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1 Introduction

Integrability in the context of the AdS/CFT correspondence has opened a unique window
of non-perturbative understanding of the properties of strongly coupled gauge theories
and string theories in strongly curved backgrounds, see e.g. refs. [3, 4] for reviews. It
has been developed furthest for the so-called spectral problem, the problem of finding
the scaling dimensions ∆ of composite operators in planar N = 4 SYM theory and thus
the energies of the corresponding strings in type IIB superstring theory on AdS5 × S5.
The finite-coupling solution to the spectral problem is given by the thermodynamic Bethe
ansatz (TBA) [5–10], an infinite set of integral equations. These equations have been
subsequently brought into the form of finite-difference equations, the so-called Quantum
Spectral Curve (QSC) equations [11, 12], which can be efficiently solved perturbatively at
weak coupling [13–15] and numerically at finite coupling [16, 17]. Further applications of
the QSC include the pomeron and BFKL regime [18–20], cusped Wilson lines [21–25], the
quark-antiquark potential [26], color-twist operators [27] and integrable deformations of
N = 4 SYM theory [28–32].

An important aspect of understanding gauge theories and string theories, which has
received less attention in the context of integrability, concerns their thermodynamic prop-
erties. One such property that occurs on both sides of the AdS/CFT correspondence is
Hagedorn behavior, an exponential growth of the density of states with the energy that
leads to a pole in the planar partition function at the so-called Hagedorn temperature
TH. For string theory in flat space, the Hagedorn temperature could be calculated long
time ago [33]. In AdS5 × S5, an analogous calculation has not been possible, due to the
problems with quantizing string theory in curved spacetime. In the planar gauge theory,
the Hagedorn temperature has been calculated in the free theory [34] and to the first order
at weak coupling [35]. The physical interpretation of the Hagedorn temperature is that
of a limiting temperature; it signals the breakdown of the low-energy description and a
confinement-deconfinement-like transition on the gauge-theory side, which corresponds
to the Hawking-Page transition between a gas of closed strings and a black hole on the
string-theory side [34, 36–38].

In our letters [1, 2], we have recently shown how to calculate the Hagedorn temperature
of planar N = 4 SYM theory and type IIB superstring theory on AdS5×S5 via integrability.
Concretely, we have derived TBA equations for the Hagedorn temperature [1] and recast
them into the form of the QSC [2]. Solving these equations perturbatively at weak coupling,
we calculated the Hagedorn temperature up to three loops. Moreover, we solved the equations
numerically at finite coupling, finding in particular that the Hagedorn temperature of type
IIB superstring theory on AdS5 × S5 asymptotes to the one on flat 10D Minkowski space
(calculated in ref. [33]) in the limit of strong coupling, i.e. vanishing curvature.

The first aim of the present paper is to provide several details on the Hagedorn QSC and
its derivation from the TBA, which we deferred in our letters [1, 2]. Moreover, we extend the
weak-coupling solution from three loops to seven loops, finding interesting number-theoretic
properties. In particular, we find that the perturbative results can be expressed in terms
of so-called single-valued harmonic polylogarithms [39], which have previously occurred in
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Figure 1. Calculating the spin-chain free energy at a finite temperature T for a chain of finite length
L requires to consider the integrable model on a torus with circumferences 1/T and L (top). In the
spectral problem, the temperature is taken to be zero, resulting in a cylinder with circumference L
(left). In the case of the Hagedorn temperature, we have to take the limit L→∞, resulting in a
cylinder with circumference 1/T (right). The former and the latter situation are related by a double
Wick rotation.

scattering amplitudes and generalize the single-valued multiple zeta values that occur in
the spectral problem [13, 15, 40]. Finally, we also provide numerical values for the first
three corrections to the leading strong-coupling behavior, finding perfect agreement with
the analytic calculation [41, 42] of the first correction.1

The second aim of this paper is to extend said results for the Hagedorn temperature
to a class of integrable deformations of the maximally supersymmetric Yang-Mills theory
and to include chemical potentials. The Hagedorn temperature for integrable deformations
has been previously studied in ref. [43]. The Hagedorn temperature of N = 4 SYM theory
with chemical potentials has been studied previously in refs. [44–49]. We show in this
paper how to use the QSC to determine the Hagedorn temperature for a class of integrable
deformations and in the presence of arbitrary chemical potentials.

Let us briefly stress some salient features of the TBA and QSC for the Hagedorn
temperature [1, 2], contrasting this case to the one in the spectral problem; see also figure 1.
In the spectral problem, the integrable model is solved at zero temperature on a cylinder
with a finite circumference L that takes into account the finite length of the operator, i.e.
the finite number of fields the operator contains. This is related to solving the integral

1We thank Juan Maldacena for sharing his calculation with us and for making us aware of the independent
calculation [42] that appeared since.
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model on a cylinder with circumference 1/T by a double Wick rotation, such that the TBA
can be used. While the case with finite temperature is known as the physical theory, its
double-Wick-rotated version with finite length that is relevant in the spectral problem is
called mirror theory. In order to calculate the Hagedorn temperature, we are interested in
the physical theory at finite 1/T . The other dimension accounting for the finite length of an
operator is sent to infinity as the Hagedorn singularity is governed by the high-energy limit
of the density of states, where only operators with large length — or rather large classical
scaling dimension — contribute; see ref. [1] for details.

One effect of the double Wick rotation concerns the analytic structure on the QSC. The
planar coupling g2 = g2

YMN
16π2 enters the QSC via branch cuts in its fundamental functions.

The effect of the double Wick rotation is to exchange so-called short branch cuts on the
interval (−2g,+2g) with so-called long branch cuts on (−∞,−2g) ∪ (+2g,+∞), and vice
versa. The QSC for the Hagedorn temperature thus exhibits the opposite branch-cut
structure compared to the one for the spectral problem.

A second effect of the double Wick rotation concerns the boundary conditions. In a
certain class of integrable deformations of N = 4 SYM theory, characterized by diagonal
twists depending on the Cartan charges of psu(2, 2|4), the deformation parameters enter the
TBA by imposing twisted boundary conditions along the direction with finite circumference
L [50]. The twists result in exponential asymptotics of the fundamental functions of the
QSC [21, 28]. Similarly, the Hagedorn temperature and chemical potentials for the different
Cartan charges of psu(2, 2|4) enter by imposing twisted boundary conditions along the
direction with finite circumference 1/T . Again, we see that the situation for the Hagedorn
temperature is related to the one for the spectral problem by a double Wick rotation, which
exchanges these two circumferences. In particular, the Hagedorn temperature formally
enters the QSC as a twist, with the consequence that the fundamental functions of the QSC
exhibit exponential asymptotics as well.

We can already see at this heuristic level that introducing twisted boundary conditions
along the direction with finite circumference L in the calculation of the Hagedorn temperature
has no effect, as we take the limit where L goes to infinity. Thus, as we will discuss in more
detail in section 5, the Hagedorn temperature of the corresponding integrable deformations
of N = 4 SYM theory coincides with the Hagedorn temperature in undeformed N = 4
SYM theory.

In the twisted spectral problem, the twists (as well as the coupling constants and the
Cartan charges S1, S2, J1, J2, J3) are fixed and considered as the input while the scaling
dimension ∆ is kept free and becomes the output. The Hagedorn temperature is defined as
the temperature for which the free energy per unit classical scaling dimension equals −1 [1].
In the spectral problem, the free energy is connected to the scaling dimension ∆. Thus,
for the Hagedorn temperature, we are keeping the scaling dimension ∆ (and thus the free
energy) fixed while the single twist encoding the Hagedorn temperature is kept free and
constitutes the output.

Finally, it is worth noting that the TBA and QSC in the spectral problem strictly
speaking compute the Witten index, while we are interested in the spin-chain partition
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function or free energy. This difference can be accounted for by a (fermionic) sign in
the twists.

The remainder of this paper is structured as follows: in section 2, we describe in
detail the QSC equations determining the Hagedorn temperature. We proceed in section 3
with a description of how to solve these equations, first perturbatively at weak coupling
and then numerically at finite coupling. Section 4 is devoted to the inclusion of chemical
potentials, followed by a discussion of the Hagedorn temperature for integrable deformations
of N = 4 SYM theory in section 5. We include several appendices on technical details of
the perturbative solution at weak coupling (appendix A) as well as on the TBA equations
for the Hagedorn temperature and their relation to the Y-system (appendix B), T-system
(appendix C–D) and QSC (appendix E–F).

2 Quantum spectral curve for the Hagedorn temperature

In this section, we will give a brief introduction to the Quantum Spectral Curve (QSC) and
describe how it can be applied to the problem of determining the Hagedorn temperature
TH. In particular, we provide several details which we had to omit in our letter [2].

2.1 Generalities

Some of the features of the QSC are universal, in such as they are only reflecting the
psu(2, 2|4) symmetry of N = 4 SYM theory and occur for all observables in it to which the
QSC has up to now been applied. Other features are specific to a particular observable. In
this subsection, we will give an overview of the former, while discussing the latter in the
subsequent subsections. For a more general review of the QSC, see e.g. refs. [51–53].

The QSC is also known as analytic Q-system. This Q-system is an equivalent formulation
of the T-system, which in turn is an equivalent formulation of the Y-system and the TBA.
For more details on the transitions between these formulations, see appendix B, C and E.
The Q-system consists of 28 = 256 functions QA|I(u) labeled by subsets A, I ⊂ {1, 2, 3, 4}.
They are (multivariate) functions of the spectral parameter u ∈ C. The Q-functions satisfy
the finite-difference equations

QA|IQAab|I = Q+
Aa|IQ

−
Ab|I −Q

−
Aa|IQ

+
Ab|I , (2.1)

QAa|IQA|Ii = Q+
Aa|IiQ

−
A|I −Q

+
A|IQ

−
Aa|Ii , (2.2)

QA|IQA|Iij = Q+
A|IiQ

−
A|Ij −Q

−
A|IiQ

+
A|Ij , (2.3)

where throughout this paper we are using the notation f±(u) = f(u± i
2).

Note that the Q-functions themselves are gauge dependent. The corresponding Y-system
is left invariant under the following gauge transformations:

QA|I →
g

[+(|A|−|I|+1)]
1

g
[−(|A|−|I|+1)]
1

QA|I , QA|I →
g

[+|A|−|I|]
2

g
[−|A|+|I|]
2

QA|I , (2.4)
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where g1 and g2 are arbitrary functions. Moreover, the Q-system has a GL(4) × GL(4)
symmetry, called H symmetry:

QA|I →
∑

|B|=|A|,|J |=|I|

(
H

[|A|−|I|]
1

)
A

B
(
H

[|A|−|I|]
2

)
I

JQB|J , (2.5)

where H1 and H2 are i-periodic matrices, and HA
B ≡ Ha1

b1Ha2
b2 . . . Ha|A|

b|A| .
Using the relations (2.1)–(2.3), all functions QA|I can be written in terms of the

functions Pa ≡ Qa|∅, Qi ≡ Q∅|i, Qa|i and Q∅|∅; see e.g. ref. [28] for the explicit construction.
Moreover, we can use the first gauge transformation (2.4) to set Q∅|∅ = 1, which we will
do throughout. In terms of these functions, the finite-difference equation (2.2) reads

Q+
a|i −Q

−
a|i = PaQi . (2.6)

It will be convenient to define Hodge-dual Q functions QA|I via

QA|I ≡ (−1)|A||Ī|εĀAεĪIQĀ|Ī , (2.7)

where Ā (Ī) denotes the complement of A (I), and ε is the completely anti-symmetric
tensor with four indices. In particular, we use the notation Pa ≡ Qa|∅ and Qi ≡ Q∅|i. The
Q-functions and their Hodge duals satisfy the relations

Pa = −QiQ+
a|i , Qi = −PaQ+

a|i (2.8)

and

Qa|iQ
b|i = −δba , Qa|iQ

a|j = −δji . (2.9)

For many cases of interest, the QSC possesses an additional symmetry — called left-right
symmetry due to its manifestation in the T-system and Y-system. In the left-right-symmetric
case, the Q-functions with upper and lower indices satisfy another relation on top of Hodge
duality. In particular,

Pa = χabPb , Qi = χijQj , Qa|i = χabχijQb|j , (2.10)

where

χ =


0 0 0 −1
0 0 +1 0
0 −1 0 0

+1 0 0 0

 . (2.11)

The left-right-symmetric case occurs for example in the spectral problem in well-studied
closed subsectors and for the Hagedorn temperature in the absence of chemical potentials,
or if these chemical potentials satisfy certain constraints to be discussed in section 4.
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2.2 Asymptotic solution

The asymptotic behavior of the different Q-functions, i.e. their behavior for large values of
the spectral parameter u, depends on the particular observable that is to be determined by
the QSC; and by specifying the asymptotics, one can specify the observable.

Our starting point for determining the asymptotic behavior of the QSC is the T-system
we derived in ref. [1]. For large spectral parameter u, we have shown that it asymptotes to
a constant T-system, which is quoted in eqs. (C.29) and (C.30). Using the relation between
the Q-system and the T-system discussed in appendix E, this constant T-system can be
reproduced via the following Q-functions:

P1(u) = A1

(
− e−

1
2TH

)−iu
,

P2(u) = A2

(
u+ i

1− 3 tanh( 1
4TH

)2

4 tanh( 1
4TH

)

)(
− e−

1
2TH

)−iu
,

P3(u) = A3

(
− e−

1
2TH

)iu
,

P4(u) = A4

(
u− i

1− 3 tanh( 1
4TH

)2

4 tanh( 1
4TH

)

)(
− e−

1
2TH

)iu
,

(2.12)

and
Q1(u) = B1 ,

Q2(u) = B2u ,

Q3(u) = B3u
2 ,

Q4(u) = B4u
(
u2 + 3 tanh( 1

4TH
)2 − 2

)
,

(2.13)

where
A1A4 = A2A3 = i

tanh2 1
4TH

, 3B1B4 = B2B3 = −8i cosh4 1
4TH

. (2.14)

The corresponding Qa|i(u) are given in appendix F. Note that we have already used some
of the H symmetry (2.5) to bring the asymptotic solution into this form.

It is further convenient to use the remaining H symmetry to set

A1 = iA2 = −A3 = −iA4 =
(

tanh 1
4TH

)−1
, B1 = B2 = 1 . (2.15)

In this gauge the asymptotic Pa functions for a = 1, 2 and a = 3, 4 transform into each
other under u→ −u, while the asymptotic Qi(u) functions are either even or odd.

The exponential asymptotics of the Pa contain a sign, which is a consequence of the fact
that the Hagedorn QSC is based of the partition function instead of the Witten index. This
sign is understood to contain a small imaginary part to resolve the branch-cut ambiguity:(

− e−
1

2TH

)∓iu
≡
(
− e−

1
2TH +i0

)∓iu
= e±πu

(
e−

1
2TH

)∓iu
. (2.16)

– 6 –



J
H
E
P
0
7
(
2
0
2
2
)
1
3
6

2g
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.
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2g+i
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2g−2i

Pa

P̃a

.

