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the late-time saturation of K-complexity in the chaotic phase with that of random matrix
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1 Introduction

The notion of “complexity” is playing an increasingly important role in a number of physical
contexts [1], from computational condensed matter all the way to holographic spacetime [2].
As suggested by the colloquial meaning of ‘complexity’, such a quantity should capture the
notion of how ‘complicated’ a physical system is. Quantum mechanically such a notion
could refer to states, say with respect to some chosen ‘simple’ reference state, or operators,
or perhaps some combination thereof. In fact, a particularly natural notion of complexity is
associated with the time evolution generated by the Hamiltonian itself. A mathematically
precise definition of the complexity of time evolution under a given Hamiltonian is given
by Krylov complexity [3–5] or ‘K-complexity’ for short. To date, several aspects of Krylov
complexity have been studied in various setups and systems, for example [6–20].

Unitary evolution under a quantum Hamiltonian sends an initial operator O0 to its
Heisenberg-evolved time-dependent version eiHtO0e

−iHt, exploring thus over time the space
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spanned by successive commutators of the form [H, [H, · · · [H, [O0]]]. In this way the initial
operator O0 explores a larger and larger subspace of the Hilbert space of operators, and
a natural notion of complexity should quantify how quickly this spread occurs, and fur-
thermore how big a subspace of the Hilbert space of operators is eventually explored. As
described in section 2 below, K-complexity captures exactly this notion of spread math-
ematically and allows us to quantitatively distinguish different physical systems by the
efficiency of this spread. This is done by transforming the intuitive idea of exploring higher
and higher commutators, as above, into an orthogonal basis of the Hilbert space of opera-
tors, and studying the Heisenberg dynamics with respect to this basis.

In addition to the behavior of K-complexity for given individual quantum systems,
such as the SYK model [3, 5, 6], 2D CFTs [17, 18], and more general symmetry-based
Hamiltonian systems [19, 20], it is interesting and important to categorize the possible
Krylov phenomenologies according to more universal criteria. One of the most interesting
of these is clearly the behavior of K-complexity in the class of chaotic quantum systems as
opposed to that of integrable ones, initiated in [7] for systems away from the thermodynamic
limit. Quantum integrable systems, such as the strongly interacting XXZ chain [21] or the
quadratic SYK model, are less efficient at exploring Krylov space, as evidenced for example
by their reaching a lower saturation value of K-complexity at late times. By mapping
the dynamics of operator spreading to an off-diagonal Anderson-like hopping problem on
the Krylov chain this under-saturation is linked to the (partial) localization of the wave
function on the Krylov chain [7]. Maximally chaotic systems feature a late-time complexity
saturation value which is exponential in the number of degrees of freedom [5]; interacting
integrable systems saturate at quantitatively lower values as compared to chaotic models
due to localization effects in Krylov space [7], and free systems typically depict complexity
saturation values at late times which are linear, or polynomial, in the number of degrees
of freedom [5].

In this paper we explore K-complexity in a class of quantum systems that show inte-
grable to chaotic phase transitions as a function of certain control parameters. We also
characterise, for the purpose of comparison, the behavior of K-complexity in random matrix
theory, both with and without time reversal symmetry. Interestingly we find agreement
between the late-time behavior of a quantum chaotic Hamiltonian with that in the random
matrix ensemble of the right symmetry class.

In the remainder of this paper we will introduce and review background material re-
garding K-complexity (section 2), and summarize what is known about the evolution as
a function of time (see figure 1). Section 3 will introduce the main working horse of this
study, the XXZ spin chain as well as two different integrability breaking deformations. In
section 4 we will present numerical results performed on the integrable XXZ chain and
its chaotic deformations exploring the behavior of K-complexity through the integrability-
chaos transition with particular regard to the late-time saturation value. Section 5 es-
tablishes the analogous results in pure random matrix theory (RMT), and categorizes the
K-complexity behavior of chaotic systems with and without time reversal symmetry. We
shall find agreement between the chaotic spin chain and the appropriate RMT universality
class at sufficiently late time. We end with a discussion of our results in section 6.
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Figure 1. This table summarizes the general behaviour expected from K-complexity, particularly
for finite chaotic systems with S degrees of freedom (Λ is the bandwidth of the system). It is based
on [3, 4] and [5].

2 Review of K-complexity and its late-time saturation value

Krylov complexity is a measure of operator complexification as it evolves in time. It is
defined by constructing an orthonormal basis starting with the operator itself and con-
structing orthogonal directions by iteratively commuting it with the Hamiltonian. It was
introduced in [3] as a probe of quantum chaos in the thermodynamic limit, and in [4] it
was suggested as a measure of operator complexity at all time scales for finite systems
with operators satisfying the Eigenstate Thermalization Hypothesis (ETH) [22–26]. In [5]
K-complexity was computed for complex SYK4 systems and it was shown numerically
that its time-dependent profile fits the one expected from quantum computation as well
as from holography [2, 27]. K-complexity was computed in [7] for the XXZ model which
is a strongly interacting many-body integrable system, and was shown to saturate at late
times at values below those found for SYK4 which is a maximally chaotic system [28–31].
This paper aims to bridge the gap between the integrable and the chaotic by introducing
a Hamiltonian which interpolates between the two, and studying K-complexity for a fixed
type of local operator.

We now briefly review the definition of K-complexity. Given a Hamiltonian H, an
operator O and an inner product (A|B) = 1

DTr(A†B) where D is the Hilbert space dimen-
sion, the Krylov basis is defined by an iterative orthonormalization procedure known as
the Lanczos algorithm:

1. O0 = O/‖O‖

2. For n ≥ 1: An = [H,On−1]− bn−1On−2
Compute ‖An‖
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If ‖An‖ = 0: STOP
Otherwise: define norm bn = ‖An‖ and normalized operator On = An/bn.

Here, ‖A‖ =
√

(A|A) is the norm of an operator A and it is to be understood that b0 = 0
and O−1 = 0. In this way we construct a complete ordered orthonormal basis, the Krylov
chain, adapted to the operator’s time-evolution. The value of n at which the algorithm
terminates is the Krylov space dimension, denoted by K, and in [5] it was shown that it
satisfies K ≤ D2 −D + 1. This bound is saturated in all the cases studied in this paper.
The orthonormalization coefficients bn are called the Lanczos coefficients.

The time-evolving operator can now be expanded in the Krylov basis

O(t) = eiHtO0e
−iHt =

K−1∑
n=0

φn(t)On (2.1)

where φn(t) can be thought of as the wavefunction over the Krylov basis, which satisfies,
via the Heisenberg equation, a Schrödinger-like equation

− iφ̇n(t) = bnφn−1(t) + bn+1φn+1(t) (2.2)

with boundary conditions φ−1(t) = 0 and φn(t = 0) = δ0n. From Unitarity, since the initial
operator is normalized at the first step of the Lanczos algorithm, the wavefunction φn(t)
is normalized at all times: ∑K−1

n=0 |φn(t)|2 = 1.
K-complexity is defined as the time-dependent average position over the Krylov chain

CK(t) =
K−1∑
n=0

n|φn(t)|2 . (2.3)

The behavior of CK(t) at different time scales for finite (chaotic) systems with S degrees of
freedom is summarized in figure 1. It is associated with the behavior of the Lanczos coeffi-
cients at different n scales via the wavefunction (shown schematically in the same figure).

