
J
H
E
P
0
7
(
2
0
2
2
)
1
3
2

Published for SISSA by Springer

Received: March 1, 2022
Accepted: June 20, 2022
Published: July 20, 2022

Sphere and disk partition functions in Liouville and in
matrix integrals

Raghu Mahajan, Douglas Stanford and Cynthia Yan
Stanford Institute for Theoretical Physics, Stanford University,
Stanford, CA 94305, U.S.A.
E-mail: raghumahajan@stanford.edu, salguod@stanford.edu,
cyan2019@stanford.edu

Abstract: We compute the sphere and disk partition functions in semiclassical Liouville
and analogous quantities in double-scaled matrix integrals. The quantity sphere/disk2 is
unambiguous and we find a precise numerical match between the Liouville answer and the
matrix integral answer. An application is to show that the sphere partition function in JT
gravity is infinite.

Keywords: 2D Gravity, Conformal Field Models in String Theory, Matrix Models, Scale
and Conformal Symmetries

ArXiv ePrint: 2107.01172

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP07(2022)132

mailto:raghumahajan@stanford.edu
mailto:salguod@stanford.edu
mailto:cyan2019@stanford.edu
https://arxiv.org/abs/2107.01172
https://doi.org/10.1007/JHEP07(2022)132


J
H
E
P
0
7
(
2
0
2
2
)
1
3
2

Contents

1 Introduction 1

2 Liouville computations 3
2.1 Classical solutions and action 5

2.1.1 Sphere 5
2.1.2 FZZT disk 6

2.2 One loop determinants 7
2.2.1 Sphere 8
2.2.2 Hemisphere 9

2.3 Dividing by the volume of the conformal group 11
2.4 Putting the pieces together 14

3 Matrix integral computations 15
3.1 The conformal background 17
3.2 The free energy 20
3.3 FZZT disk 22
3.4 Comparing the ratio to the Liouville answer 23

A The sphere partition function in JT gravity is infinite 23

B The free energy from orthogonal polynomials 24

1 Introduction

In string theory, the sphere partition function without operator insertions is a fundamental
but confusing quantity. In principle, it should give minus the classical value of the on-
shell action of the string background. In the simplest string backgrounds, like empty
flat spacetime, this action vanishes. However, there are backgrounds of critical string
theory where the on-shell action is nonzero and physically important, like for thermal
AdS3 × S3 ×X.

It isn’t known how to compute the sphere partition function in such cases. Part of the
puzzle is that one has to divide by the volume of the conformal Killing group PSL(2,C),
which has infinite volume and no sensible finite regularized value [1, 2]. Another aspect is
that in cases where the partition function is expected to be nonzero, the target space is
noncompact, and there is a divergent integral over the location of the string worldsheet.

Some proposals exist in the literature. Tseytlin [3, 4] has proposed to replace the
division by the divergent volume of PSL(2,C) by a derivative w.r.t. the worldsheet UV
cutoff. See also [5] and [6]. Another proposal [7] was that at least for the case of AdS3,
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the noncompactness and the PSL(2,C) could cancel each other directly. This proposal was
questioned in [8].

It seems likely that the on-shell sphere partition function really is zero up to effects
having to do with the noncompactness of the target space. This is consistent with the
fact that in the gravity theory one gets from the low-energy limit of string theory, the
on-shell action vanishes up to boundary terms [3, 9]. In that theory, to compute the on-
shell action of a noncompact spacetime, one has to put some kind of radial cutoff, add
the GHY boundary term together with additional counterterms, and take a limit. Perhaps
the resolution of the sphere puzzle from the worldsheet perspective will involve a similar
procedure. This seems like a technical challenge: how does one put a spacetime radial
cutoff in the worldsheet path integral?

We don’t know how to do this. But as a (possibly irrelevant) warmup, in this paper we
will discuss an example from noncritical string theory, first studied by Zamolodchikov [10],
where the answer for the sphere partition function is finite and nonzero. Specifically, we
study the noncritical string theory consisting of Liouville theory and the (2, p) minimal
model, and we do the Liouville path integral directly in the semiclassical limit cLiouville →
+∞, which is relevant for large values of p. As shown in [10], in this example the conformal
symmetry of the Liouville theory is spontaneously broken by a semiclassical saddle point,
leading to Goldstone zero modes. These zero modes are noncompact, and the integral over
them cancels against the divergent volume of PSL(2,C) that we are supposed to divide
by, giving a finite and nonzero answer. So indeed, the noncompactness and the PSL(2,C)
cancel each other neatly.

We do the calculation from [10] in a bit more detail, and match the answer to the
predictions of the matrix integral. To do this matching, it is important to compare not
the sphere partition function itself, but the well-defined quantity sphere/disk2, where we
consider the specific case of the disk with FZZT boundary conditions. So one also has
to compute this disk partition function. This is structurally similar to the sphere, with
PSL(2,R) playing the role of PSL(2,C).

In fact, this comparison with the matrix integral was already done (with ZZ disk
instead of FZZT) in the work of Alexandrov, Kazakov and Kutasov [11], using exact
Liouville methods [12–15]. Specifically, [11] gets a formula for the sphere partition function
by integrating the DOZZ formula for the three point function of cosmological constant
operators, which represent derivatives with respect to µ of the sphere partition function.1

Our direct semiclassical calculation is a less complete match to the matrix integral, because
it is only valid for large p. However, it has the advantage that the role of PSL(2,C) and
PSL(2,R) are more obvious. Also, we are able to determine the overall numerical coefficient,
which was fitted in [11].

On the matrix integral side, defining the analog of the sphere and disk partition func-
tions requires some care, and we explain this in detail. We find that in the matrix integral

1This procedure would also work for all the (q, p) minimal string theories and also the c = 1 string
theory.
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dual to the (2, p) minimal string, which has the leading density of eigenvalues

ρ(E) = eS0

2π2 sinh
[
p

2arccosh
(

1 + 8π2

p2 E

)]
, (1.1)

the universal part of the matrix integral free energy is

log(Z) ⊃ − e2S0

210π6
p5

p2 − 4 . (1.2)

In the string theory, the density of states is related to the disk with FZZT boundary
conditions, and the free energy is the sphere partition function. Our Liouville formulas for
these quantities agree with (1.2) in the large p limit where one ignores the “−4” in the
denominator. Note that in the strict large p limit, in which this system approaches JT
gravity, the sphere partition function diverges, as suggested in [16].

While our work was nearing completion, [17, 18] appeared which also study the semi-
classical limit of the sphere partition function in Liouville theory.

2 Liouville computations

In this section we will compute Liouville path integrals on the sphere, and on the disk
(hemisphere) with FZZT boundary conditions, in a semiclassical approximation at large
positive Liouville central charge. In this limit, Liouville theory is weakly coupled, and one
can compute the path integral by summing over saddle points and including a one-loop
determinant. There are several subtleties involved in getting a well-defined answer from
these partition functions, and we will start by explaining these.

First, a problem that one runs into is that the one-loop determinants are infinite, due to
the existence of noncompact zero modes. The origin of these zero modes is that the saddle
point configurations of the Liouville field spontaneously break the conformal symmetry of
the theory, leading to a finite number of Goldstone modes. On the sphere, the globally
defined conformal symmetry group is PSL(2,C), and on the disk it is PSL(2,R), and the
zero modes parametrize the quotient space G/H where G = PSL(2,C) or PSL(2,R) and
H = PSU(2) or U(1) is the subgroup of G that preserves the saddle point solutions.

