2.5)

with weight kY = kqRi + kqLj + kHq − kW . Here kW = 0 is the modular weight of the
super-potential W (it will be non-vanishing in supergravity), and kHu,d

are the modular
weights of the Higgs doublets Hu,d. The functional dependence of the Yukawa couplings
on τ must be

Y q
ij(τ) = cq

ij Fkij
(τ), kij = kqRi + kqLj + kHq (2.6)

where the functions Fk(τ) with fixed modular weight k are nearly unique if we assume they
are holomorphic everywhere in the fundamental region of SL(2,Z), including the point at
infinity τ = i∞. This assumption will be critically discussed in section 4. Functions with
these properties are modular forms and they only exist if k is a non-negative even integer:

2A non-trivial matrix ρΦ that represents a finite modular symmetry appears when considering a multiplet
Φ and normal sub-groups of SL(2,Z) of level higher than 1. Quotients of SL(2,Z) with respect to these
normal subgroups are finite non-Abelian groups. For simplicity we here focus on the full modular group
with level 1, where ρΦ is just a phase.

3If non-trivial phases ρΦ are present, they should sum up to zero in each term of W , see appendix A.
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Modular weight k 0 2 4 6 8 10 12 14
Number of forms 1 0 1 1 1 1 2 1
Modular forms 1 — E4 E6 E8 = E2

4 E10 = E4E6 E3
4 , E

2
6 E14 = E2

4E6

Table 1. Modular forms up to weight k ≤ 14.

F0 = 1 is a constant, F2 vanishes, the first non-trivial forms are F4 = E4 and F6 = E6.
Here Ek(τ) are the holomorphic normalized Eisenstein series with given modular weight k
thanks to the lattice summation over pairs of integers m,n:

Ek(τ) =
1

2ζ(k)
∑

(m,n) ̸=(0,0)

1
(m+ nτ)k

(2.7)

where the normalization factor makes E4,6,... ≃ 1 at large Im τ . Some known mathematical
results: E2 is divergent and cannot be cured. The series E4,6 generate the whole set of
modular forms: a generic form Fk is a polynomial in E4,6. Therefore, going to higher orders
one has E8 = E2

4 and E10 = E4E6, see table 1. The forms E4(τ) and E6(τ) are plotted
in figure 1 and one crucial property is that E3

4 ̸= E2
6 have different phases. The most

generic function with weight 12 is a linear combination E3
4 + cE2

6 where c is a constant.
The Eisenstein form E12 corresponds to a specific value of c, not needed for our purposes.
In general N + 1 multiple functions appear at weight 12N where N is a positive integer:
e.g. at weight 24 one has E6

4 , E
4
6 and E3

4E
2
6 .

2.2 CP invariance

We choose a basis in field space where CP transformations act on τ and Φ as

τ → −τ † Φ → Φ†. (2.8)

The Eisenstein functions satisfy Ek(−τ †) = Ek(τ)†. We focus on a CP-invariant theory [35,
36], where cu,d

ij in eq. (2.6) are real, Fk are polynomials in E4,6 with real coefficients and
θQCD = 0. Then CP invariance can only be broken spontaneously and we assume that the
only source of CP violation is the vacuum expectation value of τ . This occurs for a generic
value of τ not lying along the imaginary τ axis, nor along the border of the fundamental
region of figure 1.

2.3 CP violation: solving the θ̄ ≪ δCKM puzzle

We now show how supersymmetric CP and modular-invariant theories can easily produce
Yukawa couplings such that the CKM phase is large and the QCD θ̄ angle vanishes.

The relative phase between E3
4 and E2

6 allows to induce a physical CP-violating phase
in the Yukawa matrices, giving the CKM phase and possibly a contribution to θ̄ from
the phase of the quark masses, arg detMq. In such a case Re τ would be an axion that
dynamically adjusts θ̄ = 0 if the τ potential were dominated by QCD effects. However,
supersymmetry-breaking effects are expected to dominate [37], as no global continuous
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Figure 1. Absolute values of the modular forms E4 (left plot) and E6 (middle) and their relative
phase in the physical domain for the modulus τ (right).

U(1)PQ symmetry keeps τ light. Theories with modular invariance and an axion were
considered in [38].

A different case that does not need this assumption is possible. The key observation is
that modular transformations are multiplicative, so detYq is a modular form with modular
weight ∑3

i=1(kqLi + kqRi + kHq). The Higgs bosons acquire vacuum expectation values
that would break the modular symmetry: to avoid this we assume kHu = kHd

= 0 (the
weaker condition kHu + kHd

= 0 would be enough for our purposes), so that arg detMq =
arg detYu detYd. Our final assumption needed to solve the QCD θ problem is

A ≡
3∑

i=1
(2kQi + kuRi + kdRi

) = 0. (2.9)

This guarantees that:

1. the modular symmetry has no QCD anomaly A: a τ -dependent redefinition of the
phases of quark super-fields does not affect the kinetic function of the gluon super-
multiplet;

2. the product detMq = detMuMd of all quark masses is real, as it is a τ -independent
modular form with weight 0.

We thereby have θQCD = 0 and real detMq. The real constants cq
ij can be chosen such that

detMq > 0, yielding θ̄ = 0 rather than θ̄ = π. Finally, θ̄ = 0 is preserved provided that
the gluino mass is real: this is satisfied by any mechanism of supersymmetry breaking that
preserves CP. This can be easily realized by assuming that supersymmetry is broken in a
sector with vanishing modular charges.

The condition of eq. (2.9) allows for CP-violating Yukawa matrices, as long as they
depend on both E4 and E6. Generally speaking, the eigenvalues and eigenvectors of the
quark mass matrices depend non trivially on all quark weights. Specifically, a non-vanishing
CKM phase is signalled by the Jarlskog invariant Im det[Y †

uYu, Y
†

d Yd] ̸= 0 [39] for 3 quark
generations, and more generally by Im Tr[Y †

uYu, Y
†

d Yd]3 ̸= 0 [40]. These combinations are

– 6 –
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invariant under quark field redefinitions, but are not holomorphic and have no special
modular properties.

Wave function renormalization. Eq. (2.6) for the Yukawa couplings holds in a basis
where the minimal kinetic term of quarks in eq. (2.2a) is non-canonical. The canonically
normalized super-field Φcan = Φ/(−iτ + iτ †)kΦ/2 transforms acquiring a phase Φcan →
[(cτ + d)/(cτ † + d)]−kΦ/2Φcan under a modular transformation. The Yukawa matrices for
canonically normalized quarks are

Y q
ij |can = cq

ij(2Im τ)kij/2Fkij
(τ) where, again kij = kqRi + kqLj + kHq . (2.10)

Furthermore, extra non-minimal kinetic terms are possible, because the 3× 3 kinetic ma-
trices Zf (τ, τ †) of fermions f = {uR, dR, Q} are not holomorphic in τ , and modular in-
variance allows them to depend on the CP-violating parameters τ, τ † in new ways. These
non-minimal kinetic terms reduce the predictive power of flavour models based on modular
symmetries [28, 41–43] and are often assumed to be negligible.

Such extra complex terms are not a problem for our proposed interpretation of the QCD
problem, θ̄ = 0. Indeed each kinetic matrix Zf can be brought to canonical form via a gen-
eral linear transformation of the three generations of f1,2,3 quarks: a linear transformation
affects both arg detMq and θQCD (via the anomaly) but leaves the physical combination
θ̄ invariant. Furthermore, these linear transformations can be chosen in ways that leave
arg detMq and θQCD separately invariant, by decomposing each kinetic matrix Zf either as
Zf = H†

fHf (where Hf is an hermitian matrix, see e.g. [44]) or as Zf = V †
f ∆2

fVf (where ∆f

is a diagonal matrix with real positive entries and Vf is a product of 3 complex rotations
with unit determinant). The consequent linear transformation of quark fields affects their
masses and mixings (including the CKM phase) without affecting arg detMq.

This discussion shows that, unlike fermion masses and mixing angles, the physical θ̄
angle is a holomorphic quantity completely insensitive to the Kähler potential and can
be effectively constrained by modular invariance alone, at least in the limit of unbroken
supersymmetry.