Figure 2. Branch cut structure of the QSC for the Hagedorn temperature. There exists a Riemann
sheet for which Qi has a single ‘short’ cut and Pa has a single ‘long’ cut. (Note that the branch-cut
structure is the opposite of the one occurring for the spectral problem.).

We remark that the asymptotic behavior of the Hagedorn QSC is a special case of the
one occurring for the spectral problem in twisted N = 4 SYM theory discussed in ref. [28];
concretely, the asymptotics in ref. [28] reduce to the ones above upon interchanging, in their
notation, Pa ↔ Qi, xa ↔ yi and Aa ↔ Bi, as well as setting, x1 = x2 = 1/x3 = 1/x4 =
− e−

1
2TH , y1 = y2 = y3 = y4 = 1 and λa = νi = 0. We will discuss this observation in more

detail when discussing chemical potentials in section 4.
At tree level, i.e. in the free theory, the T-system is constant and obtained by setting

TH = T
(0)
H = 1

2 log(2+
√

3) in the asymptotic solution. Thus, the tree-level QSC is obtained by

setting TH = T
(0)
H = 1

2 log(2+
√

3) in eqs. (2.12)–(2.14) and (F.1)–(F.2). It is worth noting that
the tree-level QSC is given by polynomials times exponential factors, while the tree-level
QSC in the spectral problem typically contains also negative powers of u.

2.3 Branch cuts

Beyond the asymptotic limit, the analytic structure of the QSC is characterized by the
structure of its branch cuts. Recall that the Hagedorn QSC is based on the physical TBA,
while the QSC for the spectral problem is based on the mirror TBA. Since the physical
and mirror theory are related by a double Wick rotation, the branch-cut structure of the
Hagedorn QSC is exactly opposite to that for the spectral problem. In particular, there
exists a Riemann sheet on which the Qi have a single ‘short’ branch cut on the interval
(−2g,+2g), while the Pa have a single ‘long’ cut on (−∞,−2g) ∪ (+2g,∞); see figure 2.

Upon analytic continuation of Pa across the single long cut, one arrives on a Riemann
sheet on which Pa is analytic in the upper half plane (UHPA) but possesses an infinite
series of shorts cuts in the lower half plane at (−2g − in,+2g − in) for n ∈ N0. Similarly,
the analytic continuation P̃a of Pa across the first short cut is analytic in the lower half
plane (LHPA) but possesses an infinite series of shorts cuts in the upper half plane at
(−2g + in,+2g + in); see figure 3.

The sheet with the short branch cut corresponds to the following relation between the
spectral plane and the rapidity plane:

x(u) = u

2g

(
1 +

√
1− 4g2

u2

)
, (2.17)
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2g

2g+i

2g+2i

2g−i

2g−2i

Pa

P̃a

2g

2g+i

2g+2i

2g−i

2g−2i

P̃a

Figure 3. For the purpose of solving the QSC for the Hagedorn temperature, a different Riemann
sheet for Pa is advantageous, obtained from the one depicted in figure 2 via analytic continuation.
On this sheet, Pa is an UHPA function with short branch cuts (−2g − in,+2g − in) for n ∈ N0,
while P̃a is a LHPA function with short branch cuts (−2g + in,+2g + in).

known as the Zhukowski variable. In order to determine the QSC at weak or finite g, we
thus make the ansatz

Q1 (u) = 1 +
∞∑
n=1

c1,2n (g) g2n

x (u)2n ,

Q2 (u) = gx (u)
(

1 +
∞∑
n=1

c2,2n−1 (g) g2(n−1)

x (u)2n

)
,

Q3 (u) = −8i cosh
(

1
4TH

)4
(gx (u))2

(
1 +

∞∑
n=2

c3,2n−2 (g) g2(n−2)

x (u)2n

)
,

Q4 (u) = −8i
3 cosh

(
1

4TH

)4
(gx (u))3

(
1 + c4,−1 (g) g−2

x (u)2 +
∞∑
n=2

c4,2n−3 (g) g2(n−3)

x(u)2n

)
,

(2.18)

where ci,n = O(g0) and starts to contribute at order 1/un.2 In particular, we have
c4,−1 = −1 +O(g2). The coefficients in this ansatz can be fixed by the gluing conditions
(and asymptotic conditions) discussed in the next subsection, up to some remaining gauge
symmetry discussed in the subsection thereafter.

Note that this procedure is exactly opposite to the procedure for the QSC in the
spectral problem, where an ansatz for Pa is made.

2.4 Closing the equations

In the original formulation of the QSC for the spectral problem, the discontinuities of
Pa(u) and Qi(u) are determined via certain i-periodic functions µab(u) and ωij(u) [11, 12].
Our generalization to the Hagedorn temperature will instead be based on an alternative
formulation [19, 21, 26, 51], in which the analytic continuation across the cut is realized via
complex conjugation. The corresponding equations are known as gluing conditions.

2Note that we have imposed that all functions are either even or odd also at negative powers of u;
for positive powers, this is a consequence of H symmetry. Moreover, we have already imposed the gauge
choice (2.15) and made the gauge choice that the sum in Q3 starts with n = 2.

– 8 –



J
H
E
P
0
7
(
2
0
2
2
)
1
3
6

The gluing conditions connect P̃a(u) and Pa(−u) on the Riemann sheet with short
cuts depicted in figure 3. It turns out that for u ∈ (−2g,+2g),

P̃a(u) = (−1)1+aPa(u) = (−1)1+aPa(−u)×
{
e+2πu a = 1, 2,
e−2πu a = 3, 4,

(2.19)

where complex conjugation is understood to change the sign of the i0 in eq. (2.16).
However, in contrast to the case of the spectral problem, the gluing conditions are

not sufficient to fix all coefficients. In addition we should impose further restrictions on
the large-u asymptotics of the Pa functions that are not guaranteed by the ansatz (2.18)
and the asymptotics of the Qa|i functions. In particular, for the perturbative analysis in
subsection 3.1 we should impose the following behavior at u→∞:

P2 (u)
P1 (u) = −iu+O

(
u0) , P4 (u)

P3 (u) = −iu+O
(
u0) . (2.20)

Note that this follows from eqs. (2.12) and (2.14) when imposing the gauge choice (2.15).
One can easily modify this for other gauge choices. Similarly, one should also impose the
correct asymptotics of the Pa functions as an additional requirement in the numerical
solution of subsection 3.2.

2.5 Gauge fixing

In the particular gauge (2.15) we chose, we have

P1(u) ∼ −P3(−u) , P2(u) ∼ +P4(−u) , (2.21)

where ∼ denotes that the functions have the same coefficients in a large-u expansion while
differing in there analytic structure. In particular, P1(u) and P2(u) are UPHA while
P3(−u) and P4(−u) are LHPA. The above relations imply similar relations for Qa|i:

Qa|i(u) ∼ (−1)a+iQa+2|i(−u) (2.22)

for a = 1, 2. While this property is manifest for the leading coefficients via eq. (2.21), it is a
gauge choice that we can also impose on the higher-order coefficients to eliminate the gauge
freedom at higher loop orders in the weak-coupling expansion as well as in the numeric
approach at finite coupling.

3 Solving the Quantum Spectral Curve

Having derived the QSC equations for the Hagedorn temperature in the previous section,
we now set out to solve it — first perturbatively at weak coupling in subsection 3.1 and
then numerically at finite coupling in subsection 3.2. While some of the discussion provides
further details of the procedure used in our letter [2], we also provide new perturbative
results up to seven loops and discuss their rich number-theoretic structure, finding in
particular that they can be expressed in terms of single-valued harmonic polylogarithms.
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3.1 Perturbative solution at weak coupling

Solution algorithm. The starting point for the perturbative solution at weak coupling
is the tree-level QSC presented in subsection 2.2 and appendix F. We can determine the
perturbative corrections to the tree-level QSC order by order in the coupling constant g
using a slightly modified version of the general solution strategy of ref. [19].

At each order `, we start with the ansatz (2.18) for the Qi functions, which truncates
at a finite order in 1/u and contains the undetermined coefficients T (`)

H as well as c(j)
i,n

with max(0, n) + j = `, where we write TH(g2) =
∑∞

`=0 g
2`T

(`)
H and similarly for ci,n(g2).

Combining eqs. (2.6) and (2.8), we know that the exact solution Qa|i(u) to the QSC satisfies

0 = Qa|i
(
u+ i

2
)
−Qa|i

(
u− i

2
)

+ QiQjQa|j
(
u+ i

2
)
. (3.1)

We define the mismatch in this equation when instead using the tree-level solution Q(0)
a|i as

dSa|i ≡ Q
(0)
a|i
(
u+ i

2
)
−Q(0)

a|i
(
u− i

2
)

+ QiQjQ
(0)
a|j
(
u+ i

2
)
. (3.2)

We can write the exact solution in terms of the tree-level solution Q(0)
a|i as

Qa|i (u) = Q
(0)
a|i (u) + ba

c
(
u+ i

2
)
Q

(0)
c|i (u) . (3.3)

Consequently, the matrix bac satisfies the first-order difference equation

ba
c(u+ i)− bac(u) = dSa|i(u)Q(0)c|i(u− i

2) + ba
b(u+ i)dSb|i(u)Q(0)c|i(u− i

2) . (3.4)

At any loop order of perturbation theory at weak coupling,(
− e
− 1

2TH(g2)
)±iu

=
(
− e−

1
2TH(0)

)±iu (
1 +O

(
g2)) . (3.5)

The exponential factors in the functions Pa, Qa|i and bac are thus the same at any order in
perturbation theory. For convenience, we split off the exponential factor from ba

c as

ba
c =


ba
c if (a ≤ 2 and c ≤ 2) or (a ≥ 3 and c ≥ 3) ,

ba
c
(
− e−

1
2TH(0)

)+2iu
if a ≥ 3 and c ≤ 2 ,

ba
c
(
− e−

1
2TH(0)

)−2iu
if a ≤ 2 and c ≥ 3 .

(3.6)

The finite-difference equation (3.4) for bac then takes the form

zf(u+ i)− f(u) = h(u) , (3.7)

with
z ∈

{
1,
(

2 +
√

3
)−2

,
(

2 +
√

3
)2
}
,

(
2 +
√

3
)

=
(
− e−

1
2TH(0)

)−1
, (3.8)

and where h is given while f is the unknown. Finite-difference equations of this type
have previously been studied in the context of the twisted spectral problem [28] and of
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cusped Wilson lines [21]. In particular, the work [21] contains the Mathematica package
TwistTools.m that implements some of the identities for solving these finite-difference
equations. We derive further identities that are required in our case in appendix A.
Following the notation of ref. [21], denote by Σ the operator generating f from h and z, i.e.
f(u) = Σ(h(u), z).3 To have a unique solution, we define Σ(0, z) = 0. Note that the action
of Σ crucially depends on whether z = 1 or z 6= 1, e.g.

Σ(1, z) = 1
z − 1 , if z 6= 1 ,

Σ(1, 1) = −iu .
(3.9)

For h(u) given by a polynomial in u, Σ(h(u), z) is again a polynomial in u. Moreover,

Σ
(

1
ua
, z

)
= −

∞∑
n=0

zn

(u+ in)a ≡ −η
z
a(u) . (3.10)

At subsequent loop orders, the single η functions ηza(u) can occur on the right-hand-side of
the finite-difference equation (3.7). However, at any loop order at weak coupling, a solution
to the twisted finite-difference equation (3.7) can be found in the space of rational functions
in u multiplying the generalized multiple η functions [21]:

ηz1,...,zk
s1,...,sk

(u) ≡
∑

n1>n2>···>nk≥0

zn1
1 . . . znk

k

(u+ in1)s1 . . . (u+ ink)sk
. (3.11)

These functions satisfy several important properties that we summarize in appendix A;
some of these have already been described in ref. [21], while others are new.

The finite-difference equation (3.7), also admits homogeneous solutions. For z = 1,
these are given by constants, which we have to add to b with coefficients that have to be
determined in the following steps. For general z, there is also the homogeneous solution

Pza(u) =
∞∑

n=−∞

zn

(u+ in)a = ηza(u)− ηza(u− i) . (3.12)

It is removed by imposing Pa to be UHPA.
Note that in the twisted spectral problem [28], the variables z are pure phases, |z| = 1,

such that z∗ = 1/z. In our case, however, both z = (2 +
√

3)2 > 1 and z = 1/(2 +
√

3)2 < 1
occur, and they are real. The functions above are understood to be defined by the given
sum representations for values inside of their respective regions of convergence, and by
analytic continuation outside of them; see also the discussions in refs. [13, 28].

3Strictly speaking, the authors of ref. [21] denote by f(u) = Σ(h(u)) the solution to the finite-difference
equation f(u+ i)− f(u) = h(u), where they allow for an exponential dependence in f and h. However, we
have found it advantageous to factor out the exponential factor z−iu, cf. eqs. (3.6)–(3.7), indicating this
by Σ(·, z).
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We are now in the position to fix the various coefficients we introduced.4 Using the
orthogonality conditions (2.9), we find

−δba =Qa|iQ
b|i =

(
Q

(0)
a|i +b

+
a
cQ

(0)
c|i

)(
Qb|i(0)+b+bdQd|i(0)

)
=−δba+b+a b+b+ba+b+a cb+bc .

(3.13)
Imposing this fixes half of the coefficients in b stemming from the homogeneous solution.

Via eq. (2.8), we then obtain Pa from Qi and Qa|i. This allows us to impose the
gluing conditions (2.19). As in ref. [19], they enter by imposing that Pa(u) + P̃a(u) and
(Pa(u)−P̃a(u))/

√
u2 − 4g2 are regular at u = 0.5 In the process, the generalized η functions

are evaluated at u = i, where they are proportional to multiple polylogarithms (MPLs).
More precisely,

ηz1,...,zk
s1,...,sk

(i) = (−i)s1+···+sk

z1 . . . zk
Liz1,...,zk

(s1, . . . , sk) , (3.14)

where6

Lis1,...,sk
(z1, . . . , zk) ≡

∑
n1>n2>···>nk>0

zn1
1 . . . znk

k

ns11 . . . nsk
k

. (3.15)

For all zi = 1, the multiple polylogarithms reduce to multiple zeta values (MZV):

Lis1,...,sk
(1, . . . , 1) = ζs1,...,sk

. (3.16)

The weight of these functions and numbers is defined as s1 + · · ·+ sk. Note that MPLs have
branch cuts; in particular, already classical polylogarithms Lis(z) have branch cuts in z on

the interval (1,∞). When evaluating say Lis(z) at z =
(
− e−

1
2TH(0)

)−2
= (2 +

√
3)2 > 1, we

use the +i0 prescription (2.16). The occurrence of MPLs at this step already indicates that
the Hagedorn temperature can be written in terms of these functions. Knowledge about
the identities between the MPLs is crucial when solving for the undetermined coefficients,
as solutions to the gluing conditions only exist when taking these identities into account.

