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1 Overview and motivation

The non-linear generalisations of Maxwell electrodynamics [1]–[2] in four dimensions play a
pivotal role in understanding the dynamics of charged particles in the strong field regime.
For example, the Born-Infeld (BI) theory [1] was proposed in order to obtain the finite
self energy corrections for a charged particle in an electromagnetic field. On the other
hand, the Heisenberg-Euler-Kockel (HEK) model [2] describes the vacuum polarization
effects of Quantum Electrodynamics.1 However, both of these (non-linear) theories meet
the standard Maxwell electrodynamics in the limit of “weak” field approximations.

1See a recent review [3] for different versions of the non-linear modified theories of Maxwell electrody-
namics.
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Generally, the non-linear generalizations of Maxwell electrodynamics (NLE) is charac-
terised by an action that contains a Lorentz scalar and a pseudo scalar which are quadratic
in the field strength (Fµν) [3]–[4]

S = 1
2FµνF

µν , P = 1
2FµνF̃

µν , (1.1)

where F̃µν is the Hodge dual of Fµν .
For instance, the BI electrodynamics is described by the following Lagrangian den-

sity [1]

LBI = T −

√
T 2 + T

2 FµνF
µν − 1

16
(
FµνF̃µν

)2
, (1.2)

where T is the coupling parameter having the dimension of energy density. Clearly, in the
weak field limit (T → ∞), the Lagrangian density (1.2) reduces to the standard Maxwell
electrodynamics.

Unlike the standard Maxwell electrodynamics, its non-linear modifications are gener-
ally not invariant under the SO(2) duality transformations and in fact break the conformal
symmetry in four dimensions. For instance, the HEK theory [2] is not invariant under the
electromagnetic duality and does not have a conformal symmetry. However, the BI elec-
trodynamics is invariant under the SO(2) duality [5] although it is not conformal invariant
due to the presence of the dimensionful coupling (T ) in the theory (1.2).

Recently, there has been a radical proposal [6]–[7] to (non-linearly) generalize the
Maxwell electrodynamics which retains its conformal invariance (in four dimensions) as
well as preserves the SO(2) duality symmetry. This goes under the name of the “ModMax”
electrodynamics.2

The ModMax electrodynamics is a 1-parameter deformation of the Maxwell electro-
dynamics in four dimensions that is described by the following Lagrangian density3 [6]–[7]

LMM = 1
2
(
S cosh γ −

√
S2 + P 2 sinh γ

)
, (1.3)

where γ is the dimensionless coupling constant that measures the strength of the electro-
magnetic self interaction.

The physical requirements that the theory must be unitary and preserves the causality
restrict the ModMax parameter (γ) to take only positive values (γ > 0) [6]. The above
restriction guarantees that the Lagrangian density (1.3) is a convex function of the electric
field strength Ei.

There have been some further modifications to the ModMax electrodynamics in the
literature which include the 1-parameter generalisation of the BI theory4 (γBI) [8] and N =
1 supersymmetric extension of the ModMax electrodynamics5 [9]. The supersymmetric

2For details, see the recent review [3].
3In the limit γ → 0, the ModMax electrodynamics reduces to the standard Maxwell electrodynamics.
4In the weak field limit, the (γBI) theory reduces to the standard ModMax electrodynamics (1.3).
5See [10]–[12] for further details.
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version of the ModMax electrodynamics is invariant under the electromagnetic duality as
well as posses the superconformal symmetry [9].

The ModMax electrodynamics finds an extensive application in theories of gravity [13]–
[17] as well. In fact, a large number of solutions have been obtained down the line. For
instance, accelerated black holes [13], the Taub-NUT [15]–[16] and Reissner-Nordstorm so-
lutions [17] in diverse spacetime dimensions have been constructed in the presence of Mod-
Max interactions and the effects of non-linearity were explored on their thermal properties.
Recently, the non-linear models of electrodynamics have also found their applications in the
context of strongly correlated systems [18]–[20] by means of the celebrated AdSd+1/CFTd
correspondence [21]–[23].

Despite of several notable applications those are alluded to the above, ModMax theories
are least explored in AdS2 holography and in particular in the context of the JT/SYK
correspondence [24]–[48]. The purpose of the present paper is to fill up some of these gaps
in the literature and find out an interpretation for the projected ModMax interactions
within the realm of 2D gravity theories.

The pure Jackiw-Teitelboim (JT) gravity [24]–[25] is the two dimensional theory of
Einstein-dilaton gravity in the presence of a negative cosmological constant. Under certain
special circumstances, this theory is conjectured to be the dual description of the Sachdev-
Ye-Kitaev (SYK) model [26]–[48] which is a quantum mechanical theory of N interacting
(Majorana) fermions in one dimension.6 Interestingly, this model can be solved exactly at
strong coupling and in the Large N limit. The generalisation of the JT/SYK correspondence
in the presence of U(1) gauge fields and SU(2) Yang-Mills fields have been carried out in
a series of papers [49]–[55].

In the present paper, we cook up a theory of JT gravity in the presence of 2D “pro-
jected” ModMax interactions and compute various physical entities associated with the
boundary theory. For instance, we construct the holographic stress-energy tensor [50, 53,
56]–[57] and compute the associated central charge [50, 53, 56, 58] for the boundary the-
ory. Finally, we construct black hole solutions in two dimensions and explore the effects of
projected ModMax interactions on their thermal behaviour.

The organisation for the rest of the paper is as follows:

• In section 2, we follow suitable dimensional reduction procedure [49]–[50, 55] to con-
struct a model for JT gravity in the presence of 2D projected ModMax interactions.
We also clarify the meaning of projected ModMax interactions in 2D and in particular
present a detail comparison with the 4D ModMax interactions.

• In section 3, we calculate the conformal dimensions of different scalar operator in
deep IR limit and make a comparative analysis between them. We further explore
the vacuum structure of the theory using the Fefferman-Graham gauge [50, 59] by
treating the non-linear U(1) gauge interactions as “perturbations” over the pure JT

6The bulk dual of the pure SYK model contains an infinite tower of massive particles which are dual to
primary O(N) singlet operators [31, 47]. However, the pure JT gravity does not contain the tower of such
massive particles. Therefore, the SYK/JT correspondence should make sense only in the soft/Schwarzian
limit.
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gravity solutions. We estimate these solutions upto quadratic order in the gauge and
ModMax couplings.

• In section 4, we construct the “renormalised” boundary stress tensor and investigate
its transformation properties under the combined action of the diffeomorphism and
the U(1) gauge transformations [53]. We compute the central charge (cM ) associated
with the boundary theory [53] up to quadratic order in the (ModMax and U(1))
couplings.

• In section 5, we construct the black hole solutions upto quadratic order in the cou-
plings. We observe that the non-linear interactions (or the projected ModMax inter-
actions) play a crucial role in obtaining a finite value for the background fields at the
horizon.
Furthermore, we compute the Hawking temperature for 2D black holes [60] and
calculate the associated Wald entropy [61]–[63]. We also investigate the “extremal”
limit associated with these 2D black hole solutions and calculate the corresponding
Wald entropy.

• We draw our conclusion in section 6, along with some future remarks.

2 JT gravity and 2D projected ModMax

The ModMax theory coupled to Einstein gravity in four dimensions is defined as [6]–[7, 13]

I(4) = 1
16πG4

∫
d4x

√
−g(4)

(
R(4) − 2Λ− 4κL(4)

MM

)
, (2.1)

where R(4) is the Ricci scalar in 4 dimensions, Λ = −3 is the cosmological constant,7 G4
is the Newton’s constant in four dimensions, κ is the coupling constant and L(4)

MM is the
ModMax Lagrangian density in four dimensions [6]–[7, 13]

L(4)
MM = 1

2
(
S cosh γ −

√
S2 + P 2 sinh γ

)
,

S = 1
2FMNF

MN , P = 1
2FMN F̃

MN , F̃MN = 1
2ε

MNUV FUV . (2.2)

Here, γ is the ModMax parameter and (M,N) are the 4 dimensional space-time indices.
Clearly, the standard Maxwell electrodynamics is recovered in the limit γ → 0 [6]–[7, 13].