The Krylov elements {On}K−1
n=0 can be thought of as a basis of sites |On) in a chain

of length K. The action of the Liouvillian L ≡ [H, ] relates different sites on the Krylov
chain i.e. L|On−1) = bn|On) + bn−1|On−2) and its matrix is tridiagonal. We shall denote
the eigenvalues of the Liouvillian by ωi and its eigenvectors by |ωi),

L|ωi) = ωi|ωi) i = 0, . . . ,K − 1 . (2.4)

Note that the eigenvalues of the Liouvillian in Krylov space are equal to precisely those
energy differences of the Hamiltonian, Ea − Eb, for which Oab 6= 0, where Oab are the
matrix elements of the operator O in the Hamiltonian’s energy basis {|Ea〉}Da=1. That is,

O =
D∑

a,b=1
Oab|Ea〉〈Eb| . (2.5)

In this formulation, the time-evolution of the operator is given by

|O(t)) = eiLt|O0) =
K−1∑
i=0

eiωit|ωi)(ωi|O0) . (2.6)
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From (2.1), the wavefunction φn(t) is the projection (On|O(t)). Hence the time-dependent
transition amplitude is

|φn(t)|2 =
K−1∑
i,j=0

ei(ωj−ωi)t(On|ωj)(ωj |O0)(O0|ωi)(ωi|On) (2.7)

and the long-time average of |φn(t)|2 is given by

Q0n ≡ |φn|2 = lim
T→∞

1
T

∫ T

0
|φn(t)|2dt =

K−1∑
i=0
|(O0|ωi)|2|(ωi|On)|2 . (2.8)

Note that the late-time average of the transition amplitude is normalized,

K−1∑
n=0

Q0n = 1 . (2.9)

From (2.3) and (2.8) the late-time saturation value of K-complexity is

CK =
K−1∑
n=0

n|φn|2 =
K−1∑
n=0

nQ0n , (2.10)

which will be the main object of study of this paper. Before moving on to a more con-
crete study of K-complexity, we need to clarify the role of the connected and disconnected
contributions to the various quantities just introduced.

2.1 Effect of operator’s trace on late-time saturation value of K-complexity

In this section we discuss the effect of the operator’s trace on the late-time saturation value
of K-complexity. It can be directly linked to the influence of the disconnected part of the
two-point function on its late-time plateau and, just like when studying the latter, in order
to probe universal effects due to chaotic behavior, one may work with operators with a zero
one-point function or subtract it explicitly if it is initially non-zero. For a hermitian nor-
malized operator written in the energy basis as in (2.5), the two-point function is given by

φ0(t) = 1
D

Tr
[
O†O(t)

]
= 1
D

D∑
a,b=1

|Oab|2ei(Ea−Eb)t . (2.11)

From which Q00 is obtained by setting n = 0 in (2.8):

Q00 ≡ |φ0|2 = lim
T→∞

1
T

∫ T

0
|φ0(t)|2dt

= 1
D2 lim

T→∞

1
T

∫ T

0

D∑
a,b,c,d=1

|Oab|2|Ocd|2ei(Ea−Eb+Ec−Ed)tdt

= 1
D2

[ D∑
a,b=1

|Oaa|2|Obb|2 +
D∑

a 6=b=1
|Oab|4

]
, (2.12)
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where in the last step we assumed the absence of degeneracies or rational relations in the
energy spectrum. In appendix A it is shown that using the “ETH” ansatz for RMT [32], i.e.

Oab = Oδab + 1√
D
rab , (2.13)

where O is O(1) and the matrix rab is drawn from a Gaussian ensemble with zero mean
and unit variance, the scaling of Q00 is as follows

Q00 ∼ O(1) +O

( 1
D

)
. (2.14)

In the case of the two-point function, to better probe the spectral correlations in
the system, one usually studies the connected part which amounts to using the traceless
operator:

Õ ≡ O − 1
D
Tr(O)1 . (2.15)

Using the traceless version of the operator (2.15), it is shown in appendix A that
together with the ansatz (2.13), the connected version of Q00 behaves as

Q
(c)
00 ∼ O

( 1
D2

)
. (2.16)

From (2.10), if Q00 is significantly large compared to Q0n for n > 0 (taking (2.9) into
account), the saturation value of K-complexity will be pulled down to smaller values.
From (2.14) it is clear that Q00 can be as large as permitted by normalization for an
operator with non-zero trace, its value being controlled by the one-point function, but this
does not reflect any universal behaviour of the autocorrelation function. In order to study
universal features, one must work with operators with a zero one-point function, since in
that case the two-point function is directly equal to its connected part, and ETH predicts
that the latter plateaus at 1

D , while the corresponding transition probability plateaus at
Q

(c)
00 ∼ 1

D2 . In chaotic systems, this is consistent with the observation that Q(c)
0n approaches

O
(

1
D2

)
∼ 1

K for all n = 0, . . . ,K − 1. This means that for chaotic systems the late-time
transition probability is more uniform as a function of n, compatible with the normalization∑K−1
n=0 Q0n = 1 and implying a K-complexity long-time average which approaches ∼ K

2 as
seen for example in complex SYK4 [5]. For the effect of the 1-point function on the
saturation value of K-complexity in the complex SYK4 model see appendix A.1.

3 XXZ and its integrability breaking

The Heisenberg XXZ spin chain is an integrable model which exhibits Poisson level-spacing
statistics. The model consists of nearest-neighbor spin interactions

HXXZ =
N−1∑
i=1

J
(
Sxi S

x
i+1 + Syi S

y
i+1

)
+ JzzS

z
i S

z
i+1 (3.1)
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where Sαi = 1/2σαi and σαi are the Pauli matrices with α = x, y, z. In a series of papers it
was shown that even the addition of a local operator such as

Hd = Szj (3.2)

to the XXZ Hamiltonian can break its integrability [33–38] and spectral statistics will show
chaotic behaviour. Another type of integrability breaking term [39] we will consider is the
next-to-nearest-neighbour operator

HNNN =
N−2∑
i=1

Szi S
z
i+2 . (3.3)

We will demonstrate the transition from integrability to chaos by studying the dis-
tribution of the ratios of consecutive level spacings [40, 41], and show that increasing the
strength of the integrability breaking term from zero will result in a transition in the spec-
tral behaviour from integrable to chaotic. For an ordered set of energy eigenvalues {Ei}Di=1,
consecutive level spacings are defined as si = Ei+1 −Ei and consecutive ratios are defined
as the set ri = si/si−1. The distribution P (r) was computed in [40] for the random ma-
trix ensembles GOE, GUE and GSE. It is useful to define the quantity r̃i = min

(
ri,

1
ri

)
with distribution P (r̃) = 2P (r)θ(r − 1) whose mean 〈r̃〉 can be used as an indicator to
distinguish an integrable system from a chaotic one. For a Poissonian distribution of
level-spacings P (s) = e−s, the distribution of r is given by P (r) = (1 + r)−2 [41] and
〈r̃〉 = 2 ln 2− 1 ≈ 0.38629. For the Wigner ensembles (GOE, GUE and GSE) distinguished
by their Dyson index (β = 1, 2 and 4 respectively) it was shown in [40] that a very good ap-
proximation for practical purposes is P (r) = 1

Zβ

(r+r2)β

(1+r+r2)1+ 3
2β

, where Zβ is a normalization
constant. The 〈r̃〉 value for GOE is approximately 0.53590.