MPLs satisfy the so-called shuffle and stuffle relations, see e.g. ref. [54] for a review.
They can be used to reduce MPLs of weight less than four to classical polylogarithms.
Moreover, the following inversion identity for classical polylogarithms exists for z /∈ (0, 1]:

Lin(z) + (−1)n Lin(1/z) = −(2πi)n

n! Bn

(
1
2 + ln(−z)

2πi

)
, (3.17)

where Bn is the Bernoulli polynomial. We can numerically evaluate MPLs to arbitrary
precision using GiNaC [55]. This can be used to find identities among MPLs using the PSLQ
algorithms implemented e.g. in Mathematica as FindIntegerNullVector.

4As can be seen from the discussion in subsection 2.2, already the tree-level coefficients contain
√

3. As
discussed in ref. [13] for the case of the spectral problem, it is thus more efficient to solve for the algebraic
part of the higher-loop coefficients numerically with high accuracy, reconstructing the exact values using the
PSLQ algorithm implemented e.g. in Mathematica as FindIntegerNullVector.

5In practice, it suffices to impose these conditions for a = 1, 2.
6Note that — compared to ref. [54] — we are using the opposite order for the arguments of

Lis1,...,sk (z1, . . . , zk); cf. (27) of that paper.
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As already indicated in section 2, the gluing conditions do not suffice to fix all undeter-
mined coefficients. In addition, we have to impose the correct asymptotics at large u via
eq. (2.20). This requires to expand η functions at large u; see appendix A for details of this
expansion. Similarly, an expansion is also required when imposing the final condition (2.22).

Perturbative results and their number-theoretic properties. Using the procedure
described above, we have solved the Quantum Spectral Curve and determined the Hagedorn
temperature up to and including seven-loop order. We now present these perturbative
results and discuss their number-theoretic properties. We also attach the perturbative
results in the supplementary material’s file PerturbativeResults.m.

We write

TH(g2) =
∞∑
`=0

g2`T
(`)
H . (3.18)

In general, we find that T (`)
H /T

(0)
H for ` = 2, 3, 4, . . . is of mixed transcendentality, with a

highest transcendental piece of transcendental degree 2`− 3. This is similar to the spectrum
of anomalous dimensions in N = 4 SYM theory, which is also of mixed transcendentality,
while for example `-loop scattering amplitudes in N = 4 SYM theory are of uniform
maximal transcendentality 2` (see e.g. ref. [54]).

As previously mentioned, the tree-level Hagedorn temperature is

T
(0)
H = 1

2 log
(
2 +
√

3
) ≈ 0.3796628588 . . . , (3.19)

in full agreement with ref. [34]. At one-loop order, we find

T
(1)
H = 1

log
(
2 +
√

3
) ≈ 0.7593257175 . . . , (3.20)

in full agreement with ref. [35]. At two-loop order, we have

T
(2)
H = 48− 86√

3
−

48 Li1
(

1
(2+
√

3)2

)
log
(
2 +
√

3
) ≈ −4.367638556 . . . , (3.21)

in full agreement with ref. [1]. At three-loop order, we find

T
(3)
H = − 20√

3
+
(

1900
3 − 384

√
3
)

log
(

2 +
√

3
)

+
(

384
√

3− 864
)

Li1
(

1
(2+
√

3)2

)

+
432 Li1

(
1

(2+
√

3)2

)2

log
(
2 +
√

3
) + 624 Li2

(
1

(2+
√

3)2

)
+ 416 log

(
2 +
√

3
)

Li1
(

1
(2+
√

3)2

)

+
312 Li3

(
1

(2+
√

3)2

)
log
(
2 +
√

3
)

≈ 37.22529358 . . . ,
(3.22)
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in full agreement with ref. [2]. At four-loop order, we find

T
(4)
H = + 40√

3
+
(

1272−704
√

3
)

log
(

2+
√

3
)

+704
√

3Li1
(

1
(2+

√
3)2

)
+
(

8448− 43906
3
√

3

)
log2

(
2+
√

3
)

+
(
−18816+11904

√
3
)

log
(

2+
√

3
)

Li1
(

1
(2+

√
3)2

)

+
(

15552−5952
√

3
)

Li1
(

1
(2+

√
3)2

)2
−

5184Li1
(

1
(2+

√
3)2

)3

log
(
2+
√

3
)

−6048log
(

2+
√

3
)

Li1
(

1
(2+

√
3)2

)2
+
(

8928−3840
√

3
)

log
(

2+
√

3
)

Li2
(

1
(2+

√
3)2

)
−288Li2,1

(
1

(2+
√

3)2 ,
(

2+
√

3
)2
)
−288Li1

(
1

(2+
√

3)2

)
ζ2

−8928Li2
(

1
(2+

√
3)2

)
Li1
(

1
(2+

√
3)2

)
+
(

5952−2560
√

3
)

log2
(

2+
√

3
)

Li1
(

1
(2+

√
3)2

)

+
(

5040−1920
√

3
)

Li3
(

1
(2+

√
3)2

)
−

4608Li3
(

1
(2+

√
3)2

)
Li1
(

1
(2+

√
3)2

)
log
(
2+
√

3
)

−
144Li1

(
1

(2+
√

3)2

)
ζ3

log
(
2+
√

3
) −1440log2

(
2+
√

3
)

Li2
(

1
(2+

√
3)2

)

−4320log
(

2+
√

3
)

Li3
(

1
(2+

√
3)2

)
−5400Li4

(
1

(2+
√

3)2

)
−

2700Li5
(

1
(2+

√
3)2

)
log
(
2+
√

3
)

≈−372.0410892 . . . . (3.23)

While the Hagedorn temperature up to and including three-loop order is written in terms of
classical polylogarithms, the four-loop Hagedorn temperature (3.23) contains the multiple
polylogarithm Li1,2

(
1

(2+
√

3)2 , (2 +
√

3)2
)
. While Li1,2

(
1

(2+
√

3)2 , (2 +
√

3)2
)

is of weight
three and can thus be expressed in terms of classical polylogarithms, this would introduce
1 − 1

(2+
√

3)2 as argument, thus obscuring the origin of this number in the expansion of a
generalized η function. Beyond four-loop order, however, it is not possible to write the
Hagedorn temperature in terms of classical polylogarithms, as can be seen via the Lie
cobracket test in ref. [56].7

The higher-loop results for TH become increasingly lengthy when written in terms of
MPLs, so we refrain from giving the full expressions here. Instead, we will now study the
number-theoretic properties of these results, yielding more compact expressions.

It follows from the discussion above that the arguments of the MPLs occurring in the
Hagedorn temperature are necessarily z = (2 +

√
3)−2 to some power. Promoting the MPLs

to functions of z in this way, we can use that MPLs depending only on a single variable can
be expressed in terms of a smaller class of functions called harmonic polylogarithms [57], as

7We thank Andrew McLeod for this comment.
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discussed in the following. MPLs are equivalent to Goncharov polylogarithms [58–60] via8

Lis1,...,sk
(z1, . . . , zk) = (−1)kG

(
0, . . . , 0︸ ︷︷ ︸
s1−1

, 1
z1
, . . . , 0, . . . , 0︸ ︷︷ ︸

sk−1

, 1
z1...zk

)
, (3.24)

where
G(a1, . . . , an; z) =

∫ z

0

dt

t− a1
G(a2, . . . , an, t) , G(; z) = 1 ,

G(0, . . . , 0︸ ︷︷ ︸
p

; z) = logp z
p! .

(3.25)

Harmonic polylogarithms (HPLs) [57] are defined as

H(~a;x) = (−1)pG(~a;x), with ai ∈ {0, 1} , (3.26)

where p counts the number of ai that are equal to 1. Converting the Goncharov poly-
logarithms resulting from eq. (3.24) to Goncharov polylogarithms of the type (3.26) can
be achieved via a so-called fibration with respect to 1

(2+
√

3)2 , as implemented e.g. in
HyperInt [61].9

We observe that the weak-coupling results can be expressed in terms of an even smaller
class of functions, namely single-valued harmonic polylogarithms (SVHPLs). SVHPLs L
were introduced by Francis Brown [39] as particular combinations of HPLs of complex
conjugated arguments z, z∗ by requiring the branch cuts in the harmonic polylogarithms to
cancel such that one obtains a single-valued function in the (z, z∗) plane. For example,

L(0; z) = H(0; z) +H(0; z∗) = log(z) + log(z∗) . (3.27)

Up to weight 6, they are explicitly given in auxiliary files of ref. [62]. For higher weight, they
can be generated using HyperLogProcedures [63], and we attach the relevant expressions
up to weight 11 in the supplementary material’s file SVHPLreplacementsUpTo11.m. In order
to express our result in terms of SVHPLs, we make an ansatz in terms of single-valued
harmonic polylogarithms, reexpress them in terms of Goncharov polylogarithms and fix
the coefficients by going to a fibration basis as implemented e.g. in HyperInt [61].10 We
moreover define the shorthand notation

L~a ≡ L
(
~a; 1

(2 +
√

3)2

)
. (3.28)

In terms of SVHPLs, the perturbative results take a more compact form. The first few
orders read

T
(0)
H =− 2

L0
, T

(1)
H =− 4

L0
, T

(2)
H = 1

L0

[
96L1+

(
48− 86√

3

)
L0

]
, (3.29)

8Recall that — compared to ref. [54] — we are using the opposite order for the arguments of
Lis1,...,sk (z1, . . . , zk); cf. (27) of that paper. However, we are using the same order as ref. [54] for G;
cf. (20) of that paper.

9Note that compared to HyperInt we are using the opposite order for the arguments of Li, but the same
order for the arguments in G.

10We thank Andrew McLeod for his help in the conversion.
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T
(3)
H = 1

L0

[
− 20√

3
L0+

(
192
√

3− 950
3

)
L0,0+

(
192
√

3−432
)

(L0,1+L1,0)−864L1,1

−104(L0,0,1−2L0,1,0+L1,0,0)
]
, (3.30)

T
(4)
H = 1

L0

[
40L0√

3
+
(

352
√

3−636
)
L0,0+352

√
3(L0,1+L1,0)+

(
3168− 21953

4
√

3

)
L0,0,0

+
(

4704−2976
√

3
)

(L0,0,1+L0,1,0+L1,0,0)

+
(

7776−2976
√

3
)

(L0,1,1+L1,0,1+L1,1,0)+15552L1,1,1+288ζ3L1

−4464L0,1,1,0+
(

1116−480
√

3
)

(L0,0,0,1−L0,0,1,0−L0,1,0,0+L1,0,0,0)

−792(L0,1,0,1+L1,0,1,0)+3024(L0,0,1,1+L1,1,0,0)−270(L0,0,0,1,0−2L0,0,1,0,0+L0,1,0,0,0)
]
,

(3.31)

T
(5)
H = 1

L0

[
−80L0√

3
+
(

1728−1024
√

3
)
L0,0−1024

√
3(L0,1+L1,0)

+
(

39696− 136369
2
√

3

)
L0,0,0+

(
26464−15072

√
3
)

(L0,0,1+L0,1,0+L1,0,0)

−15072
√

3(L0,1,1+L1,0,1+L1,1,0)+
(

288−192
√

3
)
ζ3L0+

(
4432
√

3− 40026
5

)
L0,0,0,0

+
(

37008
√

3−60552
)

(L0,0,1,0+L0,1,0,0)−288L0,1,1,0+
(

34816
√

3−60408
)

(L0,0,0,1+L1,0,0,0)

+
(

67392
√

3−102480
)

(2L0,0,1,1+L0,1,0,1+L1,0,1,0+2L1,1,0,0)

+
(

67392
√

3−186624
)

(L0,1,1,1+L1,0,1,1+L1,1,0,1+L1,1,1,0)

−373248L1,1,1,1+
(

4512
√

3−7776
)
ζ3 (L0,1+L1,0)−17280ζ3L1,1

+
(

2256
√

3−432
)

(L0,0,1,1,0+L0,1,1,0,0)

+
(

9556−6192
√

3
)

(−2L0,0,0,0,1+L0,0,0,1,0+2L0,0,1,0,0+L0,1,0,0,0−2L1,0,0,0,0)

+
(

12384
√

3−41472
)

(L0,1,0,0,1+L1,0,0,1,0)+
(

41904−14640
√

3
)

(L0,0,1,0,1+L1,0,1,0,0)

+41472(L0,1,1,0,1+L1,0,1,1,0)+
(

83376−27024
√

3
)

(L0,0,0,1,1−2L1,0,0,0,1+L1,1,0,0,0)

−42336(L1,0,0,1,1+L1,1,0,0,1)+864(L0,1,0,1,1+L1,1,0,1,0)

−40608(L0,0,1,1,1−2L0,1,1,1,0+L1,1,1,0,0)−2880ζ5L1−720ζ3 (L0,0,1−L0,1,0+L1,0,0)

−24384L0,0,1,1,0,0+
(

3348−1416
√

3
)

(L0,0,0,0,1,0−L0,0,0,1,0,0−L0,0,1,0,0,0+L0,1,0,0,0,0)

−3072L0,1,0,0,1,0−4992(L0,0,1,0,1,0+L0,1,0,1,0,0)+14760(L0,0,0,1,1,0+L0,1,1,0,0,0)

−7920L1,0,0,0,0,1+360(L0,0,1,0,0,1+L1,0,0,1,0,0)+7560(L0,0,0,1,0,1+L1,0,1,0,0,0)

− 3864
5 (L0,0,0,0,1,0,0−2L0,0,0,1,0,0,0+L0,0,1,0,0,0,0)

]
≈+4132.973342 . . . . (3.32)
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For space reasons, we refrain from showing the full six-loop and seven-loop results here;
they can be found in the attached supplementary material’s file PerturbativeResults.m.
Their numeric values are

T
(6)
H ≈ −49510.01767 . . . , T

(7)
H ≈ +625284.5652 . . . . (3.33)

While we have stopped at seven-loop order, there is no technical or conceptual obstacle to
going to higher loop orders.

It was previously observed for the Konishi anomalous dimension that the weak-coupling
expansion can be expressed in terms of single-valued multiple zeta values (SVMZV) [13, 15,
40], which are SVHPLs evaluated at argument 1. Note that for cusped Wilson loops [21],
weak-coupling results have only been obtained in the limit of small twist such that only
classical polylogarithms occur; for these, the promotion to single-valued functions is trivial.

We observe that the perturbative results at weak coupling are palindromic in the
arguments of the SVHPLs, i.e. they stay the same when sending La1,a2,...,an → Lan,...,a2,a1 .
It would be interesting to understand the reason for this.

Moreover, the piece of T (`)
H with the highest transcendental degree seems to follow a

simple structure. In the Konishi anomalous dimension, a corresponding piece could be
determined in closed form for any loop order [40], and it would be interesting to develop a
similar understanding here.

3.2 Numeric solution at finite coupling

In this section, we describe how to find the Hagedorn temperature TH numerically for finite
values of the planar coupling g. We employ a modified version of the method of ref. [16];
see also refs. [51, 64]. Moreover, we discuss the strong-coupling behaviour of the Hagedorn
temperature.

Numeric algorithm. The key to solving the QSC numerically is to use the ansatz (2.18)
for the four Qi(u) functions, but with the sum truncated so that n has a maximal value
that we call K. This enables us to determine the four Qi(u) functions in terms of a finite
number of parameters TH and ci,n with i = 1, 2, 3, 4 and n ≤ K. To find the values of these
parameters for a given coupling g, we numerically and thus approximately solve the various
conditions discussed in section 2, similar to what we previously did at weak coupling.