The imprint of the ModMax theory (2.2) in two dimensions can be obtained via di-
mensional reduction [49]–[50, 55] of the following form

ds2
(4) = ds2

(2) + Φ(xµ)dx2
i , ds2

(2) = gµν(xα)dxµdxν ,

Aµ ≡ Aµ(xν), Ai ≡ Ai(xµ), (2.3)

where (µ, ν) are the two dimensional indices and (i, j) are the indices of the compact
dimensions.

7Here, we set the AdS length l = 1.
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Substituting (2.3) into (2.1) and integrating over the compact directions, one finds8

Ibulk = 1
16πG2

∫
d2x

√
−g(2)

(
ΦR(2) − 2ΛΦ− 4κΦL(2)

(MM)

)
, (2.4)

where R(2) is the Ricci scalar in two dimensions, G2 is the Newton’s constant in two
dimensions and

L(2)
MM = 1

2
(
s cosh γ −

√
s2 + p2 sinh γ

)
,

s = 1
2FµνF

µν + Φ−1
(
(∂χ)2 + (∂ξ)2

)
, p = −2Φ−1εµν∂µχ∂νξ (2.5)

is what we define as the Lagrangian density of the projected ModMax theory in two di-
mensions. Here, we denote A2 = χ(xµ), A3 = ξ(xµ) and introduce εµν = εµν√

−g(2)
as the

Levi-Civita tensor in two dimensions.
Notice that, in the limit γ → 0, we do not recover the standard Maxwell electrody-

namics in two dimensions [50, 53]–[55]. On contrary, we do have additional contributions
coming from non-vanishing scalar fields ξ and χ which arise by virtue of the dimensional
reduction procedure. This turns out to be the unique feature of the projected ModMax
interactions in two dimensions. The γ → 0 limit is what we refer as the 2D Maxwell
interaction in this paper.

• A comparative study of 4D ModMax and the 2D projected ModMax. Below,
we draw a comparative analysis between 4D ModMax [6]–[7] and its 2D projection which
plays the central role in what follows. 4D ModMax preserves the conformal invariance in its
usual sense which is also evident from the generic structure of the associated stress-energy
tensor

T
(4)
MN ∼ f(γ)

(
− 1

2F
2gMN + 2gQPFQMFPN

)
, (2.6)

where we define the function

f(γ) =
(

cosh γ − F 2 sinh γ√(
FRSFRS

)2 +
(
FRSF̃RS

)2
)
. (2.7)

Clearly, the trace TM(4)
M vanishes identically in four dimensions. On the other hand,

the trace of the projected ModMax in two dimensions turns out to be

Tµ(2)
µ = gµνT (2)

µν = ΦF 2

2

(
cosh γ − s sinh γ√

s2 + p2

)
, (2.8)

which is a non-vanishing entity.
8The Newton’s constant in two and four dimensions are related by G2 = G4

V2
, where V2 is the volume of

the compact space.
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This reflects to the fact that the projected theory losses its conformal invariance in
two dimensions. Furthermore, the absence of the (Hodge) dual two form (F̃µν) in two di-
mensions spoils the electromagentic SO(2) duality invariance of the 2D projected theory in
comparison to its 4D cousin. However, it is noteworthy to mention that the ModMax cou-
pling (γ) that appears in the 2D projected version is same as that of the 4D parent theory.

The equations of motion corresponding to different field contents can be obtained by
varying the action (2.4)

δIbulk = 1
16πG2

∫
d2x
√
−g
(
Hµνδgµν +HΦδΦ +HµδAµ +Hχδχ+Hξδξ

)
, (2.9)

where we define individual entities as

HΦ = R− 2Λ− 4κL(2)
MM + 2κΦ−1

[(
(∂ξ)2 + (∂χ)2

)
cosh γ −

{
s
(
(∂ξ)2 + (∂χ)2

)
√
s2 + p2

− 2pεµν∇µχ∇νξ√
s2 + p2

}
sinh γ

]
= 0, (2.10)

Hµν = �Φgµν −∇µ∇νΦ + ΛΦgµν − 2κΦ
[
Fµν cosh γ − sinh γ√

s2 + p2

(
sFµν −

1
2s

2gµν

)

− s

2gµν cosh γ
]

= 0, (2.11)

Hχ = κ∇µ

[
∇µχ cosh γ − s∇µχ− pεµν∇νξ√

s2 + p2 sinh γ
]

= 0, (2.12)

Hξ = κ∇µ

[
∇µξ cosh γ − s∇µξ + pεµν∇νχ√

s2 + p2 sinh γ
]

= 0, (2.13)

Hµ = κ∇µ

[
Φ
(

cosh γ − s sinh γ√
s2 + p2

)
Fµν

]
= 0, (2.14)

along with the function

Fµν = FµαFνβg
αβ + Φ−1

(
∂µξ∂νξ + ∂µχ∂νχ

)
. (2.15)

3 General solution with 2D projected ModMax

The purpose of this section is to obtain the most general solutions of (2.10)–(2.14) in the
Fefferman-Graham gauge9 [50, 59]

ds2 = dη2 + htt(t, η)dt2, Aµdx
µ = At(t, η)dt,

Φ = Φ(t, η), χ = χ(t, η), ξ = ξ(t, η). (3.1)
9The explicit form of these equations (2.10)–(2.14) have been provided in the appendix A.
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• A note on conformal dimensions. Here, we present a calculation on the conformal
dimensions of the dual operators ∆χ, ∆ξ and ∆Φ corresponding to the bulk scalar fields χ,
ξ and Φ respectively. This allows us to make a comparative study between various operator
dimensions in the deep IR limit.

The IR fixed point [64]–[66] is defined as the set of solutions to the equations of
motion (2.10)–(2.14) for constant values of the scalar fields

χ(t, η) = χ∗ , ξ(t, η) = ξ∗ , Φ(t, η) = Φ∗, (3.2)

where the superscript ‘*’ denotes the values of the background scalars at the IR fixed point.
Using (3.2), one can solve the above set of equations (2.10)–(2.14) in the Fefferman-

Graham gauge (3.1) to obtain

ω∗ = α(t)e
√

2ηλ + β(t)e−
√

2ηλ, (3.3)

A∗t = µ(t) + c√
2λ

(
α(t)e

√
2ηλ − β(t)e−

√
2ηλ
)
, (3.4)

where we define λ =
√
−Λ =

√
3, ω =

√
−htt and c is the integration constant. Here, α(t),

β(t) and µ(t) are some arbitrary functions of time.
In order to compute the conformal dimensions of the dual operators, we expand the

scalar fields (χ, ξ and Φ) around the fixed point (3.2) and retain the equations of mo-
tion (2.11)–(2.13) upto linear order in scalar fluctuations which yields

[
∂2
η + 1

ω∗

(
∂ηω

∗
)
∂η −

1
ω∗
∂t

(
1
ω∗
∂t

)
−m2

]
Φ̃ = 0, (3.5)

[
∂η
(
ω∗∂η

)
− ∂t

(
1
ω∗
∂t

)]
χ̃ = 0, (3.6)

[
∂η
(
ω∗∂η

)
− ∂t

(
1
ω∗
∂t

)]
ξ̃ = 0, (3.7)

where we definem2 =
(
6−2c2κe−γ

)
and scalar fluctuations Ỹ = Y−Y∗, where Y collectively

denotes the scalar fields (Φ, χ and ξ).
It should be noted that, the mass-squared term (m2) defined above must satisfy the

Breitenlohner-Freedman (BF) bound10 [67], which for the present example sets a constraint
of the form c ≤

√
25eγ
8κ . Notice that, unlike (3.5), the equations of motion for scalar

fluctuations χ̃ (3.6) and ξ̃ (3.7) do not contain any mass-squared term. This indicates that
these scalar fields (χ and ξ) are massless. This is consistent with the fact that these scalar
fields (χ and ξ) carry only kinetic terms in the Lagrangian (2.5).

