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ABSTRACT: The map of half-BPS line defects under mirror symmetry has previously been
worked out for 3d N = 4 linear quivers with unitary gauge groups, where these defects have
a clear realization in terms of a brane picture in Type IIB String Theory. In this work, we
initiate the study of line defects and the associated mirror maps for more general 3d N = 4
quiver gauge theories from a QFT approach, using the S-type operations introduced in [1].
In particular, our construction does not rely on any String Theory realization of the quiver
gauge theories and the defects. After discussing the general framework for the construction
of these line defects and their mirror maps, we focus on quiver gauge theories of the D-type
and the affine D-type with unitary gauge groups, as a concrete set of examples. Some
of the line defects we study admit a Hanany-Witten description and we show that the
associated mirror maps predicted by the Type IIB construction in these cases agree with the
QFT computation. In addition, we study an example involving defects in an affine D-type
theory, for which the dual theory is not directly realized by the Type IIB description. In a
companion paper, we will discuss defects in infinite families of non-ADE quivers using the
general construction developed in this paper.
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1 Introduction and summary of results

1.1 Background and the basic idea of the paper

The existence of UV/IR dualities is a ubiquitous feature of Quantum Field Theories in
various space-time dimensions. Existence of such a duality implies that a set of theories,
having distinctly different descriptions (for example, theories with different Lagrangians) at
a given energy scale, describe the same physics at another energy scale. The discovery and
analysis of these UV/IR dualities, particularly for QFTs with supersymmetry, have relied
heavily on String Theory constructions involving branes [2]. In the recent past, localization
techniques (see [3] for a recent review) have provided an avenue for working out extremely
non-trivial checks for dualities in QFTs with sufficient supersymmetry. Given this recent
progress on the QFT side, a natural question to ask is: can one use the tools of localization
to construct a systematic field theory prescription for generating new dualities, starting
from a well-defined set of basic dualities?

In the context of a class of IR dualities in three dimensions, such a construction was
presented in [1], which we will briefly summarize. Consider a class of 3d CFTs with a weakly
coupled description that has a manifest global symmetry subgroup Gz?fbal = [1, U(M,).
We will refer to this class of 3d CFTs as class U. Given a UV theory X in class U, one can
define a map (see section 3 for notation and details) which acts on X to give a generically
new theory X', i.e.

0% : X[A] — X'|B], (1.1)
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Figure 1. Generating new dual pairs using an elementary S-type operation.

where A and B denote various background fields associated with global symmetries of
the theories X and X' respectively.! In the trivial case, where Gz‘ﬁbal =U(1), and O% is
a gauging operation of the said U(1), the above map coincides with the S generator of
Witten’s SL(2,Z) action [4] on a 3d CFT. In analogy, we refer to the above map as an
“elementary S-type operation”.

-~ -~

Suppose the theory X[A] is IR dual to the theory Y[A], where both theories have a

weakly coupled description. Given an elementary S-type operation O% on X[A], one can
define a dual operation O% on Y[A], i.e.

0% : Y[A] — Y'[B], (1.2)

—~ —~ -~

such that the pair of theories (X’[B],Y’[B]) are again IR dual. The four theories X[A], Y[A],
X'[B], and Y'|B], are therefore related as shown in the following figure.

The final step in the construction is to determine the dual operation @a, given the
pair (X[A],Y[A]) and the map 0%, which should also allow one to read off the weakly
coupled description of the theory Y’ [B\], if it exists. In this paper, we will focus on 3d
N = 4 theories, and a specific IR duality — the three dimensional mirror symmetry [5, 6].
For such theories and the particular IR duality in question, one can solve the problem
of determining the dual operation @% explicitly, making use of RG-invariant observables
computed using localization. The procedure, introduced in [1], is reviewed in section 3.

Given a recipe for finding the dual of the S-type operation, there exists a straightforward
strategy for generating new dualities. For a given class of IR dualities, one can define
a convenient subset of dual theories, which are well understood from the String Theory
and/or the QFT perspective, and refer to it as the set of “basic dualities” for the given IR
duality. Starting with a pair (X,Y) in this set of basic dualities, one can then implement
the prescription of figure 1 sequentially to generate new dual pairs. For the specific case
of 3d mirror symmetry, we pick the set of basic dualities to be the set of linear quiver
(A-type) gauge theories with unitary gauge groups, obeying the additional constraint that
they should be good theories in the Gaiotto-Witten sense [7]. Mirror symmetry for this
class of theories is well understood from a Type IIB brane construction [2] as well as QFT

considerations. Using the construction outlined above, one can then try to construct mirror

'In the most general case, an S-operation can also turn on defects in the theory, but we will ignore this
for the time being to keep the discussion simple. More details on this can be found in section 3 and later in
the paper.
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Figure 2. Generating new dual pairs with defects using an elementary S-type operation.

pairs involving quivers of arbitrary shapes. Several infinite families of non-ADE type quiver
gauge theories and their Lagrangian mirror duals were constructed in this fashion [1].

In the present paper, we will extend the construction, summarized above in figure 1,
to incorporate half-BPS vortex and Wilson defects in 3d N' = 4 theories. Consider a
pair of dual theories decorated by line defects — X[D, A] and Y[DV, A], where D and DV
are line defects of different types (vortex and Wilson respectively or vice-versa) that are
mapped to each other under mirror symmetry. We additionally require that (X,Y) are
good Lagrangian theories, with X being in class U. Given a theory XD, A], an elementary
S-type operation acts on X to give a generically new theory X’ decorated by a defect D', i.e.

0% : X[D, A] — X'[D', B, (1.3)

where D and D’ are line defects of the same type (Wilson or vortex). As before, given the
dual pair and the S-operation, one can define a dual operation, i.e.

0% : Y[DY, A] — Y'[D", B, (1.4)

—

such that the theories X'[D’, B],Y'[D"V, B] are IR dual. This implies that the half-BPS
defect D’ is mapped to the half-BPS defect D’V under mirror symmetry, and this rela-
tion between the two is referred to as the “mirror map” of the line defects in question.
Schematically, the construction can be summarized in figure 2. The final step, as before, is
to determine the dual operation (5% given the pair (X[D, A], Y[DY, A]) and the map O%,
which should allow one to read off the weakly coupled description of the theory Y’ (if it
exists) as well as the defect D'V. Note that a recipe for finding the dual operation therefore
automatically leads to the mirror map for the line defects D’ and D’V. One of the main
results of this paper is to present a general recipe for finding the dual operation, using
RG-invariant observables computed via localization. Given this recipe, one can again deploy
the strategy outlined above to generate new dual pairs of quiver gauge theories of arbitrary
shapes decorated by line defects, starting from a pair of A-type quivers with defects. After
working out the details of this general construction, we use it to study the mirror maps of
line defects in flavored D-type and affine D-type quiver gauge theories with unitary gauge
groups. We also discuss how some of these line defects and the associated mirror maps can
be realized in a Type IIB construction of the Hanany-Witten type, although the main focus
of the paper is to work out these mirror maps without any reference to the String Theory
constructions. We also study an example of mirror symmetry which does not have a known



Type IIB realization. In a companion paper [8], we will apply our construction to study
mirror maps of line defects in theories involving non-ADFE quiver gauge theories.

We would like to emphasize that finding the mirror map of line defects is in general a dif-
ficult problem for non-Abelian gauge theories. For A-type linear quivers with unitary gauge
groups, the problem was solved relatively recently using a Type IIB brane construction [9],
while line defects in D-type and FE-type theories have not been addressed in this fashion
in the literature, as far as we know. Our construction gives a systematic field theoretic
procedure to generate line defects and the associated mirror maps in these quiver gauge
theories and beyond, starting from the well understood dual linear quivers with defects.

1.2 Outline and summary

The outline of the paper is as follows. In section 2, we present a brief review of Wilson
and vortex defects in 3d V' = 4 theories, and set up the notations for the rest of the paper.
We review the Type IIB realization of these defects in an A-type quiver gauge theory, and
the map of such defects under mirror symmetry. In addition, we discuss the localization
computation for the expectation values of these defects on a round three-sphere, which will
be our principal tool.

In section 3, we concretely realize the construction, summarized in figure 2, in terms of
the partition function on a round three-sphere. In particular, we discuss how to construct
vortex defects as 3d-1d coupled quivers in a non- A-type 3d quiver gauge theory and their
mirror maps. Analogous construction for the Wilson defects is also discussed. In section 3.1,
we review the S-type operations and their realization in terms of the S? partition function.
Generically, a non-Abelian S-type operation (i.e. one that involves gauging a non-Abelian
flavor symmetry) has a substantially more involved than the Abelian ones. However, at the
level of the S? partition function, a non-Abelian S-type operation can be reduced to a set
of Abelian S-type operations with certain Wilson defects. This “abelianization” procedure,?
which is an important tool for constructing generic quiver gauge theories, is discussed in sec-
tion 3.2. In section 3.3, we discuss the action of S-type operations on 3d quivers with defects,
and therefore realize the map (1.3) explicitly. The recipe for reading off the dual of the S-type
operations for both cases is discussed in section 3.4. Finally, we end the section with a simple
example illustrating the general construction of figure 2, as given in the sections 3.3-3.4.