For the 16 functions Qa|i(u), we make now the approximate ansatz

Qa|i (u) =
(
− e−

1
2TH

)−saiu

upa|i

N∑
n=0

Ba|i,n

un
, (3.34)

which is truncated at a finite order depending on the value of N and where

sa =
{

1 for a = 1, 2 ,
−1 for a = 3, 4 ,

(3.35)

pa|i = sa + a+ i− 3 . (3.36)
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Notice that Qa|i(u) is exponentially convergent for N → ∞ when the imaginary part of
sau is large. Thus, this determines the region in which we can use eq. (3.34) as a good
approximation for sufficiently large N . The next step is to find the coefficients Ba|i,n given
the parameters TH and ci,n.

A first step is to consider the leading large-u behavior of eq. (2.6). On the l.h.s. we use
the asymptotic behavior of eq. (3.34). On the r.h.s. we use eqs. (2.12) and (2.13) for the
asymptotic behaviors of Pa and Qi. Comparing the l.h.s. and r.h.s., we find

Ba|i,0 = −isa
e−

1
4TH

1 + e−
1

2TH

AaBi . (3.37)

However, one cannot continue in this fashion since one needs to eliminate the Pa(u) functions
to find an approximate solution at large u. To this end, we notice that one can combine
eqs. (2.6), (2.8) and (2.10) to find

Q+
a|i −Q

−
a|i = −Q+

a|jχ
jkQiQk . (3.38)

This gives a direct relation between the Qi(u) functions and the Qa|i(u) functions, enabling
us to use the approximate truncated version of eq. (2.18) as well as the approximate
truncated expression (3.34). To solve eq. (3.38) at large u, we expand the expression

(
− e−

1
2TH

)saiu

u−pa|i
(
Q+
a|i −Q

−
a|i +Q+

a|jχ
jkQiQk

)
=
∞∑
n=1

u3−nVa|i,n , (3.39)

in powers of 1/u for large u, giving the coefficients Va|i,n. In this way one finds equations

Va|i,n = 0 , (3.40)

that determine the Ba|i,n coefficients. However, the procedure turns out to be slightly more
complicated than one might naively expect. Expanding the l.h.s. of eq. (3.39), one finds that
it goes like u2 for large u, which is why we started the sum on the r.h.s. with n = 1. The
origin of this behavior is the last term on the l.h.s. This could seem surprising since we used
above that in eq. (2.6) all three terms starts at the same order. However, this is because
in that case we imposed the asymptotics (2.12) on the Pa(u) functions. Now, instead, we
have eliminated the Pa(u) functions and this means one cannot assume anymore that their
asymptotics are of the form (2.12). Indeed, it is not difficult to show that with generic
behavior of the Ba|i,n and ci,n coefficients, the leading behavior of the Pa(u) functions is

Pa(u) ∼ ua+sa

(
− e

1
2TH

)−saiu

, (3.41)

for large u. Therefore, requiring the asymptotic behavior (2.12) imposes additional conditions
on the Ba|i,n and ci,n coefficients.11

11We note that this is different from the QSC case studied numerically in ref. [16] since the last term in
eq. (3.38) is further suppressed in their case, and hence this issue did not arise there.
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With this in mind, we now describe the procedure to solve the equations (3.40) at large
u. One starts by choosing a numerical value for the coupling g, TH and the parameters ci,n,
except for c4,−1 and c4,1 that are left as free variables.

For n = 1, 2, 3, one finds for each n that Va|4,n = 0 give 4 equations that one can solve
linearly for the 4 variables Ba|4,n, with a = 1, 2, 3, 4. For n = 4, . . . , 9, one finds for each n
that Va|i,n = 0 with a = 1, 2, 3, 4 and i = 2, 3, 4 give 12 equations that one can solve linearly
for the 12 variables Ba|2,n−3, Ba|3,n−3 and Ba|4,n with a = 1, 2, 3, 4.

At this point, all the equations Va|i,n = 0 are solved for n = 1, . . . , 5. For n = 6, one
gets a single independent equation which one can solve linearly for c4,−1. This in turn
solves the equations for n = 7. Instead for n = 8 one finds a single independent equation
which one can solve linearly for c4,1. Finally, for n = 9 one finds two equations V1|1,9 = 0
and V3|1,9 = 0 that one can solve linearly for B1|1,1 and B3|1,1. With this, all equations
Va|i,n = 0 are solved for n = 1, . . . , 9.

At n = 10 one has 16 equations Va|i,10 = 0 that one can solve linearly for the 16
variables Ba|1,2, Ba|2,7, Ba|3,7 and Ba|4,10 with a = 1, 2, 3, 4. At this point, one can look at
the orthogonality relations (2.9) to obtain the two parameters B2|1,1 and B4|1,1. Expanding

Qa|iQ
a|j + δji (3.42)

for large u, and inserting the solutions of the variables found so far, one finds that its
expansion starts at order u3. One can now solve for B2|1,1 and B4|1,1 by demanding that
the u3 terms are zero.

One proceeds now for n ≥ 11 as follows. For each successive n one has 16 equations
Va|i,n = 0 that one can solve linearly for the 16 variables Ba|1,n−8, Ba|2,n−3, Ba|3,n−3 and
Ba|4,n with a = 1, 2, 3, 4. In this way one can proceed order by order in n. To determine
the approximate expression (3.34) for a given N , one needs to solve Va|i,n = 0 up to and
including the order n = N + 8. Given this, one can check that the large-u expansion of
eq. (3.42) is zero to order u5−N .

To recap, given numerical values for the coupling g, TH and the parameters ci,n (except
for c4,−1 and c4,1) we have now found the approximate large-u Qa|i (3.34) to the desired
accuracy given by N , and we have in addition obtained c4,−1 and c4,1. One can now use this
to determine the functions Pa and its analytic continuation P̃a for a = 1, 2 on the real axis.
Indeed, starting with a large and positive imaginary u, we can use eq. (3.38) iteratively
to find Qa|i closer and closer to the real axis. We choose the starting imaginary part of u,
written here as U = Im(u), to be a sufficiently large and positive odd integer. We choose
the real part of u such that after the iterative procedure one can find Q+

a|i(u) for u ∈ IP ,
where IP is a suitably chosen set of P points in the real-valued interval (−2g, 2g).12 This is
possible for a = 1, 2 thanks to the above-mentioned exponential convergence. Building on
this, one obtains Pa(u) for u ∈ IP from the first line of eq. (2.8) where Qi(u) is obtained
from the truncated version of eq. (2.18) as described above. One can furthermore find the

12We use the function −2g cos[π(n− 1
2 )/|IP |] for the distribution of points in IP , where |IP | is the number

of points.
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analytic continuation P̃a(u) for u ∈ IP from

P̃a = −Q̃iQ+
a|i , (3.43)

where Q̃i is obtained from the truncated version of eq. (2.18) by replacing x→ x̃ = 1/x.
Having established a numerical procedure to compute Pa and P̃a for a = 1, 2 and

u ∈ (−2g, 2g), given values for the coupling g, TH and the parameters ci,n (except for c4,−1
and c4,1), we can construct a function F that parametrize how far we are from obeying the
gluing conditions (2.19):

F (TH, {ci,n}) =
2∑

a=1

∑
u∈Ip

∣∣∣∣∣Pa(u)
P̃a(u)

+ (−1)a
∣∣∣∣∣
2

. (3.44)

Given a value of the coupling g, one can now use a numerical minimization procedure
based on F (TH, {ci,n}) that, given a suitable starting guess for TH and the relevant ci,n
coefficients, can approach values of these parameters that minimize F (TH, {ci,n}), preferably
so that it gets very close to zero. We have implemented this using the Levenberg-Marquardt
algorithm, an improved version of Newton’s method.

Results. We used our numerical procedure to capture two different regimes of the coupling
g. We previously reported these results in ref. [2]. In figure 4 we display the results of a series
of numerical estimations of the Hagedorn temperature TH as function of g2. We computed
51 values of TH, evenly spaced in g2, ending on g2 = 1/10. This captures the weak-coupling
regime, and we compare this successfully to the 7-loop results of subsection 3.1. For this
computation we used K = 10, N = 18, U = 31 and with 20 points in IP . For the last
point with g2 = 1/10, which is the one with the least precision, we computed the Hagedorn
temperature TH = 0.43109293576791 with an estimated accuracy of 14 digits, i.e. the
uncertainty is in the last digit.

In figure 5 we display the results of a series of numerical estimations of the Hagedorn
temperature TH as function of √g. We computed 73 values of TH, evenly space in √g,
ending on √g = 1.8. This computation required considerably more care and precision to
accomplish. For instance, with √g = 1.2625, we used K = 18, N = 18, U = 31 and 44 points
in IP . This gave an estimated accuracy of 6 digits with TH = 0.673348. For √g = 1.75, we
used K = 26, N = 24, U = 51 and 120 points in IP . This gave an estimated accuracy of
7 digits with TH = 0.8621292. And for √g = 1.8 we used K = 26, N = 30, U = 61 and
160 points in IP . This gave an estimated accuracy of 6 digits with TH = 0.881729. For
√
g ≥ 1.275 we use a slope estimation with 7 previous values of TH and ci,n as input to find

good initial values for TH and ci,n. For
√
g = 1.8 we used instead 10 previous values to find

good initial data.
We attach the numerical values on which the plots are based in the supplementary

material’s files datagsquared.csv and datagsqroot.csv.
The numerical data for TH(g) in the range 0 ≤ √g ≤ 1.8 exhibits an approximately

linear behavior

TH(g) = c0
√
g + c1 + c2√

g
+ c3
g

+O
(

1
√
g3

)
for large g , (3.45)
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Figure 4. Numeric results and weak-coupling approximation at various loop orders for the Hagedorn
temperature as a function of g2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

√
g

T
H

numeric
leading approximation

Figure 5. Numeric results and leading strong coupling approximation. for the Hagedorn temperature
as a function of √g.

with
c0 = 0.3989 , c1 = 0.159 , c2 = −0.0087 , c3 = 0.037 , (3.46)

where the uncertainties in c0 and c1 are in the last digits while the uncertainties in c2 and
c3 are 0.0005 and 0.005, respectively. The coefficient c0 was previously reported in ref. [2].

The approximate leading linear behavior (3.45) is quite remarkable, as it agrees well
with the Hagedorn temperature of type IIB string theory in flat space. Indeed, for large
coupling g we expect that the part of the spectrum of the dual type IIB string theory
on AdS5 × S5 that we probe corresponds to a flat space spectrum [2]. The Hagedorn
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temperature of type IIB string theory in flat space is 1/(
√

8πls) [33]. Using the AdS/CFT
dictionary, this becomes

TH(g) =
√

g

2π +O
(
g0) for large g . (3.47)

Since 1/
√

2π ' 0.39894 we find agreement with c0 in eq. (3.46). Thus, we have found a
way to probe flat-space physics of ten-dimensional string theory within N = 4 SYM theory.

Moreover, since the first appearance of the present paper on the arXiv, the coefficients
c0 and c1 have been analytically calculated by considering the inverse Hagedorn temperature
as the radius for which a winding mode becomes massless [41, 42]:

TH(g) =
√

g

2π + 1
2π +O (1/√g) for large g . (3.48)

Numerically 1/(2π) ' 0.1592, which thus fits with our numerical data (3.46). It would be
very interesting to obtain further subleading coefficients as well.

4 Chemical potentials

In this section, we first discuss in subsection 4.1 the general relation between the Hagedorn
temperature and the thermodynamic limit of the Gibbs free energy per unit classical scaling
dimension when turning on chemical potentials, generalizing ref. [1]. Subsequently, in
subsection 4.2, we use this to generalize the construction of the Quantum Spectral Curve
presented in the previous sections to include non-zero chemical potentials. Finally, in
subsection 4.3, we show how our integrability-based approach to the Hagedorn temperature
is related to the Pólya-theory approach for zero ‘t Hooft coupling.

4.1 Hagedorn temperature and Gibbs free energy

We now generalize the relation found in ref. [1] between the Hagedorn temperature and the
Gibbs free energy per unit classical scaling dimension. This relation forms the basis for
applying integrability-based methods to the calculation of the Hagedorn temperature.

We write the full refined partition function of N = 4 SYM theory on R× S3 as

Z(T,Ωi) = tr
(

e−βD+β
∑3

i=1 ΩiJi+β
∑2

a=1 Ωa+3Sa

)
. (4.1)

Here, β = 1/T is the inverse temperature and D is the dilatation operator on flat Minkowski
space R1,3, which is the image of the Hamiltonian of N = 4 SYM theory on R× S3 under a
conformal map. J1, J2, J3 are the three su(4) R-charges and their chemical potentials are
denoted by Ω1, Ω2 and Ω3, respectively. Moreover, S1 and S2 are the two angular momenta
on the S3, with corresponding chemical potentials Ω4 and Ω5.

Define the following charges associated to the psu(2, 2|4) spin chain:

q(1) = J1 −D0 q(2) = J2 q(3) = J3 q(4) = S1 q(5) = S2 , (4.2)

where
D = D0 + δD , (4.3)
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with D0 the classical scaling dimension and δD the anomalous scaling dimension. In terms
of these charges, we have

Z(T,Ωi) = tr
(

e−β(1−Ω1)D0−βδD+β
∑5

i=1 Ωiq
(i)
)
. (4.4)

In the planar theory, all states can be written as products of single-trace states, which in
turn can be mapped to spin chains. We can thus write the single-trace partition function as

Z(T,Ωi) =
∞∑
m=2

e−
m
2 β(1−Ω1+Fm(T,Ωi)) , (4.5)

where
Fm (T,Ωi) = −T 2

m
log
(

trspin-chain,D0= m
2

[
e−βδD+β

∑5
i=1 Ωiq

(i)
])

(4.6)

is the spin-chain free energy per unit classical scaling dimension for fixed D0 = m
2 .

A multi-trace state in the planar theory is given by a product of single-trace states,
in which each bosonic single-trace factor can occur with multiplicity 0, 1, 2, 3, . . . and each
fermionic single-trace factor can occur with multiplicity 0, 1. Moreover, the energy and other
charges of the multi-trace state are given as sum of the contributions from the individual
single-trace factors. The multi-trace partition function Z(T ) is thus given by

Z(T,Ωi) = exp
∞∑
n=1

1
n

∞∑
m=2

(−1)m(n+1) e−
mn
2 β(1−Ω1+Fm(T/n,Ωi)) , (4.7)

where the alternating sign exploits the fact that single-trace states with even m = 2D0 are
bosons, while those with odd m = 2D0 are fermions.