10In (d+1) spacetime dimensions, the BF bound is defined as m2 ≥ −
(
d2

2L

)2
, where L is the AdS length.
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From the above set of equations (3.5)–(3.7), one could finally decode the conformal
dimensions11 of the dual operators as

∆Φ± = 1
2
(
1±

√
25− 8e−γc2κ

)
, ∆χ = ∆ξ = 1, (3.8)

where the subscript ‘±’ denotes the two possible values of ∆Φ.
It is interesting to notice that the conformal dimension, (∆χ = ∆ξ) > ∆Φ+ for the

range of constant,
√

3eγ
κ < c ≤

√
25eγ
8κ . This indicates that the dynamics of the dilaton

fluctuation Φ̃ dominates [64]–[66] over the scalar fluctuations χ̃ and ξ̃ in the deep IR.
On the other hand, one could set the conformal dimension, (∆χ = ∆ξ) < ∆Φ+ given

the range 0 ≤ c <
√

3eγ
κ , which suggests that the IR dynamics is dominated by the scalar

fluctuation χ̃ and ξ̃. However, for a particular choice of constant c =
√

3eγ
κ , the conformal

dimensions, ∆χ = ∆ξ = ∆Φ+ = 1. In this case, the dynamics of all scalar fluctuations Ỹ
are equally important in the deep IR.

On a similar note, one finds that the maximum value of the conformal dimension12 ∆Φ−
is 1/2. Therefore, in this case, the dilaton fluctuation (Φ̃) always dominates over the scalar
fluctuations. Therefore, to summarise, one could conjecture that the dilaton fluctuation al-
ways dominates over scalar fluctuation if the constant falls in the range

√
3eγ
κ < c ≤

√
25eγ
8κ .

Finally, it is noteworthy to compare our results with the existing literature [64]–[65].
The authors in [64], construct a 2D theory of gravity in the presence of a dilaton (e−2ψ),
scalar field (χ) and a U(1) gauge field following a consistent reduction of Einstein gravity in
five dimensions. Unlike the present example, the authors in [64] obtained a mass-squared
term for the scalar field (χ) which is thereby used to calculate the conformal dimension
of the dual operator. Interestingly, they found that the dual operator is always irrelevant
compared to the dilaton operator in the IR. In other words, the dilaton fluctuation always
dominates over the scalar fluctuations in the deep IR.

• Remarks about perturbative solutions. Now, we compute the most general so-
lutions of (2.10)–(2.14) in the Fefferman-Graham gauge. Clearly, these equations (2.10)–
(2.14) are quite difficult to solve exactly in the ModMax coupling γ. Therefore, to proceed
further, we simplify the fields as Φ ≡ Φ(η), htt ≡ htt(η), At ≡ At(η), ξ ≡ ξ(η) and χ ≡ χ(t)
and solve them “perturbatively” treating the 2D Maxwell coupling (κ) and the 2D ModMax
coupling (γ) as expansion parameters.

One can systematically expand these fields using the expansion parameters (κ and γ) as

A = A0 + κA1 + γκA2 + κ2A3 + . . . , (3.9)
B = B1 + γB2 + κB3 + . . . , |κ| � 1, |γ| � 1, (3.10)

where A collectively denotes the fields (Φ, ω) and B denotes the remaining fields (At, χ, ξ).
Here, the subscript ‘0’ denotes the pure JT gravity solution. On the other hand, subscripts

11The conformal dimension of the dual operator (∆) is defined as ∆(∆− 1) = m2 [45, 64, 67], where m
represents the mass of the scalar field.

12In this case, the constant c is restricted to the range
√

3eγ

κ
≤ c ≤

√
25eγ

8κ . If c <
√

3eγ

κ
, then the

conformal dimension ∆Φ− become negative.
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‘1’ and ‘2’ denote the leading order corrections due to the 2D Maxwell term and the 2D
projected ModMax interaction respectively. Furthermore, the subscript ‘3’ stands for the
quadratic order corrections due to the 2D Maxwell term alone.

Notice that, the B fields (3.10) are expanded differently from that of the A fields (3.9).
This is due to the fact that the B fields are coupled with an overall 2D Maxwell coefficient,
κ in the Lagrangian (2.4). Therefore, one should think of the expansion (3.10) to be
multiplied with an overall factor of κ. On the other hand, the effects of the 2D projected
ModMax comes into the picture at the quadratic level (γκ). To summarise, we solve the
equations of motion (2.10)–(2.14) up to quadratic order (γκ and κ2) in the couplings and
ignore all the higher order corrections.

3.1 Zeroth order solution

In order to obtain the pure JT gravity solutions, one has to take the limits κ → 0 and
γ → 0 in the equations (2.10)–(2.14), which yields

ω′′0 + Λω0 = 0, (3.11)
Φ′′0 + ΛΦ0 = 0, (3.12)

Φ′0ω′0
ω0

+ ΛΦ0 = 0. (3.13)

On solving (3.11)–(3.13), one finds

ω0 = a1e
ηλ + a2e

−ηλ, (3.14)

Φ0 = b1
a1λ

e−ηλ
(
a1e

2ηλ − a2
)
, (3.15)

where a1, a2 and b1 are the integration constants.
Equations (3.14)–(3.15) are the zeroth order solutions of the theory (2.4). In the

following sections, we will be using these solutions to obtain the next to leading order
corrections for A and B.

3.2 Order κ solution

The leading order corrections to the fields A and B are due to the presence of the Maxwell
interactions in (2.4),

LMaxwell = 1
4FµνF

µν + 1
2Φ−1

(
(∂χ)2 + (∂ξ)2

)
. (3.16)

– 9 –
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On comparing the coefficients of κ in the equations (2.10)–(2.14), we obtain

ω0Φ′′1 + ω1Φ′′0 −
(
Φ′0ω′1 + Φ′1ω′0

)
+ 2ω0

(
ξ′21 + χ̇1

2

ω2
0

)
= 0, (3.17)

ω′′1 + Λω1 −
A′2t1
ω0

= 0, (3.18)

∂η

(
Φ0
ω0
A′t1

)
= 0, (3.19)

∂η
(
ω0ξ
′
1

)
= 0, (3.20)

χ̈1 = 0. (3.21)

Using the zeroth order solutions (3.14)–(3.15), one can solve the above set of equations
to yield

Φ1 = e−ηλ

4λ2

(
4λ
a1

(
a3b1e

2ηλ + a2 log
(
a2 − a1e

2ηλ
))

+ 4λe2ηλ
(
2ηλ−

log
(
a2 − a1e

2ηλ
) )

+ tan−1
(√

a1e
ηλ

√
a2

)(
1

a
3/2
1
√
a2
− e2ηλ

√
a1a

3/2
2

))
, (3.22)

ω1 = c2
1

4a2
e−ηλ

(
2ηλe2ηλ − 1

a1

(
a1e

2ηλ + a2
)

log
(
a2 − a1e

2ηλ
))

+ a3e
ηλ, (3.23)

At1 = c1

[
log

(
a2 − a1e

2ηλ
)
− ηλ

]
+ c2, (3.24)

ξ1 = e1
λ

tan−1
(√

a1e
ηλ

√
a2

)
+ e2, (3.25)

χ1 = d1t+ d2, (3.26)

where a3, ci, di and ei, (i = 1, 2) are the integration constants.

Equations (3.22)–(3.26) represent the leading order corrections to the fields A and B
in the presence of the 2D Maxwell interactions (3.16).