One can get a finite and well-defined answer by computing the ratios
Zsphere

vol(PSL(2,C)) , and Zdisk
vol(PSL(2,R)) . (2.1)

Concretely, the division by the infinite volumes in the denominator is accomplished by omit-
ting the zero modes from the one-loop determinants, and then dividing by the volume of the
stabilizer subgroupH that leaves the saddle point invariant (note that H has finite volume).

A second subtlety is that the overall normalization of the path integral is ambiguous,
due to (i) the conformal anomaly, (ii) the existence of a finite counterterm proportional
to the Euler characteristic, and (iii) an arbitrary choice of measure on the group G whose
volume we divide by in (2.1). These ambiguities really exist, but they can be made to
cancel out in the ratio

Zsphere
vol(PSL(2,C)) ·

(vol(PSL(2,R))
Zdisk

)2
. (2.2)
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In order to make the ambiguities (i) and (ii) cancel out, we will use the same metric for the
two problems, taking the disk to the be the hemisphere. We will also use the same cutoff
procedure for the computation of the sphere and the disk one loop determinants.

In order to address (iii), which is the ambiguity in the measure on G, we need a principle
which chooses related measures on PSL(2,C) and PSL(2,R). One might be tempted to
use the fact that PSL(2,R) is a subgroup of PSL(2,C) and (up to a normalization that
cancels out in the ratio) there is a preferred metric on PSL(2,C) that induces a measure
on both spaces. In fact, for our purposes, this is actually not the right answer: instead
the metric in the two spaces should be multiplied by a further factor of the volume of the
sphere or hemisphere that the theory is defined on. This factor introduces some factors of
two relative to the naive guess just described.

This prescription is the correct one for the application of Liouville theory to noncritical
string theory. There one is interested in Z/vol(G) because in string theory, the conformal
symmetry is treated as part of the diffeomorphism and Weyl gauge symmetry. From this
perspective, the factors of 1/vol(G) arise from zero mode integrals in the path integral over
the bc ghosts, and the factor of the volume of the sphere or hemisphere in the G metric
described above arises from the normalization of these zero modes on the two spaces.

Having explained these subtleties, let’s now give an overview of the computation and
set conventions for Liouville theory. We will define the Liouville field σ so that the physical
metric is

ds2 = e2σ ˆds2. (2.3)

In the explicit computations, we will use the sphere or hemisphere as the reference metric

ˆds2 = dθ2 + sin2(θ)dφ2, R̂ = 2, K̂|equator = 0. (2.4)

It is conventional to write the central charge of Liouville theory as c = 1 + 6(1/b+ b)2, and
to approach the limit of large c by taking b small. Then the Liouville action is

I = 1
b2

{ 1
4π

∫ √
ĝ
[
(∂̂σ)2 + R̂σ + 4πµe2σ

]
+ 1

2π

∫ √
ĥ
[
K̂ + 2πµBeσ

]}
(2.5)

+ 1
4π

∫ √
ĝR̂σ + 1

2π

∫ √
ĥK̂σ. (2.6)

The parameter µ is called the cosmological constant, and the parameter µB is called the
boundary cosmological constant. Our conventions for these parameters differ by a factor
of b2 from the standard ones in the literature.

As written, the terms on the first line are proportional to b−2, and the terms on the
second line are of order one. We will treat the theory to one loop order in the small b
expansion, which means that we want to compute the order b−2 and order one terms in
log(Z). This means that we will need to retain the terms on the second line (2.6). However,
to the order that we work, these terms can be treated by first-order perturbation theory,
simply evaluating them on the classical solution that is obtained from the leading b−2

terms. As long as we remember to do this, we only need to take the first line (2.5) into
account in determining the classical solutions and one-loop determinants.
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The goal is to compute two different partition functions: (1) the partition function on
the sphere, and (2) the FZZT partition function on the disk (hemisphere), with µB fixed.
More precisely, as explained above, we will compute the partition functions divided by the
volumes of the respective conformal groups. For both cases, the answer for small b is

Z

vol(G) =
∑

saddles
e−Iclassical · (one-loop det′) · (gauge-fixing factor). (2.7)

Here the one-loop determinant is computed with the zero modes omitted, and the gauge-
fixing factor will convert this prescription into a properly normalized division by vol(G).

In the rest of the computation, we will go through and evaluate each of these three
factors for the sphere and for the disk.

2.1 Classical solutions and action

2.1.1 Sphere

On the sphere, there is a simple family of classical solutions given by constant configurations
of σ. Restricting to such configurations, the equation of motion (obtained by varying the
b−2 part of the action with respect to 2σ) is

1 + 4πµe2σ = 0, =⇒ 2σ = log
( 1

4πµ

)
+ iπ(1 + 2n). (2.8)

We see that there are actually an integer-indexed family of solutions, in which the Liou-
ville field σ differs by 2πin. Associated to each constant solution is a family of position-
dependent solutions with the same action, obtained by acting with PSL(2,C) on the con-
stant solutions; we will address these later.

One might be surprised by the fact that there are any classical solutions for Liouville
theory on a spherical topology, given that the equations of motion impose that the physical
metric e2σ ˆds2 should have constant negative curvature, and that no everywhere-negative-
curvature metric is possible on a spherical topology. In fact, for the solutions (2.8), the met-
ric e2σ ˆds2 is a round sphere with an overall negative sign in front. Formally, these solutions
have negative curvature R < 0 and count as valid complex solutions to the equations of mo-
tion (this point was explained in JT gravity in [16]).2 Plugging them into the action, we find

e−Iclassical = −e−
iπ
b2

(1+2n)e
1
b2 (4πµ)

1
b2

+1. (2.9)

Which, if any, of these solutions are we supposed to sum over? If the theory is defined
by analytic continuation in b, starting from the region where b has a positive imaginary part,
then the correct answer is to sum the solutions with n = 0, 1, 2, . . . [21]. This gives the result

∞∑
n=0

e−Iclassical = i
2 sin( π

b2 )e
1
b2 (4πµ)

1
b2

+1. (2.10)

2Complex metrics have been further discussed recently in [19, 20]. These papers discuss a requirement
for “allowable” complex metrics that follows from the well-definedness of the one-loop partition function.
For completely general matter content, a metric with (−,−) signature would not be allowed by this crite-
rion. However, the integral over fluctuations around the particular saddle point in the theory that we are
considering is completely well defined, so the idea behind the criterion of [19, 20] is still satisfied.
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In principle, one should sum over the saddle points at the end, after including the one-loop
determinants and gauge fixing factors, but these are independent of n, so it is allowable to
sum over the saddles at this early stage.

To motivate this prescription, one can consider a toy integral∫
dσeaσ−e2σ

. (2.11)

After setting a = −2(b−2 + 1) and shifting σ by a constant, this corresponds to the trun-
cation of the Liouville path integral to the constant mode of σ. If the real part of a is
positive, then the integral converges along the real axis. For our problem, a is negative,
and the integral does not converge, but we can imagine defining it by analytic continuation,
starting from positive values of a, and gradually adjusting the defining contour as we vary
a in order to make the integral remain convergent. If we vary a through the upper half
plane from positive values almost all the way to the negative real axis, then one acceptable
defining contour is the one shown below:

defining contour

n=0

n=1

n=2

n=3

n=-1

n=-2

n=-3

n=-4

steepest-descent 
contours from saddles

(2.12)

Also shown on the diagram are the locations of the saddle points and the steepest-descent
contours for each of the saddles (the real part of the locations of these saddles depends on
µ). The defining contour is equivalent to a sum of all of the steepest-descent contours for
n = 0, 1, 2, . . . , justifying the sum in (2.10).