3.1 Choice of sector and local operator

The XXZ Hamiltonian commutes with the operator representing the total spin in the z-
direction

M =
N∑
i=1

Szi (3.4)

and is invariant under reflection with respect to the edge of the chain, represented by the
parity operator P [42]. To avoid degeneracies in the Hamiltonian spectrum we will work in
a sector with fixed total spin and parity. To study K-complexity we will use open boundary
conditions and focus on a local operator O which respects these two symmetries and keeps
the computation within the chosen sector:

O = Szi + SzN−i+1 , (3.5)

where i is chosen to be near the center of the chain. This operator has non-zero trace
and we remove its trace according to (2.15) before performing the Lanczos algorithm.
Appendix A.2 discusses the effect of the one-point function on the saturation value of
K-complexity in pure XXZ.
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When adding the integrability breaking term (3.2), we keep within the sector by using
an odd-length chain and situating the impurity at the middle of the chain:

Hd = Sz(N+1)/2 . (3.6)

The integrability breaking term (3.3) commutes both with M and with P .

3.2 r-statistics for XXZ with integrability breaking terms

We now present results for the r-statistics of the following interpolating Hamiltonians:

H = HXXZ + εdHd (3.7)

and
H = HXXZ + J (2)

zz HNNN (3.8)

where HXXZ is given in (3.1), Hd in (3.6) and HNNN is given in (3.3). We work with
various values of Jzz and set J = 1 in all cases. Some of the Hamiltonians and operators
used in the numerical computations were constructed using the QuSpin package [43]. The
Lanczos algorithm and K-complexity computations were performed using the codes we
developed in [5] and [7].

Figures 2a and 2b show the r̃ statistics for the Hamiltonians (3.7) and (3.8) respec-
tively. We plot the distributions of r̃ for various values of the coefficient of the integrability
breaking terms, as well as the mean values 〈r̃〉. We compare the results for both P (r̃)
and 〈r̃〉 with the analytical results for Poisson and GOE mentioned in section 3. We see
that increasing the strength of the integrability breaking term makes the system transition
from displaying integrable statistics to displaying chaotic statistics. Note that after the
transition, increasing the value of the coefficient of the integrability breaking term even
further makes the system less chaotic, as can be seen in figure 2.

4 K-complexity and integrability-chaos transition

In [7] it was shown that the saturation value of K-complexity is sensitive to the integra-
bility/chaos of a model, by comparing results for complex SYK4 systems with results for
XXZ systems of similar Krylov space dimensions. It was argued that the time evolution
on the Krylov chain given by Equation (2.2) can be mapped to an Anderson problem with
off-diagonal disorder. Higher disorder would imply some amount of localization for the
Liouvillian eigenvectors and hence a smaller saturation value of K-complexity, while less
disorder would imply less localization and higher saturation values of K-complexity. In this
section we study the Lanczos coefficient statistics and saturation value of K-complexity for
the interpolating Hamiltonians given by (3.7) and (3.8), with an operator of the type (3.5).
By increasing the value of the coefficient of the integrability breaking term we interpolate
from a fully integrable model (XXZ) to a chaotic model, as can be seen through the 〈r̃〉
transition in figure 2. In figure 3 we plot the distribution of the log of ratios of consecutive
Lanczos coefficients log(bn/bn+1). The mean of this distribution is ≈ 0 and the standard
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r
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HXXZ + dHd for N = 19, M = 7, P = + 1, Jzz = 1.1

(a) r̃ statistics for HXXZ + εdHd.

0.00 0.25 0.50 0.75 1.00
r

0

1

2

P(
r)

0 10 3 10 2 10 1 100 101

J(2)
zz

0.4

0.5
r

Poisson

GOE

HXXZ + J(2)
zz HNNN for N = 19, M = 7, P = + 1, Jzz = 1.1

(b) r̃ statistics for HXXZ + J
(2)
zz HNNN .

Figure 2. Left: probability distribution functions for the r̃ statistics of (3.7) (top) and (3.8)
(bottom) with increasing value of εd and J

(2)
zz respectively, computed for N = 19 spins in the

M = 7, P = +1 sector with Jzz = 1.1. The purple line represents the analytical result for P (r̃) in
the case of Poissonian level-spacing statistics, while the yellow line represents the analytical result
for GOE ensembles. Right: the value of 〈r̃〉 as a function of εd (top) and J (2)

zz (bottom). Horizontal
lines represent analytical values for Poisson (purple) and GOE (yellow). The colored dots represent
point for which we plotted the P (r̃) distribution function in the left panel, while the gray dots
represent additional data points.

deviation generally decreases with the strength of integrability breaking, indicating less
disorder in the Lanczos sequence.

Indeed, we find consistently that the saturation value of K-complexity is affected by
the strength of the integrability breaking term, and generally increases with the value of the
integrability breaking coefficient, as can be seen in figures 4 and 5. The late-time saturation
value of K-complexity as a fraction of the Krylov space dimension can be read off from
the vertical lines in the figures, where the x-axis was scaled according to the corresponding
Krylov space dimension. Another interesting aspect is the time-dependent profile of K-
complexity at various time scales and for different integrability breaking strength, for which
results are presented in figure 6. Again we find a consistent relationship between the
strength of the integrability breaking term and the value of K-complexity.
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Figure 3. Distribution of the log of consecutive ratios of Lanczos coefficients. Inset: standard-
deviation σ of this distribution as a function of the corresponding integrability breaking term.
The standard deviation generally decreases with the coefficient of the integrability breaking term.
Comparing with the corresponding computations of the K-complexity saturation values in figures 4b
and 5b, this is consistent with the phenomenology described in [7] namely that the saturation values
of K-complexity will increase with decreasing disorder in the Lanczos coefficients.
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Figure 4. Late-time transition probability results for local operator of the form (3.5) with trace
removed, for HXXZ with an Hd integrability-breaking term. The vertical lines represent the late-
time saturation value of KC as a fraction of the Krylov space dimension. Left: for N = 11 spins in
the sector M = 4, P = +1 with Jzz = 1.1 for the operator O = Sz

6 . The Krylov space dimension is
K = 28731. Right: for N = 11 spins in the sector M = 6, P = +1 with Jzz = 1.1 for the operator
O = Sz

5 + Sz
7 . For this system the Krylov space dimension is K = 55461. Inset: dependence of KC

saturation value on the strength of the integrability-breaking term.