3.3 Order γκ solution

Next, we take into account the projected ModMax interactions and their imprint on the
background fields A (3.9) and B (3.10).
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A straight forward analysis reveals the following set of equations at order γκ

ω0Φ′′2 + ω2Φ′′0 − Φ′0ω′2 − Φ′2ω′0 + 4ω0ξ
′
1ξ
′
2 + 4

ω0
χ̇1χ̇2 − f0 = 0, (3.27)

ω′′2 − ω2λ
2 − 2

ω0
A′t1A

′
t2 + s0A

′2
t1

ω0
√
s2

0 + p2
0

= 0, (3.28)

∂η

[
Φ0
ω0

(
A′t2 −

s0√
s2

0 + p2
0

A′t1

)]
= 0, (3.29)

∂η

[
ω0ξ
′
2 −

(
s0ξ
′
1ω0 − p0χ̇1

)
√
s2

0 + p2
0

]
= 0, (3.30)

χ̈2 = 0, (3.31)

where we identify the above functions as

s0 = − 1
ω2

0
A′2t1 + 1

Φ0

(
− χ̇2

1
ω2

0
+ ξ′21

)
, p0 = − 2

Φ0ω0
χ̇1ξ
′
1, (3.32)

f0 = 2ω0s0√
s2

0 + p2
0

(
ξ′21 + χ̇1

2

ω2
0

)
. (3.33)

The above set of equations (3.27)–(3.31) are difficult to solve for generic values of η.
However, for our present purpose, it will be sufficient to solve them near the asymptotic
limit (η →∞) of the space-time which yields

Φ2 = 1
λ

(
b2e

ηλ − b3λ+ e−ηλ
)
− b1
a1
ηe−ηλ, (3.34)

ω2 = e−ηλ
(
a4e

2ηλ + a5 + ηλ
)
, (3.35)

ξ2 = e3
λ
e−ηλ + e4, (3.36)

At2 = c3ηλ+ c4, (3.37)
χ2 = d3t+ d4. (3.38)

where ai, bj , ck, dk and ek, (i = 4, 5, j = 2, 3, k = 3, 4) are the integration constants.
As we show below, not all of these integration constants are actually important for

our analysis. In fact, a few of them finally survive which can be fixed by making use of
the residual gauge freedom [53] in the Fefferman-Graham gauge (3.1). In particular, the
re-scaling of the time coordinate t→ a1t preserves the gauge condition gηt = 0 and gηη = 1.
Therefore, we can use this freedom to fix the constant13

a1 = 1
a2b3

. (3.39)
13Interestingly, with this particular choice of the integration constant a1 (3.39), the final expression of

the central charge (4.28) appears to be independent of all the remaining integration constants.
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3.4 Order κ2 solution

Finally, we estimate the quadratic order (κ2) corrections due to the Maxwell (3.16) term
alone.

The resulting equations of motion (2.10)–(2.14) can be expressed as

ω0∂η

(
Φ0A

′
t3

ω0
− Φ0ω1A

′
t1

ω2
0

+ Φ1A
′
t1

ω0

)
− ω1∂η

(
Φ0A

′
t1

ω0

)
= 0, (3.40)

ω0Φ′′3 + ω1Φ′′1 + ω3Φ′′0 −
(
Φ′0ω′3 + Φ′1ω′1 + Φ′3ω′0

)
+ f2 = 0, (3.41)

ω′′3 − λ2ω3 −
1
ω0

(
2A′t1A′t3 −

ω1
ω0
A′2t1

)
= 0, (3.42)

∂η
(
ω0ξ
′
3 + ω1ξ

′
1
)
− ω1
ω0
∂η
(
ω0ξ
′
1
)

= 0, (3.43)

χ̈3 = 0, (3.44)

where

f2 = 2
(
2ω0ξ

′
1ξ
′
3 + ω1ξ

′2
1
)

+ 2
ω0

(
2χ̇1χ̇3 − χ̇2

1
ω1
ω0

)
. (3.45)

The above set of equations (3.40)–(3.44) could be solved near the asymptotics (η →∞)
of the spacetime which yield

Φ3 = − 1
2a2

1λ
2

(
e−ηλ(2ηλ+ 3) (2a2a3λ− b1c1c5)

)
+ b4e

ηλ

λ
+ a1

(
a2

1 + 1
)

+ a3
6a2

1
(
a2

1 + 1
)
a2

, (3.46)

ω3 = 1
4e
−ηλ

(
c1(2ηλ+ 1) (a3c1λ− 2a1c5)

a2
1λ

+ 4a6e
2ηλ + 4a7

)
, (3.47)

ξ3 = 1
36a5/2

1 λ

(√
a2e1e

−3ηλ
(
c2

1(1− 6ηλ)− 12a2a3
) )
− e5e

−ηλ

λ
+ e6, (3.48)

At3 = c1e
−ηλ

4a1a2b1λ
+ c6η + c5, (3.49)

χ3 = d5t+ d6, (3.50)

where ai, bj , ck, dk and ek (i = 6, 7, j = 4, 5, k = 5, 6) are the integration constants.

4 Boundary stress tensor and central charge

In this section, we work out the “renormalised” boundary stress tensor [50, 53, 56]–[58]
and study its transformation properties under both the diffeomorphism and the U(1) gauge
transformations. In particular, we examine the effects of the projected ModMax interac-
tions on the central charge of the boundary theory.

To begin with, we workout the boundary terms14 for the action (2.4). This is required
in order to implement a consistent variational principle [50, 53]. Systematically, one can

14The boundary in the Ferrerman-Graham gauge is located near η →∞.
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decompose the boundary terms into following two pieces,

Iboundary = IGHY + Icounter, (4.1)

where IGHY is the standard Gibbons-Hawking-York boundary term and Icounter represents
the boundary counter terms.

The Gibbons-Hawking-York boundary term [50, 53, 68] in 2D gravity is given by

IGHY = 1
8πG2

∫ β

0
dt
√
−hΦK , K = 1

2h
tt∂ηhtt, (4.2)

where K is the trace of extrinsic curvature, β is the inverse temperature and htt is the
induced metric on the boundary.

On the other hand, the counter term that is required to absorb all the near boundary
divergences of the on-shell action can be expressed as

Icounter = − 1
8πG2

∫ β

0
dt
√
−h
(
λΦ + 2κb1

c1

√
−habAaAb

)
, (4.3)

where (a, b) are the one dimensional boundary indices.15

Finally, the complete renormalised action is given by

Irenormalised = Ibulk + Iboundary, (4.4)

where Ibulk and Iboundary are given in (2.4) and (4.1) respectively.
Notice that, the combination of the U(1) gauge field in the Icounter (4.3) seems to break

the gauge invariance under the transformation

Aα → Aα + ∂αΣ, (4.5)

which yields the following extra piece under the U(1) gauge (4.5)

Icounter ∼
∫ β

0
dt
√
−h
(√
−habAaAb

)
→
∫ β

0
dt(At + ∂tΣ). (4.6)

However, one can preserve the gauge invariance by imposing the condition that ∂tΣ
(see (4.21)) must vanish near the boundary, η →∞ [53].

Using the renormalised action (4.4), it is now straightforward to calculate the variation
δIboundary under the combined action of the diffeomorphism and the U(1) gauge, where
δIboundary can be systematically expressed as16

δIboundary = 1
16πG2

∫
dt
√
−h
(
Gabδhab + GΦδΦ + GaδAa + Gχδχ+ Gξδξ

)
. (4.7)

15Here, we set the constant c6 = − πc3
1

16
√
a1a3

2b1(a1−c2
1)

in order to cancel the boundary divergences up to

quadratic order (γκ and κ2) in the couplings.
16δIboundary already incorporates the bulk contributions (δIbulk) near the asymptotic limit, η →∞.
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Here, the boundary contributions can be expressed as

Gab = nµ∇µΦhab + nµ
Φ√
−h

(
∂µ
√
−h
)
hab − λΦhab − 2κb1

c1
hab
√
−hcdAcAd

+ 2κb1
c1

AaAb√
−hcdAcAd

, (4.8)

Ga = −4κnµΦ
(

cosh γ − s√
s2 + p2 sinh γ

)
Fµa + 4κb1

c1

habAb√
−hcdAcAd

, (4.9)

Gχ = −4κnµ
(
∇µχ cosh γ − s∇µχ− pεµa∇aξ√

s2 + p2 sinh γ
)
, (4.10)

Gξ = −4κnµ
(
∇µξ cosh γ − s∇µξ + pεµa∇aχ√

s2 + p2 sinh γ
)
, (4.11)

GΦ = 2K − 2λ, (4.12)

where nµ = δµη is the unit normal vector at the boundary.
With all these preliminaries, we now introduce the boundary stress tensor [50, 53]

corresponding to the action (4.4)

T ab = 2√
−h

δIboundary
δhab

= Gab

8πG2
, (4.13)

where Gab is given in (4.8).
Our next task is to explore the transformation properties of the background fields (3.9)–

(3.10) and hence the boundary stress tensor (4.13) under the combined effects of the dif-
feomorphism and the U(1) gauge transformation.