2.4 Concrete models for quark masses and mixings

A list of specific choices of modular weights that satisfy the above requirements is shown
in table 2. Solutions where all quarks are massive exist thanks to CKM mixing. In all
solutions Yu and Yd have the same non-diagonal structure, so that detMu and detMd are
separately real. Sorting quark generations in increasing order of modular weights we find

Yq|can =


qL1 qL2 qL3

qR1 0 0 cq
13

qR2 0 cq
22 cq

23(2Im τ)k23/2Fk23(τ)
qR3 cq

31 cq
32(2Im τ)k32/2Fk32(τ) (2Im τ)k33/2

[
cq

33Fk33(τ) + c′q33F
′
k33

(τ)
]
,

(2.11)
with q = {u, d}, k33 = k23+k32 and Fk, F

′
k denoting independent modular forms of weight k.

The simplest model has k23 = k32 = 6 from modular weights kQ = kuR = kdR
= (−6, 0, 6).
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Yukawa matrices Modular weights Alternative bigger weights
Yu,d (uL, dL)1,2,3 uR1,2,3 dR1,2,3 (uL, dL)1,2,3 uR1,2,3 dR1,2,3

0 0 1
0 1 E6

1 E6 E
3
4 + E2

6



−6
0
6



−6
0
6



−6
0
6



−4
2
8



−8
−2
4



−8
−2
4


0 0 1
0 1 E2

4

1 E4 E
3
4 + E2

6



−6
−2
6



−6
2
6



−6
2
6



−4
−4
8



−8
4
4



−8
4
4


0 0 1
0 1 E2

4

1 E2
4 E4(E3

4 + E2
6)



−8
0
8



−8
0
8



−8
0
8


0 0 1
0 1 E4E6

1 E6 E4(E3
4 + E2

6)



−8
−2
8



−8
2
8



−8
2
8


0 0 1
0 1 E3

4 + E2
6

1 E4 E4(E3
4 + E2

6)



−8
−4
8



−8
4
8



−8
4
8


Table 2. Simplest modular weights that lead to Yukawa matrices such that θ̄ = 0 and δCKM ̸= 0.
The list is complete up to permutations and transpositions, and assumes vanishing modular weights
of the Higgs doublets and of the super-potential. Real constants cq

ij are here omitted.

All modular anomalies vanish and the SM gauge group could be extended to SU(5) or
SO(10) unification.4 The Yukawa couplings are given by the combination of modular
forms illustrated in the upper row of table 2.5 In this model Y23 and Y32 have the same
modular charge. In a different model Y23 and Y32 have different modular charges k23 = 8
and k32 = 4, so that giving the modular forms shown in the second row of table 2. This
model can be realized with modular charges kQ = (−6,−2, 6), kuR = kdR

= (−6, 2, 6) as
well as with different bigger values. The less minimal models listed in table 2 need bigger
values of the modular charges.

We next verify that such models can reproduce the observed quark masses and mixings,
in addition to θ̄ = 0. All models predict quark Yukawa matrices Yu and Yd with vanishing
11, 12 and 21 entries. One such matrix Y contains one physical phase, that can be rotated

4Cancellation of mixed modular anomalies with other factors of the SM gauge group is not needed for
our purposes and would require also

∑
i
(3kQi + kLi ) = 0 and

∑
i
(kQi + 8kuRi + 2kdRi + 3kLi + 6keRi ) = 0

(assuming kHu + kHd = 0). All anomalies cancel in the minimal model where the three generations of
fermions have modular weights −6, 0 and +6 respectively.

5Similar Yukawa matrices motivated by the QCD θ problem have been considered in [45] and in [12],
where they are obtained imposing supersymmetry and an A4 ⊗ U(1)R ⊗ Z2 ⊗ Z4 ⊗ Z4 ⊗ Z4 ⊗ Z4 ⊗ Z4

symmetry suitably broken by 9 scalar flavons.
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for example only into its 33 element. We thereby diagonalise a Yukawa matrix of the form

Y =


qL1 qL2 qL3

qR1 0 0 y13
qR2 0 y22 y23
qR3 y31 y32 y33e

−iδ

. (2.12)

The determinant is detY = −y13y31y22. Simple analytic expressions for masses and mixings
arise in the limit where all mixing angles are small. The eigenvalues are

y3 ≃ y33, y2 ≃ y22, y1 ≃ −y13y31
y33

. (2.13)

The mixing angles among left-handed quarks are

θ23 ≃ y32
y33

, θ13 ≃ y31
y33

, θ12 ≃ y31y23
y22y33

(2.14)

and the CKM-like phase is δ. Notice that y13 and y23 only control y1 and θ12, that can be
computed by integrating out the heaviest eigenvalue. The CKM phase is observed to be
large, δCKM ≈ 1.2. In the present theory this comes from the relative phase between E2

6 ,
E3

4 and E3
4 + cE2

6 , that thereby has to be large. Figure 1 shows that the phase of E3
4/E

2
6

vanishes on the boundary of the fundamental domain, and gets small at Im τ ≫ 1, where
E4 ≃ E6 ≃ 1. So reproducing the CKM phase either needs Im τ ∼ 1 or a value of c ≈ −1
that gives a mild cancellation (this cancellation could also help explaining mb ≪ mt).

The Yukawa matrices can be diagonalised as Yq = VqR · diag (yq1, yq2, yq3) · VqL so that
VCKM = VuL · V †

dL
. Assuming that the dominant contribution to the CKM matrix comes

from the mixing VdL
(as down quarks experimentally exhibit a milder mass hierarchy than

up quarks), the above relations can be inverted obtaining Yd in terms of the observed
down-quark Yukawas yd,s,b and CKM mixings,

VCKM = R23(θ23) · diag (1, 1, eiδCKM) ·R13(θ13) · diag (1, 1, e−iδCKM) ·R12(θ12). (2.15)

The result is

|Yd| ≃


0 0 yd/θ13

0 ys ysθ12/θ13

ybθ13 ybθ23 yb

 ≈ yb


0 0 0.2
0 0.02 1

0.004 0.04 1

 , δCKM = δ. (2.16)

In this limit, data indicate that the right-handed angle in the 23 sector might not be small.

2.5 Numerical example

Having understood the main result, we perform a precise numerical diagonalisation of Yu

and Yd and a global fit to all quark masses and mixings. As they can be reproduced
exactly, we search for special fits such that all constants cu

ij and cd
ij are of order unity, and

the modular symmetry explains the large δCKM, θ̄ = 0 as well as the hierarchies in quark
masses and mixings.
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As a numerical example, we consider the simplest model in the upper row of table 2, cor-
responding to eq. (2.11) with k23 = k32 = 6. The model contains 16 real and 1 complex free
parameters (τ, tan β, cq

ij), that can be used to exactly reproduce the values of the 9 real (six
quark masses, three mixing angles) and 1 complex (the CKM phase) observables. We fix
tan β = 10 and τ = 1/8+i and search for comparable values of the 14 cq

ij parameters that fit
values renormalized around the unification scale of 2 1016 GeV [46, 47]. The possible choice

cu
ij ≈ 10−3


0 0 1.56
0 −1.86 0.87

1.29 4.14 3.51, 1.40

 , cd
ij ≈ 10−3


0 0 1.55
0 −2.59 4.59

0.378 0.710 0.734, 1.76

 (2.17)

demonstrates how modular forms can also explain the observed quark mass hierarchies in
terms of order one factors, similarly to what was achieved by Froggatt and Nielsen [29].
The mild expansion parameter is built in modular forms, such as the 6 in E6. For exam-
ple, the factor that makes the third generation canonical is (2Im τ)6 = 64 in our example.
The overall factor 10−3 was assumed in eq. (2.17) because it is the typical loop factor of
SM couplings; in string compactifications the overall size of couplings is controlled by the
dilaton vacuum expectation value. The numerical example contains no special tunings. An
order unity CKM phase arises in view of |E3

4/E
2
6 | ∼ 1.

Furthermore, if the same modular weights are extended to leptons, kL = keR =
(−6, 0, 6), all observed lepton masses and mixings can be reproduced with comparable
coefficients of charged lepton Yukawa couplings and of effective Majorana neutrino mass
operators (LiHu)(LjHu) such as

ce
ij = 10−3


0 0 1.29
0 5.95 0.35

−2.56 1.47 1.01, 1.32

 , cν
ij = 1

1016 GeV


0 0 3.4
0 7.1 1.2
3.4 1.2 0.19, 0.95

 . (2.18)

CP violation in quarks and neutrinos arises from the unique source Re τ , but the order
unity unknown factors c prevent precise predictions. The same structure of (LiHu)(LjHu)
operators is found applying the modular weights kνR = (−6, 0, 6) to right-handed neutrinos
and integrating them out, such that Re τ can also source baryogenesis via leptogenesis.
With this choice of modular weights the determinant of the right-handed neutrino mass
matrix also has modular weight 0, so the resulting mass matrix of left-handed neutrinos
does not contain inverse powers of E4,6. Large mixing angles are here obtained from cν

values that compensate for the mild hierarchy arising from the modular structure. This
could be avoided choosing more equal modular weights for the three-generations of left-
handed lepton doublets L.