In section 4, we apply the machinery of section 3 to engineer line defects in D-type/affine
D-type quivers and find their duals, starting from a dual pair of linear quivers with defects.
In particular, gauge vortex defects in D-type theories are realized as 3d-1d coupled quivers.
Under mirror symmetry, these are shown to map to gauge/flavor Wilson defects, which
we explicitly determine. Analogous construction for Wilson defects in D-type theories are
also presented. The vortex defects dual to Wilson defects in D-type theories are realized
by 3d-1d coupled systems involving symplectic and/or unitary 3d gauge groups. A given
vortex defect can be realized as multiple 3d-1d coupled quivers — a feature that was called
“hopping duality” in [9]. We discuss the pattern of hopping dualities for vortex defects in the
D-type and the affine D-type quiver gauge theories we study, as well as their mirror duals.

2This procedure should be understood simply as a convenient way of writing the matrix model, and not
as a QFT operation.



In section 4.1, we begin by discussing an example of a D4 quiver gauge theory dual to
an SU(2) gauge theory with four flavors. In section 4.2, we extend our analysis to a Dy,
quiver dual to an Sp(N.) theory with Ny flavors. The former pair can be constructed by
an Abelian S-type operation, while the latter pair requires a non-Abelian operation. In
section 4.3 and section 4.4, we extend our discussion to more general D-type quivers and to
affine D-type quivers respectively, using more involved S-type operations. In section 4.5,
we extend our discussion to more general defects in a D-type quiver. The computation
of the defect partition function is straightforward (although tedious in some cases) once
the general expressions of 3.3-3.4 are given. In appendix B, we present a sample case to
familiarize the reader with the details of the computation for Abelian S-type operations. In
appendix C, we work out the details of the non-Abelian operation relevant for the example
in section 4.2.

In section 5, we take a short detour to discuss how an important class of line defects in
the D-type quivers and the associated mirror maps may be realized by a Type IIB brane
construction. A vortex (Wilson) defect in a D-type quiver is realized by a D3-D5-NS5-
D1(F1) system in the presence of an orbifold 5-plane. The dual Wilson (vortex) defect is
realized by a D3-D5-NS5-F1(D1) system in the presence of an O5%plane, which is D5-brane
coincident with an O5~-plane. The S-duality that relates the two configurations is explicitly
discussed. We observe that the Type IIB answer in this case matches the QFT answer
precisely. A detailed study of the Type IIB brane construction for more general line defects
in D-type quiver gauge theories will be the subject of a future paper.

Finally, in section 6, we discuss defects in an affine Dy quiver, for which the mirror
dual is not directly realized by a Type IIB construction. The naive mirror dual, read
off from S-dualizing the original brane configuration, gives a theory which is “bad” in
the Gaiotto-Witten sense [7]. This implies, among other things, that the S partition
function of the mirror theory diverges. The procedure of figure 1, however, allows one to
construct a good mirror dual for the Dy theory. In addition, it turns out that, for the
aforementioned affine D4 quiver decorated with a line defect, the procedure of figure 2
allows one to construct the mirror map of such a line defect. These mirror maps can be
worked out explicitly following the construction of sections 3.3-3.4.

2  Wilson loop and vortex loop operators in three dimensions

In this section, we review a few basic concepts and tools associated with half-BPS Wilson
and vortex defects in 3d N’ = 4 quiver gauge theories, from a field theory perspective as
well as using a Type IIB String Theory construction. Readers familiar with these basic
materials can skip this section.

2.1 Generalities of 3d N = 4 QFTs and half-BPS defects
2.1.1 Quiver notation for 3d N = 4 QFTs

The 3d N = 4 QFTs have dimensionful coupling constants — such theories are asymptotically
free in the UV and flow to a 3d N/ = 4 SCFT in the IR. The theories relevant to this paper
are quiver gauge theories, the Lagrangian description for which involves a vector multiplet
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Figure 3. Quiver notation.

corresponding to a gauge group G, and hypermultiplets in a quaternionic representation
of the gauge group G. The UV theory has an SU(2)y x SU(2)¢c R-symmetry, where the
subscripts indicate that they act as isometries on the Higgs and the Coulomb branch of
the moduli space respectively. Both branches are hyperkéahler cones and the corresponding
SU(2) R-symmetry rotates the three complex structure as a triplet. In addition, the theory
has a global symmetry G x G¢, which commutes with the R-symmetry and the Poincare
supercharges. These are realized as tri-holomorphic isometries on the Higgs and Coulomb
branches of the moduli space respectively.

The 3d N = 4 gauge theories have two possible types of deformations which preserve
the full N' = 4 supersymmetry — hypermultiplet masses and FI parameters. The masses
transform as triplets of SU(2)¢ and constitute the scalar components of a background vector
multiplet in the Cartan subalgebra gg. Generically, these parameters lift the Higgs branch
and deform the Coulomb branch. The FI parameters transform as triplets of SU(2)y and
constitute the scalar components of a background twisted vector multiplet in the Cartan
subalgebra go. Generically, they will lift the Coulomb branch and deform the Higgs branch.

Finally, the quiver notation of a gauge theory that we will use in this paper is summarized
in figure 3.

The quiver diagram on the Lh.s. represents the field content of a 3d N/ = 4 theory
with gauge group G = U(N7) x U(N3) x SU(N3) x SU(Ny), and hypermultiplets in various
representations. The conventions for the reading off the representations in which the
hypermultiplets transform are listed on the r.h.s. In a quiver diagram, we will refer to the
circles as gauge nodes and the boxes as flavor nodes. For more general gauge groups, we

R
O

where R is a representation of G x Gp. For example, an Sp(/N) gauge theory with Ny

will use the notation:

fundamental hypermultiplets (i.e. 2Ny half-hypers) will be represented by the above quiver



diagram with G = Sp(N), Gr = SO(2Ny), and R being the bifundamental representation
of Sp(N) x SO(2Ny). The line connecting the gauge and the flavor node denotes a half-
hypermultiplet in this case.

2.1.2 Supersymmetry algebra and protected sectors

The 3d N = 4 supersymmetry algebra has a pair of inequivalent protected 1d subalgebras.
Following the presentation of [10], we discuss these subalgebras on R3.

The 3d NV = 4 Poincare supercharges Q%% are doublets of Spin(3) = SU(2)x (indexed
by a = 1,2) and transform as (2,2) under the R-symmetry group, SU(2)g x SU(2)¢
(indexed by a = 1,2 and a’ = 1,2 respectively). The complex supercharges on R? generate
the following supersymmetry algebra:

{ g;1/7 Q%b/} _ Puagﬁeabea/b/ . ’iéaﬂ (eabm(a/b/) + Ga/b/t(ab)> , (21)

where (0/)§ are the standard Pauli matrices, with ¢ = 1,2,3. All SU(2) indices are raised

12 — ¢5; = 1. The second

and lowered by the corresponding e-tensor, with the convention e
term denotes a central extension of the algebra which are realized as the two sets of NV = 4

supersymmetry preserving deformations in the Lagrangian — the triplet of masses and FI

m@'t) — <2m(c _mR> ; ¢lab) — (215@ _tR> . (2.2)

—mpr —2mc¢ —tp —2tc

parameters, i.e.

We will split the Euclidean space-time R3 = C, x Ry, and the SUSY algebra can then
be rewritten as

{Q?a/’ ll)b’} _ _2€ab6a’b’ P, {an” gb’} _ 26ab€a/blP27
{QI, QY'Y = {QF, Q1) = eV Py — i (ebm (@) 4 gl (2.3)

In this set-up, we will study half-BPS line operators inserted at z = Z = 0, preserving a 1d
N = 4 subalgebra (i.e. supercharges of the subalgebra anti-commute to translation along R;)
of the full 3d N' = 4 algebra. There are two inequivalent choices of these subalgebras, which
will be referred to as SQM 4 and SQMp. The associated line operators will be referred to
as Type-A and Type-B line operators respectively.

The subalgebra SQM 4 is defined as a 1d subalgebra which breaks the R-symmetry
to SU(2)¢ x U(1)g. There exists a CP! worth of such subalgebras corresponding to the
choices of an unbroken U(1) g inside SU(2) g, which in turn is related to choices of a complex
structure on the Higgs branch. Following [10], we adopt the following choice for the SQM 4
subalgebra:

Q% =065Q2, Q4 = (0%)2Qa, (24)
where the non-vanishing anti-commutation relations are given as

Q4. Q) =2 (P —itz),  {Q4,QU) = {Q4, Q) =2 (2.5)

The subalgebra SQMp is defined as a 1d subalgebra which breaks the R-symmetry to
SU(2)g x U(1)¢. Again, there exists a CP! worth of such subalgebras corresponding to



the choices of an unbroken U(1)¢ inside SU(2)¢, which in turn is related to choices of a
complex structure on the Coulomb branch. We adopt the following choice for the SQMpg
subalgebra:

Qf =03Qa", Q%= ("2, (2.6)
with the non-vanishing anti-commutation relations
{Qf, Q= 2¢"(P —itr),  {Q%, Q%) = {Q%. Q4} = 2im). (2.7)
Finally, each subalgebra contains a topological supercharge:
Qa=Qk  Qp=0Q5 (2.8)

where @) 4 can be identified as the 3d reduction of the supercharge associated with Donaldson-
Witten twisted 4d N = 2 theories, and Qg is associated with the Rozansky-Witten twist of
3d N = 4 sigma models.