Under the diffeomorphism,

xµ → xµ + εµ(x), (4.14)

the background fields (3.9)–(3.10) transform as

δεAµ = εν∇νAµ +Aν∇µεν , (4.15)
δεgµν = ∇µεν +∇νεµ, (4.16)
δεS = εµ∇µS, (4.17)

where S collectively denotes the scalar fields Φ, ξ and χ.
The diffeomorphism parameter, εµ(x) can be obtained using (4.16) and the space-time

metric (3.1), which yields the following

εt = e2ηλf(t) + 1
2λ

(
2
(
a2

1 + 1
)

3a2
1λ

− 4a3κ

3a3
1λ

)
∂2
t f(t) , εη =

(
2
(
a2

1 + 1
)

3a2
1λ

− 4a3κ

3a3
1λ

)
∂tf(t), (4.18)

where f(t) is some function17 of time [53].
17In the Fefferman-Graham gauge [50, 59], the variation of the space-time metric (under diffeomor-

phism (4.16)) yields a set of coupled differential equations that contain the derivatives of the diffeomor-
phism parameters εt and εη with respect to the variable “η”. Therefore, the function f(t) in these equations
appears as an integration constant. However, one can further compute the function f(t) using suitable
boundary conditions for the background fields A (3.9) and B (3.10).
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It should be noted that, we perform all the analysis in a gauge in which one of the
components of the U(1) gauge field, Aη is set to be zero (3.1). On the other hand, under
the diffeomorphism (4.14), Aη transforms as

δεAη = At∂η

(
εt
htt

)
6= 0, (4.19)

which breaks the gauge condition Aη = 0.
In order to restore this gauge condition, we employ the U(1) gauge transformation,

Aα → Aα + ∂αΣ and compute the U(1) gauge parameter Σ such that (δε + δΣ)Aη = 0,
which yields the following

Σ = −
∫
dηAt∂η

(
εt
htt

)
, (4.20)

where we have used the variation (4.19).
Now, one can perform the above integration (4.20) using the background fields (3.9)–

(3.10) and the diffeomorphism parameter (4.18), which yields

Σ = e−2ηλ

12a5
1a2λ3

(
f ′′(t)

(
2
(
a2

1 + 1
)
a2a1

(
c1λ (2 log (a1)− (γ − 1)(2ηλ+ 1)) + 2γc3λ

+ κ (2λ (c5η + c4) + c5)
)

+ a2
1c1κλ

(
c2

1 log (a1)− 4a2a3
)

(2 log (a1) + 2ηλ+ 1)

+ c1κλ
(
c2

1 log (a1)− 8a2a3
)

(2 log (a1) + 2ηλ+ 1)
)
− 3a1a2c

3
1κλ

3f(t)
(
2 log (a1)

+ 2ηλ+ 1
))
. (4.21)

It is interesting to notice that the U(1) gauge parameter Σ vanishes naturally in the asymp-
totic limit (η →∞), which is consistent with the gauge preserving condition (4.6).

Finally, we note down the transformation of the boundary stress tensor (4.13) under
the combined action of the diffeomorphism (4.14) and the U(1) gauge transformation which
yields

(δε + δΣ)Ttt = 1
8πG2

[(
∂ηΦ− λΦ− 2κb1

c1

At
ω

)
(δεhtt) + 4κb1ω

c1

(
(δε + δΣ)At

)
+ Φ

2 ∂η(δεhtt)−
1
2
(
∂ηω

2 − 2λω2
)
(δεΦ)− ∂η(δεΦ)ω2

]
. (4.22)

The variations of the background fields htt, At and Φ can be obtained using (4.15)–
(4.18) and (4.21), which yields the following

(δε + δΣ)At = H1(η)∂tf(t) +H2(η)∂3
t f(t), (4.23)

δεhtt = H3(η)∂tf(t) +H4(η)∂3
t f(t), (4.24)

δεΦ = H5(η)∂tf(t), (4.25)

where the explicit form of the functions Hi(η), (i = 1, 2 . . . 5) are given in the appendix B.
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Using these variations (4.23)–(4.25), the transformation of the boundary stress ten-
sor (4.22) can be expressed in a more elegant way

(δε + δΣ)T̃tt = 2T̃tt∂tf(t) + f(t)∂tT̃tt − cM∂3
t f(t). (4.26)

Here, we define the re-scaled stress tensor as

T̃tt = Ttt
b3(1 + a2

2b
2
3) , (4.27)

and identify the coefficient “cM” (coefficient of ∂3
t f(t)) as being the central charge [50, 53]

of the boundary theory,

cM = 1
144
√

3πG2

(
κ− 12γκ+ 2κ2

)
, (4.28)

where we substitute λ =
√

3.
It should be noted that the above expression of the central charge (4.28) is a per-

turbative result up to quadratic order in the ModMax coupling (γ) and the U(1) gauge
coupling (κ). Clearly, in the limit γ → 0, the central charge (4.28) reduces to ∼ 1

G2
which

is consistent with the existing result in the literature [53].

5 Black holes and 2D projected ModMax

We now construct the 2D black hole solutions and investigate their thermal properties in
the presence of 2D projected ModMax interactions (2.4). In particular, we emphasise on
the role played by the ModMax parameter, that is required to set all the fields “finite”
near the horizon. These solutions are further used to compute the Wald entropy [61]–[63]
associated with these 2D black holes. Finally, we also comment on the possibilities for
extremal black hole solutions in two dimensions.

5.1 Black hole solutions

We estimate the 2D black hole solutions of (2.4) by means of perturbative techniques up to
quadratic order in the ModMax parameter (γ) and the Maxwell’s coupling (κ). Technically
speaking, it is not convenient to determine the black hole horizon in the Ferrferman-Graham
gauge due to the presence of the non-trivial couplings in U(1) gauge fields (2.4). However,
one can perform an elegant calculation using the light cone gauge. In this gauge, the
space-time metric can be expressed as

ds2 = e2ω(z)(− dt2 + dz2), Aµdx
µ = At(z)dt,

Φ = Φ(z), χ = χ(t), ξ = ξ(z). (5.1)

Like before as in (3.9)–(3.10), one can systematically expand the background fields in
the couplings κ and γ as

A(bh) = A(bh)
0 + κA(bh)

1 + γκA(bh)
2 + κ2A(bh)

3 . . . , (5.2)

B(bh) = B(bh)
1 + γB(bh)

2 + κB(bh)
3 . . . , |κ| � 1, |γ| � 1, (5.3)
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where A(bh) collectively represents the fields (Φ, ω) and B(bh) represents the remaining
fields (At, χ, ξ). Furthermore, the superscript “bh” in A(bh) and B(bh) denote the black
hole solution.

5.1.1 Zeroth order solution

In order to calculate black hole solutions at zeroth order, we switch off the U(1) gauge
couplings (κ → 0, γ → 0) in the equations of motion (2.10)–(2.14), which yields the
following set of equations

Φ′′0 − ω′0Φ′0 + Λe2ω0Φ0 = 0, (5.4)
ω′0Φ′0 + Λe2ω0Φ0 = 0, (5.5)

ω′′0 + e2ω0Λ = 0, (5.6)

where ′ denotes the derivative with respect to z.
On solving the equations (5.4)–(5.6), one finds

e2ω(bh)
0 = − 4µ

Λ sinh2 (2√µz)
, Φ(bh)

0 = φ0, (5.7)

where φ0 is a constant.
It should be noted that we treat the dilaton (Φ) as constant while taking the limits

κ→ 0 and γ → 0. However, it possesses a non-trivial profile in the presence of U(1) gauge
fields (see section (5.1.2) and (5.1.3)).