As an aside comment, we mention that a simple modular-invariant supergravity po-
tential admits CP-violating minima at τ = ∓0.484+0.884i [32]. These values of τ are near
to the special points ±e±2πi/3 where E4 vanishes, so in all our models an order unity CKM
phase needs cd

33/c
′d
33 ∼ |E2

6/E
3
4 | ≈ 2800, and comparable values for all cq

ij coefficients are
not possible.
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2.6 Phenomenology and cosmology

The couplings of the modulus τ (not to be confused with the τ lepton) to SM particles
are predicted. Its components behave similarly to axion-like particles with special PQ-like
charges such that there is no coupling to GG̃. So the τ modulus gets no mass from QCD.
Light particles with no QCD anomaly were dubbed ‘arion’ in [48].

Moduli were considered problematically light when supersymmetry was expected to
exist at the weak scale for naturalness reasons. Collider data have now shown that this is
not the case; supersymmetry can exist at much higher energy compatibly with the observed
Higgs mass [49]. In such a case, moduli such as τ can be heavy and decay fast enough to
avoid cosmological problems. The solution to both the hierarchy puzzle and the QCD θ

puzzle can reside in new physics far away from what is currently testable.
Denoting generically as Mτ the masses of the two τ scalar eigenstates, they decay into

SM particles such as Zqq̄ conserving baryon number with width Γτ ∼M3
τ /h

2. We omitted
Yukawa and phase space factors that are presumably dominant for τ decays into heavy
right-handed neutrinos. If the τ decay constant h is sub-Planckian, τ can be in thermal
equilibrium during the big-bang at large temperature, and decouple at temperature T ∼Mτ

if h2 ∼ MτM̄Pl. So the modulus τ could have played a role in leptogenesis, but without
opening a qualitatively new mechanism for it. Depending on sparticle masses the fermionic
component of τ might decay slower, or even be a stable lightest supersymmetric particle,
and a Dark Matter candidate.

Having assumed that CP is spontaneously broken only by the modulus τ , its potential
is CP-symmetric, V (τ) = V (−τ∗), and thereby has a pair of degenerate CP-conjugated
minima, corresponding to CP broken in opposite directions. Regions of space in the two
minima would be separated by a stable domain wall. One must assume that CP breaking
happened before inflation, so that walls have been inflated away, to avoid the following prob-
lems: i) the gradient and potential energy of the wall would dominate at late time [50, 51];
ii) mechanisms of baryogenesis that rely on this source of CP violation produce opposite-
sign asymmetries: matter on one side and anti-matter on the other side.

3 Mimicking with Froggatt-Nielsen models

We here ‘deconstruct’ the previous model, showing how ordinary Froggatt-Nielsen models
based on a U(1)FN symmetry can mimic how modular symmetries give θ̄ = 0 and δCKM ̸= 0.
We denote as kΦ the U(1)FN charge of a generic field Φ. If the U(1)FN symmetry is
spontaneously broken by a scalar with complex vacuum expectation value η, the Yukawa
couplings can have the forms of eq. (2.6) with modular forms replaced by powers of η

Fk(τ) → ηk (3.1)

and weights replaced by charges. Unlike in modular models, negative powers of η could be
replaced by positive powers of η∗; higher order terms would be allowed and contain extra
powers of ηη∗ which is real. Despite these differences, detY would again be real if the
charges of quarks involved in Yij sum to zero.
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However, these Froggatt-Nielsen models lead to vanishing CKM phase: the Yukawa
matrices are only apparently complex, and can be made explicitly real via appropriate
re-phasings of the quark fields, such that |η| replaces η. Equivalently, one can verify that
δCKM ∝ Im Tr[Y †

uYu, Y
†

d Yd]3 vanishes.
Froggatt-Nielsen models need at least two scalar fields with vacuum expectation values

with different phases to break CP and induce physical CP-violating effects in SM fermions
(see e.g. [52]).

This feature is built in modular invariance, as the mathematical properties of modular
forms imply that E4 and E6 have different phases. This property of modular invariance can
be mimicked, within Froggatt-Nielsen models, assuming two scalars η and η′ with charges 4
and 6. For our purposes there is nothing special in these values. We can consider Froggatt-
Nielsen models with a generic number of scalars ηa with charges ka. By adjusting quark
charges, detY can be invariant under U(1)FN phase rotations. We optimistically assume
that the U(1)FN symmetry (if local) is not anomalous; that it is negligibly broken by Planck-
suppressed operators; that charges don’t receive quantum corrections. The resulting models
generate a CKM phase, but extra assumptions are needed to avoid generating the QCD
phase. Indeed detMq, while invariant under U(1)FN phase rotations, can be generically
complex in two basic ways:

• By depending on positive powers of η∗a (such as ηη′∗ if η′ has the same charge as η).
These terms could be forbidden by imposing supersymmetry and by building models
with potentials such that super-fields ηa are not accompanied by opposite-charge
super-fields with non-vanishing vacuum expectation values.

• By depending on negative powers of ηa (such as η/η′ if η′ has the same charge as η).
Such unwanted terms can arise in QFT models where the fields η also contribute to
the masses of mediator particles.

Perhaps appropriate U(1)FN models could avoid the above contributions to the QCD angle.
The needed amount of model building highlights the elegance of supersymmetric CP and
modular-invariant models, where the needed ingredients are built in their mathematical
structure: E4(τ) and E6(τ) have different phases and terms such as E3

4E
2∗
6 and E3

4/E
2
6

are not included because they are not holomorphic modular forms. This assumption is
critically discussed in the next section 4.

4 Models with modular functions and anomalies

So far we have assumed that Yukawa couplings are modular forms, transforming as

Yk(τ) → (cτ + d)kYk(τ), (4.1)

under SL(2,Z) and holomorphic everywhere in the fundamental domain, including the
point τ = i∞. Since invariance under the modular group only requires the transformation
law in eq. (4.1) and not the absence of singularities, we might be tempted to choose as
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Yukawa couplings modular functions, that are singular functions obeying eq. (4.1). We
now critically analyze the rationale for our assumption.

The only modular form with weight zero is a constant, while the same is not true for
modular functions. The basic modular function with weight 0 is the modular-invariant
combination of E4 and E6, usually denoted as

j(τ) = 123E3
4(τ)

E3
4(τ)− E2

6(τ)
. (4.2)

Due to the denominator, j has a pole at τ = i∞, so j is a modular function but not a
modular form. If Yukawa couplings can depend on j(τ) the predictivity of modular flavour
models is lost. Furthermore, detMq would be generically complex, possibly preventing the
understanding of the QCD angle proposed in the present paper. As we now discuss, models
with modular functions can still lead to θ̄ = 0.

The choice of discarding modular functions like j, although arbitrary, can be consis-
tently imposed on an effective field theory, since it is mathematically consistent. Moreover
it has a neat physical meaning. A pole in field space signals that the effective field theory
breaks down, because some extra state of the full theory with τ -dependent mass becomes
massless at the pole value of τ . The case of string theory with its infinite number of states
will be discussed in section 6. We here focus on QFT, where by simply including in the
theory the extra states that become massless gives a more complete theory with modular
invariance realized through modular forms. Modular invariance is expected to be exact
in the full theory, and can become apparently anomalous when restricted to light modes
in the effective field theory. This allows to build more general effective field theories with
modular functions and QCD anomalies that give rise to θ̄ = 0.

As a simple QFT example, right-handed neutrino masses could be modular forms Fk

that vanish at specific values of τ . Integrating out the right-handed neutrinos leads to
Majorana (LH)2 neutrino mass operators with a negative power 1/Fk. In this example
poles indicate points where right-handed neutrinos become massless [53, 54]. The overall
modular weights of Y LL

ij (LiHu)(LjHu) are determined by those of lepton doublets L, so
that large mixing angles can arise assuming kL1 = kL2 = kL3 .