– 10 –



J
H
E
P
0
7
(
2
0
2
2
)
1
5
1

0.0 0.2 0.4 0.6 0.8 1.0
n / K

10 2

10 1

100

101

Q
0n

K

HXXZ + J(2)
zz HNNN with = Sz

5 + Sz
7, N = 11, M = 4, P = + 1, Jzz = 0.72

J(2)
zz

0.0
0.005
0.02
0.07
0.1
0.4
0.7
0.76

0.0 0.5
J(2)
zz

0.3

0.4
C K

/K

(a)

0.0 0.2 0.4 0.6 0.8 1.0
n / K

10 2

10 1

100

101

Q
0n

K

HXXZ + J(2)
zz HNNN with = Sz

6, N = 11, M = 4, P = + 1, Jzz = 0.91
J(2)
zz

0.0
0.005
0.03
0.1
0.25
0.4
0.5
0.7
0.76

0.0 0.5
J(2)
zz

0.35
0.40

C K
/K

(b)

Figure 5. Results for the saturation value of K-complexity computed for a local operator of the
form (3.5) with trace removed, for HXXZ + J

(2)
zz HNNN integrability-breaking term in the sector

N = 11,M = 4, P = +1. Left: with Jzz = 0.72, for the operator O = Sz
5 + Sz

7 . Right: with
Jzz = 0.91, for the operator O = Sz

6 . For both systems the Krylov space dimension is K = 28731.
Inset: dependence of KC saturation value on the strength of the integrability-breaking term.
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Figure 6. Results for the time-dependent profile of K-complexity at increasing time scales, for
the same system of figure 4b. The Hamiltonian is HXXZ + εdHd with N = 11 spins in the
M = 6, P = +1 sector with Jzz = 1.1, and the operator is O = Sz

5 + Sz
7 with trace removed. The

Krylov space dimension for this setup is K = 55461 which equals the upper bound for the Krylov
space dimension. The final plot shows the saturation values of K-complexity, with the value of K/2
shown for reference.
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5 RMT results and dependence on universality class

This section gathers results on the saturation value of K-complexity for different operators
in Random Matrix Theory, to be used as a reference to compare with the results obtained
in the chaotic regime of the deformed XXZ Hamiltonian studied in sections 3 and 4.

We shall consider systems with a Hilbert space of dimension D, equipped with a
random Hamiltonian H drawn from a Gaussian ensemble, with probability measure

p(H)DH = exp
{
− D

2σ2Tr
(
H†H

)}
DH , (5.1)

where DH is a flat measure, the standard deviation σ sets the energy units (and was set
to 1 in the numerics), and H is a complex hermitian or a real symmetric matrix depending
on whether we work with the Gaussian Unitary Ensemble (GUE) or with the Gaussian
Orthogonal Ensemble (GOE), respectively1 [44].

5.1 Influence of the structure of the seed operator

A detailed numerical study reveals that the behavior of K-complexity, and in particular
its late-time saturation value, is not only controlled by the statistics of the Hamiltonian
spectrum, but also influenced by the structure of the operator under consideration. As an
extreme illustration of this, appendix B shows analytically that an operator that is constant
in the energy basis, which is a very atypical observable in any system, features a late-
time K-complexity saturation value of ∼ K

2 regardless of the spectrum of the underlying
Hamiltonian. In contrast, a typical operator in RMT should satisfy the RMT operator
Ansatz (see e.g. [32]) for its matrix elements in the energy basis:

〈Ea|O|Eb〉 = Oδab + 1√
D
rab , (5.2)

where all {rab} are independent random numbers2 drawn from a normal distribution with
zero mean and unit variance; they are either real or complex depending on the universality
class at hand. The one-point function term O in (5.2) will not be important for the current
analysis because, as explained in appendix A, we shall work with traceless operators.

Operators satisfying the Ansatz (5.2) can be constructed as sparse operators in the
basis in which the Hamiltonian is drawn from the Gaussian ensemble, or as random matrices
with independent entries. In both cases, the change-of-basis matrix that brings the operator
to the energy basis is a random unitary drawn from the Haar measure and for sufficiently
large D they both agree with the structure (5.2). Results on the late-time behavior of
K-complexity for both operator choices in the different universality classes can be found
in figure 7, which suggests that the saturation value of K-complexity is sensitive to the
universality class to which the Hamiltonian belongs as well as to the choice of operator
and, in particular, to whether the operator breaks time-reversal or not. Note that, in
general, the complexity saturation values are below K

2 .
1The third canonical Gaussian ensemble, which we don’t study in this article, is the Gaussian Symplectic

Ensemble (GSE). It addresses time-reversal-invariant fermionic systems displaying Kramer’s degeneracy.
2In fact, only those rab with a ≥ b are independent, as the rest are determined from the latter if the

operator is hermitian.
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Figure 7. Long-time averaged operator wave packet and saturation value of K-complexity for dif-
ferent operator choices and Hamiltonians drawn from two RMT ensembles. K-complexity saturation
values are marked by vertical lines. The Hilbert space dimension chosen was D = 126, and the
obtained Krylov dimension saturates the upper bound [5], verifying K = D2−D+1 = 15751. Left:
GOE Hamiltonian. Operator choices: a sparse operator in the basis in which the Hamiltonian is
drawn, a random real operator drawn from a Gaussian distribution in the same basis, and a random
complex operator again drawn in the same basis. We observe that the random operators saturate
at higher values as compared to the sparse operator, and within them, the one that breaks time-
reversal (i.e. the complex one) has the highest complexity saturation value. Right: same choices
of operator, but for a Hamiltonian drawn from GUE. In this case time reversal is anyway broken
by the Hamiltonian itself, which is why the two random operators have quantitatively very similar
features, both having a complexity saturation value slightly higher than that of the sparse operator.