2.1.3 Wilson defect on R3

A Wilson defect is a half-BPS Type-B operator which can be defined on R? as follows.
The bosonic part of a 3d N = 4 vector multiplet contains a gauge field A, and an SU(2)¢
triplet of real scalars in the adjoint representation of the gauge group G. Given a choice of
complex structure on the Coulomb branch, the latter can be written as:

13/ 2¢ g
(a'V) — _ 2.9
o= (% 55 29
where the real scalar ¢ € g and the complex scalar ¢ € gc. The following combination of
the gauge field and the real scalar o:

.At = At — 10 (210)

is preserved by the 1d subalgebra SQMpg. A Wilson line in a finite-dimensional unitary
representation R of the gauge group G can then be given as

Wg = Hol(pR(At)> =P (exp /Rz pr(A) dt) , (2.11)

where pp is the map pg : gc — gl(dimR). As pointed out in [10], one can take the trace
of the holonomy operator to give a gauge-invariant operator, if the non-compact line were
replaced by a loop. For a non-compact line, gauge invariance requires appropriate boundary
conditions at t — £oo. This, however, does not affect the local structure of these line
operators studied in [10] or in this work.

2.1.4 Vortex defect on R3

A vortex defect is a half-BPS operator Type-A operator which can be defined on R? using
any one of the two following equivalent constructions, i.e.

1. Disorder operator

2. Coupled 3d-1d quiver.

We review the two approaches briefly below, focusing mainly on the second approach, which
will concern us for the rest of this work.
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Figure 4. The general form of (2,2) SQM which realizes a vortex defect in a 3d N = 4 theory.

Disorder operator. Consider a 3d A/ = 4 theory with a gauge group G and N hypermul-
tiplets, where the complex hypermultiplet scalars are labelled as (X;,Y;) with i =1,..., N.
The N complex scalars (X;,Y;) arrange themselves in a representation R & R* of G x Gpg.
Insertion of a vortex defect in the theory amounts to performing the path integral in a
background of certain singular solutions of the BPS equations.® The solutions, in question,
are characterized by a singular profile of the hypermultiplet scalars (X,Y’) at z = 0 on the
C,-plane, as well as a compatible gauge symmetry breaking at z = 0. A given disorder
operator can be labelled by certain holomorphic/algebraic data — we refer the reader to [10]
for details.

Coupled 3d-1d system. Alternatively, a vortex defect can be inserted by coupling the
3d theory to an appropriate 1d N = (2,2) quiver gauge theory [9]. Such theories can be
obtained by the dimensional reduction of a 2d N = (2,2) SQM. An N = (2,2) SQM
associated with vortex defects in 3d N = 4 theories has the generic form:

The circular nodes in the 1d quiver (on the left) represent (2,2) vector multiplets for
unitary gauge groups, so that the full gauge group is Hf;l U(n;). The directed arrows
connecting two circular nodes denote bifundamental chiral multiplets, with the incoming
arrow denoting a fundamental chiral for the corresponding gauge node. The directed
arrows beginning and ending on the same gauge node represent adjoint chiral multiplets
for the corresponding gauge node. Finally, the rectangular nodes denote fundamental
chiral /anti-chiral multiplets, with the incoming arrow (w.r.t. the circular node) denoting
fundamental chirals, and the outgoing arrow denoting anti-chirals. On the right, we have a
shorthand notation for presenting a generic quiver of this class.

A generic 3d-1d quiver which realizes a vortex defect in 3d has the form given in figure 5.
The 1d flavor symmetries (or their subgroups) which are gauged by 3d vector multiplets
are represented by the nodes U In the above quiver, the (2,2) SQM is coupled to the 3d
theory by gauging the (U(Nz) x U(Ng))/U(1) flavor symmetry with 3d vector multiplets.
In general, one can also gauge a subgroup of the flavor symmetry with background 3d
vector multiplets, such that the a 1d flavor symmetry subgroup is identified with a 3d

3The generalized vortex equations in the C.-plane, i.e.
Fz? = HUR + t]R7 D;X = DEY = 07 ue = _tC7

are obtained as a subset of the BPS equations for the subalgebra SQM 4. We refer the reader to section 4
and appendix A of the paper [10] (and the references therein) for the complete set of BPS equations.



Figure 5. The general form of a 3d-1d quiver that realizes a vortex defect in a 3d N' = 4 quiver
gauge theory.

flavor symmetry group. In the quiver on the r.h.s., we have decomposed the 3d N = 4
bifundamental hypermultiplet into a pair of N' = 2 chiral multiplets — X and Y, which
transform in the bifundamental representation of U(Nr) x U(Ng) and U(Ng) x U(NL)
respectively.* The 3d-1d coupling introduces the following cubic superpotential in the theory:

Wo=q! X'q)+..., (2.12)

where the ... in the superpotential denote additional terms which contain higher derivatives
of the complex scalar X. The indices run over a =1,...,np,i=1,...,Np,j=1,...,Ng.

A vortex defect in a 3d N = 4 quiver gauge theory is specified by the following two
pieces of data:

1. A 3d-1d quiver of the form discussed above, including the cubic superpotential.
2. Signs of the FI parameters £ for the gauge nodes of the SQM.

A given vortex defect can be realized by multiple coupled 3d-1d systems. This was
called the “hopping duality” in the context of 3d linear quivers in [9], where a vortex defect
generically can be realized by at least a pair of coupled 3d-1d systems.

2.1.5 Mirror symmetry
Mirror symmetry is a special case of an IR duality in three dimensions for theories with

eight supercharges, with the following properties:

e Given a pair of dual theories X and Y, mirror symmetry exchanges the Coulomb and
the Higgs branches in the deep IR, i.e. as g%, — oo:

M =M, M = 1)

o The duality exchanges SU(2)c and SU(2) i, and therefore maps hypermultiplet masses
on one side of the duality to FI parameters on the other.

Mirror symmetry relates observables in theory X with observables in theory Y, and the
precise map is referred to as the “mirror map”. In particular, it exchanges the subalgebra
SQM 4 with the subalgebra SQMp, as well as the associated topological charges Q) 4 and

“In general, one can have a hypermultiplet in a representation R of U(N1) x U(Ng), and the complex
scalars X and Y will transform accordingly.
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Figure 7. The linear quiver which is mirror dual to the generic linear quiver in figure 6. The total
number of gauge nodes is LY.

@p. This implies that the half-BPS vortex defects, which are observables preserved by
SQM 4 on one side of the duality, are mapped to the half-BPS Wilson defects, preserved by
SQMp, on the other. The vortex defect can be additionally embellished by Wilson defects
for the 3d topological symmetries, which are also preserved by SQM 4. In the next section,
we will review a Type IIB construction for realizing these mirror maps in the class of linear
quivers with unitary gauge groups. This will be the starting point for constructing mirror
maps of line defects in more general quiver gauge theories, as we discuss in section 3.

2.2 Brane construction for line defects in linear quivers

In this section, we present a brief review of the Type IIB construction of the vortex and the
Wilson line defects in linear quivers with unitary gauge groups, and the map of such defects
under mirror symmetry. A generic linear quiver gauge theory with L gauge nodes is shown
in figure 6, while its mirror dual (which is also a linear quiver gauge theory) is shown in
figure 7. We first discuss the Type IIB construction of linear quivers without defects in
section 2.2.1, followed by incorporation of line defects in section 2.2.2, and discussion of the
mirror map of line defects in section 2.2.3.

2.2.1 Brane construction for linear quivers without defects

The linear quivers have a very simple realization in terms of a Type IIB brane construction of
the Hanany-Witten type [2]. For a modern review and generalization of the construction, we
refer the reader to [7, 11]. A large class of 3d N' = 4 Lagrangian theories can be obtained by
considering D3 branes extending along a line segment L, with 1/2-BPS boundary conditions
at the two ends [7]. The simplest of these boundary conditions correspond to D3-branes
ending on NS5- branes and/or D5-branes, and these are the only ingredients one needs for
constructing a linear quiver.

The respective world-volumes of D3, D5 and NS5-branes are specified in table 1. A
more precise way of writing this data is as follows:

D3: RQ’l X L X {X}475,6 X {Y}778?9
D5: R*! x {X3} x R} ;6 x {Y'}rg9
NS5: R*' x {X5} x {X'} a6 x Rigy, (2.14)
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NS5 | x| x| x X | x|x
D5 | x X | x| x
D3 | x X

Table 1. Basic Type IIB brane construction.

where {X3}, {X},{Y} (and {X3},{X’},{Y"}) are points in L,R} 54, R3¢ ¢ respectively.
To a given configuration of D3-NS5-D5-branes, one can associate a set of linking numbers
of the 5-branes (lgs‘r’, lﬁDE’) which are defined as follows:

Z$S5 = Nefs (D5) — Neft (D3) + Nright (D3), v
lﬁD‘r) = Neft (NSS) - ﬁleft‘, (D3) + ﬁright (D3)’ ﬁ

1,...,L+1, (2.15)
1,...,LY +1, (2.16)

where LY = 2521 My — 1, Niege right (D5/NS5) denotes the number of D5/NS5-branes to
the left or right of the 5-brane in question, while 7jefs right (D3) denotes the number of D3
branes ending on the 5-brane from the left and the right respectively. One can move the
D5 and the NS5-branes past each other such that the linking numbers remain the same
in the initial and the final configuration. Such moves, known as Hanany-Witten moves,
create/annihilate D3-branes stretched between pairs of NS5-D5 branes. We will also refer
to a given configuration of D3-NS5-D5-branes, among all the possible configurations for a
given set of linking numbers, as a Hanany- Witten frame.

From the perspective of the 3d world volume, the gauge theory data can be read off from

the Hanany-Witten frame where all D3-branes end on NS5-branes, using the following rules:

o The y-th NS5 chamber containing N, D3 branes gives a U(NN,) vector multiplet. This
arises from the massless modes of the D3-D3 open strings which survive the NS5
boundary conditions.

e The y-th NS5 chamber, containing M, D5 branes, gives M, hypermultiplets in the
fundamental representation of U(N,). These arise from the massless modes of the
D3-D5 open strings.

o There are hypermultiplets in the bifundamental of U(N,) x U(N,41), which arise
from D3-D3 open strings running between the v-th and the v + 1-th NS5 chambers.