2.1.2 FZZT disk

On the disk (hemisphere), a constant σ is not a solution to the equations of motion even
with a complex value of σ. The next simplest thing is to find solutions σ(θ) that are
independent of the angular coordinate φ. The Liouville action for such a configuration is

I = 1
b2

{
1
2

∫ π
2

0
dθ sin(θ)

[
σ′2 + 2σ + 4πµe2σ

]
+ 2πµBeσ(π/2)

}
+ 1

2

∫ π
2

0
dθ sin(θ)2σ. (2.13)

The equations of motion are obtained by varying the first term, of order b−2, with respect
to σ. We find the equations

1 + 4πµe2σ = 1
sin(θ)(σ′ sin(θ))′, 2πµBeσ(π/2) + σ′(π/2) = 0. (2.14)

– 6 –
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One can check that the following is a solution

σ = 2πin− 1
2 log(4πµ) + log

[ 2α
(1 + α2) cos(θ) + (1− α2)

]
, (2.15)

1 + α2 + 2
√
π

µ
µBα = 0. (2.16)

This solution corresponds to the metric e2σ ˆds2 being a piece of the hyperbolic disk, written
in a way that is conformal to the hemisphere. The action is given by plugging in and
integrating:

I = 1
b2

[
2πin− 1

2 +log(α)− 1
2 log(4πµ)

]
+
[
−1

2 log(4πµ)+1+
2logα−(1−α2) log 2α

1−α2

1+α2

]
.

(2.17)
In this expression, α is a parameter of the solution, and is determined by the boundary

cosmological constant µB in (2.16). When we compute the one-loop determinants later,
we will actually only be able to do the computation in the limit of small positive α, which
corresponds to large negative µB. Physically, this is a high energy limit in the boundary
theory (matrix integral), see (3.56). In this limit, we have the leading behavior

e−Iclassical = 2
e
e−2πin/b2

e
1

2b2

(√
4πµ
α

) 1
b2

+1

. (2.18)

Again, there is an integer-indexed family of solutions, and one has to decide which
solutions should be included. We will assume that it is correct to imitate the case of the
sphere, and sum over n = 0, 1, 2, . . . , which leads to the answer

∞∑
n=0

e−Iclassical = − ieiπ/b2

2 sin( π
b2 ) ·

2
e
e

1
2b2

(√
4πµ
α

) 1
b2

+1

. (2.19)

Our understanding of the contour is not as good for this case as for the sphere, but one
piece of evidence for this formula is that exact Liouville formulas [14, 22] do contain a
factor of 1/ sin(π/b2), which arises in this expression from the sum over saddles.

2.2 One loop determinants

To compute the one-loop determinant, we expand around a classical solution

σ = σcl + χ (2.20)

and integrate over the fluctuation χ with an appropriate action and measure. The measure
is derived from an ultralocal metric in field space

ds2 = C2 · (dχ, dχ) (2.21)

where we introduced an arbitrary constant C to parametrize the normalization ambiguity
in the metric, and we defined

(f, g) = 1
4π

∫
d2x

√
ĝ f(x)g(x). (2.22)

– 7 –



J
H
E
P
0
7
(
2
0
2
2
)
1
3
2

The action for the fluctuations is just the quadratic approximation to the full action near
the saddle point. This can be written

I ⊃ 1
b2

(χ,O χ) (2.23)

for a particular differential operator O that depends on the solution we are expanding
around.

To compute the integral, it is convenient to work in a basis of eigenfunctions of the
quadratic action, χ(x) =

∑
i χiYi(x) where

[OYi](x) = λiYi(x), (Yi, Yj) = δij . (2.24)

In this basis, the field-space metric (2.21) is

ds2 = C2∑
i

dχ2
i (2.25)

and the path integral is formally∫
Dχe−

1
b2

(χ,O χ) =
∏
i

C

∫
dχie−λiχ

2
i /b

2 =
∏
i

√
π bC√
λi

. (2.26)

2.2.1 Sphere

Expanding around any of the classical solutions (2.8), the quadratic part of the action (2.5)
is

I ⊃ 1
4πb2

∫ √
ĝ
[
(∂χ)2 − 2χ2

]
. (2.27)

The eigenfunctions of this problem are the spherical harmonics, and the eigenvalues are

λ = `(`+ 1)− 2, degeneracy 2`+ 1. (2.28)

We have to deal separately with the ` = 0 eigenfunction, the ` = 1 eigenfunctions, and all
of the others.

First, note that the ` = 0 eigenfunction is a negative mode, with eigenvalue λ =
−2. This is to be expected based on the diagram (2.12). In that diagram, the steepest-
descent contours pass vertically through the saddle points, which means that the action is
unstable with respect to real perturbations in the constant mode of χ. In the quadratic
approximation, the steepest descent contour is just the imaginary axis, and the integral is

C

∫ −i∞

+i∞
dχ0e

2χ2
0/b

2 = −i
√
π bC√

2
. (2.29)

Next, the ` = 1 modes are the zero modes that we promised. These correspond to the
Goldstone modes of the PSL(2,C) symmetry that is spontaneously broken by the constant
solutions (2.8). We will take these properly into account in the gauge-fixing part of the
computation; for now we simply insert delta functions, so the contribution of these modes is

3∏
i=1

C

∫
dχiδ(χi) = C3. (2.30)

– 8 –



J
H
E
P
0
7
(
2
0
2
2
)
1
3
2

Finally, we have the product over all of the other modes with ` ≥ 2:

∞∏
`=2

[ √
πbC√

`(`+ 1)− 2

]2`+1

. (2.31)

This is a divergent product, but we can compute a regularized version of its logarithm
using the following sums:

∞∑
`=0

(2`+1)e−ε2`(`+1) = 1
ε2

+ 1
3 +O(ε2) (2.32)

∞∑
`=2

(2`+1)log
[
`(`+1)−2

]
e−ε

2`(`+1) =
log( 1

ε2 )−γ
ε2

−2log
( 1
ε2

)
+2.32713+O(ε2), (2.33)

where γ is the Euler-Mascheroni constant. We determined the divergent terms by approx-
imating the sums as integrals, and we determined the constant terms numerically. Using
these formulas, one can compute

∑
λ>0

log
[√

πbC√
λ

]
e−ε

2λ =
∞∑
`=2

(2`+ 1) log
[ √

πbC√
`(`+ 1)− 2

]
e−ε

2`(`+1) (2.34)

= log(
√
πbC)× (2.32)− 1

2 × (2.33). (2.35)

2.2.2 Hemisphere

Expanding around the solution (2.15) to quadratic order, one finds

I ⊃ 1
b2

{
1

4π

∫
hemisphere

√
ĝ

[
(∂χ)2 + 8α2χ2

((1+α2) cos(θ) + (1−α2))2

]
− 1

4π
1 + α2

1− α2

∫
equator

χ2
}

(2.36)

≈ 1
b2

{ 1
4π

∫
hemisphere

√
ĝ(∂χ)2 − 1

4π

∫
equator

χ2
}
. (2.37)

In the second line, we gave an approximate formula for small α. The eigenfunctions are
determined by solving

− ∂2χ = λχ, (2.38)

where ∂2 is the Laplacian on the sphere, and by imposing the boundary condition at the
equator

χ′(π/2) = χ(π/2). (2.39)

The solutions are
Pm` (cos(θ))eimφ, λ = `(`+ 1) (2.40)

where P is the generalized Legendre function and ` is a (generically non-integer!) parameter
that is determined by solving the boundary condition equation.