5.1.2 Order κ solution

The leading order corrections to A(bh) and B(bh) could be estimated by solving the equations
of motion (2.10)–(2.14) at order κ

Φ′′1 − 2
(
ω′0Φ′1 + ω′1Φ′0

)
+ 2

(
χ̇2

1 + ξ′21
)

= 0, (5.8)
ω′′1 + 2Λω1e

2ω0 − e−2ω0A′2t1 = 0, (5.9)

∂z
(
Φ0e

−2ω0A′t1

)
= 0, (5.10)

ξ′′1 = 0, (5.11)
χ̈1 = 0, (5.12)

where . and ′ denote the derivatives with respect to t and z respectively.
In order to solve the above differential equations (5.8)–(5.12), we adopt the following

change in coordinates

ρ = √µ coth (2√µz). (5.13)
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Using the zeroth order solutions (5.7) together with (5.13), one finds

ω
(bh)
1 = q2√

µ
ρ tanh−1

(
ρ
√
µ

)
+ q1ρ√

µ
+ m2

1
2Λφ2

0
− q2, (5.14)

Φ(bh)
1 = −(n2

1 + l21)ρ
4µ 3

2
tanh−1

(
ρ
√
µ

)
+ g1ρ, (5.15)

ξ
(bh)
1 = l1

2√µ coth−1
(
ρ
√
µ

)
+ l2, (5.16)

A
(bh)
t1 = 2m1ρ

Λφ0
+m2, (5.17)

χ
(bh)
1 = n1t+ n2, (5.18)

where mi, ni, li, qi and g1, (i = 1, 2) are the integration constants.

5.1.3 Order γκ solution

The contributions due to the projected ModMax interactions could be estimated by solving
the equations of motion (2.10)–(2.14) at order γκ

Φ′′2 − 2
(
ω′0Φ′2 + ω′2Φ′0

)
+ 4

(
χ̇1χ̇2 + ξ′1ξ

′
2
)
− 2s0√

s2
0 + p2

0

(
χ̇2

1 + ξ′21
)

= 0, (5.19)

ω′′2 + 2Λω2e
2ω0 − 2e−2ω0A′t1A

′
t2 − e2ω0

√
s2

0 + p2
0 + f1 = 0, (5.20)

∂z

[
ξ′2 −

1√
s2

0 + p2
0

(
s0ξ
′
1 − p0χ̇1

)]
= 0, (5.21)

∂z

[
e−2ω0Φ0

(
A′t2 −

A′t1s0√
s2

0 + p2
0

)]
= 0, (5.22)

χ̈2 = 0, (5.23)

where we define the above quantities as

f1 = 1
Φ0
√
s2

0 + p2
0

(
s0
(
− χ̇2

1 + ξ′21
)
− 2p0χ̇1ξ

′
1

)
, p0 = −2Φ−1

0 e−2ω0χ̇1ξ
′
1,

s0 = −e−4ω0A′2t1 + Φ−1
0 e−2ω0

(
− χ̇2

1 + ξ′21
)
. (5.24)

Clearly, the above differential equations (5.19)–(5.23) are quite non trivial to solve
exactly in the radial variable (z). However, for the purpose of our present analysis, it is
sufficient to solve them near the black hole horizon.

Using (5.13), the location of the horizon (ρH) can be determined by noting the space-
time metric (5.1)

ds2
(bh) ≈

4(µ− ρ2)
Λ

(
1 + 2κω(bh)

1 + 2γκω(bh)
2

)(
− dt2 + dρ2

4(µ− ρ2)2

)
, (5.25)

which yields ρ = ρH = √µ.
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Finally, the near horizon solutions of the equations of motion (5.19)–(5.23) could be
listed as

Φ(bh)
2 = ρ

192µ5/2

(
64µρ(ρ−6√µ)+n2

1ρ

(
64µ3/2

n8
1l

2
1

(
8√µ(n2

1− l21)2
(
n2

1 + l21

)
(ρ−9√µ)

−3n4
1l

4
1

)
−15√µ+2ρ

)
+2n1n3ρ(2ρ−15√µ)+ρl1

(
l1 (ρ−12√µ)

+3l3 (ρ−9√µ)
)

+192µ5/2g2

)
+
ρ
(
n2

1 +2n3n1 + l1 (l1 +2l3)
)
log
(
ρ−√µ

)
8µ3/2 , (5.26)

ξ
(bh)
2 = 1

16µ3/2

(
−

256m4
1n

2
1l1µ

2ρ
(
ρ−2√µ

)
Λ2φ0

2(n2
1 + l21)3 −

32µρ
(
2√µ

(
n2

1−2l21
)
+ l21ρ

)
n2

1l1

+(l3 + l1)
(
− 1

2ρ(ρ−6√µ)−4µ log(ρ−√µ)
))

+ l4, (5.27)

A
(bh)
t2 =

32√µm3
1n

2
1l

2
1ρ
(
ρ−2√µ

)
Λ2φ0

2(n2
1 + l21)3 −m3ρ+m4, (5.28)

ω
(bh)
2 = m1

2φ0
2

(
m1
(
n2

1− l21
)

Λ(n2
1 + l21) −m3φ0

)
+q3I0 (ρ̃)+q4K0 (ρ̃) , (5.29)

χ
(bh)
2 =n3t+n4, (5.30)

where we define ρ̃ = 2
√

ρ√
µ − 1 and mi, ni, li, qi, g2, (i = 3, 4) are the integration constants.

Furthermore, here I0 (ρ̃) and K0 (ρ̃) are respectively the modified Bessel functions [69] of
the first (In(ρ̃)) and the second kind (Kn(ρ̃)).

5.1.4 Order κ2 solution
The contribution due to the Maxwell (3.16) term alone at quadratic (κ2) could be estimated
by solving the equations (2.10)–(2.14) at order κ2

−2ω1∂z
(
Φ0e

−2ω0A′t1

)
+ ∂z

[
e−2ω0

(
− 2ω1Φ0A

′
t1 + Φ1At1′ + Φ0A

′
t3

)]
= 0, (5.31)

ω′′3 + 2Λe2ω0
(
ω2

1 + ω3
)
− 2e−2ω0

(
− ω1A

′2
t1 +A′t1A

′
t3
)

= 0, (5.32)
Φ′′3 − 2

(
ω′3Φ′0 + ω′0Φ′3 + ω′1Φ′1

)
+ 4(χ̇1χ̇3 + ξ′1ξ

′
3) = 0, (5.33)
ξ′′3 = 0, (5.34)
χ̈3 = 0. (5.35)

The solutions of the above equations (5.31)–(5.35) are quite complicated, therefore
we mention them in the appendix C. Like before, one can further simplify these solu-
tions (5.26)–(5.30) and (C.1)–(C.5) by making use of the residual gauge freedom in the
light cone gauge (5.25). In particular, the re-scaling of the time coordinate, t → n1t does
not affect the gauge condition gtρ = 0. Therefore, one can use this freedom to fix the
constant n1 =

√
1− l21.

It is evident from (5.15), (5.16), (C.2) and (C.4) that the leading order (κ) corrections
as well as the quadratic order (κ2) corrections diverge as we move closer towards the black
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hole horizon (ρ ∼ ρH = √µ). Similar divergences persist even at quadratic order (γκ)
(see (5.26) and (5.27)). However, for a particular choice of constants

n3 = 1
2γ
√

1− l21

(
(2l21 − 1)(1 + γ)− 2κn5

√
1− l21 − κq2

)
, (5.36)

l3 = 1
γl1

(
− l21(1 + γ) + κn5

√
1− l21

)
, (5.37)

the divergences at order κ and κ2 cancel with those at the quadratic order (γκ) thereby
resulting in a finite expression for ξ(bh) and Φ(bh) near the horizon (ρ ∼ √µ). This turns
out to be a unique feature of projected ModMax interactions in two dimensions.