The Hagedorn temperature TH is the lowest temperature above which the planar parti-
tion function diverges. Since Fm is a monotonically decreasing function of the temperature,
a divergence first occurs when the n = 1 contribution to the multi-trace partition diverges.
The n = 1 contribution is

∞∑
m=2

(−1)m(n+1) e−
m
2 β(1−Ω1+Fm(T,Ωi)) . (4.8)

Define the thermodynamic limit of the Gibbs free energy per unit classical scaling dimension
of the psu(2, 2|4) spin chain:

F (T,Ωi) = lim
m→∞

Fm(T,Ωi) . (4.9)

In terms of this, one sees from eq. (4.8) using the Cauchy root test that the Hagedorn
temperature is determined as [1]

F (TH,Ωi) = −1 + Ω1 , (4.10)

since we have exp(−1
2β(1− Ω1 + F (T,Ωi))) > 1 when T > TH.

One can now in principle find TH for any chemical potentials Ωi and any coupling g by
computing F (T,Ωi). As described in appendix B.1, this can be done by solving the TBA
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equations (B.2)–(B.6) with boundary conditions (B.11) to obtain the Y-functions Ya,s(u)
and from this computing F (T,Ωi) by eq. (B.12). To simplify this, one can reformulate the
TBA equations as Y-system equations, see appendix B.2 as used in ref. [1] for the case of
zero chemical potentials. Finally, one can alternatively read off F (T,Ωi) from eq. (B.25),
using the asymptotic behavior of the Y-functions Ya,s(u). However, as is clear from section 2
and 3, a considerably more powerful and efficient approach to find F (T,Ωi) is through a
set of QSC equations.

4.2 Quantum Spectral Curve

We now consider the generalization of the QSC for the case of non-zero chemical potentials.
A main part of the QSC does in fact remain unchanged, namely the general structure of
the QSC equations and their branch cuts as described in subsection 2.1 and 2.3.

The main difference compared to the case without chemical potentials lies in the
asymptotics of the Pa and Qi functions. To find these asymptotics, we can consider the
asymptotic (and thus constant) solution to the T-system. As discussed in appendix C.2, it
is given by the psu(2, 2|4) character solution of ref. [65] upon identifying the parameters xa
and yi of ref. [65] with TH and the chemical potentials Ωi as

x1 = − e
−1+Ω4+Ω5

2TH , x2 = − e
−1−Ω4−Ω5

2TH , x3 = − e
1+Ω4−Ω5

2TH , x4 = − e
1−Ω4+Ω5

2TH ,

y1 = e
Ω1+Ω2−Ω3

2TH , y2 = e
Ω1−Ω2+Ω3

2TH , y3 = e
−Ω1+Ω2+Ω3

2TH , y4 = e
−Ω1−Ω2−Ω3

2TH .

(4.11)

Fortunately for us, the asymptotics of the Pa and Qi functions that reproduce the
psu(2, 2|4) character solution of ref. [65] have already been identified in the context of the
twisted spectral problem [28]. However, we have to make the interchange Pa ↔ Qi together
with xa ↔ yi and Aa ↔ Bi compared to ref. [28]. The transformation Pa ↔ Qi, xa ↔ yi
and Aa ↔ Bi is due to the fact that we consider the direct physical theory rather than the
mirror theory, as discussed in the Introduction (section 1) as well as in subsection 2.3 and
appendix B.1.13 This gives

Pa ' Aax−iua u
∑

b<a δxaxb
−
∑

i<a δxayi , Pa ' Aaxiua u
∑

b>a δxaxb
−
∑

i>a δxayi

Qi ' Biyiui u
−

∑
a<i δxayi+

∑
j<i δyiyj , Qi ' Biy−iui u−

∑
a>i δxayi+

∑
j>i δyiyj ,

(4.12)

where

AaA
a = − 1

xa

∏
1≤i≤4 za,i∏
b 6=a zb,a

(no sum over a) , (4.13)

BiB
i = − 1

yi

∏
1≤a≤4 za,i∏
j 6=i zj,i

(no sum over i) , (4.14)

13Note that we have also set λa = νi = 0 in the more general solution of ref. [28]; cf. the discussion in
subsection 2.2.
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with

zab = −zba =
{
xb − xa if xa 6= xb

ixa(−
∑

a<c<b δxcxa +
∑

a<i<b δxayi − 1) if xa = xb and a < b ,

zij = −zji =
{
yi − yj if yi 6= yj

iyi(−
∑

i<k<j δyiyk
+
∑

i<a<j δxayi − 1) if yi = yj and i < j ,

zai = −zia =


yi − xa if xa 6= yi

ixa(−
∑

a<b<i δxaxb
+
∑

a<j<i δxayj ) if xa = yi and a < i ,

ixa(
∑

i<b<a δxaxb
−
∑

i<j<a δxayj ) if xa = yi and i < a .

(4.15)

The asymptotics above change discontinuously when certain chemical potentials vanish
or become equal to each other, resulting in certain xa and yi becoming equal. In the generic
case of all chemical potentials being nonvanishing and unequal, the equivalence between
the asymptotic T-system and the asymptotic above is illustrated in appendix E. Left-right
symmetry occurs in the case Ω3 = Ω5 = 0. Finally, it is easy to see that the asymptotics
above reproduce eqs. (2.12)–(2.14) in the case where all chemical potentials vanish.

We leave the determination of the gluing conditions, which close the equations, for
future work. We now turn to the special case of the free theory, where the branch cuts
vanish and the gluing conditions are thus not required.14

4.3 Zero-coupling limit and single-particle partition functions

Previously in the literature, the Hagedorn temperature for N = 4 SYM theory with non-zero
chemical potentials has only been computed via Pólya theory [44–49] based on the methods
introduced for the case of vanishing chemical potentials in refs. [34, 38] at tree level and in
ref. [35] at one-loop order. Below we check our tree-level results that emerge from the TBA
analysis with the previously derived results of refs. [44, 45, 47] using Pólya theory. This is
an important consistency check on our methods.

At zero coupling g = 0, the full refined partition function (4.1) can be computed using
Pólya theory [34, 38]:

logZ(T,Ωi) = −
∞∑
k=1

log
[
1− ηB

(
T

k
,Ωi

)
+ (−1)kηF

(
T

k
,Ωi

)]
, (4.16)

where ηB(T,Ωi) and ηF (T,Ωi) are the single-particle partition functions for the bosonic
and fermionic modes on the three-sphere, computed for N = 4 SYM theory with chemical
potentials in refs. [44, 45, 47]. Defining the total single-particle partition function as

η(T,Ωi) = ηB(T,Ωi) + ηF (T,Ωi) , (4.17)

we see from eq. (4.16) that the Hagedorn temperature TH for finite chemical potentials can
be determined from

η(TH,Ωi) = 1 . (4.18)
14Note that the zero-coupling solution is given by exponential factors times polynomials; no (generalized)

η functions occur, in contrast to the spectral problem.
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Thus, at zero coupling g = 0 we have two rather explicit sets of methods to compute TH.
Either we determine it from the single-particle partition function via eq. (4.18). Or, we use
the integrability methods laid out in this paper. Since one cannot solve eq. (4.18) explicitly
for general chemical potentials Ωi, a pertinent question is: can we reproduce eq. (4.18)
from the methods of this paper? The answer is affirmative, and a simple route to this is
to use the T-system instead of the QSC. At zero coupling g = 0, the T-system is known
to be constant [1], and hence the general asymptotic T-system reviewed in appendices C.1
and C.2 should hold for all u, i.e. Ta,s(u) = T∞a,s. As shown in appendix D, one can derive
from the requirement of a constant Y-system that

T1,0 = 1 , (4.19)

for g = 0. In appendix D, we compute T1,0 and find that we can identify

T1,0(TH,Ωi) = η(TH,Ωi) . (4.20)

Hence, the two methods are equivalent for g = 0.

5 Deformations

The maximally supersymmetric Yang-Mills theory admits several deformations that preserve
integrability but break some or all of supersymmetry and or Poincaré symmetry. The
best-understood class of these deformations contains so-called diagonal twists and was
studied at the level of the Bethe equations in ref. [66]. This class encompasses the N = 1
supersymmetric one-parameter real-β deformation, which is a special case of the N = 1
supersymmetric Leigh-Strassler deformations [67], as well as the non-supersymmetric three-
parameter γi deformation [68].

These deformations change the interaction vertices of the theory — leaving the
tree-level partition function and tree-level Hagedorn temperature trivially the same. In
ref. [43], the one-loop corrections to these quantities were calculated in the real-β as
well as γi deformation. It was found that while the one-loop partition function depends
on the deformation parameters, the one-loop Hagedorn temperature is the same as in
N = 4 SYM theory.15

We will now argue that the Hagedorn temperature of these deformations agrees with
that of N = 4 SYM theory for any value of the coupling. At the heuristic level, we mentioned
already in the Introduction that the deformations are encoded in twisted boundary conditions
along the direction that becomes infinite in the thermodynamic limit, and thus they do not
affect the final result.

This can equally be seen at the technical level. Deriving TBA equations for the
Hagedorn temperature of the deformed theories with diagonal twists following ref. [1], the

15The non-conformality [69] of the γi deformation plays no role in the context of the Hagedorn temperature
because — although it is affecting the planar spectrum via finite-size effects [70, 71] — it only affects a finite
number of (single-trace) states, which is irrelevant for the Hagedorn singularity that arises from summing an
infinite number of states.
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starting point are the asymptotic Bethe equations of ref. [66]. These contain the deformation
parameters as a separate factor. Upon taking the logarithm and then the derivative, this
factor drops out completely. This shows that the Hagedorn temperature in the deformations
with diagonal twist, and in particular in the real-β and γi deformation, is the same as in
N = 4 SYM theory at all orders in the ‘t Hooft coupling.

A related deformation of N = 4 SYM theory is the integrable, conformal planar
fishnet theory [72–74]. It arises by taking a double-scaling limit of the γi deformation,
taking γ1 → i∞, λ → 0 with ĝ = e−iγ1 λ fixed. In this limit, all fields except two
complex scalars decouple. Naively taking the same double-scaling limit of our result for
the Hagedorn temperature would result in TH(λ = 0), since the Hagedorn temperature
of the γi deformation is independent of the deformation parameters, as discussed above.
However, the Hagedorn temperature depends on all fields in the theory, whether they
decouple or not, and the conformal fishnet theory is conventionally defined without the
decoupled fields. Using the single-particle partition function of the conformal fishnet theory,
η(x) = 4x(1− x2)/(1− x)4, the tree-level Hagedorn temperature is given as the solution
to the equation η(e−1/T tree,fishnet

H ) = 1, T tree,fishnet
H = 0.508028 . . . ; it clearly differs from the

result in N = 4 SYM theory. It would be very interesting to apply our method to calculate
the Hagedorn temperature of the conformal fishnet theory at any value of the respective
coupling ĝ, in analogy to what we have done in the present paper for N = 4 SYM theory.16

6 Conclusion and outlook

In this paper, we have derived a Quantum Spectral Curve for the Hagedorn temperature,
providing several details deferred in our letters [1, 2].

The Hagedorn QSC can be efficiently solved perturbatively at weak coupling as well as
numerically at finite coupling. We have extended our previous perturbative results [1, 2]
up to and including seven-loop order; we have attached these results in the supplemen-
tary material’s file PerturbativeResults.m. Our perturbative results show interesting
number-theoretic properties, namely being expressible in terms of single-valued harmonic
polylogarithms (SVHPLs). This is similar to the situation for the spectrum of local
composite operators, which is expressible in terms of single-valued multiple zeta values
(SVMZVs) [13, 15, 40], which are SVHPLs evaluated at 1. In our case, however, the SVHPLs
are evaluated at e−

1
TH(0) = 1

(2+
√

3)2 .
At the technical level, the Hagedorn temperature enters the QSC as a twists. We expect

the tools used here, as well as the number-theoretic observations, to be useful also for the
systematic solution of the QSC in other cases with twists, such as deformations of N = 4
SYM theory [28–31], cusped Wilson loops [21–24] and color-twisted operators in N = 4
SYM theory [27], which were recently investigated in the context of structure constants.

Finally, we generalized the Hagedorn QSC to include also chemical potentials, as well
as to a class of integrable deformations of N = 4 SYM theory. In the letter case, we found
that the Hagedorn temperature is identical to the one in N = 4 SYM theory for any value
of the coupling.

16The TBA for the conformal fishnet theory is currently known only for a subclass of operators [75, 76].
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Let us end discussing a number of interesting future directions. From our numeric
solution, we have extracted the leading and subleading behavior of the Hagedorn temperature
at large λ. It would be interesting to extract also further subleading orders, or to develop a
systematic approach to solving the Hagedorn QSC perturbatively at strong coupling. It
would also be interesting to solve the Hagedorn QSC in the presence of chemical potentials.

The integrability-based approach to the Hagedorn temperature should also be applicable
to further integrable theories. These include deformations of N = 4 SYM theory that are
not given by diagonal twists, such as the η deformation, for which a TBA and QSC has been
developed in refs. [29, 77]. Further examples of integrable theories to which our approach
should be applicable are the ABJM and ABJ theory in the context of AdS4/CFT3 [78, 79],
for which a QSC has equally been studied [80–85]. Additional examples occur in the context
of AdS3/CFT2, for which a QSC has recently been proposed [86, 87]. In particular, the
theory considered in ref. [88] is free of wrapping corrections, making it an interesting starting
point to investigate an integrability-based approach to the full partition function.

Moreover, it has been pointed out in ref. [89] that four-point functions of determinant
operators exhibit a critical behavior that bears resemblance to Hagedorn behavior and it
would be interesting to calculate the critical configuration via a similar integrability based
approach as applied here for the Hagedorn temperature.

Similar techniques to the ones employed for the Hagedorn temperature could also be
used to calculate critical exponents, which describe how exactly the partition function
diverges when approaching the Hagedorn temperature

In this paper, we have calculated the Hagedorn temperature, which plays the role of a
limiting temperature, signaling a phase transition. The low-energy phase ceases to exist at
the Hagedorn temperature. The confinement-deconfinement phase transition, dual to the
Hawking-Page transition, is expected to occur at a lower temperature [38]. It has recently
been shown that the Hagedorn behavior at infinite N is replaced by Lee-Yang behavior at
large but finite N [90]. It would be extremely interesting to develop an integrability-based
approach also for the confinement-deconfinement temperature.
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A Generalized η functions

In this appendix, we discuss two important properties of the generalized η functions (3.11):

ηz1,...,zk
s1,...,sk

(u) ≡
∑

n1>n2>···>nk≥0

zn1
1 . . . znk

k

(u+ in1)s1 . . . (u+ ink)sk
. (A.1)

Many properties of the generalized η functions were already discussed in ref. [21], such
as their (shuffle) product and their behavior under shifts; we refer the reader to appendix F
of ref. [21] for details. Moreover, these relations are conveniently implemented in the
Mathematica package TwistTools.m accompanying ref. [21]. We will mainly need two
additional properties.

Relations for η with vanishing arguments. Generalized η functions can be further
simplified in the case that one of their indices vanishes, si = 0. This simplifications requires
us to distinguish whether the corresponding zi 6= 1 or zi = 1; the case zi 6= 1 was already
worked out in the Mathematica package TwistTools.m accompanying ref. [21].