The spectrum of this operator is qualitatively similar to the one-loop spectrum on
the sphere. There is one negative eigenvalue, there are two zero modes, and there are an
infinite number of other eigenvalues for which the product requires regularization. The

– 9 –
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negative mode is in the m = 0 sector, and numerically, its eigenvalue is λ0 ≈ −1.51095. Its
contribution to the one-loop determinant is

C

∫ −i∞

+i∞
dχ0e

−λ0χ2
0/b

2 ≈ −i
√
π bC√

1.51095
. (2.41)

The two zero modes are the lowest eigenvalues in the m = ±1 sectors, with ` = 0. These
correspond to the two spontaneously broken generators of PSL(2,R). We will treat these
in the gauge-fixing step, but for now we insert delta functions, so they contribute

2∏
i=1

C

∫
dχiδ(χi) = C2. (2.42)

Next we discuss the product over all of the other modes. A regularized version of the
product (2.26) can be computed using the following sums

∑
λ>0

e−ε
2λ = 1

2ε2 +
√
π

4ε −
11
6 +O(ε) (2.43)

∑
λ>0

log(λ)e−ε2λ =
log 1

ε2 − γ
2ε2 +

√
π

log 1
ε2 − log(4)− γ

4ε + 0.57136 +O(ε). (2.44)

Here, the sum runs over the positive eigenvalues, omitting the two zero eigenvalues and the
one negative eigenvalue. The divergent terms are the same as with Neumann boundary
conditions, where the eigenfunctions are a subset of the ordinary spherical harmonics with
integer `. This allowed us to compute the divergent terms analytically by approximat-
ing them as integrals. The finite terms in the sums were computed numerically. To get
good precision, it was necessary to use the package https://github.com/JamesCBremerJr/
ALegendreEval [23] to compute generalized Legendre functions with large parameters.

These formulas can be used to compute the regularized log-determinant

∑
λ>0

log
[√

πbC√
λ

]
e−ε

2λ. (2.45)

But after doing so, one finds a problem. For the ratio Zsphere/Z
2
disk, we need the log

determinant for the sphere (2.35) minus two times the log determinant for the disk, (2.45).
In this combination, our formulas imply that the leading quadratic divergence cancels out
(they can also be individually absorbed using an area counterterm), but the linear and
the log divergences remain. The linear divergence can be absorbed into a boundary length
counterterm for the disk, but the mismatch in the log term would mean that the ratio is
not well-defined.

This problem can be avoided if we regularize the disk in a different way, by inserting
in the sum a slightly different convergence factor e−ε2λ̃i where

λ̃i = 1
4π

∫ √
ĝ(∂Yi)2 (2.46)

= λi + 1
4π

∫
bdy

Y 2
i . (2.47)
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One can now recompute the sums (2.43) and (2.44) using the new regulator. In fact, this
isn’t much work: the difference λ̃ − λ is of order one, even for very large eigenvalues, so
the change makes a multiplicative correction of order ε2. The only way a small correction
like this can affect the order-one terms in the answer is by correcting the leading quadratic
divergences. These are dominated by large eigenvalues, so it is enough to know that on
average the boundary term in (2.47) approaches two for large eigenvalues. (This can be
shown by using the fact that for large eigenvalues, the eigenfunctions approach those of
the hemisphere with Neumann boundary conditions.)

The upshot is that one finds the revised answers for the sums

∑
λ>0

e−ε
2λ̃ = 1

2ε2 +
√
π

4ε −
17
6 +O(ε) (2.48)

∑
λ>0

log(λ)e−ε2λ̃ =
log 1

ε2 − γ
2ε2 +

√
π

log 1
ε2 − log(4)− γ

4ε − log
( 1
ε2

)
+ 1.14858 +O(ε).

Now when we subtract twice the disk answer from the sphere answer, the log term cancels,
and we can proceed to analyze the finite parts. Note that a priori, both λ and λ̃ seem like
reasonable quantities to use in the regularization, and to be honest, we would not have
known which was right. However, cancellation of the log term seems to require using λ̃,
and once this choice is made, the finite parts are determined.

2.3 Dividing by the volume of the conformal group

Liouville theory on the sphere has an exact PSL(2,C) conformal symmetry. A PSU(2)
subgroup of this corresponds to ordinary rotations of the sphere; these symmetries are
preserved by the constant saddle points (2.8). However, as we will see, the remaining
three directions in PSL(2,C) are spontaneously broken, which means that if we act with
an PSL(2,C) generator in this subspace, it changes the saddle point nontrivially to a new
saddle point with shifted values of the zero modes χ1, χ2, χ3 that we found in the one-loop
determinant, see [10, 24].

We will use coordinates s1, s2, s3 for the stabilizer subgroup that is preserved, and
b1, b2, b3 for the directions that are broken by the classical solution. The χ1, χ2, χ3 zero
modes can be considered functions of the bj coordinates.

One can define Zsphere/vol(PSL(2,C)) using the Fadeev-Popov procedure. Starting
with the measure for the field zero modes, divided by the measure on PSL(2,C), we replace
it as follows

d(sphere zero modes)
d(PSL(2,C)) = dχ1dχ2dχ3

ds1ds2ds3︸ ︷︷ ︸
PSU(2)

db1db2db3︸ ︷︷ ︸
PSL(2,C)/PSU(2)

= 1
ds1ds2ds3

det
(
∂χi
∂bj

)
. (2.49)

In the final expression, we have an inverse measure on PSU(2) and a Fadeev-Popov deter-
minant. The integral gives the determinant divided by the volume of PSU(2).

The situation for the disk is very similar to that of the sphere, except that we only have
a PSL(2,R) subgroup of the conformal symmetry. The analogous Fadeev-Popov procedure
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is
d(disk zero modes)

d(PSL(2,R)) = 23/2dχ1dχ2
ds1︸︷︷︸
U(1)

db1db2︸ ︷︷ ︸
PSL(2,R)/U(1)

= 23/2

ds1
det

(
∂χi
∂bj

)
. (2.50)

In this case, we end up with a Fadeev-Popov determinant and an inverse measure on U(1).
Note that we inserted an important factor of 23/2 in this expression relative to (2.49). This
factor will be explained below.

Let’s now work out the details explicitly. We write the reference sphere or hemisphere
in stereographic coordinates

ˆds2 = 4dzdz̄
(1 + zz̄)2 . (2.51)

The infinitesimal PSL(2,C) or PSL(2,R) transformations correspond to the following set
of six holomorphic vector fields (c ghost zero modes)

a Cz0,a = δaz C z̄0,a = δaz̄ coordinate
1 iz −iz̄ s1
2 1

2(1− z2) 1
2(1− z̄2) b1

3 i
2(1 + z2) − i

2(1 + z̄2) b2
4 z z̄ b3
5 i

2(1− z2) − i
2(1− z̄2) s2

6 1
2(1 + z2) 1

2(1 + z̄2) s3

(2.52)

The first three of these vector fields preserve the hemisphere |z| ≤ 1, and these correspond
to the PSL(2,R) subgroup of PSL(2,C). The last three make sense only on the full sphere.
In the final column, we have anticipated results below and labeled the transformations
according to whether they are preserved (s) or broken (b) by the classical solution.