Something similar happens in the presence of extra colored heavy fields. For example
a theory with 3 generations can be obtained by adding to the MSSM a family qH and an
anti-family q̄H of heavy quarks. We assume that this is a full theory, where the modular
symmetry is non anomalous and realized via modular forms. The quark modular weights
could be ±6,±2, 0, so that the sum of the modular weights of all (light and heavy) quarks
vanishes. The resulting bigger quark mass matrix Mall contains a triangular block of 0
entries when written in the basis of increasing modular weights. Similarly to the examples
in table 2 this explicitly leads to a real determinant, solving the QCD angle problem.

– 13 –



J
H
E
P
0
7
(
2
0
2
3
)
0
2
7

As an extra step, we discuss how this solution works in the effective theory of light
quarks only. The mass matrix of all quarks can be written as

Mall =


qLlight qLheavy qc

Rheavy

qRlight MLL MLH

qRheavy

qc
Lheavy

MHL MHH

. (4.3)

The effective theory can be computed in the basis of fixed qlight states (as they have a non
vanishing projection over the light eigenstates), by integrating out the fixed heavy quarks
with Mheavy =MHH . The effective mass matrix of the light quarks is

Mlight =MLL −MLHM
−1
HHMHL. (4.4)

Its entries have the form of eq. (2.6) with weights dictated by the weights of light fields (kept
fixed), except that now Fk can be modular functions with poles at the specific values of τ
where the heavy quarks become massless. In practice negative powers of E4,6,... appear if the
heavier states are those with higher weight. The more complicated mass matrices Mlight
of light quarks facilitate reproducing the observed quark masses and mixings, including
δCKM ̸= 0. We see that modular functions describe the effective operators mediated by
heavy states with mass comparable to h, the τ decay constant. The resulting detMlight is
no longer real: because it is a modular function (no longer a modular form), and because
its weight is given by the sum of weights of light quarks only (no longer vanishing). Matrix
algebra shows that it satisfies

detMall = detMlight detMheavy, (4.5)

and

detMlight → (cτ + d)klight detMlight, detMheavy → (cτ + d)kheavy detMheavy (4.6)

with klight + kheavy = 0. In the effective field theory containing the light states only, the
integration over the heavy quarks has produced an additional contribution to the gauge
kinetic function f :

fIR = fUV − 1
8π2 ln detMheavy, (4.7)

and θ̄ = 0 arises as a cancellation between6

arg detMlight and θQCD = arg detMheavy. (4.8)

At the same time, the field content of the low-energy theory is anomalous, but the overall
anomaly cancels. The variation of the path integral measure triggered by a modular trans-
formation generates a shift of the gauge kinetic function fIR proportional to klight, exactly
compensated by the transformation of fIR under SL(2,Z):

fIR → fIR − klight
8π2 ln(cτ + d)− kheavy

8π2 ln(cτ + d) = fIR. (4.9)

6We use the notation where f = 1/g2
3 − iθQCD/(8π2).
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Eq. (4.5) neglects higher-dimensional wave-function renormalization factors, that are non-
negligible if the heavy quarks are not much heavier than the MSSM light quarks. Again,
wave-function factors don’t affect arg detMq, and the same argument for θ̄ = 0 proceeds
by replacing eq. (4.5) with the equivalent exact relation between complex eigenvalues

all∏
i

mi =
light∏

ℓ

mℓ

heavy∏
h

mh. (4.10)

This example shows how the breakdown of the low-energy effective field theory can generate
singularities in the Yukawa couplings, whose origin is related to the appearance of massless
modes in the spectrum of the would-be heavy particles. In this case, the particle content
of the infrared theory is generally anomalous but the lack of modular invariance due to the
light degrees of freedom is balanced by the new contribution to the effective theory arising
from the integration of the heavy particles.

5 Modular invariance in supergravity

Planck-suppressed effects could partially spoil the mechanism proposed here, generating a
contribution of order θ̄ ∼ h2/M̄2

Pl to the QCD angle. This would not necessarily be a prob-
lem, since we can have h ≲ 10−5M̄Pl: the τ modulus is not subject to significant experimen-
tal bounds because it does not need to be light (unlike the axion). In order to analyze the
role of such a correction, we extend our study from global supersymmetry to supergravity.

In supergravity the argument below eq. (2.4) gets modified: the modular variation
of the kinetic term for τ implies a Kähler transformation that had no effect in global
supersymmetry, but has an effect in supergravity. Indeed the supergravity action does not
depend on K and W separately, but only on the combination G = K/M̄2

Pl+ln |W/M̄3
Pl|2, as

can be seen via super-Weyl rescalings. So in supergravity a generic Kähler transformation of
K needs to be accompanied by a variation of the superpotential W such that G is invariant:

K → K + M̄2
Pl(F + F †) and W → e−FW (5.1)

where F is a generic dimension-less holomorphic function. In our case a modular transfor-
mation must act on the superpotential as

W → (cτ + d)−kWW with modular weight kW = h2

M̄2
Pl
. (5.2)

Notice that kW is necessarily positive. This implies that W , evaluated at vanishing values
of all matter multiplets Φ, cannot be a modular form. It has to be a singular modular
function. We come back to this point in the next section. The new kW effect is small if h is
sub-Planckian, recovering the global supersymmetric limit.7 As a result, a cubic coupling
Y in the superpotential must transform as

Y (τ) → (cτ + d)kqL
+kqR

+kHq−kW Y (τ). (5.3)
7The models based on a U(1) Froggatt-Nielsen-like symmetry of section 3 can be extended to supergravity

without encountering this issue.
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Furthermore, in supergravity a Kähler transformation must be accompanied by a chiral
rotation of fermions [55–57]. This happens because, in the basis where the Einstein term
is canonical, the mass terms of chiral fermions ψi and of gauginos λ depend on K as

−eK/2M̄2
Pl

[1
2(DiDjW )ψiψj − 1

4K
ij̄∂if(Dj̄W

†)λλ
]

(5.4)

where Kij̄ is the inverse metric and

DiW =Wi +
Ki

M̄2
Pl
W

DiDjW =Wij +
Kij

M̄2
Pl
W + Ki

M̄2
Pl
DjW + Kj

M̄2
Pl
DiW − KiKj

M̄4
Pl
W − Γk

ijDkW (5.5)

Γi
kl = Kih̄∂kKlh̄.

Thereby the action is invariant under the Kähler transformation in eq. (5.1) if it is accom-
panied by a U(1)R phase rotation that acts on ψ and λ with opposite phase, preserving
the λψϕ† super-gauge interaction:

ψ → e(F−F †)/4ψ, λ→ e−(F−F †)/4λ. (5.6)

(If the Kähler space is compact, global consistency of the phase rotation of eq. (5.6) im-
plies that h must be quantized in units of M̄Pl [56], so kW is an integer). Combining
these ingredients, a modular transformation acts on canonically normalized matter fields
Φcan = {ϕcan, ψcan} and gauginos λ as a phase rotation with an extra kW contribution:

ϕcan →
(
cτ+d
cτ †+d

)− 1
2 kΦ

ϕcan, ψcan →
(
cτ+d
cτ †+d

) 1
4 kW − 1

2 kΦ

ψcan, λ→
(
cτ+d
cτ †+d

)− 1
4 kW

λ.

(5.7)
The QCD anomaly of the modular transformation is just the sum of the phases in eq. (5.7),
and acquires a new contribution proportional to kW :

A =
3∑

i=1
(2kQi + kuRi + kdRi

− 2kW ) + CkW (5.8)

where the term proportional to C = 3 comes from the gluino. The product of quark masses
relevant for the QCD angle transforms with the same modular weight as the quark anomaly8

detMq →
(
cτ + d

cτ † + d

)∑3
i=1

1
2 (2kQi

+kuRi
+kdRi

−2kW )
detMq, (5.10)

having here assumed kHu + kHd
= 0, as in section 2.3. The gluino mass M3 transforms as

M3 →
(
cτ + d

cτ † + d

) 1
2 kW

M3. (5.11)

8This is consistent with the modular transformation of the Yukawa couplings, eq. (5.3). A Yukawa
coupling in the canonical basis in supergravity is given by

Ycan = eK/2M̄2
Pl (2Im τ)

1
2 (kqR

+kqL
+kHq )Y so Ycan →

(
cτ + d

cτ † + d

) 1
2 [kqL

+kqR
+kHq −kW

1+1
2 ]

Ycan. (5.9)
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The result is that the QCD modular anomaly coefficient A is again proportional to the
modular weight of the product of quark and gluino masses relevant for the QCD angle,

arg
(
MC

3 detMq

)
→
(
cτ + d

cτ † + d

)A/2
arg

(
MC

3 detMq

)
. (5.12)

Thus, we might believe that, by choosing weights such that A = 0, we obtain θ̄ = 0 as in
the rigid case. Even assuming that phases in quark and gluino masses are only sourced
by modular forms, in supergravity this solution is problematic. The gluino does not mix
with quarks and, if the supersymmetry-breaking gluino mass M3 has a positive weight
as suggested by eq. (5.11), this implies that detMq must have negative modular weight,
leaving some quark massless.