The N = 4 supersymmetry preserving deformations are encoded in the brane con-
struction as follows. The triplet of FI parameters are 77}// = tg — t}Y/H, with vy =1,...,L,
where the parameter tiv/ corresponds to the relative position of the NS5 brane in R§7576
w.r.t. D3-branes in the chamber . The triplet of fundamental mass parameters mg , with
6=1,..., 2521 M., correspond to the relative positions of the D5 branes in R%&g w.I.t.
the D3-brane in a given chamber. Given the translational symmetry on R3, both sets of
moduli should be counted up to an overall shift. The bifundamental masses correspond to
the relative position in R%&g of the D3-branes in the y-chamber w.r.t. the D3-branes in the
~ 4 1-chamber. In the above Hanany-Witten frame, one can choose to put all D3-branes at
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Figure 8. The figure on the left shows the Type IIB brane construction for the linear quiver on the
right. The red nodes represent D5 branes, the horizontal black lines are D3 branes, and the vertical
blue lines represent NS5 branes.
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Figure 9. The figure on the left shows the Type IIB brane construction for the linear quiver on
the right. The blue nodes represent NS5 branes, the horizontal blck lines are D3 branes, and the
vertical red lines represent D5 branes.

the same point in R%&g, which sets all the bifundamental masses to zero and leaves the
fundamental masses unconstrained up to an overall shift.

Figure 8 gives an illustrative example of how one can read off the gauge theory content
from the brane set up, using the rules listed above. Mirror symmetry in three dimensions
can be understood as an S-duality of the above brane configuration, followed by a rotation
R:x™®9 o —g456 456 5 789 NS5 and D5 branes are exchanged under S-duality,
while D3 branes are self-dual. To read off the dual gauge theory from the rotated S-dual
brane system, one has to move to a Hanany-Witten frame where the all D3 branes end
on NS5 branes. This can be done by performing a series of Hanany-Witten moves, where

NS5 and D5 branes are moved past each other along the compact direction 23

involving
creation/annihilation of D3 branes. In the simple example of figure 8, the rotated S-
duality transformation followed by appropriate Hanany-Witten moves lead to the brane
configuration in figure 9, from which the dual quiver gauge theory can again be read off,

using the same rules as before. The mirror pair is shown in figure 10.
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Figure 10. An example of a pair of linear quivers with unitary gauge groups which are 3d mirrors.

_ lofif2]s[a[s]6[7[8]9]
NS5 | x X[ x|x
Db | x| x|x X | x|x
D3 | x X
D5 | x X |X|xX|X|X
F1 | x X

Table 2. Type IIB brane construction for a Wilson defect.

2.2.2 Line defects: Wilson and vortex

In this section, we review the Type IIB construction of line defects in linear quivers — the
Wilson and the vortex defects, which are defects of the Type-B and the Type-A respectively,
as reviewed in section 2. Our discussion largely follows [9], which is closely related to the
discussion of Wilson defects in the 4d N = 4 theory [12, 13].

Wilson defects. In addition to the standard D3-D5-NS5 system for a linear quiver, the
insertion of Wilson defects in linear quivers requires additional D5-branes and F1-strings
connecting these D5-branes with the D3-branes. These additional D5-branes can either
have the same world-volume as the original D5-branes or be rotated in a specific fashion as
discussed below. In the latter case, we will refer to them as D5’-branes, using the same
notation as [9].

The respective world-volumes of the D3, D5, D5’, NS5-branes, and the F1-strings are
specified in table 2. A more precise way of writing this data is as follows:

D3: R x L x {X}u56x {Y}rs89
D5: R>' x {X3} x R} 56 x {Y'} 789
D5 R™ x {X1} x {Xo} x {X5} x R} 56 x RZ g x {Xo}
NS5 R*' x {X5} x {X}u56 x Rigyg
F1: RO x { X7} x { X5} x {XJ} x { X"V a56 x {X7} x { X5} x Ro, (2.17)
where we use the notation that {-} indicates a point in respective direction(s).
Let us briefly list the important features of the Type IIB construction that will be

relevant for our work. Unless otherwise stated, we will always work with the canonical
configuration where all D3-branes end on NS5-branes.
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e In the v-th NS5 chamber, the presence of a D5 or D5’-brane, away from the main
stack of D5-branes in the z%-direction, introduces a gauge Wilson defect for the U(N,)
factor. The defect arises from F1-strings stretching between the D5/D5’-brane and
the D3-branes in the given chamber.

o A stack of k& Fl-strings connecting a D5-brane and N, D3-branes introduces a Wilson
defect in the k-th symmetric representation Sy of the gauge group U(NNV,). The set of
non-negative integers {kj}jzl’,__’]vv, where k; is the number of F1-strings ending on the
j-th D3-brane, generate the weights of the representation Si in the orthogonal basis,
i.e. given a weight w = (w1, ws, ..., wn,) of Sk, we have w; = k;, with Z?gl k; = k.
Similarly, a stack of k&’ F1-strings connecting a D5’-brane and N, D3-branes introduces
a Wilson defect in the k-th antisymmetric representation Ay of the gauge group
U(Ny). Similar to the case of the symmetric representation, the set of integers
{kj}j=1,..n,, where k; is the number of Fl-strings ending on the j-th D3-brane,
generate the weights of the representation A in the orthogonal basis. In this case,
the integers are constrained to be k; = 0,1 Vj, by the s-rule [2].

e In general, there can be multiple stacks Fl-strings in a given NS5 chamber, connecting
[ D5-branes and I’ D5-branes with the N., D3-branes, such that the D5 and D5’-branes
are all separated in the z3 and the z° directions. This generates a Wilson defect
in the representation R = ®._; Sy ®f,/:1 Ay of U(N,), with the weights w being
given as w; = 2:1 kj(a) + Zélzl k:;.(b). An illustrative example of Wilson defects in the
quiver gauge theory X of figure 10 is given in figure 11. The defect involves a stack
of Fl-strings connecting a D5 and a D5’ respectively with D3-branes, introducing a
gauge Wilson defect for U(2) in the representation R = S ® As.

e The Hanany-Witten moves for the Type IIB construction with defects are substantially
restricted. Moving the F1-strings past an NS5-brane will change the Wilson defect
and is therefore not allowed. However, one can move them past the D5-branes without
changing the IR physics, provided that the equal number of D3-branes end on the D5
from the left and the right. This is always the case in the canonical configuration,
where no D3-branes end on the D5-branes.

e Introducing flavor Wilson defects requires moving to a Hanany-Witten frame, where
a stack of D3-branes is stretched between an NS5 and a D5-brane. One can then
introduce an additional D5-brane and F1-strings connecting the former and the D3-
branes, leading to an Abelian defect in some representation of the maximal torus of
the flavor symmetry group associated with these D3-branes. An example of a flavor
Wilson loop in the theory X of figure 10 is shown in figure 12.

Vortex defects. In addition to the standard D3-D5-NS5 system for a linear quiver, the
insertion of vortex defects in linear quivers requires additional NS5-branes and D1-branes
connecting these NS5-branes with the NS5-branes in the original D3-D5-NS5 system. These
additional NS5-branes can either have the same world-volume as the original NS5-branes or
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Figure 11. Type IIB brane construction for a gauge Wilson defect for U(2) in a representation
R = S; ® As. The red rectangular nodes denote D5’-branes, while the dotted vertical lines denote
F1-strings.
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Figure 12. Type IIB brane construction for a flavor Wilson defect of charge k.

be rotated in a specific fashion as discussed below. In the latter case, we will refer to them
as NS5’-branes, using the same notation as the D5-branes that appeared for the Wilson
defects described above.

The respective world-volumes of the D3, D5, NS5, NS5’, and the D1-branes are specified
in table 3. A more precise way of writing this data is as follows:

D3: R*!'x L x {X}a56 x {Y}r80
D5: R*' x {X3} x Ri;56 % {Y'}rs0
NS5 R*! x {X35} x {X}y56 x Rigyg
NS5: R™' x {X1} x {Xo} x {X3} x R} 5 x {X6} x Rigg
DI1: R x {X7} x { X5} x {X{} x {X" Y456 x R x {Y"}159, (2.18)

where we use the notation that {-} indicates a point in respective direction(s).
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NS5 | x| x|x X | x| X
D5 | x X | x| x

D3 | x b

NS5 | x X | x X | x| X
D1 | x X

Table 3. Type IIB brane construction for a vortex line defect.