5.2 2D black hole thermodynamics

With the above solutions at hand, we now explore the thermal properties of 2D black
holes in the presence of projected ModMax interactions. In particular, we compute the
Wald entropy [61]–[63] for 2D black holes. Finally, we also comment on the Wald entropy
associated with the extremal black holes in two dimensions.

To begin with, we compute the Hawking temperature [60] for the 2D black holes which
receives quadratic order corrections due to U(1) gauge and ModMax couplings

TH = 1
2π

√
−1

4g
ttgρρ

(
∂ρgtt

)2∣∣∣∣∣
ρ→√µ

=
√
µ

π

[
1−

(
κq + γκq + κ2p

)]
, (5.38)

where we set the constants q4 = q2 = q and p is defined as

p = m2
1

12Λµφ3
0

(
1 + 24qµφ0 + log(4)− 8µ

3
2 g1
)
. (5.39)

The Wald entropy [61]–[63] is defined as

SW = −2π δL
δRµναβ

εµνεαβ , (5.40)

where Rµναβ is the Riemann curvature tensor, L is the Lagrangian density18 in two dimen-
sions and εµν is the anti-symmetric rank two tensor having the normalization condition,
εµνεµν = −2.

Using (4.4), the Wald entropy (5.40) for 2D black holes turns out to be19

SW = Φ(bh)

4G2

∣∣∣∣∣
ρ→√µ

= 1
4G2

(
φ0 + κφ1 + γκφ2 + κ2φ3

)
, (5.41)

18Here we used the convention, I =
∫
d2x
√
−gL.

19Here, the entities φ1, φ2 and φ3 are respectively the values of Φ(bh)
1 (5.15), Φ(bh)

2 (5.26) and Φ(bh)
3 (C.2)

at the horizon ρ = ρH = √µ.
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where we denote the above entities as

φ1 = √µg1 −
1

192µ
(
12 log(4µ) + 2l21 − 13

)
, (5.42)

φ2 = 64µ
3l21

(
1− 2l21

) 2(
l21 − 1

) 3 + l21
l21 − 1 +√µg2 −

5
3 , (5.43)

φ3 = 1
192µ

(
192µ3/2 (g1 (q1 + q) + g3) + 2

√
1− l21n5 + q(36 log(µ)

+ 13− 24 log(2))− 48q1

)
, (5.44)

and φ0 is the usual constant dilaton solution in the limit κ→ 0 and γ → 0 (5.7).

5.3 A special case: extremal 2D black holes

As a special case, we study the extremal 2D black hole solutions and compute the asso-
ciated Wald entropy. Extremal black holes correspond to the vanishing of the Hawking
temperature (5.38)

κq + γκq + κ2p = 1, (5.45)

which for the present example stands as an extremality condition in two dimensions.
Using (5.45) and (5.41), the Wald entropy for 2D extremal black holes

(
S

(ext)
W

)
turns

out to be

S
(ext)
W = 1

4G2

[
φ0 + φ2

q
+ κ

(
φ1 − φ2

)
+ κ2

(
φ3 −

p

q
φ2

)]
, (5.46)

where the entities p, φ1, φ2 and φ3 are respectively given in (5.39), (5.42), (5.43) and (5.44).

6 Concluding remarks

To summarise, in the present paper, we construct the 2D analogue of the four dimensional
ModMax electrodynamics (coupled with Einstein gravity) using the notion of dimensional
reduction. We investigate the effects of projected ModMax interactions on various physical
entities associated with the boundary theory in one dimension. Finally, we construct the
associated 2D black hole solutions and explore their thermal properties.

Below, we outline some of the future extensions of the present work.

• In the literature, there exists an alternative way to derive the thermodynamic entropy
of 2D black holes by noting the asymptotic growth of the physical states of a CFT
by means of the Cardy formula (SC) [53, 70]–[71]

SC = 2π

√
cM∆

6 , (6.1)

where ∆ is the eigen value of the associated Virasoro generator L0.
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The authors in [53] establish a 2D/3D dictionary which by virtue of the Cardy
formula (6.1) predicts the correct Bekenstein-Hawking entropy for 2D black holes.
Therefore, it would be indeed an interesting project to uplift the 2D black hole so-
lutions (5.2)–(5.3) into three dimensions and establish a suitable 2D/3D mapping in
the presence of 2D projected ModMax interactions.

• It would be an interesting project to add SU(2) Yang-Mills interactions and inves-
tigate their imprints on various physical observables associated with the boundary
theory. In particular, the authors in [55] observe that the SU(2) Yang-Mills field
play an important role in obtaining the Hawking-Page transition in the context of
JT gravity. Therefore, one can investigate similar effects and/or possible deviations
in the presence of projected ModMax interactions in two dimensions.

• Finally, it would be nice to construct the 2D wormhole solutions [45, 54] and explore
their thermal stability for the ModMax corrected JT gravity models.

We would like to address some of the above issues in the near future.

Acknowledgments

The authors are indebted to the authorities of Indian Institute of Technology, Roorkee
for their unconditional support towards researches in basic sciences. DR would like to
acknowledge The Royal Society, U.K. for financial assistance.

A Equations of motion

In this appendix, we note down the most general form of the equations of motion (2.10)–
(2.14) in the Fefferman-Graham gauge (3.1),

At : κ√
−htt

∂η

[
ΦA′t√
−htt

(
cosh γ − s sinh γ√

s2 + p2

)]
= 0, (A.1)

χ : κ√
−htt

∂t

(
− χ̇√
−htt

cosh γ + sχ̇+ pξ′
√
−htt√

−htt
√
s2 + p2 sinh γ

)
+ κ√
−htt

∂η

(√
−htt

× χ′ cosh γ − sχ′
√
−htt + pξ̇√
s2 + p2 sinh γ

)
= 0, (A.2)

ξ : κ√
−htt

∂t

(
− ξ̇√
−htt

cosh γ − −sξ̇ + pχ′
√
−htt√

−htt
√
s2 + p2 sinh γ

)
+ κ√
−htt

∂η

(√
−htt

× ξ′ cosh γ − sξ′
√
−htt − pχ̇√
s2 + p2 sinh γ

)
= 0, (A.3)

Φ :
√
−htt(

√
−htt)′′ + (

√
−htt)2Λ− κA′2t cosh γ + κsA′2t√

s2 + p2 sinh γ = 0, (A.4)

gtt : Φ′′ + ΛΦ + 2κΦ
(

cosh γ − s sinh γ√
s2 + p2

)(
Φ−1(χ′2 + ξ′2)− s

2

)
= 0, (A.5)
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gηη : − 1√
−htt

∂t

(
Φ̇√
−htt

)
+ (
√
−htt)′Φ′√
−htt

+ ΛΦ− 2κΦ
(

cosh γ − s sinh γ√
s2 + p2

)

×
(

Φ−1(χ̇2 + ξ̇2)
(
√
−htt)2 + s

2

)
= 0, (A.6)

gηt : − (Φ̇)′ + Φ̇(
√
−htt)′√
−htt

− 2κ
(

cosh γ − s sinh γ√
s2 + p2

)
(ξ̇ξ′ + χ̇χ′) = 0, (A.7)

along with the functions

s = − A′2t
(
√
−htt)2 + Φ−1

(
− 1

(
√
−htt)2 (χ̇2 + ξ̇2) + χ′2 + ξ′2

)
, (A.8)

p = −2 Φ−1
√
−htt

(
χ̇ξ′ − χ′ξ̇

)
, (A.9)

where . and ′ denote the derivatives with respect to t and η respectively.