A solution with vanishing anomaly requires a modification of the fermion spectrum.
A minimal extension is adding a chiral color octet multiplet whose fermion λ′ has modular
charge opposite to the gluino, such that the QCD modular anomaly is cancelled, a modular-
invariant real Dirac mass term λλ′ is allowed, possibly together with a Majorana mass term
λ2, so that θ̄ = 0. If λ′ is heavier than λ, integrating it out produces an effective theory
where the modular symmetry is anomalous, and θ̄ = 0 results from a cancellation between
the gluino complex mass term and the gluon kinetic function, analogously to the models
of section 4.

5.1 Solving the QCD θ problem with anomalous MSSM content

Going beyond the minimal ‘Dirac gluino’ example we discuss how θ̄ = 0 can arise from more
general theories that feature more generic extra heavy colored fields, such as possibly string
theory. We here consider full theories where modular invariance is non anomalous, but a
QCD modular anomaly appears in the effective field theory describing the light MSSM
fields. Specifically we choose weights such that kHu + kHd

= 0 and that the contribution
to the QCD modular anomaly of the light quark sector vanishes,

3∑
i=1

(2kQi + kuRi + kdRi
− 2kW ) = 0, (5.13)

while the gluino provides an anomaly. As discussed above, the presence of an anomalous
field content is not necessarily a problem, since a mechanism for modular anomaly can-
cellation compatible with a vanishing θ̄ can be naturally implemented. In supergravity,
gauge anomalies can be cancelled either by an effective one-loop correction to the gauge
kinetic function f , or by a four-dimensional Green-Schwarz mechanism leading to a one-
loop corrected Kähler potential K [57]. Here we adopt the first option. We remain with
two independent terms in θ̄, one from the gluino mass term and the other one cancelling
the anomalous gluino modular transformations. Under reasonable assumptions on the
supersymmetry breaking sector, the two sum up to θ̄ = 0.

As in the example where we have integrated out a heavy sector, our low-energy effective
field theory becomes singular in some region of the fundamental domain. In our case all
sources of singularities are related to the presence of modular functions with negative
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weight. An example, inherent in the realization of modular invariance in supergravity, is
the superpotential W , evaluated at Φ = 0. As we have seen, this object is a modular
function with negative weight −kW .

As discussed in section 4 we allow for singularities provided they have a physical
meaning. Inspired by typical string theory compactifications, where the limit τ → i∞
gives rise to a tower of massless states, we assume that the only singularity in modular
functions with negative weight occurs at τ = i∞. As an extra assumption we also ask the
pole at τ = i∞ to exhibit the mildest possible singularity. Under such conditions a modular
function is necessarily proportional to η2k if k is negative, η(τ) = [(E3

4(τ)−E2
6(τ))/123]1/24

being the Dedekind η function.
Finally, we introduce a supersymmetry breaking sector to make gluino massive. We

assume this consists of a new chiral multiplet S invariant under SL(2,Z) such that ⟨DSW ⟩ ̸=
0 with a CP-conserving vacuum expectation value ⟨S⟩. As a minimal realization of this
scenario, we consider the Kähler potential and the superpotential

K = −kW M̄2
Pl ln(−iτ + iτ †) +

∑
Φ

Φ†e2V Φ
(−iτ + iτ †)kΦ

− M̄2
Pl ln(S + S†) (5.14a)

W = Y u
ij (τ)HuuRiQj + Y d

ij(τ)HddRiQj +
c0M̄

3
Pl

η(τ)2kW
. (5.14b)

Having assumed that the modular transformations of the matter sector are non anoma-
lous, eq. (5.13), we again have real detMq. The anomaly related to the gluino modular
transformation is cancelled by requiring that the gauge kinetic function f transforms as

f → f + kW

8π2C ln(cτ + d). (5.15)

To satisfy such a transformation property we can choose9

f = f0S + kW

4π2C ln η(τ). (5.16)

The gluino mass term in supergravity at tree level is:

M3 = g2

2 e
K/2M̄2

PlKij̄Dj̄W
†fi (5.17)

and, in our case, can receive contributions by both the dilaton, (i, j̄ = S, S̄), and the
modulus, (i, j̄ = τ, τ̄), auxiliary fields. However, if supersymmetry is broken dominantly
along the modulus direction, squark masses are non-degenerate and scalar trilinear terms
are not aligned with Yukawa couplings, leading to large corrections to θ̄, as discussed in
section 7. Thus we are lead to assume that supersymmetry is broken mainly by the dilaton,
resulting in tree-level universal squark masses and trilinear terms proportional to Yukawas.
Imposing that τ preserves supersymmetry gives from eqs. (5.14a), (5.14b) the condition

DτW = −kWW

(2η′(τ)
η(τ) + 1

τ − τ †

)
= 0. (5.18)

9The Dedekind η function transforms with a nontrivial multiplier system, so the transformations of the
matter fields should also be accompanied by multipliers, as discussed in appendix A.
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Its solutions are τ = i and τ = ±1/2 + i
√
3/2, where CP is unbroken and the CKM phase

is trivial. Nevertheless, DτW can vanish at CP-violating points in the presence of non-
minimal terms in the Kähler potential. An example is discussed in appendix B, where we
also compute the gluino mass for generic DSW and DτW . Assuming spontaneous CP vio-
lation and DτW = 0 at the minimum of the scalar potential, eq. (5.17) is enough and gives

argM3 = argW † = 2kW arg η(τ). (5.19)

We finally have
θ̄ = −2kWC arg η(τ) + C argM3 = 0. (5.20)

We arrive at the same result by choosing a basis in field space where both the contributions
from the gauge kinetic function and from the gluino mass separately vanish. This can be
achieved by means of the field redefinition:

λ→
[
η(τ)
η(τ)†

] kW
2
λ. (5.21)

Now the chiral transformation of eq. (5.7) is accounted for by the η function and the new
gluino field is modular invariant. In this new basis the gluino mass M3 in eq. (5.17) is
real and positive. At the same time the field redefinition of eq. (5.21) is anomalous and
generates a new term in the gauge kinetic function:

f → f − kW

4π2C ln η(τ) ≡ f ′ (5.22)

By combining eqs. (5.15) and (5.22) we see that the new gauge kinetic function f ′ is
invariant under modular transformations (consistently with the new gluino being modular-
invariant). Assuming it has no singularity, it can be chosen τ -independent:

f ′ = f0S. (5.23)

In this new basis, our CP invariant supergravity theory trivially delivers θ̄ = 0.
Finally, we can still make use of the phenomenological analysis of section 2.4, since

those results can be reproduced by our supergravity theory through a common shift of the
quarks modular weights, e.g. kΦi → kΦi + kW /2.

6 Modular invariance in superstrings

For completeness, we finally recall the string motivation for the mechanism we implemented
in QFT, and discuss the possibility of deriving it from string compactification. Our solution
of the strong CP problem exploits i) a CP-invariant framework, where CP is spontaneously
broken, ii) field-dependent Yukawa couplings shaped by modular invariance and iii) a
possible interplay between ultraviolet and infrared contributions, strongly constrained by
anomalies and singularities. Indeed all these ingredients are naturally present in most
string theory compactifications.
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First of all, there are strong indications that the four-dimensional CP symmetry is a
gauge symmetry in string theory compactifications [18, 19, 58], even starting from a higher-
dimensional theory where CP is not conserved. For example, in ten dimensions the het-
erotic string theory has a charge conjugation symmetry equivalent to an SO(32) (or E8⊗E8)
gauge transformation, but has no parity symmetry since the theory is chiral. In the simplest
compactifications, the four-dimensional theory acquires a parity symmetry from a proper
Lorentz transformation. Four-dimensional charge conjugation is a combination of a gauge
rotation and a proper Lorentz transformation. Thus, both C and P are gauge symmetries:
they arise as combinations of ordinary gauge and general coordinate transformations. Many
other compactifications have a gauged CP symmetry. It has been conjectured, as a general
property of string theory, that CP is indeed a gauge symmetry of the four-dimensional
theory. In this context, CP can only be violated spontaneously, by complex expectation
values of fields. The problem is to understand why CP violation generated in this way
affects dominantly the CKM mixing matrix, leaving no observable effect in strong interac-
tions. So far, the attempts to solve this problem have mainly focused either on variants of
the Nelson-Barr model [6, 58] or on tuning of the parameters in the low-energy theory [38].