Let us first consider zi 6= 1. We have∑
ni−1>ni>ni+1

zni
i = z

ni−1
i − zni+1+1

i

zi − 1 , (A.2)

from which it follows that

η
z1,...,zi−1,zi,zi+1,...,zk

s1,...,si−1,0,si+1,...,sk
(u) = 1

zi − 1η
z1,...,zi−1zi,zi+1,...,zk
s1,...,si−1,si+1,...,sk (u)− zi

zi − 1η
z1,...,zi−1,zizi+1,...,zk
s1,...,si−1,si+1,...,sk (u) ,

η
z1,...,zk−1,zk

s1,...,sk−1,0 (u) = 1
zk − 1η

z1,...,zk−1zk
s1,...,sk−1 (u)− 1

zk − 1η
z1,...,zk−1
s1,...,sk−1 (u) .

(A.3)
In the case zi = 1, however, we have∑

ni−1>ni>ni+1

zni
i = ni−1 − ni+1 − 1 . (A.4)

Using partial fractioning, we find

ni−1z
ni−1
i−1

(u+ ini−1)si−1
= iu

z
ni−1
i−1

(u+ ini−1)si−1
− i

z
ni−1
i−1

(u+ ini−1)si−1−1 , (A.5)

and a similar expression for the index i+ 1. Thus,

η
z1,...,zi−1,1,zi+1,...,zk

s1,...,si−1,0,si+1,...,sk
(u) = −iηz1,...,zi−1,zi+1,...,zk

s1,...,si−1−1,si+1,...,sk
(u) + iη

z1,...,zi−1,zi+1,...,zk

s1,...,si−1,si+1−1,...,sk
(u)

−ηz1,...,zi−1,zi+1,...,zk
s1,...,si−1,si+1,...,sk (u) ,

η
z1,...,zk−1,1
s1,...,sk−1,0(u) = iuη

z1,...,zk−1
s1,...,sk−1 (u)− iηz1,...,zk−1

s1,...,sk−1−1(u) .

(A.6)

An important special case is s1 = · · · = sk = 0. In particular,

ηz0(u) = Li0(z)
z

= 1
1− z . (A.7)

Note that the sum in ηz0 is divergent for |z| > 1; the right hand side is the appropriate
analytic continuation.
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Expansion at infinity. In the perturbative algorithm, it is required to expand the η
functions around u =∞. Consider an individual term in eq. (3.11). We have

zni
i

(ini + i+ u)si
=
∞∑
j1=0

1
usi+ji

(−i)ji
(
si + ji − 1

ji

)
zni
i (ni + 1)ji . (A.8)

Thus,

ηz1,...,zk
s1,...,sk

(u+ i) =
∞∑
j=0

(−i)j

uj+
∑k

i=1 si

∑
j1,...,jk≥0
j1+···+jk=j

(
s1+j1−1

j1

)
. . .
(
sk+jk−1

jk

)
z1 . . . zk

Li−j1,...,−jk(z1, . . . , zk) .

(A.9)
In this expansion, we in particular encounter the formally divergent quantities Li−n(1) for
n ∈ N0, which we regularize as Li−n(1) = ζ−n.

B TBA equations and Y-system

In this appendix, we provide further details on the TBA and Y-system equations for the
Hagedorn temperature, which we deferred in our letter [1].

B.1 TBA equations

In the following, we review the TBA equations for the psu(2, 2|4) spin chain of N = 4
SYM theory at finite temperature and in the presence of chemical potentials. These are
obtained in complete analogy with the TBA equations of the spectral problem for N = 4
SYM theory [5–10]. The only subtle difference is that in our case we use the direct physical
theory, based on the direct association between the temperature of N = 4 SYM and the
temperature of the spin chain, whereas one uses instead the so-called mirror theory in the
spectral problem, since in that case one should perform a double Wick rotation as explained
in the Introduction.

To obtain TBA equations for the psu(2, 2|4) spin chain of N = 4 SYM theory, one
starts with the asymptotic Bethe ansatz of refs. [91, 92]. One then assumes the string
hypothesis, which is a specific assumption to what constitutes the complete set of solutions
to the asymptotic Bethe ansatz equations. In particular, these solutions are organized in
terms of so-called strings. One considers an ensemble of configurations of strings of various
types and lengths in the continuum limit by sending the length of the spin chains to infinity.
This is described by densities of values of the centers of the strings realized by the particular
configuration of strings in the ensemble as well as the density of center values not realized.
From this one can define the entropy per unit classical scaling dimension s, the energy
per unit classical scaling dimension e, and the charges per unit classical scaling dimension
q̃(i) with i = 1, . . . , 5. Imposing the first law of thermodynamics δe = Tδs+

∑
i Ωiδq̃

(i) at
temperature T and for chemical potentials Ωi, one obtains the TBA equations in terms
of Y-functions and an associated free energy per unit classical scaling dimension. The
Y-functions are defined as the ratio of the density of values not realized over the density of
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a

s

Figure 6. There exists one Y-function Ya,s(u) for each (a, s) ∈M (defined in eq. (B.1) and shown
in blue) and one T-function Ta,s for each (a, s) ∈ M̂ (defined in eq. (C.1) and shown as union of
blue and white).

values that are realized by the configurations in the ensemble. Following the notation of
ref. [1], one can define Y-functions Ya,s(u) with (a, s) in the set M ,

(a, s) ∈M = {(a, s) ∈ N≥0 × Z | a = 1 ∨ |s| ≤ 2 ∨ ±s = a = 2} . (B.1)

They form a so-called hook, illustrated in figure 6.
In terms of the Y-functions Ya,s(u), the TBA equations for the direct theory take the

following form:

logYn,0 =− 1
T
εn−

∞∑
m=1

log(1+Ym,0)?(Km,n+Σm,n)−
∑
a=±1

∞∑
m=1

log(1+Ym+1,a)?Θm,n
a,0

−
∑
a=±1

{
log(1+Y1,a) ?̌Θ1,n

3a,0+log(1+Y−1
2,2a) ?̌Θ1,n

4a,0

}
− n
T

(Ω1−Ω2) , (B.2)

logYn+1,±1(u) =−
∞∑
m=1

log(1+Ym+1,±1(v))?Km,n(v,u)−log 1+Y1,±1(v)
1+Y−1

2,±2(v)
?̌an(v−u)

−
∞∑
m=1

log(1+Ym,0(v))?Θm,n
0,±1(v,u)− n

T
(Ω2±Ω3) , (B.3)

logY1,±(n+1)(u) =
∞∑
m=1

log(1+Y−1
1,±(m+1)(v))?Km,n(v,u)+log 1+Y1,±1(v)

1+Y−1
2,±2(v)

?̌an(v−u)

+ n

T
(Ω4±Ω5) , (B.4)
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logY1,±1(u) =−
∞∑
m=1

log(1+Ym,0(v))?Θm,1
0,±3(v,u)−

∞∑
m=1

log 1+Ym+1,±1(v)
1+Y−1

1,±(m+1)(v)
?am(v−u)

− 1
2T (Ω2±Ω3−Ω4∓Ω5) , (B.5)

logY2,±2(u) =
∞∑
m=1

log(1+Ym,0(v))?Θm,1
0,±4(v,u)+

∞∑
m=1

log 1+Ym+1,±1(v)
1+Y−1

1,±(m+1)(v)
?am(v−u)

+ 1
2T (Ω2±Ω3−Ω4∓Ω5) , (B.6)

where n ≥ 1 and u ∈ R\(−2g, 2g) using the kernels ε, K, Σ, Θ and a defined in appendix B.4.
We define here the convolutions

(f ? g)(u) =
∫ ∞
−∞

dvf(v)g(v, u) , (B.7)

(f ?̌ g)(u) =
(∫ −2g

−∞
dv +

∫ ∞
2g

dv
)
f(v)g(v, u) , (B.8)

(f ?̂ g)(u) =
∫ 2g

−2g
dvf(v)g(v, u) , (B.9)

for the functions f(u) and g(v, u). The above TBA equations for the direct theory were
previously considered in refs. [10, 77] but in different thermodynamic limits.

Note that we have assumed

Ω1 ≥ Ω2 ≥ Ω3 ≥ 0, Ω4 ≥ Ω5 ≥ 0 . (B.10)

Concretely, this is important to get the right asymptotics for large n.17 One finds the large
n asymptotics

lim
n→∞

logYn,0
n

= −Ω1 − Ω2
T

, lim
n→∞

logYn,±1
n

= −Ω2 ± Ω3
T

lim
n→∞

logY1,±n
n

= Ω4 ± Ω5
T

.

(B.11)

The Gibbs free energy per unit classical scaling dimension is given by

F (T,Ωi) = −T
∞∑
n=1

∫ ∞
−∞

du θn(u) log(1 + Yn,0(u)) , (B.12)

with θn(u) defined in eq. (B.27). The TBA equations (B.2)–(B.6) determine the Y-functions
Ya,s(u) at a given temperature T and chemical potentials Ωi. Inserting this into eq. (B.12),
one finds the Gibbs free energy of the psu(2, 2|4) spin chain at the temperature T and
chemical potentials Ωi. From the Gibbs free energy (B.12), one can now determine the
Hagedorn temperature TH from eq. (4.10).

17Note that one can always reparametrize the given charges to obtain this.
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B.2 Y-system

While the TBA equations in principle solve the problem of determining the Gibbs free
energy per unit classical scaling dimension F (T,Ωi) — and thus the Hagedorn temperature
— in practice they are quite difficult to work with. A first step towards a simplification
is to recast them in terms of so-called Y-system equations, as done for the case of the
spectral problem in refs. [6–10]. In case of zero chemical potentials, we used this in ref. [1]
to determine the Hagedorn temperature up to and including order g4 (two loops).

Analytically extending the Y-functions Ya,s(u), one finds from the analytic properties
of the TBA equations (B.2)–(B.6) that they are analytic in the strip with Im(u) < 1

2 |a−|s||.
One can now derive the Y-system equations

logYa,s = log (1 + Ya,s−1) (1 + Ya,s+1)(
1 + Y−1

a−1,s

)(
1 + Y−1

a+1,s

) ? s , (B.13)

valid on R, where
s(u) = (2 cosh πu)−1 . (B.14)

The convolution with Y1,±1 and Y2,±2 in eq. (B.13) for (a, s) = (2,±1), (1,±2) is understood
to be ?̌. The Y-system equations (B.13) hold for all (a, s) ∈M except when (a, s) = (1, 0),
(a, s) = (1,±1) or (a, s) = (2,±2). For the exceptions (a, s) = (1,±1) and (a, s) = (2,±2),
we have the non-local equations

logY1,±1Y2,±2 (u) =
∞∑
m=1

log (1 + Ym,0 (v)) ?
(

Θm,1
0,±4 −Θm,1

0,±3

)
(v, u) , (B.15)

and

log Y2,±2
Y1,±1

=
∞∑
m=1

log (1 + Ym+1,±1)2(
1 + Y−1

1,±(m+1)

)2
(1 + Ym,0)

? am + 1
T

(Ω2 ± Ω3 − Ω4 ∓ Ω5) ,

(B.16)
with an(u) defined in eq. (B.26). For the exception (a, s) = (1, 0), we find

logY1,0 = −ρ ?̂ s+ log (1 + Y1,−1) (1 + Y1,1) ?̌ s− log
(

1 + Y−1
2,0

)
? s , (B.17)

with the source term ρ(u) given by

ρ = ε0
T

+ log (1 + Y1,−1) (1 + Y1,1)
(

1 + Y−1
2,−2

)(
1 + Y−1

2,2

)
?̌ H0

+
∞∑
m=1

log (1 + Ym+1,−1) (1 + Ym+1,1) ? (Hm +H−m)

+
∞∑
m=1

log (1 + Ym,0) ? Σm .

(B.18)

See appendix B.4 for the definitions of ε0, Hm and Σm. The above equations provide an
equivalent yet more tractable version of the TBA equations (B.2)–(B.6).

– 33 –



J
H
E
P
0
7
(
2
0
2
2
)
1
3
6

B.3 Hagedorn temperature from asymptotics of Y-functions

For large u, one can infer from the TBA equations (B.2)–(B.6) that the Y-functions Ya,s(u)
asymptote to finite values

Y∞a,s = lim
u→∞

Ya,s(u) . (B.19)

This is important primarily with respect to reformulating the TBA equations in terms of
a QSC [2] but it is also useful for solving the Y-system at zero coupling g = 0 [1]. As we
describe in appendix C, the asymptotic Y-system Y∞a,s can be deduced from a constant
T-system, and this in turn provides the seed for all-important boundary conditions for the
asymptotic behavior of the Pa(u) and Qi(u) in the QSC, as described in subsection 2.2
and appendix E. A crucial piece in this is how we can infer the Gibbs free energy per
unit classical scaling dimension F (T,Ωi) from the asymptotic behavior of Y-functions in
the Y-system, since this in turns makes it possible to find it from the asymptotics of the
T-functions, and therefore also from the asymptotics of the Pa(u) and Qi(u) functions in
the QSC. Below we provide this piece, by showing that one can infer the Gibbs free energy
per unit classical scaling dimension F (T,Ωi) directly from the asymptotic Y-system Y∞a,s.
Indeed, this provides the argument behind eq. (C.31), which we used in ref. [2].

From eq. (B.38), we have(
Θn,1

0,±4 −Θn,1
0,±3

)
(v, u) = − i

2π∂v log
x
(
v + i

2n
)
− g2

x(u)

x
(
v − i

2n
)
− g2

x(u)

+ i

2π∂v log
x
(
v + i

2n
)
− x (u)

x
(
v − i

2n
)
− x(u)

.

(B.20)
We consider u ∈ R \ (−2g, 2g). For large u, we have x(u) = u+O(1/u). Considering the
first term, one observes that g2/x(u) goes to zero for u→∞; thus, one obtains −θn(v) as
one can infer from the definition (B.27). The second term instead goes to zero if v is kept
fixed for u→∞. However, if v − u is finite, it is non-zero for u→∞. Since this requires
v →∞, one has x(v + i

2n) ' v; hence, the second term gives an(v − u), as one can infer
from the definition (B.26). Thus, we have derived

lim
u→∞

(
Θn,1

0,±4 −Θn,1
0,±3

)
(v, u) = −θn (v) + an (v − u) . (B.21)

Employing eq. (B.15) with eq. (B.19), we find

logY∞1,±1Y∞2,±2 = −
∞∑
n=1

[θn ? log (1 + Yn,0)] (0) + lim
u→∞

∞∑
n=1

[log (1 + Yn,0) ? an] (u) . (B.22)

For the second term, one observes that one picks up only contributions for large v in the
integral since u→∞. Hence,

logY∞1,±1Y∞2,±2 = −
∞∑
n=1

[θn ? log (1 + Yn,0)] (0) +
∞∑
n=1

log
(
1 + Y∞n,0

)
. (B.23)

Note that one can deduce Y∞1,1Y∞2,2 = Y∞1,−1Y∞2,−2 from this. A slight rewriting of the Gibbs
free energy per unit classical scaling dimension (B.12) reveals

F (T,Ωi) = −T
∞∑
n=1

[θn ? log (1 + Yn,0)] (0) . (B.24)
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Therefore, combining this with eq. (B.23) one finds that

F (T,Ωi) = −T
{ ∞∑
n=1

log
(
1 + Y∞n,0

)
− logY∞1,1Y∞2,2

}
. (B.25)

Thus, we can obtain the Gibbs free energy per unit classical scaling dimension F (T,Ωi)
directly from the asymptotic values of the Y-functions Y∞a,s defined by eq. (B.19).
By eq. (4.10), this means in turn that one can obtain the Hagedorn temperature in
terms of Y∞a,s.