5.2 Deviations from the RMT Ansatz: ETH operators

In [5] we studied complex SYK4, which is a chaotic system with richer features than
just RMT and displayed a complexity saturation value close to K

2 . Two features may
be regarded as responsible for that behavior: the Wigner-Dyson statistics satisfied by
the Hamiltonian spectrum, and the fact that the operators studied satisfy the eigenstate
thermalization hypothesis (ETH) [22, 25, 26, 32, 45], which is an extension of the RMT
Ansatz (5.2) that accounts for a smoothly varying density of states:

〈Ea|O|Eb〉 = O(E)δab + e−
S(E)

2 fO(E,ω) rab (5.3)

where rab are independent (up to hermiticity), identically distributed normal random vari-
ables with zero mean and unit variance, and E ≡ (Ea+Eb)/2 and ω ≡ Ea−Eb are, respec-
tively, the average energy and the energy difference between the corresponding levels. O(E)
and S(E) are the microcanonical one-point function and entropy, respectively, and the func-
tion fO(E,ω) gives the Fourier transform of the connected two-point function, sometimes
denoted spectral function [3]. Disregarding the E-dependence, the high-frequency tails of
this function are known to be bounded from above by an exponential profile:

fO(E,ω) . e
− ω
ET , (5.4)

where ET is the Thouless energy, which is itself constrained by a system-dependent up-
per bound, and controls the regime of applicability of RMT. For the sake of the current

– 13 –



J
H
E
P
0
7
(
2
0
2
2
)
1
5
1

analysis, we generated operators following the Ansatz (5.3) where the E-dependence was
taken to be constant and the ω-dependence was chosen to saturate the bound (5.4) with
an adjustable Thouless energy. The (rescaled) off-diagonal elements in the energy basis
{rab} were chosen to be either real or complex. The saturation value of K-complexity as a
function of the Thouless energy for the different choices of Hamiltonian and operator are
depicted in figure 8. The different choices of Hamiltonian and operator can be classified
according to how they comport regarding time reversal. If we define the time reversal trans-
formation T as an anti-unitary transformation that acts as complex conjugation T ∗= K

in the basis in which the Hamiltonian is drawn from the Gaussian ensemble, we can make
the following identifications:

• GOE + real rab: this situation matches that of a time-reversal preserving opera-
tor in a system with a Hamiltonian that preserves T , as they both are real in the
computational basis,3 and therefore the operator will still be real in the energy basis.

• GOE + complex rab: this case describes the situation in which the Hamiltonian is T -
invariant but the operator is not. The operator matrix elements in the computational
basis will be complex and, since the change-of-basis matrix for going to the energy
basis is a real orthogonal matrix, it will also have complex entries in the energy basis.

• GUE + complex rab: since the Hamiltonian already breaks time reversal, the matrix
of eigenvectors expressed in coordinates over the computational basis will be a random
unitary, and hence in general the operator will have complex entries in the energy
basis regardless of whether it was real or complex in the computational basis (i.e.
regardless of whether it is invariant under T or not, respectively.)

• GUE + real rab: along the lines of the previous point, we shall conclude that this
configuration is just an atypical case, not particularly physically meaningful for dis-
cussions regarding time reversal. We have nevertheless still kept the results for this
case in figure 8 for the sake of completeness of the analysis.

Disregarding for the discussion the seemingly unphysical GUE+real configuration, fig-
ure 8 illustrates the fact that in systems where time-reversal is broken, either by the
Hamiltonian or by the operator, depict a systematically higher K-complexity saturation
value. We have also observed a continuous dependence of the saturation value on the
Thouless energy that can pump up the former from the lower limiting value attained when
the observable satisfies the pure RMT operator Ansatz throughout the spectrum.

5.3 ETH in the deformed XXZ

As the integrability-breaking defects studied in section 3 are made stronger, the spectrum
of the Hamiltonian of the deformed XXZ chain transitions from Poissonian statistics to
Wigner-Dyson statistics. At the same time, it is possible to see that the seed operator
under consideration transitions from a non-ETH regime when εd is small to having and

3For simplicity, here we refer to the basis in which the Hamiltonian is drawn from the corresponding
ensemble as the computational basis.
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Figure 8. K-complexity saturation value as a function of the Thouless energy for different ETH
operators (either real or complex in the energy basis) with Hamiltonians drawn from two different
RMT ensembles (GOE and GUE). The horizontal lines mark the asymptotic value for ET → ∞,
corresponding to the case of observables satisfying the pure RMT operator Ansatz. In order to
mod out system-dependent scaling of the energy spectrum due to the choice of normalization of the
Hamiltonian, the Thouless energy was normalized by the total bandwith Λ, allowing for potential
comparisons with other systems.

ETH structure when εd attains the value that makes the spectrum of the Hamiltonian
chaotic. This phenomenon was already studied in works like [46–48].

Here we present results on ETH checks for two extreme values of εd = 0, 0.94 for the
system and operator that were analyzed in figure 4b. Figure 9 displays the result. In the
integrable regime, the operator does not fulfill the ETH Ansatz because the fluctuations
are not Gaussian. In the chaotic regime (εd = 0.94) the operator is seen to agree with the
ETH Ansatz displaying a Thouless energy normalized by the spectral bandwidth of roughly
ET
Λ ∼ 0.05. In this chaotic regime, we have that the spectrum of the Hamiltonian is chaotic
and that the operator fulfills the ETH Ansatz with a certain Thouless energy; since these
are precisely the only two ingredients defining the systems studied in subsection 5.2 and
depicted in figure 8, one can compare the K-complexity saturation values. The universality
class at hand for our deformed XXZ is “GOE+real”, and we note from figure 8 that indeed,
for a Thouless energy satisfying ET

Λ ∼ 0.05 one expects a K-complexity saturation value
around 0.4K, consistent with what we found in figure 4b when εd = 0.94.

6 Discussion

We have explored the behavior of K-complexity of a strongly coupled integrable model with
an integrability breaking deformation both at the integrable point and in the chaotic phase.
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Figure 9. ETH checks for the system and operator studied in figure 4b. On the left we show the
integrable regime εd = 0 while on the right we consider the chaotic regime with εd = 0.94. Since
we are studying operators with a zero one-point function, the ETH check can focus on just the off-
diagonal elements of the operator in the energy basis. We note, in agreement with previous works
(such as [46–48]), that the difference between the integrable and the chaotic phase is subtle: in both
cases it is possible to extract a smooth envelope f(ωab) for the off-diagonal matrix elements of the
operator as a function of the energy difference ωab ≡ Ea − Eb, whose high-frequency tail can be
fitted by an exponential form f(ω) = Ce−ω/ET yielding in both cases a very similar Thouless energy
ET /Λ ∼ 0.055 (the r-value of the fit being around 0.992), where Λ denotes the spectral bandwidth.
The difference between the integrable and the chaotic case is that in the former the fluctuations of
the off-diagonal elements are not quite Gaussian, and hence they cannot be claimed to fulfill ETH,
whereas they become more Gaussian in the latter, where the integrability-breaking defect is stronger.
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The purpose of this study is to delineate what kind of behavior this notion of complexity
has in a chaotic system as opposed to a strongly coupled integrable one. We have found
further strong evidence for the picture proposed in [5, 7] namely that an exponentially
large K-complexity saturation value at late times is a generic feature of a quantum chaotic
system, while integrable systems, even strongly coupled ones which do not show exact
degeneracies of energy levels, have lower saturation values. We studied K-complexity and
its late-time saturation value for XXZ systems with two types of integrability breaking
terms and found that increasing the value of the coefficient of the integrability breaking
term, results in an increasing value for the late-time saturation of K-complexity. We further
compared the late-time saturation value in the chaotic regime to the results for RMT in
the corresponding universality class, finding reasonable agreement. Along the way, we
noted that non-zero operator one-point functions can influence the late-time behavior of
K-complexity in a similar fashion to how the disconnected piece of the two-point function
governs the late-time regime of the correlator if it is not subtracted.