We briefly list the important features of the Type IIB construction that will be relevant
for the rest of the paper. Unless otherwise stated, we will always work with the canonical
configuration where all D3-branes end on NS5-branes.

e In the y-th NS5 chamber, the presence of an N5 or N5’-brane, away from the main
stack of NS5-branes in the 2%-direction, introduces a gauge vortex defect for the U(N,)
factor. The defect arises from D1-branes stretching between the NS5/NS5’-brane and
the D3-branes in the chamber ~.

o A stack of k D1-branes connecting an NS5-brane and N, D3-branes introduces a
gauge vortex defect in the k-th symmetric representation Sy, of the gauge group U(N5).
The set of non-negative integers {ch}j:17.,,,]\f77 where k; is the number of D1-branes
ending on the j-th D3-brane, generate the weights of the representation Sy in the
orthogonal basis, i.e. given a weight w = (w1, ws, ..., wn,) of S, we have w; = kj,
with Z;\Zl kj = k. Similarly, a stack of &’ D1-branes connecting an NS5’-brane and N
D3-branes introduces a vortex defect in the k-th antisymmetric representation A of
the gauge group U(N,). In this case, the set of integers {kj}j:17,,.7N7, where k; = 0,1
is the number of D1-branes ending on the j-th D3-brane, generate the weights of the
representation 4y in the orthogonal basis.

e In general, there can be multiple stacks D1-branes in a given NS5 chamber, connecting
| NS5-branes and !’ NS5’-branes with the N, D3-branes, such that the NS5 and
NS5-branes are all separated in the 2> and the x° directions. This generates a vortex
defect in the representation R of U(N,):

R = ®,—1 Sy St Apo, (2.19)

with the weights w being given as w; = Zézl kj(-a) + Zélzl k‘;-(b). Different relative
orderings of the NS5/NS5’-branes in the 2° and 22 directions give the same vortex
defect. An illustrative example of a vortex defect in the quiver gauge theory X of
figure 10 is given in figure 13. The defect involves a stack of D1-branes connecting an
NS5 and an NS5’ respectively with D3-branes, introducing a gauge vortex defect for
U(2) in the representation R = S ® As.

e The Hanany-Witten moves for the Type IIB construction with defects are again
restricted. Moving the D1-branes past an D5-brane are not allowed. However, one
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Figure 13. Type IIB brane construction for a gauge vortex defect for U(2) in a representation
R = &), ® As. The blue rectangular nodes denote NS5’-branes, while the green vertical lines denote
D1-strings.

can move them past the NS5-branes without changing the IR physics, provided that
the equal number of D3-branes end on the NS5 from the left and the right. Therefore,
the position of the D1-stack in the z3-direction w.r.t. the D5-branes in a given NS5-
chamber is important. Generically, distinct insertion points (i.e. different number of
D5-branes on the left /right of the D1-stack in the chamber) will lead to different vortex
defect. Without loss of generality, let us assume that there are () D5-branes to the right
of the D1-stack. We will denote the vortex defect as V5 r, where R is defined above.

e A flavor Wilson defect for an Abelian subgroup of the 3d Coulomb branch symmetry
can be introduced when a stack of D1-branes ends on an NS5-brane.

The above realization of a vortex defect can be regarded as a deformation of at least
two different coupled 3d-1d system. This corresponds to making all the D1-branes end
on the NS5-brane to the left, or making all of them end on the NS5-brane to the right.
In the former case, we will refer to the associated 1d quiver as the “left SQM”, and in
the latter case as the “right SQM”. The rule for obtaining the left/right SQM from the
set of D1-brane stacks, described above, is as follows. Suppose we have a set of P stacks
where the 2 positions of the NS5/NS5™-branes are in a decreasing order from left to right,
and let k; denote the number of D1-branes in the i-th stack. To begin with, one brings
the NS5/NS5-branes at the same point in 2% direction (coincident with the left/right
NS5-brane in main stack) but different points in 2°, with D1-branes stretching between
them. Before performing this operation, one needs to move the D5-branes in the chamber
to the left /right of the NS5-brane so that the D-branes do not cross each other. In this
configuration, the number of D1-branes in the i-th chamber, computed by demanding that
the linking numbers associated with the NS5/NS5’-branes remain unchanged, is given by
n; = 2}21 k;, with i = 1,..., P. For the defect in figure 13, this brane configuration is
shown in figure 14, where the two D1-brane stacks are moved to the right NS5-brane. Given
such a brane configuration, the 1d quiver can be obtained by the following rules:
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1. k D1-branes stretched between an NS5 and an NS5’-brane give a U(k) vector multiplet,
while k£ D1-branes between a pair of NS5 or NS5’-branes give a U(k) vector multiplet
plus a single chiral multiplet in the adjoint representation. The gauge group is

therefore [T, U(n;).

2. A given pair of consecutive 5-brane chambers, labelled ¢ and i+1, gives a bifundamental
chiral and an anti-bifundamental chiral for U(n;) x U(nit1).

3. If Ny, and Np respectively denote the number of D3-branes ending on the NS5-brane
in the main stack, then one has one bifundamental chiral for U(np) x U(Nz) and
another bifundamental chiral for U(Ng) x U(np).

The 1d FI parameters can be related to the relative position of the NS5/NS5’-branes in the 23
direction, i.e. n; = 3 —x3_;, where 7; is the FI parameter associated with the 1d gauge group
U(n;) with i = 1,..., P, and 2} denotes the position of the NS5-brane in the main stack.
This implies that the original Type IIB configuration can be thought of as a deformation
of the left SQM with a positive FI parameter 7; for all the U(n;) factors, or equivalently
as a deformation of the right SQM with negative FI parameters for the U(n;) factors.

The coupling of the SQM, constructed above, with the 3d quiver gauge theory can now
be read off from the brane picture. The SQM has a U(Ny) x U(Ng) flavor symmetry, a
subgroup of which will be gauged by the 3d bulk fields living on the D3-branes. Let us
focus on the right SQM which implies that () of the M, D5-branes in the «-th NS5 chamber
have to be moved to the right of the v + 1-th NS5-brane, and let Ngp = @Q + ng. The
SQM is then coupled to the 3d theory by gauging the U(Ny) x U(ng) subgroup of the full
flavor symmetry by dynamical 3d N' = 4 vector multiplets. In addition, the U(Q) subgroup
of U(Ng) is weakly gauged by background 3d N = 4 vector multiplets, completing the
construction of the 3d-1d coupled system. We will denote the right SQM as £&f and the
left SQM as 227,

To summarize, a gauge vortex defect in a 3d quiver gauge theory is completely (although
not uniquely) specified by a 3d-1d coupled quiver along with a choice of the signs of the 1d
FI parameters. In the construction presented above, they are either all positive (left SQM)
or all negative (right SQM). The two 3d-1d systems associated with the vortex defect of
figure 13 are shown in figure 15.

2.2.3 S-duality and mirror map

Given the Type IIB construction of the Wilson and the vortex defects in linear quivers, the
mirror maps for such defects can be understood in the standard fashion. One implements
an S-duality operation on a given brane configuration with defects, followed by a rotation
89 5 —g56 2156 5 2789 and finally a set of Hanany-Witten moves to read off the
mirror theory with the dual defects. NS5 and NS5’-branes are exchanged with D5 and
D5’-branes under S-duality, while D3-branes are self-dual, as before. In addition, F1-strings
and D1-branes are exchanged under the operation. As mentioned earlier, the Hanany-Witten
moves are restricted, since F1-strings cannot cross NS5-branes while D1-branes cannot cross
the D5-branes. In figure 16, we show a concrete example of a vortex defect in quiver X
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Figure 14. Type IIB brane construction for the right 3d-1d quiver that realizes a vortex defect

Va, g for the U(2) gauge group in the representation R = Si ® As.
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Figure 15. The right and the left 3d-1d quivers that realize a vortex defect Va r for the U(2) gauge
group in a representation R = S, ® A,.

mapping to a Wilson defect in quiver Y, where the quivers X, Y are given in figure 13. We
refer the reader to [9] for the more general cases.

2.3 Wilson/vortex defects on S3 and the localization formulae

The localization formulae for the expectation values of Wilson and vortex defects for 3d
N = 4 theories on S® will be our basic tool for performing computations on the QFT side.
In this section, we give a brief review of these formulae, emphasizing aspects that will be
important in the rest of the paper. For a detailed study of the N = 4 supersymmetry
algebra on S3, and the inequivalent 1d ' = 4 subalgebras, we refer the reader to [14, 15].
The study of Wilson defects for A/ > 2 theories was initiated in [16], while vortex defects
for Abelian N = 4 theories were addressed in [17, 18], and extended to non-Abelian linear
quivers in [9].

—90 —



Wr

OO0

Figure 16. Type IIB configuration for a vortex defect mapping to the corresponding configuration
for a Wilson defect.

Let us summarize a few important and relevant features of N = 4 supersymmetry on S%:

o The 3d N = 4 supersymmetry algebra on S is su(2|1);®su(2[1),. The even generators
consist of the generators of su(2); @ su(2),, which is the Lie algebra of the isometry
group of S, and the u(1); ® u(1), generators. The u(1);, generators are given by
the linear combinations R + Ry, where Ro, Ry are the Cartan generators of the
su(2)c, su(2)y Lie algebras respectively. The odd generators have the following
anticommutators:

(QuasQus) = 7 |ohsTh+ 2 (Re + Rur)| (220)
(Qra@s) =7 |ohad + P (Re— Ru)|. (221)

where Jllt, Jj, are the su(2);,5u(2), generators respectively. The odd generators reduce
to the NV = 4 Poincare supercharges in the flat space limit L — oo.

e 3d N = 4 theories admit two types of supersymmetry deformation — hypermultiplet
masses and FI parameters. Unlike flat space, supersymmetry permits turning on a
single scalar in a given background (twisted) vector multiplet on S3, as opposed to
a triplet. Observables like the partition function with/without defects are therefore
written as functions of a set of real variables, one for every Cartan generator in the
Lie algebra of Gy x G¢.

e There are two inequivalent subalgebras inside the 3d A = 4 supersymmetry algebra,
which correspond to two different embeddings of su(1|1); ® su(1]1), inside su(2[1); ®
su(2|1),. Analogous to the flat space case, these subalgebras are exchanged under
3d mirror symmetry. Observables preserving one of the subalgebras is mapped to
observables preserving the other, under mirror symmetry.
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Bare partition function. Consider a 3d N' = 4 quiver gauge theory 7 with gauge group
G and a Higgs branch global symmetry group G g, such that the hypermultiplets transform
in a representation R of G x Gy. The partition function without defects [19] can be written
as a matrix integral in terms of a single real scalar s which lives in the Cartan subalgebra
of the gauge group. The real scalar s is the zero-mode associated with the real adjoint
scalar field that sits inside the 3d A/ = 2 vector multiplet, which in turn sits inside the
3d N = 4 vector multiplet. As mentioned earlier, the partition function is a function of
the real masses m and real FI parameters i, which are real scalars inside background 3d
N = 4 vector and twisted vector multiplets respectively. The matrix integral assumes the
following form:

2T i) = [ [ds] Zus(s,mom) = [ [ds] Zin(s.m) 235 (s) Z050n (s.m), (222)

where the measure {ds} = mil(s and |W(G)| is the order of the Weyl group of G. The

individual terms in the integrand on the r.h.s. consist of classical and one-loop contributions,

and are given as follows.

o The classical contribution arises from the [ U(1) factors in the gauge group:
Zri(s,n) H i Tr(s7) (2.23)

where ~ runs over the [ gauge nodes with a U(1) factor and 7, is the associated FI

parameter.

e The N = 4 vector multiplet contributes a one-loop term:

A H sinh ma( (2.24)

1 loop

where the product extends over the roots of the Lie algebra of G. In fact, this is
precisely the contribution of an N/ = 2 vector multiplet since contribution of the
adjoint chiral which is part of the N' = 4 vector multiplet is trivial [19].

e The one-loop contribution from N = 4 hypermultiplets transforming in a representa-

tion R of G x Gp:
1

_ 2.25
coshmp(s,m)’ (2.25)

h,
Zl-%gg;r)(sv m) = H
p(R)

where the product extends over the weights of the representation R.

Given a mirror pair of theories X and Y, the partition functions of the theories are
related as:

ZX) (m;m) = Oxy (m,n) 25 (m! (n); ' (m)), (2.26)
Cxy (m,m) = 2™ 2 2 (2.27)
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where (m,n), (m’,n’) are the masses and FI parameters for X and Y respectively. The
mass parameters m’ and the FI parameters ' of Y are linear functions of the FI parameters
and the mass parameters of X respectively. The partition functions agree up to an overall
phase factor, whose exponent is linear in m and n with integer coefficients a*!. These phase
factors arise from the three-dimensional contact terms as discussed in [20]. For the special
case where (X,Y) are linear quivers with unitary gauge groups, the mirror map simply
exchanges the mass and FI parameters up to a sign, and the partition functions are related as

ZX) (my; ) = e2riatmitt 7V (¢, ), (2.28)
where the parameters t and m are as defined in section 2.2.1.

Partition function with Wilson defects. A Wilson defect in a representation R of
the gauge group G can be defined as:

Wi = Tra(P exp f (i4,i# — |i]o) dr ), (2.29)
v

where v is a curve on S? and 7 is a coordinate along 7. The curve 7, if chosen to wrap
a Hopf fiber at the north pole of the S? base of S3, gives a half-BPS Wilson defect [9].
The preserved subalgebra corresponds to a certain embedding of su(1|1); & su(1]1), inside
su(2|1); @ su(2[1),. The partition function of the theory 7 with a half-BPS Wilson defect
W inserted along the curve v € S3, is given as

ZTWaD (1 ) = / [ds] Zwion (5. B) Zis(s,m) ZY55i58 () 2130 (5.m), (2.30)
ZWilson(s;R) ( 27rs) Z 627rws (231)
weER

: : : vector hyper
where w are the weights of the representation R, and the functions Zpr, Zy7, 21 Joop 1€

defined above. The expectation value of the defect is then given as

1 vector T
(Wr)7(mim) = ) / |ds] Zwinson(s, ) Zr1(s,m) ZY55ian(s) Z1000 (s, m).

ZM(m;n .3

The matrix integral for a generic Wilson defect is divergent, with the divergence arising
from the region(s) s; — £oo. The integral can be regularized by deforming the contour of

integration for each eigenvalue s; as follows. Note that the matrix integral poles, which
hyper
1-loop’

of the complex variable s;, along lines parallel to the imaginary axis. For n > 0 (n < 0),

exclusively come from the function Z are located in the upper and lower half-planes
the contour is deformed such that it encloses all the poles of the integrand in the upper
(lower) half-plane, and moves off the real axis along an imaginary line at a finite point (see
figure 37 of [9] for a schematic version of such a contour).

Partition function with vortex defects. Half-BPS vortex defects can be defined as
disorder operators in a 3d N = 4 theory on S® [17], where the defect is supported on a
Hopf fiber at the north/south pole of the S? base of S3. The preserved supersymmetry
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corresponds to an inequivalent embedding of su(1|1); ® su(1]1), inside su(2|1); ® su(2|1),,
compared to the Wilson defect.

In order to realize a vortex defect as a coupled 3d-1d quiver with the SQM living
on the Hopf fiber, one has to first specify which class of 1d theories preserves the same
supersymmetry as that of a vortex defect. It was shown in [9] that:

o The 3d half-BPS vortex subalgebra can be written as a 1d (2,2) supersymmetry
algebra deformed by background gauge fields for J_ and a U(1) flavor symmetry G,
where Jy are the Cartan generators of the Lie algebra of the 1d R-symmetry. The 1d
generators can be related to the 3d generators as

J_=:J\+J; - Re, (2.33)
Gp=:J,+J, — Ry. (2.34)

e The identification works only for special values of the associated background vector
multiplet fields:

J_: a-=—i/L, m_ =0, (2.35)
GF: (IFZO, mpzl/L. (2.36)

Given this identification, one can construct a generic coupled 3d-1d quiver which
preserves the appropriate supersymmetry algebra. The general procedure involves identifying
1d flavor symmetries (other than Gr) with 3d flavors symmetries and gauging them with
dynamical or background 3d vector multiplets. At the level of the UV Lagrangian, this
identification is imposed by turning on cubic superpotentials of the form (2.12), involving 1d
chiral multiplets and 3d half-hypermultiplets. The SQM will have additional superpotential
couplings consistent with (2,2) supersymmetry. Given this 3d-1d Lagrangian, one can now
proceed to compute its partition function on S®, by performing a localization analysis [9].
The answer passes various consistency checks, and agrees with the known dualities from
String Theory. Below, we summarize the main steps of the recipe, and refer the reader
to [9] for further details.

o 1d Witten index. The first step is to compute the twisted partition function (Witten
index) of the SQM X with a gauge group G4 and a flavor symmetry Gp x G%. The
twisted Witten index is formally defined as,

ZZ(m, Z?N‘E) — TrH(_l)Fe%rin, e27ri,uGF e27rimiJ,L-’ (2'37)

where we have isolated the J_ and G generators with complex chemical potentials
z = L(ia_ +m_) and u = L(iar + mp) respectively. The remaining flavor symmetry
generators are collectively denoted as {J;}, with complex chemical potentials {m;}.
The parameters £ are the FI parameters associated with unitary factors in G14. On a
circle, the path integral can be worked out using localization and can be written in

— 24 —



terms of JK-residue formula [21], i.e.

rank(G1q)
Ix(m, 2, M|£) = j{ H dxy gvector(ma Z) : gchiral(mv m, u, Z)a (238)
JK=¢ 15
m \rank(Gia) sinh m(—a(x))
vector <, = . X s 2.
Gvector (2, 2) (smh 7rz) 1;[ sinh 7(a(x) — 2) (239)
sinh m[—(p(x,m) + qu+ (5 — 1)z
gchiral(x7m7,u/72) = H [ ( ( ) (2 ) )] . (240)

R sinh 7(p(x, m) + qu + 52)
In the above formula, « is a root of the Lie algebra of G4, p is a weight of the
representation R of G14 X G in which the chiral multiplet transforms, ¢ is the Gp
charge and r is the charge under J_. The G and R-charges of the chiral multiplets
are subject to various superpotential constraints. The convention for the JK residue
for a meromorphic k-form g(x, m, u, z) is given as:

[Res[e*lg(@, m, p.2)], if — € € Clwh),

(2.41)
0, otherwise,

JK — Res¢[z"|g(x, m, p, 2) = {

where a given set of poles * = {x7} is given by the intersection of k£ hyperplanes in C*,
parametrized by the equations w) - z* +g") - m+¢D -+ %z =0,withl =1,... k.
C(w') is a positive cone spanned by the k weight vectors: C(w!) = {3% c;wDler > 0},

and £ =n(1,1,...,1) should be treated as a vector in C*k.

e 3d-1d matriz model. The next step is to write the combined partition function of the
SQM X coupled with a 3d quiver gauge theory 7, as a matrix model. At the level of
the matrix model, identification of 1d flavor symmetries with 3d flavor symmetries can
be performed in two steps. Firstly, one restricts the complex chemical potentials m to
take real values, and secondly, one identifies those real scalars with appropriate real
scalars from the background vector multiplet associated with the 3d flavor symmetry.
Finally, one can gauge a subgroup of the flavor symmetry by integrating over some of
the scalars with the right measure. This reasoning leads to the following expression
for the 3d-1d partition function on S3:

WWWMZ@/%V@@mmfﬁm%M% (2.42)
z—
p—1

where the limits on z and p arise from the fact that one needs special values of the J_
and G background gauge fields to preserve supersymmetry, as given in (2.35)—(2.36).

o Analytic continuation and z — 1 limit. The final step of the recipe is to give a
prescription about how the limits on the r.h.s. of (2.42) should be taken. It turns
out that the u — 1 can be taken in a straightforward fashion. However, for z, the
correct prescription for taking the limit, is to first analytically continue z € iR in the
integrand, perform the integration, and then finally set z = 1. One can then write
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Figure 17. The right SQM X% and the left SQM EZQ’R coupled to a 3d linear quiver, which
realize a vortex defect Vg g of the gauge group U(N). Note that % and EZQ’R only differ in the
numbers of fundamental and anti-fundamental chiral multiplets for the terminal gauge node.

down the final form of the 3d-1d partition function:

27 (i) = lim [ [ds] 207 (s,m, ) - T5(s,m, 2[€), (2.43)

z—1 int

where the Witten index Z*(s,m, 2|¢) = lim,1 Z*(s,m, 1, 2/€). While doing an
actual computation, we will only retain the z-dependence of the matrix model integrand
in places where it changes the location of a pole. The z — 1 limit can be taken
trivially everywhere else.