One way to get the right measure in the si and bi coordinates is to use the perspective
of the bc ghost path integral. The determinants of the nonzero modes cancel between the
sphere and the disk2 (see e.g. [25]) and the zero modes are integrated with a measure that
is given by the square root of the determinant of the field-space inner product of the c-ghost
zero modes:

Mab = 3
8π

∫ √
ĝCα0,aC

β
0,bĝαβ . (2.53)

The constant 3/8π out front will cancel out in the ratio sphere/(disk)2, and we chose it so
that the answer is simply that M is the 6× 6 identity matrix for the sphere, and one-half
of the 3 × 3 identity matrix for the disk. So the measure is one for the sphere, and 2−3/2

for the disk, justifying the numerical factor in (2.50).
It remains to compute the determinants of ∂χi/∂qj . Conformal transformations are

defined to act on the Liouville field in such a way that the physical metric remains invariant.
So, under a general

z → z̃(z) (2.54)

we require that

e2σ̃(z̃,¯̃z) dz̃d¯̃z
(1 + z̃¯̃z)2 = e2σ(z,z̄) dzdz̄

(1 + zz̄)2 . (2.55)
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Infinitesimally, for z̃(z) = z + δz, this implies that δσ(z) = σ̃(z)− σ(z) is given by

δσ = −
[
δz

(
∂zσ −

z̄

1 + zz̄

)
+ δz̄

(
∂z̄σ −

z

1 + zz̄

)
+ 1

2 (∂zδz + ∂z̄δz̄)
]
. (2.56)

We see that the transformation depends on the classical solution σ that we start with. The
classical solutions for the sphere and the disk are

sphere: σ = const. (2.57)

disk: σ = const. + log α(1 + zz̄)
1− α2zz̄

≈ const.′ + log(1 + zz̄) (2.58)

where we gave the small α limit in the final expression. Plugging in, one finds that for the
transformations (2.52), the corresponding perturbations to σ are

sphere: δaσ =
{

0, z + z̄

1 + zz̄
,−i z − z̄1 + zz̄

,
−1 + zz̄

1 + zz̄
, 0, 0

}
(2.59)

disk: δaσ = 1
2 {0, z + z̄,−i(z − z̄)} . (2.60)

We see that the a = 1, 5, 6 directions are the PSU(2) symmetry directions that stabilize
the classical solution, justifying the labeling in (2.52).

The nonzero δaσ functions correspond precisely to the zero modes of the one-loop
determinants, but with an arbitrary normalization. The χi coordinates are the coefficients
of normalized zero modes. To see the discrepancy, we can evaluate the matrix mab =
(δaσ, δbσ) where the inner product is defined in (2.22). One finds

sphere: m = 1
3diag(0, 1, 1, 1, 0, 0) (2.61)

disk: m = log(4)− 1
4 diag(0, 1, 1). (2.62)

The determinants det(∂χi/∂qj) are just the square roots of the determinants of the nonzero
submatrices here,

sphere: det
(
∂χi
∂qj

)
= 1

33/2 (2.63)

disk: det
(
∂χi
∂qj

)
= log(4)− 1

4 . (2.64)

So the gauge-fixing factors should be in the two cases

1
vol(PSL(2,C)) = 1

vol(PSU(2))
1

33/2 δ(χ1)δ(χ2)δ(χ3) (2.65)

1
vol(PSL(2,R)) = 23/2

vol(U(1))
log(4)− 1

4 δ(χ1)δ(χ2). (2.66)

We normalized the original transformations (2.52) so that with a unit measure, a full
rotation has length 2π. For the case of U(1), this means simply vol(U(1)) = 2π. For the
case of PSU(2), we can use the fact vol(PSU(2)) = 2π vol(S2) = 8π2.
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2.4 Putting the pieces together

Putting the pieces together and dropping the divergent terms in the one-loop determinants
(including the dangerous logarithmic piece, which will cancel between the two expressions),
we find the following formulas

Zsphere
vol(PSL(2,C)) =

 ie
1
b2

2sin( π
b2 )(4πµ)

1
b2

+1

(−i
√
πbC√

2
·C3 · (

√
πbC)−

11
3

e
1
2 ·2.32713

)( 1
8π233/2

)
(2.67)

Zdisk
vol(PSL(2,R)) =

−ie
1

2b2
(1+2πi)

esin( π
b2 )

(√
4πµ
α

) 1
b2

+1
( −i

√
πbC√

1.51095
·C2 · (

√
πbC)−

17
6

e
1
2 ·1.14858

)

×
(

2
3
2 (log(4)−1)

2π ·4

)

We remind the reader that these formulas are valid in the semiclassical small b limit, and
further (for the disk) in the high-energy limit of small positive α (or large negative µB).
In these expressions, the first term is the classical action, the second term is the one-loop
determinant, and the third term comes from the gauge fixing. The invariant ratio is

Zsphere
vol(PSL(2,C)) ·

(vol(PSL(2,R))
Zdisk

)2
= 8.889 e−

2πi
b2 b sin

(
π

b2

)
α2+ 2

b2 . (2.68)

Let’s now apply this to the minimal string. To compute the partition functions of the
minimal string, we set b =

√
2/p where p is an odd integer (and which must be large for

our semiclassical approximation to be valid) and multiply by the partition function of the
matter sector, which is the (2, p) minimal model:

Zsphere = Zminimal model
sphere

Zsphere
vol(PSL(2,C)) , Zdisk = Zminimal model

disk (1, 1)
Zdisk

vol(PSL(2,R)) . (2.69)

Using the formula (here S(1,1),(1,1) is an element of the modular S-matrix relating the
identity characters in the two channels, see e.g. [26], Chapter 10)

(Zminimal model
disk (1, 1) )2

Zminimal model
sphere

= S(1,1),(1,1) = − 2
√
p

sin
(
πp

2

)
sin
(2π
p

)
, (2.70)

and approximating sin(2π
p ) = 2π

p , we find that for large p and small α

Zsphere
(Zdisk)2 = 1.000 pαp+2. (2.71)

We remind the reader that this formula is accurate in the limit of large p and small α. Here p
is an odd integer that labels the (2, p) minimal string, and α is a parameter that determines
the energy of the FZZT boundary condition. Small α corresponds to high energy. In the
next section we will compute the same thing in the matrix integral language, and we will
find that the numerical constant in (2.71) should be exactly one.
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3 Matrix integral computations

A Hermitian matrix integral (see [27, 28] for reviews) is an integral of the form

Z =
∫

dH e−L TrV (H), (3.1)

where L is the rank of the matrix and V is the “potential.” This can be written as an
integral over the eigenvalues,

Z = CL

∫
dLλ e−L

∑L

j=1 V (λj) ∏
i<j

(λi − λj)2. (3.2)

Here the constant CL and the final term (Vandermonde determinant) both arise from
integrating out the non-eigenvalue parts of the matrix.

In the leading order at large L, one can formally ignore the discreteness of the eigen-
values and trade in the L eigenvalues for a smooth density ρ(λ), normalized so that∫

dλρ(λ) = 1:

Z ∼
∫
Dρ e−L2I[ρ] (3.3)

I[ρ] =
∫

dλρ(λ)V (λ)− 1
2

∫∫
dλ1dλ2 log[(λ1 − λ2)2]ρ(λ1)ρ(λ2). (3.4)

In particular, for large L, we can think of the matrix integral as being dominated by a single
saddle point ρ0(λ) which stationarizes this action, subject to the constraint

∫
dλρ0(λ) = 1.