We will end this discussion with a number of open questions and further avenues of
research surrounding K-complexity. Firstly, it would clearly be of great interest to develop
a more analytical understanding of the non-trivial phenomena we have uncovered in this
paper, perhaps by attacking it from the angle of ‘Krylov localization’ as in [7], that is to
analytically establish localization of the relevant part of the wave-function on the Krylov
chain. A further interesting avenue to explore concerns time-dependent Hamiltonians, and
how one might develop a viable generalization of Krylov complexity in such circumstances.4
Finally, since a particularly interesting application of K-complexity is in the context of holo-
graphic duality, it is desirable to incorporate K-complexity into the holographic dictionary.
In this context it is intriguing to remark that [49] recently proposed a discrete holographic
dual of the aperiodic XXZ chain. It may be of interest to generalize our results to this
case, to allow a more direct comparison to a simple discrete holographic code.
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A Connected part of autocorrelation function and saturation value of
K-complexity

This appendix analyses the impact of the operator one-point function on the saturation
value of K-complexity at late times. Let us first remind how the operator one-point func-

4Work in progress with J.L.F. Barbón.
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tion dominates the two-point function plateau. We shall do so by assuming that the
operator satisfies the Eigenstate Thermalization Hypothesis (ETH). Consider a hermitian
normalized operator whose elements in the energy basis are given by

O =
D∑

a,b=1
Oab|Ea〉〈Eb| (A.1)

where D is the Hilbert space dimension. Note that in (A.1) the operator matrix elements
in the energy basis are defined such that Oab = 〈Ea|O|Eb〉. With this convention, the ETH
Anstatz takes the usual form; suppressing energy dependence in the matrix elements of
the Ansatz (since we are interested in order-of-magnitude estimates), it boils down to the
RMT operator Ansatz:

Oab = Oδab + 1√
D
rab, (A.2)

where O gives (up to non-perturbative corrections) the one-point function of the operator
and is taken not to scale with D, and the matrix (rab) is drawn from a Gaussian ensemble
with unit variance (and hence the elements rab are also of order D0). Note that the
operator (A.1) with the matrix elements given by (A.2) is normalized5 according to the
operator inner product

‖O‖2 = 1
D

Tr
[
O†O

]
= 1
D

D∑
a,b=1

|Oab|2 = 1. (A.3)

The autocorrelation function is given by

φ0(t) =
〈
O†O(t)

〉
= 1
D

Tr
[
O†O(t)

]
= 1
D

D∑
a,b=1

|Oab|2ei(Ea−Eb)t . (A.4)

Due to normalization of the operator (A.3), the two-point function (A.4) starts at 1, i.e.
φ0(0) = 1. The Ansatz (A.2) has some implications on the late-time behavior of φ0(t),
which we can study by performing a long-time average:

φ0 := lim
T→+∞

1
T

∫ T

0
dt φ0(t). (A.5)

We can now use that, for ω 6= 0:

lim
T→+∞

1
T

∫ T

0
dt eiωt = lim

T→+∞

1
T

[
eiωt

iω

]∣∣∣∣∣
T

t=0
= 1
iω

lim
T→+∞

eiωT − 1
T

= 0. (A.6)

With this, assuming no exact degeneracies in the energy spectrum, the long-time average
of (A.4) eliminates the contribution of the off-diagonal matrix elements and yields:

φ0 = 1
D

D∑
a=1
|Oaa|2 = 1

D

D∑
a=1

(
O + raa√

D

)2
= O2 + 2O

D3/2

D∑
a=1

raa + 1
D2

D∑
a=1

r2
aa, (A.7)

5By this, we mean that the norm of the operator whose matrix elements satisfy (A.2) doesn’t scale withD.
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where in the second equality we have used the Ansatz (A.2). We thus conclude that the
long-time average of the two-point function is dominated by the square of the one-point
function. This fact is also in qualitative agreement with large-N factorization, i.e. in the
thermodynamic limit two-point function becomes disconnected at late times.

In order to probe spectral correlations we can choose to subtract explicitly the one-
point function squared from the auto-correlation function (A.4), which defines the so-called
connected two-point function:

φ
(c)
0 (t) :=

〈(
O − 〈O〉

)(
O(t)− 〈O〉

)〉
=
〈
OO(t)

〉
−
〈
O
〉2
, (A.8)

where, to alleviate notational crowding, we have implicitly assumed that O is hermitian,
and we have made use of the fact that the one-point function is time-independent,

〈
O(t)

〉
=〈

O
〉
. Again, making use of the expression of the operator O in the energy basis, we can

write (A.8) as:

φ
(c)
0 (t) = 1

D

D∑
a,b=1

|Oab|2eit(Ea−Eb) −
1
D2

D∑
a,b=1

OaaObb, (A.9)

where we have used that 〈O〉 = 1
DTr[O] is the infinite-temperature one-point function of

the operator O. As defined in (A.8), the connected two-point function is not normalized so
that its value at t = 0 is exactly one, but this is not important because we can still prove
that φ(c)

0 (t = 0) is of order one, i.e. its value doesn’t scale with D:

φ
(c)
0 (t = 0) = 1

D

D∑
a,b=1

|Oab|2 −
1
D2

D∑
a,b=2

OaaObb = 1
D2

D∑
a,b=1

|rab|2 −
1
D

 1
D2

D∑
a,b=1

raarbb

 ,
(A.10)

as can be seen plugging in the Ansatz (A.2). We note that the leading term in (A.10) is the
first term of the last expression, consisting of a sum of D2 numbers of order one, divided
by a D2 factor, and hence φ(c)

0 (t = 0) is a number of order D0.
Now, we can estimate the height of the late-time plateau by computing the long-time

average of the connected two-point function:

φ
(c)
0 = lim

T→∞

1
T

∫ T

0
dt φ

(c)
0 (t) = 1

D

D∑
a=1

O2
aa −

1
D2

D∑
a,b=1

OaaObb. (A.11)

Plugging the Ansatz (A.2) in (A.11) we again find that the terms involving the order-one
quantity O cancel out, yielding:

φ
(c)
0 = 1

D

 1
D

D∑
a=1

r2
aa + 1

D2

D∑
a,b=1

raarbb

 . (A.12)

The quantity inside the braces is of order D0. We thus conclude that the connected two-
point function has a long-time average of order 1

D , and that this is deduced from the
ETH-like Ansatz (A.2). To argue that φ(c)