Given the above recipe, one can compute the partition function (and therefore the
expectation value) of a vortex defect inserted in a 3d theory on S3. The only input needed
to perform this exercise is the precise 3d-1d quiver that corresponds to a given vortex defect,
including the chamber in which the Witten index should be computed. Assuming that the
3d-1d quiver which realizes a vortex defect Vp g (with R being a representation of the 3d
gauge group G and D being some additional data) is known, the expectation value of the
defect is given by the general formula:

1 . T D,R
(Vp,r)T = Whe(m) X 20 (min) X ll_% [ds} Zi(nt)(sama n)I> " (s,m,z|€), (2.44)

where Wi, 5 (1) are Wilson defects for 3d topological symmetries that can also be turned on.

Using the Type IIB construction, reviewed in section 2.2, it is possible to obtain the
coupled 3d-1d quivers which realize the vortex defects for linear quivers with unitary gauge
groups. The general form of the 1d quivers that arise from this construction is shown in
figure 4 and the associated 3d-1d quivers are of the generic form in figure 5. As we noted
in our discussion in section 2.2.2, there are at least two different 3d-1d quivers that can
describe the same vortex defect in a linear quiver, involving the “right” and the “left” SQM.
A generic example of this hopping duality is shown in figure 17.

Therefore, for a linear quiver T, one can explicitly write down the expectation values
of the vortex defect in a representation R of the gauge group U(N) C G:

lr _ lr 1 : (T) . EQ;R >
(VST = W (8) % il lim [ds} Z (s, m,t) - T2 (s,m, 2|€ 2 0),

(2.45)
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where the superscripts [, denote the choice of the specific 3d-1d system (left or right)
that realizes the vortex defect. Note that the left/right SQM realization comes with a
prescription for the signs of the FI parameters, which determines the specific chamber in
which the Witten index should be evaluated. As discussed in section 2.2.2,; this piece of
information can also be read off from the Type IIB construction. The Witten indices for
the right and the left SQM associated with the vortex defect in figure 17 have the general
expression

coshm (s(-N) - S(M))

5 COShTI’(S(N) —ma)

J

SR N M Q
= :Z}"T(s,z)HH 1:[

WER j=1i=1 COSh?T( (N )+zwjz S; M) oshw( (N )+iwjzfma)7
(2.46)
O.R N P coshw(sg-N) (P)) - COShﬂ'(S;N)—mb)
7% Z .7-"1 (s,2) H ,
hrr(s)") —iwjz—s”) iz coshr (s —iw;z—ms)
wER =1i=1 cosh(s; w;jz— Sz b=1 coshm(s; Tw;jz—my
(2.47)
where w = (wy,...,wy) are the weights of the representation R. Subgroups of the

U(Q) and/or U(K — Q) flavor symmetry groups can be promoted to gauge groups, which
would amount to integrating over a subset of the {m,} and/or the {m;} parameters with
appropriate measure in the matrix model. The functions F” (s, z), F'(s, z) have poles which
give zero residues in the limit z — 1, and therefore one can take the limit for this term
before performing the integral. Therefore, one can drop these functions in the formulae for
Witten indices in the rest of the paper.®

Finally, the background Wilson defects for the left and the right SQM are given by

Wi, () = 2 Hltr il (t) = 2Bl (2.48)

where the FI parameter of the U(N) gauge group is given by n™) = t; —t,. The integer
|R| is the number of boxes in the Young diagram associated with the representation R.

At the level of the matrix model, the hopping duals are related by a simple change of
variables. Starting from the partition function of the right 3d-1d quiver, given by (2.45)—
(2.46), one can obtain the partition function of the left 3d-1d quiver, given by (2.45)—(2.47),
by the following transformation:

S o i W=, (2.49)

keeping all the other integration variables fixed. Since we have analytically continued z € iR,
this operation will not introduce or omit any poles.

Mirror map. Given that 3d mirror symmetry exchanges the 1d supersymmetry subalge-
bras SQM 4 and SQMp, one expects the half-BPS vortex defects to map to the half-BPS
Wilson defects. The precise map, however, is difficult to determine for a generic pair of
mirror duals. For linear quivers, the Type IIB construction allows one to explicitly construct

®For the precise forms of these functions, see appendix B of [9].
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these mirror maps, which could be independently checked by the sphere partition functions
discussed above. Given a pair of linear quiver theories X and Y, the vortex-to-Wilson
mirror map has the schematic form

(VR x(mst) = (Wei)y (8 —m), (2.50)

where WR/ is Wilson defect in representation R’ of the gauge and flavor symmetry groups of
the theory Y. An explicit mirror map for defects in the dual linear quiver pair of figure 10 is
discussed in appendix A.2. Similarly, a Wilson-to-vortex mirror map has the schematic form
— 1/ )l .
(Wr)x(m:t) =Y (W) V5 v (—tm), (2.51)
i

where the r.h.s. is a sum over vortex defects in the theory Y, combined with Wilson
defects for 3d topological symmetries. An explicit mirror map of this type is discussed in
appendix A.3 for the dual pair in figure 10.

3 Elementary S-type operations and mirror map of line defects

In this section, we discuss the construction of half-BPS defects and their mirror maps in theo-
ries beyond linear quivers, using the elementary S-type operations introduced in [1]. In addi-
tion, we present a systematic procedure to compute the associated mirror maps of line defects.

3.1 Elementary S-type operations on theories without defects: review

Consider a pair of mirror dual quiver gauge theories (X,Y) where X belongs to class
U, i.e. a class of 3d CFTs with a UV Lagrangian that has a manifest global symmetry
subgroup Gglfbal =1L U(M,). We will additionally assume that X and Y are good quivers
in the Gaiotto-Witten sense [7]. Given such a quiver X, one can define a set of four basic

operations [1]:

1. Gauging (G%). A gauging operation G% at a flavor node a of the theory X (shown
schematically in figure 18 below) involves the following two steps:

e The flavor node U(M,,) is split into two flavor nodes, corresponding to a U(r,) X
U(M,, —ry) global symmetry. The U(1)Me background vector multiplets are identified
as the U(1)"» x U(1)Ma="a background vector multiplets by the following map:

n?ﬂ-a = Pioi UL+ Pinrati Ve, (la=1,..., Mo, i=1,...,70, j =1,..., Ma—7a),

(3.1)
where any such map is parametrized by a choice of P — a permutation matrix of order
M,,. The resultant theory deformed by the U(r,) x U(M, — r,) mass parameters will
be denoted as (X, P).

o Given the theory (X, P), the flavor symmetry node U(r,) is promoted to a gauge node,
i.e. the vector multiplets for U(r,) are now dynamical, and a background twisted
vector multiplet for the U(1); topological symmetry is turned on.
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Figure 18. Gauging operation.

Fp
X M,

Figure 19. Flavoring operation.

2. Flavoring (Fp). A flavoring operation Fp at a flavor node a of the quiver gauge theory
X (shown schematically in figure 19 below) involves the following two steps:

o Firstly, the theory (X, P) is defined as above.

o Given the theory (X,P), a flavor node labelled by G% is attached to the flavor
node U(ry,), as shown on the r.h.s. of the figure below. This introduces some free
hypermultiplets in the theory which transform under some representation of the global
symmetry group U(rq) X G%.

3. Identification (I3). Given the quiver gauge theory X with a flavor symmetry subgroup
5:1 U(M,), let Nﬁm denote a set of (not necessarily consecutive) p < L flavor nodes
labelled by /3, where 8 = ~1,...,7,. The parameter r, is a positive integer such that
ro < Min({Mpg}|B8 € Ngm). Let a be a chosen node in Nﬁm. The identification operation
I%, shown in figure 20 for § = 2, can be performed at a chosen node « in two steps:

o Forall 3 e Nﬁm, we split the corresponding flavor node U(Mpg) — U(ry)gxU(Mg—7q)
symmetry. For a given 3, the choice of the U(1)"™ x U(1)Ms~"= background vec-
tor multiplets in terms of the original U(1)# background vector multiplets can be
encoded in the map:

ﬁiﬂ = Piyi U +Piyrats 75, (ig=1,....,Mg, i=1,....10, j=1,...,Mg—74),

(3.2)
where each such choice is parametrized by a permutation matrix Pg of order Mg. We
denote the resultant theory as (X, {Pg}).

 Given the theory (X, {Pg}), we identify the flavor nodes U(r,)g for all 8 # o to the
flavor node U(ry)q, as shown on the r.h.s. of the figure below.
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Figure 20. Identification operation.

4. Defect (D%). Given a U(M,) flavor node of a quiver gauge theory X, the operation DS
can be implemented at the node « in two steps:

o The theory (X, P) is defined as above.
e A Type-A or Type-B defect is turned on for the flavor node U(ry).