Because there are a total of L eigenvalues, the total or “physical” density of eigenvalues is
L times this normalized density, so Lρ0(λ). This function is supported on an interval or a
union of intervals, and generically it vanishes like a square root at the ends of each interval.

The (2, p) minimal string theory is conjectured to be related to a type of matrix integral
where ρ0 is supported on the entire positive real axis, and with [29]3

ρ0(x) = sinh
(
p

2arccosh(1 + 2x)
)
. (3.5)

This does not fit the definition of a standard matrix integral, because the density cannot
be normalized so that its integral is one. However, it makes sense as an example of what
is called a “double scaled” matrix integral. This can be defined as a limiting procedure
applied to an ordinary matrix integral, where a family of potentials parametrized by ε

are arranged so that very near the endpoint, the density locally approximates a rescaled
version of (3.5):

ρ0(λ) = εp/2 sinh
(
p

2arccosh(1 + 2E)
)

+O(εp/2+1), λ = λendpoint + εE. (3.6)

3This is the density of states appropriate for the “conformal background” [29], which is dual to Liouville
plus minimal model with only the identity operator of the minimal model (times the Liouville cosmological
constant operator) turned on in the action. No other operators from the minimal model are turned on in
the action.
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So in the limit ε → 0, we recover the full density (3.5) in a “zoomed-in” view of a small
neighborhood of one of the endpoints. “Double scaling” refers to following this limiting pro-
cedure, while also adjusting L so that the total density of eigenvalues in the E coordinate,
which is proportional to

εp/2+1L = eS0 , (3.7)

is fixed. The result is a region near the edge of the spectrum that resembles (3.5), attached
to a larger “garbage” region at higher energies that depends on the details of the limiting
procedure that was used.

What are we supposed to compute in this double scaled matrix integral? In the minimal
string, we computed the sphere partition function, and we normalized it using the (FZZT)
disk partition function in the high-energy limit. Both the sphere and disk quantities have
duals in the matrix integral picture. First, the sphere partition function is related to the
leading term L2F0 in the logarithm of the full matrix partition function:

log(Z) = L2F0 + F1 + L−2F2 + . . . . (3.8)

One can get this term by simply evaluating the action I on the stationary configuration ρ0:

F0 = −I[ρ0]. (3.9)

Second, the (FZZT) disk partition function is given by a similar leading term LG0 in the
expectation value

〈Tr log(H − x)〉 = LG0(x) + L−1G1(x) + L−3G2(x) + . . . (3.10)

Again, this is given simply in terms of the stationary configuration ρ0:

G0(x) =
∫

dλρ0(λ) log(λ− x). (3.11)

The terms in the expansion that are proportional to negative powers of L are well-
defined in the double-scaled limit, in the sense that they do not depend on the “garbage”
region that (3.5) is attached to at high energies. However, the leading terms do depend
on the garbage region. In fact, they are numerically dominated by it! There is a good
analog of this in the Liouville path integral. The terms proportional to inverse powers of L
correspond to Liouville partition functions on surfaces with negative Euler characteristic.
For such surfaces, the integral over the Liouville field converges along the real axis. But
for the sphere or the disk (or, marginally, the torus), the integral is divergent in the large
negative φ region. This corresponds to very small surfaces, and the ambiguity in how this
part of the path integral is regulated corresponds to the ambiguity in the nonuniversal
garbage that is used to construct the double-scaled limit of the matrix integral.

In Liouville, the nonuniversal pieces and the universal pieces can be distinguished by
their dependence on the cosmological constant µ. The contribution of the nonuniversal
small σ region is analytic in µ, because for large negative σ, one can expand down in
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powers of µe2σ, giving a power series in µ.4 But as we saw above, the universal part
depends on the µe2σ term in an essential way, and the result is proportional to a nontrivial
power of µ. So the interesting part of the answer can be selected by keeping the part that
is nonanalytic in µ.

In the matrix integral, ε2 plays the role of µ, and the nonanalytic terms correspond to
odd powers of ε. As we will see, these terms are numerically highly subleading, but they are
distinguished by their nonanalyticity as functions of ε2. For this to work, it is important
that we do not accidentally introduce any direct nonanalyticity in ε2 through the matrix
integral potential. So we will make sure that the potential is analytic in ε2, and we will
then take the leading nonanalytic part of the free energy. Schematically, if the potential is
chosen to be analytic in ε2, then we will have

L2F0 = L2(1 + ε2 + ε4 + . . . ) + L2εp+2(1 + ε2 + ε4 + . . . ). (3.12)

The leading nonanalytic piece is proportional to L2εp+2 = e2S0 , and this piece can be
identified as the universal part that can be compared to the universal part of the Liouville
answer. There is a similar procedure for extracting the universal part of the FZZT partition
function G0(x), which we will describe below.

3.1 The conformal background

Let’s now carry this out in detail. The first step will be to construct a family of potentials
that gives the desired double-scaled limit. To do so it will be helpful to define a special set
of functions that we will add together to get the desired density of states

ρj(λ|a) = 22j(2j−1
j−1

) (a2 − λ2)j−
1
2

2πa2j . (3.13)

For each value of j, this is a normalized and symmetric density of states that extends
between endpoints ±a. Near one of these endpoints, the density of states behaves as

ρj(λ|a) = 23j− 1
2(2j−1

j−1
) (εE)j−

1
2

2πaj+
1
2

+ . . . , λ = −a+ εE (3.14)

where the dots are higher order in ε. Because we can get different powers with different
values of j, an appropriate linear combination of such functions with different coefficients
can be used to approximate the conformal background near the edge.

The density of states ρj(λ|a) is the large L stationary configuration for a matrix integral
with a particular potential Vj(λ|a). Explicitly, this potential (or rather its first derivative) is

V ′j (λ|a) = (−1)j+1 22j(2j−1
j−1

) (λ2 − a2)j−
1
2

+
a2j (3.15)

4The contour prescription we used for Liouville throws out these nonuniversal analytic parts automati-
cally, but they would be there if for example we had defined the integral over σ to be on a contour on the real
axis that ended at some finite but large negative value, corresponding to a UV cutoff on the physical metric.
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where the subscript (·)+ means the terms proportional to non-negative powers of λ, when
the expression is expanded around λ = ∞ (see, for example, section 2.2 of [27]). For
example

(λ2 − a2)
1
2
+ = λ, (λ2 − a2)

3
2
+ = λ3 − 3a2

2 λ, . . . (3.16)

If we choose one of these potentials V ′j (λ|a), then the resulting large L density of states
will be ρj(λ|a). More generally, if we take a superposition with coefficients ci such that∑
i ci = 1, then the density of states will be the corresponding superposition:

ρ0(λ) =
∞∑
j=1

cjρj(λ|a) ↔ V ′(λ) =
∞∑
j=1

cjV
′
j (λ|a). (3.17)

In principle, we could use this to get the desired double scaled background (3.6), by
setting a to some value and then adjusting the coefficients cj as a function of ε so that
near λ = −a, the density of states approximates (3.6). However, if we do this in the most
straightforward way, the potential will not be analytic in ε2, and it will not be simple to
isolate the desired term in the free energy.