0 (t) actually plateaus at 1
D , one should prove
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that its long time variance is (exponentially) suppressed,6 so that the function remains
close to its long-time average at late times. We shall do that later, when studying the
long time average of the square of the two-point function. But before that, we can note
that there was a simpler way to derive the previous results, by defining a new operator Õ
obtained by subtracting the one-point function from the initial operator O:

Õ = O − 1〈O〉 = O − 1
D
Tr[O]1. (A.13)

Using the operator Ansatz for O given in (A.2), we note that the matrix elements of Õ in
the energy basis are given by:

Õab = 1√
D
r̃ab, (A.14)

where all r̃ab are of order one and the matrix R̃ ≡ (r̃ab) is related to the matrix R ≡ (rab)
through:

R̃ = R− 1〈R〉. (A.15)

In particular:

r̃ab = rab −
δab
D

D∑
c=1

rcc, (A.16)

from where it is apparent that all r̃ab are of order one and that they follow the exact
constraint Tr[R̃] = ∑D

a=1 r̃aa = 0.
This operator redefinition is useful because we immediately note that the connected

two-point function of O is identically equal to the full two-point function of Õ:

φ
(c)
0 (t) =

〈
ÕÕ(t)

〉
. (A.17)

And thus, using the expression of Õ in the energy basis (A.14) it is straightforward to see
that:

φ
(c)
0 (t) = 1

D

D∑
a,b=1

|Õab|2eit(Ea−Eb) = 1
D2

D∑
a,b=1

|r̃ab|2eit(Ea−Eb), (A.18)

from where it is immediate that φ(c)
0 (t = 0) ∼ D0 and that φ(c)

0 ∼ 1
D .

A similar argument can now be applied to transition probabilities on the Krylov chain.
The long-time average of the transition probability is given by (2.8)

Q0n := |φn|2 = lim
T→∞

1
T

∫ T

0
|φn(t)|2dt, (A.19)

which for n = 0 takes the form (2.12). From the Ansatz (A.2) we find that:

1
D2

D∑
a,b=1

|Oaa|2|Obb|2 = O4 + O
( 1
D

)
. (A.20)

1
D2

D∑
a 6=b=1

|Oab|4 = O
( 1
D2

)
. (A.21)

6We shall refer to quantities of order 1
D

or smaller as exponentially suppressed because the Hilbert space
dimension is typically exponential in the number of degrees of freedom S of the system, i.e. D ∼ eS .
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We thus find that the long-time-average of the square of the autocorrelation function be-
haves like

|φ0|2 ∼ O(1) +O

( 1
D

)
. (A.22)

The time averaged transition probability Q00 takes an order-one value controlled by the one-
point function. In order to see an exponentially suppressed plateau, we again need to work
with the connected two-point function φ

(c)
0 (t), and the associated probability P

(c)
00 (t) :=

φ
(c)
0 (t)2 (note that the two-point function is always real provided that the operator is

hermitian, which we assume), whose long-time average we shall denote Q(c)
00 . As we showed

in (A.10), φ(c)
0 (t = 0) ∼ 1, and therefore P (c)

00 (t = 0) ∼ 1. Likewise, Q(c)
00 can be expressed

in terms of the matrix elements of the traceless operator Õ:

Q
(c)
00 = 1

D2

D∑
a,b=1

[
Õ2
aaÕ

2
bb + |Õab|4

]
= 1
D4

D∑
a,b=1

[
r̃2
aar̃

2
bb + |r̃ab|4

]
∼ D2

D4 = 1
D2 . (A.23)

And hence P (c)
00 (t) plateaus7 at late times at 1

D2 ∼ e−2S . Incidentally, note that Q(c)
00 gives

the long-time variance of φ(c)
0 (t), and hence showing that (A.23) is suppressed concludes

the proof that the connected two-point function is close to the plateau value at late times,
as anticipated above.

A.1 Example: hopping vs number operator in cSYK4

In a previous work on cSYK4 [5], we studied the K-complexity of hopping operators,
hij = c†icj +h.c. These operators have a zero one-point function, and hence their two-point
function is connected. However, non-universal effects due to a non-zero one-point function
can be probed if we consider, for example, an on-site number operator ni = c†ici. Indeed,
since in cSYK4 we work in fixed occupation sectors, the one-point functions of the on-site
number operators are constrained by the relation:

N =
L∑
i=1

ni =⇒ 〈N〉 =
L∑
i=1
〈ni〉, (A.24)

where N is the total number operator and L is the number of sites (or rather, the number of
complex fermions). Hence, (A.24) together with the fact that 〈ni〉 ≥ 0 implies that at least
one on-site number operator needs to have a non-zero expectation value whenever 〈N〉 > 0.
In fact, the chaotic character of cSYK4 seems to distribute equally the expectation value
accross all the ni, and given a fixed occupation sector we can thus estimate 〈ni〉 ∼ 〈N〉L for
all i = 1, . . . , L, i.e. the one-point function equals the filling ratio.

This non-zero one-point function controls the averaged transition probability Q00,
which becomes of order one in system size and, as discussed above, has the effect of lowering
the K-complexity saturation value in (2.10). Figure 10 illustrates this claim.

7Actually, in order to show that P (c)
00 (t) plateaus at the long-time average Q(c)

00 , we should also show
that the long-time variance of P (c)

00 (t) is suppressed, otherwise a strongly oscillating function could still be
compatible with the long-time average prediction. This proof is doable (even though cumbersome), but
P

(c)
00 (t) ∼ e−2S at late times seems to hold for ETH operators in chaotic systems like cSYK4 according to

numerical checks.
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Figure 10. Averaged transition probabilities Q0n in cSYK4 for the hopping operator and both
the full and the subtracted version of the number operator. Vertical lines mark the estimated
K-complexity saturation value. For this system size, K = 15751 ∼ 104, and we observe that
Q00 ∼ 1 for the full number operator, signaling that indeed the one-point function dominates the
late-time regime of the transition probability. The rest of the Q0n with n > 1 for the full number
operator seem to be rather uniformly distributed, but with a lower value due to the constraint∑K−1

n=0 Q0n = 1. This eventually enforces a complexity saturation value of ∼ 0.2K, much below
the naively expected ∼ K

2 , which the hopping operator does display. Conversely, both for the
hopping operator and for the subtracted number operator, which have a zero one-point function by
construction, all the transition probabilities are rather uniformly distributed around 1

K , yielding a
K-complexity saturation value much closer to K

2 .