Second, string theory has no free parameters and Yukawa couplings are field-dependent
quantities. Their observed value is set by the vacuum expectation values of some scalar
fields, the moduli, describing the background over which the string propagates. Com-
pactifying string theory on suitable spaces with a complex structure, the four-dimensional
low-energy effective theory contains generations of chiral fermions with Yukawa couplings
that depend in a predictive way on such background. Part of this background can be geo-
metrical and the corresponding moduli describe the shape and the size of the compactified
space. These fields can be seen as Higgs fields that spontaneously break, via compactifica-
tion, flavour and CP symmetries arising from higher-dimensional geometry. Other moduli
include the dilaton and the extra-dimensional components of the gauge fields.

Third, modular invariance is a key aspect of most string-theory compactifications,
allowing a control of the system beyond perturbation theory. In the energy domain of
interest for present day particle physics, string theory can be approximated by a point par-
ticle picture. The full theory has a spectrum consisting of an infinite number of particles,
all having a mass of the order of the Planck scale, except a finite number of them. Integrat-
ing out the massive modes leads to an effective theory of the light particles. This picture
resembles that of Kaluza-Klein theories where the low-energy effective action results from
the purely gravitational higher-dimensional system. Nevertheless, the effective low-energy
theory emerging from string theory turns out to be very special, since it possesses a rich
network of discrete duality symmetries [59].

The simplest example of such dualities arises from the compactifications of two extra
dimensions on a torus. In this specific case, modular invariance is connected to the way the
string perceives the geometry of the compact space: it can wrap an integer number of times
around the cycles of the torus, and experiences a size R as equivalent to ∼ 1/(M̄2

PlR). A
torus can be built by dividing the flat complex plane in a lattice by identifying z = z + ω1
and z = z + ω2 where ω1,2 are two complex constants. Their absolute values describe the
sizes of the two cycles of the torus; their relative phase describes the twisting angle by which
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Figure 2. Construction of a flat 2-dimensional twisted torus by dividing the complex z = x + iy

in a lattice z = z + 1 and z = z + τ and identifying opposite points.

the portion of flat space in one lattice period is glued at its extremities to form a compact
torus. This procedure is illustrated in figure 2. The torus is intrinsically flat, despite it
appears curved in the 3d visualisation. Up to rotations and rescaling (symmetries of string
theory), it is described by a modulus τ = ω2/ω1. However, this description is redundant,
because ω′

2 = aω2 + bω1, ω′
1 = cω2 + dω1 where a, b, c, d are integers such that ad− bc = 1,

give an equivalent lattice. Similarly to what is done in gauge theories, this redundancy is
removed by requiring the theory to be invariant under the modular group SL(2, Z).

More generally, the effective action obtained from superstring orbi-folded toroidal com-
pactifications contains multiple moduli (moduli Ti = −iτi describe the torus sizes and the
fluxes on it; moduli Ui describe the shapes) with associated symmetries of modular or more
complex type. Phenomenological constructions often focus on a single modulus τ , that can
be viewed as associated to the overall scale of the internal six-dimensional manifold. In
string compactifications the modular weights k of fields commonly are integer fractions
k ∈ Q [27, 34] and can have both signs, a key feature of our mechanism.

Finally, as in the case of gauge theories, modular invariance should be anomaly-free.
However, when integrating out the infinite tower of heavy string states and restricting to
the sub-Planckian QFT states, an anomalous field content can appear in the low-energy
theory. Anomalies are then cancelled by gauge kinetic functions with special dependence
on moduli [34, 57, 60, 61]. A typical low-energy effective theory associated to an orbifold
compactification is described by N = 1 supergravity with Kähler potential K and super-
potential W given by

K = −M̄2
Pl ln(S + S†)− 3M̄2

Pl ln(−iτ + iτ †) +
∑

i

Φ†
ie

2V Φi

(−iτ + iτ †)kΦi

W = Ω(S)H(τ)M̄3
Pl

η(τ)6 + . . . (6.1)

where S is the chiral multiplet containing the dilaton,10 τ describes here a single overall
modulus associated to the volume of the compactified space and · · · stand for the contri-
bution of matter fields. The part of the superpotential W displayed above receives nonzero

10Here we work in a basis where S is modular invariant.
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contributions only from non-perturbative string effects [30, 31, 62–64], which are responsi-
ble for the characteristic η(τ) dependence that makes G = K/M̄2

Pl + ln |W/M̄3
Pl|2 modular

invariant. The function Ω(S) depends on the specific non-perturbative mechanism, while
H(τ) is a modular-invariant function of τ :

H(τ) = (j(τ)− 1)β/2j(τ)γ/3Pn(j(τ)), (6.2)

where j(τ) is the Klein absolute invariant, Pn(j(τ)) is a polynomial in j(τ) of degree n ≥ 0
and β, γ are non-negative integers [65]. Notice that, since j(τ) has a pole at τ = i∞, the
simplest choice H(τ) = 1 determines the super-potential with the mildest singularity as τ
approaches i∞.

In general the field content (including weights and possibly phases associated to mod-
ular transformations of the fields Φi) is anomalous, but the integration over the Planckian
modes produces a gauge kinetic function f of the type

f = f0S + fanomaly + · · · (6.3)

where · · · stand for additional modular-invariant contributions, f0 is a constant (here
for the sake of illustration we consider a single gauge group G) and fanomaly is given
by [34, 57, 60, 61]:

fanomaly = 1
4π2

[∑
Φ

2T (Φ)kΦ + 3
(
C(G)−

∑
Φ
T (Φ)

)]
ln η(τ). (6.4)

The Dedekind η function appears summing over string modes with squared masses |m +
inT |2/(T +T ∗) with integer n,m; each mode gives the usual QFT contribution [37, 60, 66].
The term fanomaly cancels the anomaly related to modular transformations [34, 57, 61], and
the expression in brace is exactly A of eq. (5.8), when G = SU(3) and kW = 3. We see that
both non-perturbative effects and anomalies produce a singularity at τ = i∞ in the effective
action. Such a singularity signals the failure of the low-energy effective theory, since in the
limit τ = i∞ the theory decompactifies; an infinite tower of states becomes massless and
the effective theory is no longer appropriate to describe the system. Swampland distance
conjectures generically suggest poles in Planckian regions of field space [31, 67].

String constructions thereby contain all the ingredients on which our mechanism to
solve the strong CP problem is based. On the one side, they appear qualitatively similar
to the QFT discussed in section 4, where we assumed an anomaly-free modular symmetry
thanks to some heavy fields, and integrated them out. On the other side, they can easily
embed the model of section 5, where both the mixed modular-QCD anomaly and the
contribution to θ̄ from the gluino mass are cancelled by the gauge kinetic function. This
leaves hope that the understanding of the QCD θ̄ puzzle proposed here could be realized
in string constructions.

7 Corrections to θ̄

Given the severe experimental bound on θ̄, special attention should be paid to any source
of corrections potentially affecting the result θ̄ = 0, which holds in a specific theoretical
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limit. First, there are well-known corrections to θ̄ due to the Standard Model dynamics and
the CKM CP-violating phase. An additional set of corrections arises from supersymmetry
breaking, needed to promote our framework into a realistic model. Higher dimensional
operators, compatible with the symmetry in question, can produce non-vanishing contri-
butions to θ̄, an effect often termed as ‘quality problem’.

7.1 Higher dimensional operators

Regarding the quality problem, the proposed mechanism scores better than the axion [3]
and Nelson-Barr solutions to the strong CP problem.