B.4 Definitions of functions and kernels

In this appendix, we have collected the various definitions for families of functions and
kernels that are needed for formulating the TBA equations (B.2)–(B.6).

We define for a positive integer n and u ∈ C the functions

an(u) = i

2π
d

du
log

u+ in
2

u− in
2

= i

2π

{
1

u+ i
2n
− 1
u− i

2n

}
= n

2π
(
u2 + n2

4

) , (B.26)

θn(u) = i

2π
d

du
log

x(u+ in
2 )

x(u− in
2 )

, (B.27)

εn(u) = g2

(
i

x(u+ i
2n)
− i

x(u− i
2n)

)
, for n > 0 . (B.28)

We extend these three families of functions to n = 0 by taking the limit n→ 0+:

a0(u) = δ(u) , (B.29)

θ0(u) =

0 for |u| > 2g ,
1

π
√

4g2−u2
for |u| < 2g ,

(B.30)

ε0(u) =
{

0 for |u| ≥ 2g ,
2
√

4g2 − u2 for |u| < 2g .
(B.31)

We turn now to the kernels. For n 6= m, we define the kernel Kmn(v, u) via

Kmn(v, u) = a|n−m|(v−u)+2a|n−m|+2(v−u)+2an+m−2(v−u)+an+m(v−u) . (B.32)

For n = m, we define

Knn(v, u) = a2n(v − u) + 2
n−1∑
j=1

a2n−2j(v − u) . (B.33)
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Moreover, we define the kernels

Σm,n(v, u) = i

2π

m∑
k=1

n∑
j=1

∂v log σ2
(
v + i

2(m+ 1− 2k), u+ i

2(n+ 1− 2j)
)
, (B.34)

[5pt]Θm,n
±1,0(v, u) = i

2π

m+1∑
k=1

∂v log
c(u+ i

2n, v + i
2(m+ 2− 2k))

c(u− i
2n, v + i

2(m+ 2− 2k))

+ i

2π

m−1∑
k=1

∂v log
d(u+ i

2n, v + i
2(m− 2k))

d(u− i
2n, v + i

2(m− 2k))
, (B.35)

Θm,n
0,±1(v, u) = i

2π

n+1∑
k=1

∂v log
a(v − i

2m,u+ i
2(n+ 2− 2k))

a(v + i
2m,u+ i

2(n+ 2− 2k))

+ i

2π

n−1∑
k=1

∂v log
b(v − i

2m,u+ i
2(n− 2k))

b(v + i
2m,u+ i

2(n− 2k))
, (B.36)

Θ1,n
±3,0(v, u) = i

2π∂v log
c(u+ i

2n, v)
c(u− i

2n, v)
, Θ1,n

±4,0(v, u) = i

2π∂v log
d(u− i

2n, v)
d(u+ i

2n, v)
,

(B.37)

Θm,1
0,±3(v, u) = i

2π∂v log
a(v − i

2m,u)
a(v + i

2m,u)
, Θm,1

0,±4(v, u) = i

2π∂v log
b(v − i

2m,u)
b(v + i

2m,u)
,

(B.38)

where we defined

a(v, u) = x(v)− x(u)√
x(v)

, b(v, u) =
x(v)− g2

2x(u)√
x(v)

, (B.39)

c(u, v) = x(u)− x(v) , d(u, v) = x(u)− g2

2x(v) . (B.40)

We also define the kernels

Hm(v, u) = i

2π∂v log
x(u− i0)− g2

x(v+ i
2m)

x(u+ i0)− g2

x(v+ i
2m)

, (B.41)

and

Σm(v, u) = i

2π∂v

(
log

R2(x(v + im
2 ), x(u+ i0))

R2(x(v + im
2 ), x(u− i0))

+ log
R2(x(v − im

2 ), x(u− i0))
R2(x(v − im

2 ), x(u+ i0))

)
,

(B.42)
which is defined in terms of the dressing factor [92]

σ2 (u, v) =
R2 (x+ (u) , x+ (v)

)
R2 (x− (u) , x− (v))

R2 (x+ (u) , x− (v))R2 (x− (u) , x+ (v)) ,
(B.43)

with x±(u) = x
(
u± i

2
)
.
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C Asymptotic T-system

In this appendix, we determine the asymptotic values of the T-system functions, from
which one can infer the asymptotic values of the Y-functions Y∞a,s defined by eq. (B.19).
The purpose is to generalize the asymptotic T-system found previously in ref. [1] for zero
chemical potentials to the case of non-zero chemical potentials. This is crucial for identifying
the correct asymptotic behavior of the Pa(u) and Qi(u) functions in the QSC with generic
chemical potentials in appendix E and furthermore to the case of general chemical potentials
presented in subsection 4.2.

C.1 T-system

To set up the framework for our analysis of the asymptotic values of the T-system functions,
we review first very briefly what a T-system is.

One can translate the Y-system equations of appendix B.2 into equations for a T-system.
To this end, one introduces the T-functions Ta,s(u) with (a, s) ∈ M̂ where M̂ is the so-called
T-hook set

M̂ = {(a, s) ∈ Z≥0 × Z |min(a, |s|) ≤ 2} ; (C.1)

cf. figure 6. The T-functions are set to zero outside the T-hook M̂ . The T-functions are
related to the Y-functions as follows:

Ya,s = Ta,s+1Ta,s−1
Ta+1,sTa−1,s

. (C.2)

The T-functions should obey the Hirota equations

T+
a,sT

−
a,s = Ta+1,sTa−1,s + Ta,s+1Ta,s−1 . (C.3)

In addition to this, the T-functions should obey certain analyticity properties listed in
ref. [93]. Note that there are certain gauge freedoms of the T-system functions Ta,s(u)
relating different T-systems that correspond to the same Y-system; see for instance ref. [93].
We impose the following gauge conditions on the T-functions:

T2,n = Tn,2 and T2,−n = Tn,−2 for n ≥ 2 . (C.4)

C.2 General asymptotic T-system

We turn now to the asymptotic values of the T-functions Ta,s(u). We define these as

T∞a,s = lim
u→∞

Ta,s(u) . (C.5)

The asymptotic values of the Y-functions Y∞a,s defined in eq. (B.19) are connected to
asymptotic values of the T-functions T∞a,s as

Y∞a,s =
T∞a,s+1T

∞
a,s−1

T∞a+1,sT
∞
a−1,s

. (C.6)

It follows from the Hirota equations (C.3) that

(T∞a,s)2 = T∞a+1,sT
∞
a−1,s + T∞a,s+1T

∞
a,s−1 , (C.7)
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for (a, s) ∈ M̂ . We inherit the gauge choice (C.4) and impose the additional gauge condition
T∞0,s = 1 for s ∈ Z. This is possible to impose since it involves only a constant transformation
of the T-system, which is consistent with eq. (C.4). Considering now the formula (B.25) for
the Gibbs free energy per unit classical scaling dimension in terms of Y∞a,s, we can translate
this into a relation between the free energy and the asymptotic T-system:

F (T,Ωi) = T lim
n→∞

log
T∞n+1,0
T∞n,0

. (C.8)

Using eq. (4.10), this reveals a direct connection between the Hagedorn temperature TH
and the asymptotic T-system.

The general solution to the constant Hirota equations (C.7) is the psu(2, 2|4) character
solution of ref. [65]. The solution is presented in terms of the eight variables x1, x2, x3,
x4, y1, y2, y3 and y4, where one can think of x1, x2, x3, x4 as associated with the su(2, 2)
subalgebra and y1, y2, y3, y4, as associated with the su(4) subalgebra. For a ≥ |s|, the
solution is

T∞a,s = (−1)a+as
(

x3x4
y1y2y3y4

)s−a det
(
S
θj,s+2
i y

j−4−(a+2)θj,s+2
i

)
1≤i,j≤4

det
(
S
θj,2
i y

j−4−2θj,s+2
i

)
1≤i,j≤4

, (C.9)

with

Si = (yi − x3)(yi − x4)
(yi − x1)(yi − x2) , θj,s =

{
1 , j > s

0 , j ≤ s
. (C.10)

For s ≥ a ≥ 0, the solutions is

T∞a,s =
det
(
Z

1−θj,a

i x
2−j+(s−2)(1−θj,a)
i

)
1≤i,j≤2

det
(
Z

1−θj,0
i x

2−j−2(1−θj,0)
i

)
1≤i,j≤2

, (C.11)

with
Zi = (xi − y1)(xi − y2)(xi − y3)(xi − y4)

(xi − x3)(xi − x4) . (C.12)

From the above, one finds T∞a,s for s ≥ 0. For negative s, one can find T∞a,s via the general
relation

T∞a,s(x1, x2, x3, x4|y1, y2, y3, y4) =
(
y1y2y3y4
x1x2x3x4

)a
T∞a,−s

(
1
x4
,

1
x3
,

1
x2
,

1
x1

∣∣ 1
y4
,

1
y3
,

1
y2
,

1
y1

)
.

(C.13)
Note that one has manifestly T∞0,s = 1 in the above solution. The gauge choice (C.4)

corresponds to
x1x2x3x4 = y1y2y3y4 . (C.14)

One can check that making the rescaling xa → αxa and yi → αyi results in T∞a,s → αasT∞a,s
which corresponds to a gauge transformation of the asymptotic T-system. Thus, one can
freely make a rescaling of this kind to impose y1y2y3y4 = 1, thus

x1x2x3x4 = y1y2y3y4 = 1 . (C.15)
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We impose the following ordering in the case of non-zero chemical potentials:

− x1 > −x2 > 0 , −x3 > −x4 > 0 , y1 > y2 > y3 > y4 > 0 . (C.16)

The xi’s are negative due to the boundary conditions of the fermions in the partition
function. Indeed, from (E.6) we see that negativity of the xi’s is in accordance with the
signs in the (−e−1/(2TH))±iu factors in eq. (2.12). The inequalities (C.16) assume

Ω1 > Ω2 > Ω3 ≥ 0 , Ω4 > Ω5 ≥ 0 . (C.17)

This means the above solution is not fully general as it does not work for the full range of
chemical potentials constrained by the bounds (B.10) that one can always assume without
loss of generality. However, one can describe the cases in which some or all of the more
general bounds (B.10) are saturated by taking limits of the above solution. For instance,
as we review in appendix C.4, one finds the case of zero chemical potentials by a limit of
the above [1]. Thus, in this sense, we can think of the above solution for the asymptotic
T-system as fully general.

Combining the above solution for T∞a,s with the Y-system asymptotics (B.11), we find

e(Ω2−Ω3)/T = y1
y2
, e(Ω1−Ω2)/T = y2

y3
, e(Ω2+Ω3)/T = y3

y4
,

e(Ω4+Ω5)/T = x1
x2
, e(Ω4−Ω5)/T = x3

x4
.

(C.18)

From this, we find the yi’s in terms of the chemical potentials and temperature:

y1 = e
Ω1+Ω2−Ω3

2T , y2 = e
Ω1−Ω2+Ω3

2T , y3 = e
−Ω1+Ω2+Ω3

2T , y4 = e
−Ω1−Ω2−Ω3

2T .

(C.19)
Using the asymptotics of the solution (C.9)–(C.10) with eq. (C.8), we find

exp
(
F (T,Ωi)

T

)
= y1y2
x3x4

. (C.20)

Thus, we deduce

x1 = − e
F (T,Ωi)−Ω1+Ω4+Ω5

2T , x2 = − e
F (T,Ωi)−Ω1−Ω4−Ω5

2T ,

x3 = − e
−F (T,Ωi)+Ω1+Ω4−Ω5

2T , x4 = − e
−F (T,Ωi)+Ω1−Ω4+Ω5

2T .

(C.21)

Inserting now the relation to the Hagedorn temperature (4.10), one finds eq. (4.11). Once
inserted into the above solution for T∞a,s, this provides the asymptotic T-system for a
Hagedorn temperature TH with chemical potentials obeying the bounds (C.17). From this,
one can approach the cases in which some or all of the more general bounds (B.10) are
saturated by taking limits of this solution.
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C.3 Explicit form of the asymptotic T-system

For connecting to the Q-system, and hence the QSC, it is useful to rewrite the general
solution (C.9)–(C.13) for the asymptotic T-system T∞a,s in a more explicit form. We explicitly
present the generic case (C.17) here. The cases in which some of the inequalities (B.10) are
saturated can be obtained by taking limits of the expressions below, as illustrated for the
case of vanishing chemical potentials in the subsequent subsection.

We make the following definitions:18

Aa =
∏4
i=1(xa − yi)

xa
∏
b 6=a(xb − xa)

, Bi = −
∏4
a=1(xa − yi)

yi
∏
j 6=i(yj − yi)

. (C.22)

For the right band s ≥ a ≥ 0, we record

T∞0,s = 1 , T∞1,s = −A1x
s
1 −A2x

s
2 , T∞2,s = −(x1 − x2)2

x1x2
A1A2(x1x2)s . (C.23)

For the left band s ≤ −a ≤ 0, we record

T∞0,s = 1 , T∞1,s = A3x
s
3 +A4x

s
4 , T∞2,s = −(x3 − x4)2

x3x4
A3A4(x3x4)s . (C.24)

Finally, for the upper band a ≥ |s|, we record

T∞a,1 =
(
y1y2y3y4
x1x2x3x4

)a−1
A1A2

4∑
i=1
Bi

(x1 − x2)2y2
i

(x1 − yi)2(x2 − yi)2

(
−x1x2

yi

)a
, (C.25)

T∞a,−1 = −A3A4

4∑
i=1
Bi

(x3 − x4)2y2
i

(x3 − yi)2(x4 − yi)2

(
− yi
x3x4

)a
, (C.26)

T∞a,2 = −(x1 − x2)2

x1x2
A1A2(x1x2)a , T∞a,−2 = −(x3 − x4)2

x3x4
A3A4(x3x4)−a . (C.27)

In addition, one finds T∞a,0 from the general relation

T∞a,0 =
(
T∞a,1

)2 − T∞a+1,1T
∞
a−1,1

T∞a,2
. (C.28)

One can check that the above formulas give the same result as eqs. (C.9)–(C.13).
The above explicit form (C.23)–(C.27) for T∞a,s is useful in that one can directly infer the

dependence on a and s. This dependence is instead hidden in the character solution (C.9)–
(C.13). We use this explicit form below in appendix E to connect to the large-u behavior of
the QSC.