B Details of the functions Hi’s

In this appendix, we present the explicit details of the functions Hi, (i = 1, 2, . . . 5)

H1(η) = 1
4

[
c1

(
− aκe

−ηλ

a1a2b1
+ κ

a3
1

(
a3
(
8log

(
a2−a1e

2ηλ
)
−8ηλ

)
− e−ηλ

a2b1λ

)

+ 1
a2

1

(
4(γ+1)ηλ−4log

(
a2−a1e

2ηλ
))
−4a(γ+1)λ+ 8aa1λe

2ηλ

a1e2ηλ−a2

)

− 4
a2

1

(
κ
(
c5
(
η−aa2

1

)
+c4

)
+γc3

)
− 1
a4

1a2

(
c3

1κe
−2ηλ

(
2a1e

2ηλ
(
2η2λ2

+log
(
a2−a1e

2ηλ
)2
−3ηλ log

(
a2−a1e

2ηλ
))

+a2 (2 log(a1)+2ηλ+1)
))]

, (B.1)

H2(η) =− 1
8a3

1a2b1λ2

(
ae−3ηλ

(
c1
(
−2a1a2b1λe

ηλ
(
−2log

(
a2−a1e

2ηλ
)

+2log(a1)

−γ+4ηλ+1
)

+4a2a3b1κλe
ηλ
(
−2log

(
a2−a1e

2ηλ
)

+2log(a1)+4ηλ

+1
)

+κ
)

+b1c
3
1κλe

ηλ
(
2
(

log2
(
a2−a1e

2ηλ
)
−3ηλ log

(
a2−a1e

2ηλ
)

+2η2λ2
)
− log(a1)(2ηλ+1)−2log2 (a1)

)
−2a1a2b1c5κe

ηλ
))
, (B.2)

H3(η) = 2e2ηλ− 1
8a1a2

2 (a1e2ηλ−a2)a
[
8a2a

3
1λe

2ηλ
(
4a2κe

2ηλ (a4γ+a6κ+a3)−2a2
2

+c2
1κe

2ηλ
(
2ηλ− log

(
a2−a1e

2ηλ
)))

+a2
1κe

2ηλ
(
c4

1κλe
2ηλ
(

log
(
a2−a1e

2ηλ
)

−2ηλ
)

2 +8a2a3c
2
1κλe

2ηλ
(
2ηλ− log

(
a2−a1e

2ηλ
))

+8a2
2

(
2a2

3κλe
2ηλ
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−c1
(
c1λ

(
− log

(
a2−a1e

2ηλ
)

+2ηλ+1
)

+2c5κ
))
−32a3

2λ
(
a4γ+a6κ

+a3
))
−a2a1κ

2
(
16a2

2

(
a2

3λe
2ηλ−c1c5

)
+c4

1λe
2ηλ
(

log
(
a2−a1e

2ηλ
)2

−2(2ηλ+1)log
(
a2−a1e

2ηλ
)

+4ηλ(ηλ+1)
)

+8a2a3c
2
1λe

2ηλ
(
2ηλ

− log
(
a2−a1e

2ηλ
)))
−8a3

2a3c
2
1κ

2λ+16a2
2a

4
1λe

4ηλ
]
, (B.3)

H4(η) = a

λ
, (B.4)

H5(η) = a

[
1
4κe

ηλ

(
2b1c2

1e
2ηλ

a2 (a2−a1e2ηλ) + b1
a1a2

(
c2

1

(
− log

(
a2−a1e

2ηλ
)

+2ηλ+2
)

+4a2a3
)
− d2

1e
ηλ

a1a2λe2ηλ+a2
2λ
−
d2

1 tan−1
(√

a1eηλ√
a2

)
√
a1a

3/2
2 λ

− a1e
2
1e
ηλ

a1λe2ηλ+a2λ

−
√
a1√
a2λ

e2
1 tan−1

(√
a1e

ηλ

√
a2

))
+ κ2e−ηλ

2a2
1λ

(
2a2

1b4λe
2ηλ+2a2a3λ(2ηλ+1)

−b1c1c5(2ηλ+1)
)

+b2γκe
ηλ+b1e

ηλ

]
, (B.5)

where we denote the constant a = 2(a2
1+1)

3a2
1λ
− 4a3κ

3a3
1λ
.

C Order κ2 solutions

In this appendix, we note down the solution of the equations (5.31)–(5.35),

ω
(bh)
3 = 1

192Λ2µ3/2φ0
4

(
64g1Λµ3/2m2

1ρφ0

(
log
(

1− ρ
√
µ

)
+log

(
ρ
√
µ

+1
))

−16Λl21m2
1φ0

(√
µ log

(
ρ
√
µ

+1
)

+log
(

1− ρ
√
µ

)(
ρ

(
− log

(
ρ
√
µ

+1
))

+√µ+ρ log(4)
)

+ρtanh−1
(
ρ
√
µ

)
−2ρLi2

(
1
2−

ρ

2√µ

)
+ρ
)

+16m1

×
(
3µρtanh−1

(
ρ
√
µ

)(
2Λ2m6φ0

3−3m3
1

)
−Λm1n

2
1φ0

(√
µ log

(
ρ
√
µ

+1
)

+log
(

1− ρ
√
µ

)(
ρ

(
− log

(
ρ
√
µ

+1
))

+√µ+ρ log(4)
)

+ρtanh−1
(
ρ
√
µ

)

−2ρLi2
(

1
2−

ρ

2√µ

)
+ρ
))
−96Λ√µq2φ0

2
(
Λq1φ0

2
(
−√µ+2

(
µ−ρ2

)
ρ

×tanh−1
(
ρ
√
µ

))
−4√µm2

1ρtanh−1
(
ρ
√
µ

))
−3Λ2√µq2

2φ0
4
(

tanh−1
(
ρ
√
µ

)
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×32
((
µ−ρ2

)
tanh−1

(
ρ
√
µ

)
+√µρ

)
+45√µρ

)
+96Λ2√µρq2

1φ0
4
(
ρ

−√µtanh−1
(
ρ
√
µ

))
+192Λ2µφ0

4
(
q6

(
ρtanh−1

(
ρ
√
µ

)
−√µ

)
+ρq5

))
, (C.1)

Φ(bh)
3 = g3ρ−

1
8µ2

(
2ρ2 tanh−1

(
ρ
√
µ

)(
q1
(
l21 +n2

1

)
−4g1µ

3/2q2
)

+µ log(ρ−√µ)

×
(
q1
(
l21 +n2

1

)
−4g1µ

3/2q2
)
−µ log(√µ+ρ)

(
q1
(
l21 +n2

1

)
−4g1µ

3/2q2
)

−8g1µ
3/2ρ2q1−8g1µ

2ρq2 +2µq2
(
l21 +n2

1

)
log
(

1− ρ
2

µ

)
−µ

(
q2
(
l21 +n2

1

)

+4l1l5 +2n1n5
)
log
(
µ−ρ2

)
+2q2

(
l21 +n2

1

)(
ρ2−µ

)
tanh−1

(
ρ
√
µ

)2

+2√µρq1
(
l21 +n2

1

)
−µ

(
q2
(
l21 +n2

1

)
−4l1l5−2n1n5

)
log(√µ+ρ)

+√µ(ρ−√µ)
(
q2
(
l21 +n2

1

)
−4l1l5−2n1n5

)
log(ρ−√µ)−√µρ

(
q2
(
l21 +n2

1

)
−4l1l5−2n1n5

)
log(√µ+ρ)+4√µρq2

(
l21 +n2

1

)
tanh−1

(
ρ
√
µ

))
+g4, (C.2)

A
(bh)
t3 = 1

8Λµ3/2φ0
2

(
2√µ

(
m1ρ

(
−4g1µρ+ l21 +n2

1 +8√µρq1φ0 +8µq2φ0
)

+4Λµφ0
2 (m6ρ+m5)

)
+2m1ρ

2 tanh−1
(
ρ
√
µ

)(
l21 +n2

1 +8µq2φ0
)

+µm1 (log(ρ−√µ)− log(√µ+ρ))
(
l21 +n2

1 +8µq2φ0
))

, (C.3)

ξ
(bh)
3 = l5√

µ
tanh−1

(
ρ
√
µ

)
+ l6, (C.4)

χ
(bh)
3 =n5t+n6, (C.5)

where mi, ni, li, qi, gj , (i = 5, 6, j = 3, 4) are the integration constants and we define
Li2(x) = PolyLog(2, x).
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