In the limit of unbroken rigid supersymmetry our framework includes all possible
operators depending on the modulus τ , the only source of CP violation. Modular invariance
is so strong to completely determine the functional dependence of the super-potential on τ ,
up to a set of real coupling constants. There is no room for additional modular-invariant
operators, provided Yukawa couplings are free from singularities.

Modular invariance is not so effective to constrain the Kähler potential but, as we
have seen in section 2.3, this uncertainty does not impact on θ̄. We have also shown that
this conclusion equally applies in the presence of gravitational interactions, at least in the
examples we have illustrated in the context of N = 1 supergravity.

7.2 Additional sources of CP breaking

The supergravity models of section 5.1 include an additional modular-invariant chiral mul-
tiplet S, sourcing spontaneous supersymmetry breaking. To the extent that S has CP-
conserving vacuum expectation value, no corrections to θ̄ = 0 are produced at tree-level.
For instance, all constants cq

ij in the Yukawa couplings can be promoted to functions of S,
without modifying our results.

Moving to string theory, additional gauge singlets of different type are often present in
string compactifications. If they are modular-invariant, we should assume that their vac-
uum expectation values are CP-conserving. This can be easily satisfied, since violating CP
through vacuum expectation values of ordinary modular-invariant scalars requires specific
structures with multiple scalars.

In string compactifications, modular invariance under one SL(2, Z) group is often
extended to a generalized invariance under multiple ∏aSL(2, Z)a, with the appearance
of multiple moduli τa. Our mechanism remains viable if all moduli τa that acquire CP-
violating vacuum expectation values have weights ka

Q,uR,dR
that satisfy independently in

each SL(2, Z)a sector the same condition we assumed e.g. in eq. (5.13). One simple pos-
sibility is that all moduli but one (our τ) acquire CP-conserving vacuum expectation val-
ues. Then no extra conditions are needed. This scenario does not require a fine tuning,
since CP-conserving points of the fundamental domain are good candidates for extrema
of modular-invariant scalar potential [30, 64, 68]. CP-violating minima exist, but are less
easy to obtain [32, 64].
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7.3 Standard Model loops

Corrections to θ̄ from Standard Model dynamics are known to be negligible, because the
SM is invariant under U(3)Q ⊗U(3)uR ⊗U(3)dR

redefinitions of quark fields, and θ̄ must be
a complex invariant under such transformations. The lowest power of SM Yukawa matrices
with the needed properties is

θ̄ ∝ Im [(Y †
uYu)2(Y †

d Yd)2(Y †
uYu)(Y †

d Yd)] (7.1)

times something that differentiates u from d (see e.g. [69]). Renormalisation-induced effects
of this type arise at 7 loops and contribute as θ̄ ∼ 10−30 [70]. The power suppression in
eq. (7.1) partially becomes logarithmic when considering IR-enhanced diagrams, and the
largest SM contribution to θ̄ ∼ 10−18 arises at 4 loops [71].

7.4 Supersymmetry breaking

Larger corrections to θ̄ can arise at the scale of supersymmetry breaking if sparticle masses
break CP and/or the U(3)Q ⊗U(3)uR ⊗U(3)dR

flavour structure of the SM differently from
the SM Yukawa couplings. Whether this happens or not depends on the order between the
following mass scales:

• The scale Λflavour at which the SM or MSSM is replaced by a theory of flavour and
CP or, more in general, by new physics with a different flavour structure, such as
SU(5) or SO(10) gauge unification. In our case Λflavour is the mass scale Mτ of the
modulus τ .

• The sparticle mass scale, that we generically denote as mSUSY. Based on data and
theory we expect that mSUSY is above the weak scale v = 174GeV, and below the
scale at which supersymmetry is broken in some ‘hidden’ sector, that plays no role
in the following argument.

• The mediation scale ΛSUSY, below which the supersymmetry-breaking soft terms
mSUSY appear as local operators. In gauge mediation models [72] ΛSUSY is the mass
of mediator multiplets.

A too large correction to θ̄ can be avoided if

mSUSY < ΛSUSY < Λflavour. (7.2)

In such a limit the set of supersymmetry-breaking corrections to θ̄ is not specific to our
mechanism based on modular invariance; rather it is a common property of all supersym-
metric solutions to the strong CP problem relying on spontaneously broken P or CP. We
can thereby adopt results from previous studies [73–75]. The value θ̄ = 0 set at high-energy
Λflavour receives no quantum corrections down to ΛSUSY as a consequence of the supersym-
metric non-renormalization theorems [76]. We are left with corrections below ΛSUSY, due
to RG running of soft terms down to mSUSY, and from integrating out sparticles at the
scale mSUSY. Such corrections are model-dependent.
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Quark and gluino masses Mq and M3 receive loop corrections δMq and δM3 that induce
a correction to θ̄

δθ̄ = δθ̄q + δθ̄g = ImTr(M−1
q δMq) + 3 ImδM3

M3
. (7.3)

Here we are working in a basis where θ̄ = argM3
3 detMq = 0. A correction to the gluino

mass M3 can arise from RG effects, while the threshold correction to M3 decouples in the
limit mSUSY ≫ v of heavy sparticles. This is not the case for the threshold correction δθ̄q,
arising from quark self-energies. The leading one-loop result for this quantity is [73–75]:

δθ̄q ∼ α3
4π ImTr

(Yq)−1 ∑
q=u,d

m2
q̃R

m2
SUSY

(
Aq

mSUSY
+ vq′

vq
Yq

)
m2

q̃L

m2
SUSY

 . (7.4)

Here m2
q̃L,R

are the soft mass matrices of left and right-handed squarks q̃; Au,d are the
trilinear squark/Higgs soft interactions; q′ = u if q = d and viceversa. So far we have
not assumed any particular mechanism of supersymmetry breaking, and the approximate
expression of eq. (7.4) is generic. The correction δθ̄q is, in general, dangerously large.

To avoid a too large correction to θ̄, a commonly invoked assumption is the proportion-
ality between Aq and Yq together with the flavour degeneracy of squark masses. Corrections
from this ideal limit can be computed via a mass-insertion expansion

m2
q̃ = m

(0)2
q̃ + δm2

q̃ , Aq = A(0)
q + δAq, Yq = Y (0)

q + δYq (7.5)

where RG effects can be included in the correction terms δ. Deviations from exact propor-
tionality and/or degeneracy are subject to strong constraints [73–75], calling for a theoret-
ical justification.

The needed structure can be justified assuming that supersymmetry breaking is gauge-
mediated [72] or anomaly-mediated [77–79] at energies below the τ modulus mass as in
eq. (7.2). In such a case, the RG and threshold corrections due to supersymmetry breaking
have the same flavour and CP structure as the SM corrections, and thereby undergo the
power-like suppression of eq. (7.1). This makes the supersymmetric correction to θ̄ small
enough even in the worst case with large tan β and with RG running long enough that
ln(ΛSUSY/mSUSY) compensates for the loop suppression (4π)−2, thereby omitted:

θ̄ ≲
M4

t M
4
bM

2
cM

2
s

v12 JCP tan6 β ∼ 10−28 tan6 β. (7.6)

Finally, to avoid a too large θ̄ at tree level we must assume that the MSSM parameter
usually denoted as Bµ is real, otherwise the Higgses Hu,d acquire CP-violating vacuum
expectation values. Our assumption kHu + kHd

= 0 implies a real µ term.

8 Conclusions

The strong CP problem is one of the longstanding puzzles in particle physics. We addressed
it in a plausible theory of CP and flavour motivated by string compactifications: N = 1
supersymmetric theories with modular invariance. We found a neat simple understanding
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of why |θ̄| ≪ 1 and δCKM ∼ 1, that also allows to reproduce quark and lepton masses and
mixings up to order unity free parameters: CP broken by the modulus of a non-anomalous
modular invariance. This general scheme has been realized in multiple ways:

1. In section 2 we considered the MSSM with N = 1 global supersymmetry, and assumed
that the combination of quark modular weights that controls the QCD modular
anomaly sums to zero. In our simplest example the three generations of quarks have
modular weights −6, 0 and +6. Assuming that the gluino mass is real (for example
because supersymmetry is broken by CP-conserving dynamics), the QCD θ̄ puzzle is
solved as real detMq and θQCD = 0, assuming that the Yukawa couplings are given
by modular forms (modular functions without poles).