18Note that the constants Aa and Bi are related to the coefficients Aa and Bi from eqs. (4.13) and (4.14)
in the main text as AaA

a = Aa and BiB
i = Bi.
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C.4 Asymptotic T-system for zero chemical potentials

One can find the asymptotic T-system for zero chemical potentials by first setting Ω3 = Ω5 =
0 and subsequently taking the limits Ω1 → 0, Ω2 → 0 and Ω4 → 0 of the solution (C.23)–
(C.27) of appendix C.3. One finds

T∞a,0 =
(
e

F (T )
2T

)2a a−2tanh F (T )
4T

12tanh4 F (T )
4T

(
a3−6a2 tanh F (T )

4T +
(

12tanh2 F (T )
4T −1

)
a−6tanh3 F (T )

4T

)
,

T∞a,±1 = (−1)a
(
e

F (T )
2T

)2a a−3tanh F (T )
4T

6tanh4 F (T )
4T

(
a2−3atanh F (T )

4T +3tanh2 F (T )
4T −1

)
,

T∞a,±2 = 1
tanh4 F (T )

4T

(
e

F (T )
2T

)2a
,

(C.29)
for a ≥ |s|, and

T∞0,s = 1 ,

T∞1,s = (−1)s

tanh2 F (T )
4T

[
|s| −

1− 3 tanh2 F (T )
4T

2 tanh F (T )
4T

](
e

F (T )
2T

)|s|
,

T∞2,s = 1
tanh4 F (T )

4T

(
e

F (T )
2T

)2|s|
,

(C.30)

for |s| ≥ a. This is the T-system given in our letter [1], where it was written in terms of
the parameter

z = − tanh F (T )
4T . (C.31)

Imposing the Hagedorn temperature condition (4.10) with zero chemical potentials further
fixes F (TH) = −1.

D Zeroth order T-system and the Hagedorn temperature

In this appendix, we provide details on the relation between the integrability-based method
and the Pólya-theory method, which we mentioned in subsection 4.3.

For vanishing ‘t Hooft coupling λ = 0, the Y-system is constant. Thus, it is equal to
the asymptotic Y-system Ya,s|λ=0 = Y∞a,s|TH=TH(λ=0). Similarly, for the T-system

Ta,s|λ=0 = T∞a,s|TH=TH(λ=0) . (D.1)

For vanishing ‘t Hooft coupling, one can see from eq. (B.15) along with the definition of the
kernels in appendix B.4 that a constant Y-system implies Y1,1Y2,2 = Y1,−1Y2,−2 = 1. Using
eq. (C.2) together with the gauge (C.4) as well as T∞0,1 = 1, we derive the condition

T∞1,0|λ=0 = 1 . (D.2)
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Imposing eq. (C.15), we compute from the general asymptotic T-system (C.9)–(C.10)

T∞1,0 = η(x, y) , (D.3)

where we defined

η(x, y) = ηs(x, y) + ηv(x, y) + ηf1(x, y) + ηf2(x, y) , (D.4)

with

ηs(x, y) = (x3x4 − x1x2)(y1y2 + y3y4 + y1y3 + y2y4 + y2y3 + y1y4)
(x4 − x1)(x3 − x1)(x4 − x2)(x3 − x2) , (D.5)

ηv(x, y) = 2 + 2x2
1x

2
2 − 2x1x2(x1 + x2)(x3 + x4) + (x1x3 + x2x4)(x1x4 + x2x3)

(x4 − x1)(x3 − x1)(x4 − x2)(x3 − x2) , (D.6)

ηf1(x, y) =
4∑
i=1

y−1
i

x1 + x2 − x3 − x4
(x4 − x1)(x3 − x1)(x4 − x2)(x3 − x2) , (D.7)

ηf2(x, y) =
4∑
i=1

yi
(x3 + x4)x1x2 − (x1 + x2)x3x4

(x4 − x1)(x3 − x1)(x4 − x2)(x3 − x2) . (D.8)

Noting that eq. (4.11) implies

e
− 1

TH = x1x2 , e
Ω4
TH = x1x3 , e

Ω5
TH = x1x4 ,

e
Ω1
TH = y1y2 , e

Ω2
TH = y1y3 , e

Ω3
TH = y2y3 ,

(D.9)

one can easily check that η(x, y) = η(TH,Ωi) is the single-particle partition function for
N = 4 SYM theory at zero ‘t Hooft coupling, with ηs originating from the scalar fields, ηv
from the gauge boson and ηf1 as well as ηf2 from the fermions. As derived in refs. [34, 38],
the condition for the Hagedorn temperature TH at zero ‘t Hooft coupling is η(TH,Ωi) = 1.
This corresponds precisely to the requirement (D.2). Therefore, we have shown that the
Hagedorn temperature at zero ‘t Hooft coupling for any value of the chemical potentials
correspond to the one obtained using the single-particle partition function for N = 4 SYM
theory in refs. [34, 38].

E Asymptotic Q-system with generic chemical potentials

In this appendix, we use the results for the asymptotic T-system T∞a,s recorded in ap-
pendix C.2 and C.3 to obtain the large-u asymptotic behavior of the Q-system for the case
of generic chemical potentials obeying the bounds (C.17). From this, one can infer the
asymptotic behavior of Qi(u) and Pa(u). In subsection 4.2 this is extended to the fully
general case. Note that this treatment is a special case of the one considered in ref. [28], as
discussed in subsection 4.2.

Consider the asymptotic T-system T∞a,s appropriate for obtaining the Hagedorn temper-
ature. This is given by eqs. (C.23)–(C.28) with xi and yi given by eq. (4.11). This T-system
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is associated with a Q-system through the relation (4.11) of ref. [94]. For the left and right
bands, we have

T∞0,s = Q
[−s]
1234|1234Q

[s]
∅|∅ for s ≤ 0 ,

T∞1,s = Q
[−s]
123|1234Q

[s]
4|∅ −Q

[−s]
124|1234Q

[s]
3|∅ for s ≤ −1 ,

T∞2,s = Q
[−s]
12|1234Q

[s]
34|∅ for s ≤ −2 ,

(E.1)

and
T∞0,s = Q

[s]
∅|∅Q

[−s]
1234|1234 for s ≥ 0 ,

T∞1,s = Q
[s]
1|∅Q

[−s]
234|1234 −Q

[s]
2|∅Q

[−s]
134|1234 for s ≥ 1 ,

T∞2,s = Q
[s]
12|∅Q

[−s]
34|1234 for s ≥ 2 ,

(E.2)

while for the upper band

T∞a,−2 = Q
[a]
12|1234Q

[−a]
34|∅ for a ≥ 2 ,

T∞a,−1 = (−1)a
(
Q

[a]
12|123Q

[−a]
34|4 −Q

[a]
12|124Q

[−a]
34|3 +Q

[a]
12|134Q

[−a]
34|2 −Q

[a]
12|234Q

[−a]
34|1

)
for a ≥ 1 ,

T∞a,0 = Q
[a]
12|12Q

[−a]
34|34 −Q

[a]
12|13Q

[−a]
34|24 +Q

[a]
12|14Q

[−a]
34|23 +Q

[a]
12|34Q

[−a]
34|12

−Q[a]
12|24Q

[−a]
34|13 +Q

[a]
12|23Q

[−a]
34|14 for a ≥ 0 ,

T∞a,1 = (−1)a
(
Q

[a]
12|1Q

[−a]
34|234 −Q

[a]
12|2Q

[−a]
34|134 +Q

[a]
12|3Q

[−a]
34|124 −Q

[a]
12|4Q

[−a]
34|123

)
for a ≥ 1 ,

T∞a,2 = Q
[a]
12|∅Q

[−a]
34|1234 for a ≥ 2 .

(E.3)
One can reproduce the general asymptotic T-system (C.23)–(C.28) from the Q-system

as follows. We choose the gauge
Q∅|∅ = 1 . (E.4)

Furthermore, one can show that it is possible to impose [28]

Q1234|1234 = 1 . (E.5)

One uses now the ansatz

Qa|∅ = Pa(u) = Aax
−iu
a , Q∅|j = Qj(u) = Bjy

iu
j ,

Qa|∅ = Pa(u) = Aaxiua , Q∅|j = Qj(u) = Bjy−iuj ,
(E.6)

for a, j = 1, 2, 3, 4. For the constants Aa, Aa, Bj and Bj we impose the constraints

AaA
a = Aa , BiB

i = Bi (E.7)
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where Aa and Bi are defined by eq. (C.22) and where there are no sums over a and i on
the left-hand sides of the two expressions. As mentioned in subsection 4.2, this ansatz is
related to a special case of the large-u asymptotics of the twisted QSC in ref. [28]. From
eqs. (E.6) and (E.7), the Q-system can now be inferred from the QQ-relations (2.1)–(2.3)
as well as the definitions of the Hodge dual Q-functions (2.7). In particular, we record

Qa|j = x−iua yiuj

√
xayj

xa − yj
AaBj , (E.8)

Qa|j = −xiua y−iuj

√
xayj

xa − yj
AaBj , (E.9)

Qab|∅ = (xaxb)−
1
2−iuAaAb(xa − xb) , (E.10)

Qab|∅ = (xaxb)−
1
2 +iuAaAb(xb − xa) , (E.11)

for a, j = 1, 2, 3, 4. For the left and right bands, it is obvious from eqs. (E.4) and (E.5) that
T0,s = 1. We record furthermore the relations

T∞1,s =

−P[s]
1
(
P1)[−s] −P[s]

2
(
P2)[−s] for s ≥ 1 ,

P[s]
4
(
P4)[−s] + P[s]

3
(
P3)[−s] for s ≤ −1 ,

(E.12)

T∞2,s =

Q
[s]
12|∅

(
Q12|∅)[−s] for s ≥ 2 ,

Q
[s]
34|∅

(
Q34|∅)[−s] for s ≤ −2 .

(E.13)

Combining these relations with eq. (E.6), we reproduce the general asymptotic T-
system (C.24) and (C.23) for the left and right bands.

For the upper band, we record

T∞a,2 = Q
[a]
12|∅

(
Q12|∅

)[−a]
, T∞a,−2 = Q

[−a]
34|∅

(
Q34|∅

)[a]
, (E.14)

for a ≥ 2, and

T∞a,1 = − (−1)a
4∑
j=1

Q
[a]
12|j

(
Q12|j

)[−a]
, T∞a,−1 = (−1)a

4∑
j=1

Q
[a]
34|j

(
Q34|j

)[−a]
, (E.15)

for a ≥ 1. Combining these relations with eq. (E.10), we reproduce the general asymptotic
T-system (C.25)–(C.27) for the upper band. It is not necessary to check that T∞a,0 matches,
since that is determined by the relation (C.28).

Using eqs. (E.7) and (C.14), one derives the following identities

4∑
a=1

AaA
a =

4∑
i=1

BiB
i = 0 ,

4∑
a=1

AaA
a xa
xa − yi

=
4∑
i=1

BiB
i xa
xa − yi

= −1 , (E.16)

BiB
j

4∑
a=1

AaA
axa

(xa − yi)(xa − yj)
= 1
yi
δij , AaA

b
4∑
i=1

BiB
iyi

(xa − yi)(xb − yi)
= 1
xa
δab . (E.17)
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From eqs. (4.12) and (4.13)–(4.14), one finds the Q-functions (E.6) and (E.10) which
reproduce the asymptotic T-system (C.23)–(C.28) for generic chemical potentials (satisfying
the bounds (C.17)). This confirms the large-u asymptotics (E.6)–(E.7) of the QSC.

Employing the first identities (E.16) together with (E.6) and (C.15), one finds

PaPa = 0 , QiQi = 0 . (E.18)

Moreover, the second identities (E.16) together with eqs. (E.6), (E.8) and (C.15) give the
relations (2.8). Finally, the identities (E.17) together with eq. (E.8) give eq. (2.9).

Finally, we note that for Ω3 = Ω5 = 0 one has left-right symmetry of the QSC, and
the Pa and Qi functions should satisfy eqs. (2.10)–(2.11). Indeed, using Ω3 = Ω5 = 0
one finds from eq. (4.11) that x4 = 1/x1, x3 = 1/x2, y4 = 1/y1 and y3 = 1/y2. Using
this, Pa = χabPb and Qi = χijQj provided Aa = χabAb and Bi = χijBj . These relations
require A1A

1 = −A4A
4, A2A

2 = −A3A
3, B1B

1 = −B4B
4 and B2B

2 = −B3B
3 which can

be derived from eqs. (4.13) and (4.14). Finally, it is easily checked that Qa|i = χabχijQb|j
from eq. (E.8).

F Asymptotic Qa|i for vanishing chemical potentials

In this appendix, we give the functions Qa|i that correspond to the asymptotic T-system in
the case of vanishing chemical potentials; we deferred these in subsection 2.2. In particular,
these Qa|i functions give Q

(0)
a|i when setting TH = T

(0)
H , thus providing the remaining part of

the starting point for the perturbative solution to the QSC.
We have

Q1|1(u) = A1B1

(
− e−

1
2TH

)−iu 1
2(−i) sech

(
1

4TH

)
,

Q1|2(u) = A1B2

(
− e−

1
2TH

)−iu 1
4 sech

(
1

4TH

) [
tanh

(
1

4TH

)
− 2iu

]
,

Q1|3(u) = A1B3

(
− e−

1
2TH

)−iu 1
8(−i) sech

(
1

4TH

) [
4iu tanh

(
1

4TH

)
+ 2 sech2

(
1

4TH

)
+ 4u2 − 1

]
,

Q1|4(u) = A1B4

(
− e−

1
2TH

)−iu 1
32 sech3

(
1

4TH

) [
3
(
4u2 + 1

)
sinh

(
1

2TH

)
− 2i

(
4u3 + u

)
cosh

(
1

2TH

)
− 12 tanh

(
1

4TH

)
− 8iu3 + 22iu

]
,

Q2|1(u) = A2B1

(
− e−

1
2TH

)−iu 1
8 csch

(
1

4TH

)
sech2

(
1

4TH

) [
1− 2iu sinh

(
1

2TH

) ]
,

Q2|2(u) = A2B2

(
− e−

1
2TH

)−iu 1
16

[
2u csch

(
1

4TH

)
+ sech

(
1

4TH

)(
2u tanh

(
1

4TH

)
− i
(

sech2
(

1
4TH

)
+ 8u2

)) ]
,

Q2|3(u) = A2B3

(
− e−

1
2TH

)−iu 1
64 csch

(
1

4TH

)
sech4

(
1

4TH

) [ (
4u2 + 7

)
cosh

(
1

2TH

)
+ u

(
4u cosh

(
1
TH

)
− i
((

4u2 − 1
)

sinh
(

1
TH

)
+ 2

(
4u2 + 5

)
sinh

(
1

2TH

)))
− 5
]
,
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Q2|4(u) = A2B4

(
− e−

1
2TH

)−iu 1
64

[
2u
(
4u2 − 5

)
csch

(
1

4TH

)
+ sech

(
1

4TH

){
2u tanh

(
1

4TH

)(
18 sech2

(
1

4TH

)
+ 20u2 + 11

)
− i
(
−3
(
12u2 + 7

)
sech2

(
1

4TH

)
+ 18 sech4

(
1

4TH

)
+ 8

(
4u4 + u2))}], (F.1)

and
Qa+2|i(u) = Aa+2

Aa
Qa+2|i(−u) for a = 1, 2 . (F.2)
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