To avoid this problem, we need to be more careful, adjusting the coefficients in the po-
tential in a manifestly analytic way. As we will see, this will lead to an endpoint a that is not
analytic in ε2, contaminating the functions Vk(λ|a) and making it difficult to impose analyt-
icity. So rather than working with Vj(λ|a), we will expand the potential in terms of Vj(λ|1):

V ′(λ) =
∞∑
k=1

tkV
′
k(λ|1). (3.18)

This makes it easier to be sure that the potential is analytic: all we need to do is choose
tk coefficients that are analytic in ε2. One can determine the density of states associated
to this potential by the following procedure: (i) write (3.18) in terms of V ′j (λ|a) for an ar-
bitrary a to be fixed later, (ii) use (3.17) to get ρ, assuming that value of a (iii) determine
the correct value of a by imposing the normalization constraint. For the first step, one can
expand Vk(λ|1) in terms of Vj(λ|a) using

(λ2 − 1)k−
1
2

+ =
k−1∑
j=0

(
k − 1

2
j

)
(a2 − 1)j(λ2 − a2)k−j−

1
2

+ (3.19)

which follows from linearity of the (·)+ operator. Substituting into (3.18) leads directly to

cj = a2j
∞∑
k=j

(
k

j

)
(1− a2)k−jtk. (3.20)

These cj coefficients give the density of states, from (3.17). However, the result depends
on an as-yet-undetermined endpoint a. This can be fixed by imposing the normalization
condition

1 =
∞∑
j=1

cj =
∞∑
k=1

(
1− (1− a2)k

)
tk. (3.21)
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Our goal is find a set of tk coefficients that are analytic in ε2, such that the procedure
just outlined leads to a density of states that behaves as (3.6) near the endpoints. We
will parametrize the odd integer p in terms of an unrestricted integer m, so the relevant
minimal model is

(2, p) = (2, 2m− 1). (3.22)

We claim that the solution for the tk parameters t1, . . . , tm is5

tk =

(−1)
m−k

2
(m−1
m−k

2
)(k+m−2

k )
(2m−2

m ) εm−k +O(εm−k+2) m− k even

O(εm−k+1) m− k odd
(3.23)

There is some freedom in choosing the subleading terms, but to get the correct density of
states, we will have to choose them so that the solution to (3.21) satisfies

a2 = 1− ε+O(ε2). (3.24)

For example, one valid choice is to set to zero the O(εm−k+2) correction on the first line
of (3.23), and then to set tk for odd k to be equal to minus tk−1. Explicitly, this can be
written as

tm−2` = −tm−2`+1 = (−1)`
(m−1

`

)(2m−2−2`
m−2`

)(2m−2
m

) ε2`. (3.25)

A nice property of this particular choice is that the sum of the tk parameters telescopes,
so that ∞∑

k=0
tk = 1 (3.26)

where we have formally defined

t0 =

(−1)
m
2 +1 (m−1

m
2

)
(2m−2

m )ε
m m even

0 m odd
. (3.27)

This simplifies the normalization condition (3.21) that determines a to
∞∑
k=0

(1− a2)ktk = 0, (3.28)

which one can check is indeed solved by 1− a2 = ε+O(ε2).
It remains to check that near the endpoint, we get the desired density of states (3.6).

For this one can neglect the higher order terms and use only the terms written explicitly
in (3.23). Using (3.20), we find

cj =
(m
j

)(m+j−2
j−1

)
2j−m

(2m−2
m−1

)εm−j +O(εm−j+1). (3.29)

5Up to a choice of convention, the terms that are explicitly written here are the nonzero KdV times of
the conformal background [29, 30].
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This implies that near the endpoint at a ≈ −1, we have

ρ0(λ) = 2m+ 1
2 εm−

1
2

2π

m∑
j=1

(m
j

)(m+j−2
j−1

)(2j−1
j−1

)(2m−2
m−1

)(4E)j−
1
2 +O(εm+ 1

2 ) (3.30)

= 2m+ 1
2 εm−

1
2

π
(2m−1
m−1

) sinh
[2m− 1

2 arccosh(1 + 2E)
]

+O(εm+ 1
2 ). (3.31)

Up to an overall constant that can be absorbed into the definition of eS0 , this is indeed the
desired density of states.

3.2 The free energy

The explicit values (3.25) determine a potential exactly, which in turn determines ρ0 ex-
actly, and together these quantities determine the free energy F0 via for example (3.9) or
a somewhat more efficient version of this formula in [28]. Using Mathematica, we found
the first few cases:

2F (2,3)
0 = − log 2− 25

24 −
ε2

3 + ε4

4 −
4ε5

15 + . . . (3.32)

2F (2,5)
0 = − log 2− 49

40 −
ε2

5 + ε4

24 −
4ε7

105 + . . . (3.33)

2F (2,7)
0 = − log 2− 761

560 −
6ε2

35 + 8ε4

125 −
ε6

50 + ε8

100 −
64ε9

7875 + . . . (3.34)

2F (2,9)
0 = − log 2− 7381

5040 −
10ε2

63 + 109ε4

1372 −
ε6

49 + 3ε8

392 −
64ε11

33957 + . . . (3.35)

Here we have boxed the first nonanalytic term in each case. This one term is the universal
part of the answer and everything else is “nonuniversal garbage,” depending on specific
decisions we made in constructing the double-scaled theory.

Note that in each case we have written 2F (2,p)
0 on the l.h.s. This is because with

the symmetric potential we have chosen, there is an identical copy of the same double-
scaled theory at both edges of the spectrum. The matrix integral free energy includes
contributions from both, but we intend F (2,p)

0 to mean the free energy associated to just a
single copy, so 2F (2,p)

0 = F0.
It rapidly becomes impractical to calculate the answer this way, but in fact there is a

simple general answer for arbitrary p = 2m− 1:6

2F (2,p)
0 = (analytic in ε2)− 2p−1p

(p2 − 4)
( p
p−1

2

)2 εp+2 +O(εp+3). (3.36)

To derive this in an efficient way, one can use a formula, reviewed in appendix B, that
computes the free energy from the function u(ξ) = 1 − a2(ξ) that solves the “genus zero

6We immediately note that the exponent p+ 2 in (3.36) matches with the exponent of µ in (2.67) after
realizing that µ ∼ ε2 and b2 = 2/p.
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string equation”

1− ξ =
∞∑
k=0

tk
(
1− a2

)k
(3.37)

=
∞∑
k=0

tku
k (3.38)

≈ εm

2m
(m− 1

2
m

)(Pm(u/ε)− Pm−2(u/ε)
)

(3.39)

= f(u). (3.40)

In the second-to-last line, we used an approximate form for the tk that resums to a combi-
nation of Legendre polynomials, as pointed out in [30]. Concretely, this form neglects all of
the unspecified higher-order terms in (3.23), and it is a sufficiently good approximation to
compute the leading nonanalytic term in the free energy. In the final line, we introduced
a temporary notation f(u). In solving this equation to get u(ξ), we choose the branch of
the solution that is equal to ε when ξ = 1.