2. In section 4 we considered extensions of the MSSM where the modular symmetry
is anomaly-free thanks to extra heavy quarks. For example, adding one vector-like
generation, the modular weights could be ±6,±2, 0. The QCD θ̄ puzzle is solved
as before. Furthermore, in the MSSM effective field theory obtained integrating out
the heavy quarks, the modular symmetry is anomalous and Yukawa couplings are
given by modular functions, with poles at the points in field space where the heavy
quarks become massless. In the effective field theory the QCD θ̄ puzzle is solved as
θ̄ = θQCD + arg detMq = 0.

3. In section 5 we considered supergravity, where the gluino gets unavoidably involved
in modular transformations, and contributes to a QCD modular anomaly. These su-
pergravity effects could either be negligible because Planck-suppressed, or controlled
by dealing with the gluino anomaly similarly to what was done at point 2. We pre-
sented one minimal realization, and one class of models possibly motivated by string
compactifications.

In section 6 we discussed the possibility that the proposed mechanism for θ̄ = 0 might be
realized in string compactifications, and recalled why they provide a plausible motivation
for the modular-invariant theories we considered. In section 7 we discussed corrections to
θ̄ = 0, finding that non-renormalizable operators are not problematic, and that (similarly
to Nelson-Barr models) supersymmetry breaking must respect the flavour structure of the
SM and be mediated below the flavour scale. While section 2.6 discusses phenomenology,
all new particles can be heavy, up to around the Planck scale.

In section 3 we discussed if/how the modular understanding for the QCD θ puzzle can
be realized substituting modular invariance with a spontaneously broken U(1) symmetry
a la Froggatt-Nielsen (FN). We find that multiple FN scalars are needed to obtain CP-
violating Yukawa couplings, δCKM ∼ 1, and then extra ad hoc assumptions are needed to
preserve θ̄ = 0. Thanks to its mathematical properties, modular invariance automatically
provides the needed structure, and behaves like a symmetry automatically broken in a
specific way, equivalent to multiple Higgs scalars, allowing δCKM ∼ 1. Additionally, FN
models need a mildly small breaking parameter to reproduce quark and lepton masses and
mixings up to order one factors. A mild hierarchy can automatically come from modular
invariance, as the first non trivial modular forms have weights 4 and 6.
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A Multiplier systems and modular anomalies

The most general modular transformation of matter fields Φ reads

Φ → e−iαΦ(γ)(cτ + d)−kΦΦ, (A.1)

where exp [−iαΦ(γ)] is a mutiplier system depending on the element γ = {a, b, c, d} of
SL(2, Z). In the presence of nontrivial phases αΦ, the modular invariance of the N = 1
supergravity Lagrangian is still guaranteed by the Kähler transformation

K → K + M̄2
Pl(F + F †) and W → e−F ′

W (A.2)

where F = kW ln(cτ + d), F ′ = F + iαW (γ) and αW (γ) is an overall phase. This requires
a condition on both modular weights and multipliers:

kqLi + kqRj + kHq − kY q
ij
= kW , αqLi(γ) + αqRj (γ) + αHq(γ) = αW (γ), (A.3)

where we took into account that modular forms like E4,6(τ) have a trivial multiplier equal
to one. The phases α(γ) represent a potential source of anomalies, since a modular trans-
formation acts on canonically normalized fermions ψcan and gauginos λ as a phase rotation
with extra, field-independent, contributions:

ψcan→
(
e−

i
2 αΦ(γ)+ i

4 αW (γ)

e+ i
2 αΦ(γ)− i

4 αW (γ)

)(
cτ+d
cτ †+d

) 1
4 kW − 1

2 kΦ

ψcan, λ→
(
e−

i
4 αW (γ)

e+ i
4 αW (γ)

)(
cτ+d
cτ †+d

)− 1
4 kW

λ.

(A.4)
Now the QCD anomaly of modular transformations is the sum of two terms, A ln(cτ +d)+
iAphase, where

A =
3∑

i=1
(2kQi + kuRi + kdRi

− 2kW ) + CkW

Aphase =
3∑

i=1
[2αQi(γ) + αuRi(γ) + αdRi

(γ)− 2αW (γ)] + CαW (γ). (A.5)

Choosing αHu +αHd
= 0, eq. (A.3) gives Aphase = CαW (γ). If, in line with our mechanism

for a real quark determinant, we have weights satisfying

3∑
i=1

(2kQi + kuRi
+ kdRi

− 2kW ) = 0, kHu + kHd
= 0, (A.6)
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the overall anomaly reduces to C [kW ln(cτ + d) + iαW (γ)]. The anomaly is cancelled by a
gauge kinetic function transforming under SL(2, Z) as

f → f + C

8π2 [kW ln(cτ + d) + iαW ] . (A.7)

The modular transformation of the Dedekind η function is η(τ) → eiθ(γ)(cτ +d) 1
2 η(τ) with

θ(S) = −π/4 and θ(T ) = π/12 for the two generators S, T of the modular group. So, a
choice satisfying eq. (A.7) is

f = f̃ + C

4π2kW ln η(τ), (A.8)

where f̃ is modular invariant, and the formerly arbitrary phase αW (γ) is fixed to αW (γ) =
2kW θ(γ). Eq. (A.3) becomes a constraint on the multiplier systems of matter fields.

B The gluino mass

We here compute the gluino mass in the generic case where both DSW and DτW do not
vanish, explicitly verifying that it has the expected modular transformation properties.
As the effective supergravity theory contains anomalous terms, that arise at one loop in
the full theory, consistency of the perturbative expansion requires that the gluino mass is
computed at one loop. From eqs. (5.14) and (5.16) we get:

M3 =−g
2

2 e
K/2M̄2

Pl
W †

M̄2
Pl

[
(S+ S̄)f0+

CkW

8π2

(
−iτ+ iτ †

)2
(2η̄′(τ)
η̄(τ) − 1

τ−τ †
) 2η′(τ)
η(τ)

]
+∆M3,

(B.1)
where ∆M3 is the diagrammatic one-loop contribution [80]:

∆M3 =
g2

16π2

[(
3C−

∑
Φ
TΦ

)
m3/2+

(
C−

∑
Φ
TΦ

)
KSF

S +KτF
τ

M̄2
Pl

+2
∑
Φ
TΦ (lnKΦΦ̄)τ F

τ

]
.

(B.2)
In this expression, m3/2 = eK/2M̄2

PlW †/M̄2
Pl is the gravitino mass and F i =

−eK/2M̄2
Pl Kij̄ Dj̄W

†. In our case ∆M3 evaluates to

∆M3 = g2

2 e
K/2M̄2

Pl
W †

M̄2
Pl

[
C

4π2 − CkW

8π2

(
−iτ + iτ †

)2
(2η̄′(τ)
η̄(τ) − 1

τ − τ †

) 1
τ − τ †

]
. (B.3)

Summing the tree and loop terms gives

M3 =−g
2

2 e
K/2M̄2

Pl
W †

M̄2
Pl

[
(S+ S̄)f0−

C

4π2 +
CkW

8π2 (−iτ+ iτ †)2
∣∣∣∣2η′(τ)η(τ) + 1

τ−τ †

∣∣∣∣2
]
. (B.4)

The required transformation properties of M3 under SL(2, Z) are correctly reproduced after
summing the diagrammatic one-loop contribution to the one coming from the anomaly-
modified gauge kinetic function. We also see that the overall phase of M3 is that of W †.

As discussed in section 7, we need a mechanism for supersymmetry breaking giving
rise to universal squark masses and trilinear terms proportional to Yukawa couplings. A
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necessary condition is the vanishing of DτW at CP-violating points. To achieve this, we
look for a modification of the Kähler potential in eq. (5.14a), compatible with modular
invariance. Focusing on the part that depends only on the modulus, we consider

K = −kW M̄2
Pl ln(−iτ + iτ †) + α(x)M̄2

Pl + . . . (B.5)

where x is the modular-invariant combination (−iτ+ iτ †)|η(τ)|4 and α(x) is a real function
of x such that the metric Kτ τ̄ is positive definite. We get

DτW =
[
−kW + xα′(x)

] [2η′(τ)
η(τ) + 1

τ − τ †

]
W. (B.6)

Choices of α(x) exist such that −kW + xα′(x) = 0 and Kτ τ̄ > 0 at CP-violating values of
τ . We do not address here the full problem of finding a de Sitter minimum of the scalar
potential at such points.
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