In order to avoid this, we can seed the Lanczos algorithm with the subtracted version
of the operator, Õ, which by construction has a zero one-point function. Following the
usual arguments [3, 50], we find that the Lanczos coefficients b̃n of Õ are in one-to-one
correspondence with the moments µ̃n of the connected two-point function of O, φ(c)

0 (t),
and that the K-complexity long-time average is given by:

CK =
K−1∑
n=0

nQ̃0n, (A.25)

where Q̃00 = Q
(c)
00 . Therefore, as argued above, for an ETH operator this last quantity will

be exponentially suppressed, hence not competing with the other uniformly distributed
Q̃0n with n > 0 and allowing for a K-complexity saturation value closer to K/2. This is
illustrated in figure 10.
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Figure 11. Long-time averaged transition probabilities for an instance of XXZ studied in [7],
this time also considering a version of the operator where the non-vanishing one-point function has
been subtracted. In contrast to the cSYK4 case, this time the subtraction of the one-point function
doesn’t alter drastically the K-complexity saturation value, since in this case undersaturation is due
to the monotonously decaying profile of Q0n that we associated to Anderson localization on the
Krylov chain in [7], together with the fact that even the connected part of the two-point function
is itself not exponentially suppressed at late times due to the integrable nature of the system.

A.2 Role of the one-point function in XXZ

This may raise some concern regarding previous work in XXZ [7], as the operators
used in that case were on-site Pauli sigma matrices, whose one-point function in fixed-
magnetization Hilbert space sectors are also constrained by the value of the total magne-
tization in the given sector, through:

Sz = 1
2

N∑
n=1

σzn −→ 〈Sz〉 = 1
2

N∑
n=1
〈σzn〉, (A.26)

where, for XXZ, N denotes the number of chain sites. Since XXZ is integrable, we don’t
necessarily assume that all 〈σzn〉 are similar, but it is anyway clear from (A.26) that in
general they need not be zero. This might make one think that the XXZ calculations should
be re-made taking as an input the subtracted version of on-site Pauli matrices. Figure 11
illustrates that, in this case, subtracting the one-point function doesn’t alter qualitatively
the results because the connected part of the two-point function in this integrable system
is already not exponentially suppressed, and hence the late-time value of the two-point
function doesn’t change drastically if one subtracts the disconnected part from it.
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B Profile of transition probability for flat operator

Consider a dense operator with constant matrix elements Oab = 1 for all a, b = 1, . . . , D.
In the Krylov basis such an operator has the following profile

|O0) =
( 1
D
, . . . ,

1
D︸ ︷︷ ︸

D(D−1)
2 terms

,

√
1
D
,

1
D
, . . . ,

1
D︸ ︷︷ ︸

D(D−1)
2 terms

)
(B.1)

such that ∑K−1
i=0 |Oi|2 = 1. We will call such an operator a ‘flat’ operator.

We recall from [7] that for an odd number of elements in the Krylov basis, which is
the case when no degeneracies are present and the operator has a non-zero projection over
all Liouvillian frequencies (in such a case K = D2 −D + 1 which is an odd number), the
Liouvillian eigenvector at the middle of its spectrum has zero eigenvalue

L|ωmiddle) = ωmiddle|ωmiddle) = 0 . (B.2)

In general, the Liovillian eigenvectors can be expanded in the Krylov basis:

|ωi) =
K−1∑
n=0

ψni|On) . (B.3)

For |ωmiddle) the coefficients ψn satisfy

ψ2n = (O2n|ωmiddle) = ψ0

n∏
i=1

b2i−1
b2i

≡ ψ0Xn (B.4)

ψ2n+1 = (O2n+1|ωmiddle) = 0 , (B.5)

where in (B.4) we defined∏n
i=1

b2i−1
b2i
≡ Xn for later convenience. Note that ψ0 is determined

by the middle element of (B.1), i.e.

ψ0 =
√

1
D

(B.6)

since in L’s eigenvector matrix, the middle element of |O0) is the first element in |ωmiddle)
as can be seen from (B.3).

With the information from (B.1), (B.4), (B.5) and (B.6) we can compute Q0n in terms
of the Lanczos coefficients. Starting with the definition (2.8)

Q0n =
K−1∑
i=0
|(O0|ωi)|2|(On|ωi)|2 (B.7)

the first element is given by

Q00 =
K−1∑
i=0
|(O0|ωi)|4 = D(D − 1) 1

D4 + 1
D2 = 2D − 1

D3 . (B.8)

where we used (B.1) directly. The next element is

Q01 =
K−1∑
i=0
|(O0|ωi)|2|(O1|ωi)|2 = 1

D2

∑
i 6=middle

|(O1|ωi)|2 + 1
D
· 0 = 1

D2 (B.9)
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where in the second equality we used the fact that the Krylov elements are normalized,
hence 1 = ∑

i 6=middle |(O1|ωi)|2 + |(O1|ωmiddle)|2 and since from (B.5), (O1|ωmiddle) = 0 we
deduce that ∑i 6=middle |(O1|ωi)|2 = 1.

Q02 =
K−1∑
i=0
|(O0|ωi)|2|(O2|ωi)|2 = 1

D2

∑
i 6=middle

|(O2|ωi)|2 + 1
D
|(O2|ωmiddle)|2

= 1
D2

(
1− 1

D
X2

1

)
+ 1
D

( 1
D
X2

1

)
= 1
D2 + X2

1
D2

(
1− 1

D

)
. (B.10)

The rest of Q0n can be computed in a similar manner, and we conclude that for n ≥ 1

Q0,2n = 1
D2 + X2

n

D2

(
1− 1

D

)
(B.11)

Q0,2n+1 = 1
D2 . (B.12)

One can check that this result is normalized

K−1∑
n=0

Q0n = 2D − 1
D3 +

(
K − 1

2

) 1
D2 +

(
K − 1

2

) 1
D2 + D − 1

D2

K−1
2∑

n=1

X2
n

D
= 1 (B.13)

where we used K = D2 − D + 1 and from normalization of |ωmiddle) we know that 1
D +∑K−1

2
n=1

X2
n
D = 1. The value of K-complexity can then be estimated as follows:

CK =
K−1∑
n=0

nQ0n = 1
D2

K−1∑
n=1

n+ D − 1
D2

K−1
2∑

n=1
2nX

2
n

D

= 1
2K(K − 1) 1

D2 + D − 1
D2 CKmiddle (B.14)

where CKmiddle is the K-complexity of the eigenvector |ωmiddle)8 and by definition 0 ≤
CKmiddle ≤ K. Hence it is found that for a flat operator

D2

2 −D + 1− 1
2D ≤ CK ≤

D2

2 − 1 + 3
2D −

1
D2 (B.15)

which for large enough D indicates that

CK ∼
D2

2 ∼
K

2 (B.16)

independently of the spectrum or Lanczos coefficients data. We show numerically that
this is indeed the case by studying flat operators with Hamiltonians of GOE statistics and
Poissonian statistics in figure 12.

8K-complexity for individual eigenvectors of the Liouvillian was defined in [7].
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Figure 12. K-complexity saturation value for constant operator evolving under Hamiltonian taken
from a GOE ensemble (left) and Hamiltonian with Poissonian statistics (right), both computed at
D = 32. Note that both cases exhibit saturation value close to K/2.
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