In terms of this function u(ξ), the formula for the free energy is

F0 =
∫ 1

0
dξ(1− ξ) log

(1− u(ξ)
4

)
(3.41)

=
∫ ε

1
(−duf ′(u))f(u) log

(1− u
4

)
. (3.42)

The function f(u) is analytic in ε2, so for generic ξ, the solution u(ξ) will also be analytic
in ε2. However, this breaks down near ξ = 1, where the solution is u = ε. So, to accurately
compute the nonanalytic terms, we only need to do the integral in the vicinity of ξ = 1,
which corresponds to u in the vicinity of ε, where log(1 − u) ≈ −u. Using ∼ to denote
equality of the leading nonanalytic terms, we therefore have

F0 ∼
∫ ε

?
(−duf ′(u))f(u)(−u) (3.43)

∼
∫ ε

0
(−duf ′(u))f(u)(−u). (3.44)

In the first line, we introduced an arbitrary lower limit of integration. As long as this point
is chosen to be analytic in ε2, it will not affect the nonanalytic terms in the answer, and in
the second line we chose a convenient value of zero. As we will see, this has the nice effect
of removing completely the analytic terms, leaving only the nonanalytic part that we are
seeking. After integrating by parts, we continue

= −
∫ ε

0
duf

2(u)
2 (3.45)

= − ε2

 εm

2m
(m− 1

2
m

)
2 ( 1

2m+ 1 + 1
2m− 3

)
. (3.46)
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To get the final line, we inserted the expression for f(u) in (3.39) and used∫ 1

0
dyPm(y)Pm(y) = 1

2m+ 1 ,
∫ 1

0
dyPm(y)Pm−2(y) = 0 (3.47)

which follow from the orthogonality relation for the Pm functions, and the fact that Pm
and Pm−2 are either both even functions or both odd functions. After substituting in
p = 2m− 1, one finds the term in (3.36).

3.3 FZZT disk

We start by reminding the reader of the definition

G0(x) =
∫ a

−a
dλρ0(λ) log(λ− x). (3.48)

To define a function appropriate for the double-scaled limit, we consider this function at
an argument x that is close to the lower endpoint. For example, in the case of the (2, 3)
model, we have the explicit formula (after giving E a small negative imaginary part)

G(2,3)
0 (−a+εE) = 7

12−
2(1 + 2E)

3 ε+
(

2
3 + (1 + 2E)2

2

)
ε2+ i2

7/2

15 E3/2(5 + 4E)ε5/2 +O(ε3).

(3.49)
Here we have boxed the universal term, which will be compared to the Liouville computa-
tions below. We expect that everything else in this expression is “nonuniversal garbage”
which depends on the way in which we take the double-scaled limit.

At first, this might seem puzzling, because the “nonuniversal garbage” contains a term
ε1, which would seem to be a nonanalytic function of µ ∼ ε2. However, from the Liou-
ville perspective, precisely the combination (1 + 2E)ε is proportional to µB, the boundary
cosmological constant, and we should expect nonuniversal analytic terms in both µ and
µB, associated to the divergence of the path integral in the large negative σ region.7 In
Liouville language, the term at order ε2 is a linear combination of µ and µ2

B. By contrast,
the boxed term is genuinely nonanalytic in µB and µ, and corresponds to a contribution
from the universal continuum region of the Liouville path integral.

In the Liouville computation, the disk path integral was pure imaginary, which suggests
that the first nonanalytic term (in this sense) will be pure imaginary. This is true of (3.49),
and also true for the (2, 5) and (2, 7) cases, which we checked explicitly. We don’t have a
general proof of this from the matrix side, although we suspect it is possible to show this.
However, what we can do easily is compute the imaginary part:

ImG0(−a+ εE) = Im
∫ a

−a
dλρ0(λ) log(λ+ a− εE) (3.50)

= π

∫ −a+εE

−a
dλρ0(λ). (3.51)

7Again, the contour we used for Liouville effectively set all such terms to zero, but with a different
contour prescription, such terms would be present.
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This only depends on the density of states near the edge, where it is constrained by the
double-scaled limit. Putting in (3.31) and taking high energies E � 1, this is

ImG0(−a+ εE)→ (2ε)
p
2 +1

4
( p
p−1

2

) (4E)
p
2 +1

p+ 2 . (3.52)

3.4 Comparing the ratio to the Liouville answer

As a final step, we need to relate the α parameter of the Liouville theory to the energy
E. We can compare Z ′disk(µB) with G′0(x), which is proportional to ρ0(E). For this we
need to study the theory at finite energy, where we did not compute the one-loop deter-
minant. Fortunately, the classical answer will be enough. In the classical approximation
(which means only keeping terms of order 1

b2 = p
2 in the exponential), the α dependence of

Z ′disk(µB) is proportional to
e−

1
b2

log(α) = e
p
2 log( 1

α
). (3.53)

On the other hand, for large p, the density ρ0(E) is proportional to

e
p
2 arccosh(1+2E). (3.54)

Comparing the two, we conclude that8

log 1
α

= arccosh(1 + 2E). (3.55)

Or, at high energies,
1
α
≈ 4E. (3.56)

Substituting this into (3.52), and also using (3.36), we find

F (2,p)
0 |universal

(G(2,p)
0 |universal)2

= p+ 2
p− 2pα

p+2, α� 1. (3.57)

This exact answer agrees with (2.71) at large p.
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A The sphere partition function in JT gravity is infinite

In the main text, we found that the matrix integral density

ρtotal(E)dE = L
(2ε)

p
2 +1

π
( p
p−1

2

) sinh
[
p

2arccosh(1 + 2E)
]

dE (A.1)

8With (2.15), this implies −
√

π
µ
µB = 1+2E, which justifies a statement made above that (1+2E)ε ∝ µB .
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corresponds to the leading term in the free energy

log(Z) ⊃ −L2 2p−2p

(p2 − 4)
( p
p−1

2

)2 εp+2. (A.2)

The density that approximates JT gravity [31–36] in the large p limit is [37]

eS0

2π2 sinh
[
p

2arccosh
(

1 + 8π2

p2 EJT

)]
dEJT ≈

eS0

2π2 sinh
(
2π
√
EJT

)
dEJT. (A.3)

This can be obtained from (A.1) by setting

L
(2ε)

p
2 +1

π
( p
p−1

2

) dE = eS0

2π2 dEJT = eS0

2π2
p2

4π2 dE. (A.4)

Substituting this into (A.2), we find

log(Z) ⊃ − e2S0

210π6
p5

p2 − 4 . (A.5)

This diverges in the large p limit where the (2, p) minimal string becomes JT gravity. This
implies that the JT gravity sphere partition function is infinite, as suggested in [16].

B The free energy from orthogonal polynomials

The orthogonal polynomials for a given potential V are defined so that the leading term
in each polynomial is pn(λ) = λn + . . . , and so that they are orthogonal to each other:∫ ∞

−∞
dλe−V (λ)pn(λ)pm(λ) = snδnm. (B.1)

Since the normalization is fixed by saying that the coefficient of the λn term is one, the
normalization sn in this equation is meaningful.

There is a simple formula for the free energy of the matrix integral in terms of this
data, as reviewed in section 2.3 of [27]. The leading L2 term in the free energy is

F0 =
∫ 1

0
dξ(1− ξ) log r(ξ) (B.2)

where ξ = n/L is a continuum version of the index n of the orthogonal polynomials, and
where r(ξ) = sn/sn−1. As reviewed in section 2.4 of [27], the function r(ξ) satisfies an
equation

ξ =
∑
m odd

v′m

(
m
m+1

2

)
r
m+1

2 (B.3)

where the derivative of the potential is parametrized as V ′ =
∑
m odd v

′
mλ

m. For a potential
of the form (3.18), this equation is

ξ =
∞∑
k=1

tk(1− (1− 4r)k). (B.4)

Writing 4r = a2, and using (3.26) this is the equation quoted in (3.37), and the for-
mula (B.2) above becomes the formula (3.41) in the main text.
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