Definition. An elementary S-type operation O% on X at a flavor node «, is defined by
the action of any possible combination of the identification (1), the flavoring (F5), and
the defect (D%) operations followed by a single gauging operation G%.

OB (X) = (G) o (D)™ o (FB)™ o (I)"(X), (n;=0,1, ¥i).  (3.3)

In the special case where G% involves gauging a U(1), we will refer to the corresponding
S-type operation O% as an elementary Abelian S-type operation. The order of the different
constituent operations in the above definition is important to emphasize. The composition of
the identification and the flavoring operations is commutative, while none of the operations
commute with the gauging operation. For a Wilson defect, the defect operation also
commutes with the identification and the flavoring operations. However, for a vortex defect,
the defect operation may or may not commute with F5 and I3 — it depends on the details
of the defect in question. In general, therefore, the order of the operations constituting O%
is important.

An elementary S-type operation 0%, therefore, will map a quiver gauge theory X to a
new quiver gauge theory X', decorated by a defect D, i.e.

0% : X — X'[D). (3.4)

Given this operation, one can define a dual operation (5% which acts on the quiver gauge
theory Y. The dual operation maps Y to a new theory Y’ (not necessarily Lagrangian)
decorated by a line defect DV, i.e.

0% .Y — Y'[DY], (3.5)

such that the pair (X'[D],Y’[DV]) is IR dual.
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Let us now describe the realization of the operation O% and its dual (5% in terms of a
three-sphere partition function. For the dual pair (X,Y"), we denote as (Y, {Pg}) the theory
Y where the U(1)" x U(1)Ms="a (for all 8) background twisted vector multiplets have been
relabelled as given in (3.2). The partition function of the theory (Y, {Ps}) has the form:

20 (¥ (e (), (07 ) = [T [0 | 24007 (o g mY (), ¥ (f),),
.

(3.6)
where v/ labels the gauge nodes of the theory Y, and mY,n" denote the masses and FI
parameters. Mirror symmetry implies that the partition functions of X and Y are related as:

2D (), (0. im) = 2T s U Oy (0 = 0}, ) 20D (YY),
(3.7)

where b% has integer entries, and Cxy is defined in (2.27). We will now address the two
cases, where O% doesn’t and does involve defect operations, separately.

S-operation not involving a defect operation. In this case, the partition function
of the theory X' = 0%(X) is given as

ZO%(X)(mO%’---;n,na)Z/ [du®] Zog ) (u®, {1} 520, m0,mP)- 25D ((u), i),
(3.9)

where 7, is an FI parameter associated with gauging, and m©% are hypermultiplet masses
associated with flavoring and/or identification operations. The operator ZO%( x) can be
constituted from the partition function contributions of gauging (G%), flavoring (F3), and
identification (/) operations as follows:

o 3 no ni
Zoa(x) (U, {u"} g0, N0, mOP) = Zga x) - (ZF;;(X)) '(ng(X)) , (n1,n2=0,1),
(3.9)
where the individual constituents are:

Zaan 0 (U 10) = Zin(u® na) ZEE (u®) = 7 Kot T sinh® w(uf — uf), (3.10)

i<j
1
Zpg ) (u,mg) = 2500w m) =[] —, (3.11)
7 e )coshﬂp(u ,m%)
Zrgo0 (u® {u’}, 1) /H [, H5(“’)( — w4 ). (3.12)

Jj=1l:i=1

The partition function of the dual theory Y/ = @%(Y) can be computed in the following
fashion. First, one can isolate the w”-dependent part of the matrix model integrand of the
theory (Y,{Pg}), i.e

Zin TV homY ) (') ) am S e 1P o
2 PV (a7} mY (), Y ({u? = 0},..))

int

(3.13)
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where g% is a set of linear functions of its arguments and is entirely determined by the
mirror map of mass and FI parameters for the dual pair (X,Y’). The IR duality, along with
the assumption that both O%(X) and @%(Y) are good theories, will imply that the two
partition functions are related as

29 (Mm%, .. im,na) = 29900 (m (1, n0); ' (mO%,.)), (3.14)
up to some contact terms, where (m,n) and (m/,n’) collectively denote the N' = 4
preserving masses and FI parameters of O%(X) and O%(Y) respectively. From (3.14)
and (3.8), using (3.7)—(3.6) and changing the order of integration, the partition function of
the dual theory can then be cast in the form:

z9%(Y) (m,; 77,) - /H [do-’y,] 25%(3/)({0-7/}’ mO%’ Ny M) * CXY({uﬂ =0},...,m)
,Y/
Y{P /
x Z2P (67 mY (), nY ({uf = 0},..),  (3.15)

O%....), and the function Z~,
O'P

where m' =m/(n,n,),n =n'(m can be formally written

()
as a Fourier-transform of the operator Z@%( X):

@ o omi S (gh({o7 VP bilny) u?
Zogv) = / [du?] Zog () (W%, {t )z 1, mOP) - 27 20a 07T IPRRL o)
(3.16)

where g% is the set of functions defined above, and bg are integers defined in (3.7). The
expressions (3.15)—(3.16) give a working definition of the dual of the S-type operation on the
theory Y. Note that although the r.h.s. of (3.15) is written as an operation on a Lagrangian
theory Y, the theory Y is not guaranteed to be Lagrangian. However, if Y’ is Lagrangian,
one can rewrite the r.h.s. of (3.15) in the standard form of (2.22), from which the gauge
group and matter content of the theory can be easily read off. The contact term involved
can also be read off from (3.15).

S-operation involving a defect operation. In this case, we will need to distinguish
between the vortex and the Wilson defects to write down concrete formulae. For the Wilson
defects, the partition function of the theory X’ = O%(X) is given by (3.8), where the
operator Zo%( x) can be constructed in the following fashion:

o n2 ni

Zog (x) (W {4} g0y ey mMOP|R) = Zga (x) - (ZD;;(X)) : (ZF;;(X)) : (ng(X)) :
(3.17)
ZD%(X) (uo‘) = Zwﬂson(’u,a, R/) = TI“RIGQTW'&, (3.18)

where n; = 0,1, Vi, and the contribution of the defect to the partition function depends on
u® and the representation R’. The resultant theory is the quiver X’ with a Wilson defect
insertion. The dual theory will involve the quiver Y’ with a vortex defect insertion and
its partition function will be given by (3.15)=(3.16), with the operator Zoa given by the
expression in (3.17).
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As discussed earlier, vortex defects are realized by coupled 3d-1d systems. We will
consider defects where the associated (2,2) SQM ¥’ generically couples to both the new
gauge node and the new flavor node. The action of an S-type operation O%, involving
a vortex defect, on the quiver X gives the theory X’ with a vortex defect insertion. Its
partition function can be written as:

29PN (mO%, . na) = ;l_gq/ [du®| Zog ) (u, {0}z 110, mOP 2] )
x 2PN ({uf, i), (3.19)

where the expression on the r.h.s. is computed by the analytic continuation procedure as
before. In this case, the operator Z@%( x) can be constructed in the following fashion:

a na ni
Zog (x) (U {t} g0, 110, mOP  2[5) = Za (x) (ZD%(X)) ' (ZFg(X)) : (ng(X)) ;
(3.20)
ZD%(X) (ua’ m%‘a N Z) = Wb.g. (77a7 77) 'IE/(ua7 m%‘a Z|£/)a (321)

where n; = 0,1, Vi. In the above expression, Z* is the Witten index of the SQM ¥ for a
certain choice of the signs of the 1d FI parameters &', which is needed to specify the data of
the 3d defect completely. The dual theory will involve the quiver Y’ with a Wilson defect
insertion. The dual defect partition function, following the same logic as before, will be
given by an expression analogous to (3.15), i.e

729%™ (m _hm/H do” oa(Y)({U'yl}?mo%ma,n,Z)‘CXY({UBZO}a-‘-JI)

% Z P ({0 Y mY (m)nY ({u” =0},..)),  (3.22)

int
where the function 25%(},)({07/}, mOY? 1,,n, 2) is related to the operator Zog(x) In (3.20)—
(3.21) in the following fashion:
a a o 271 tJ'“Y Ps)+ bily,
Zoav) = / [du®] Zop (x) (u”, {4} g0, 1, % 2[5) - e D R
(3.23)

For a Lagrangian theory Y’ the Wilson defect can be read off from (3.22), after some
straightforward change of variables.

Generic S-type operation. A generic S-type operation on the quiver gauge theory X

is defined as the action of successive elementary S-type operations at nodes aq, aa, ..., aq:
(ah 7al) e « o7 o a
Op,.. ,Pl)(X) i=0p,00p " 0...00% 0 OF (X). (3.24)

The partition function of the theory (’)Eal’ ’7,3) (X) is given by using (3.8) (or (3.19) for

operations with vortex defects) iteratively, while the partition function of the dual theory
(’)Eal”m’f)‘l))(Y) is given by using the formula (3.15)—(3.16) (or (3.22)—(3.23) for operators
with vortex defects) iteratively.

Starting from a pair of dual linear quiver gauge theories, where the mirror map between
the mass and FI parameters are known, one can generate new dual pairs of theories (with

or without defects) by a sequence of elementary S-type operations.
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3.2 Abelianization of the non-Abelian S-type operation

One of the important results obtained in [1] was that the action of an Abelian S-type
operation (consisting of a sequence of elementary operations) on a pair of dual quiver
gauge theories (X,Y) produces another dual pair of demonstrably Lagrangian theories
(X',Y"). This procedure is substantially harder to implement if the S-type operation in
question is non-Abelian.® However, at the level of the three-sphere partition function, an
elementary non-Abelian S-type operation (which does not include any defect operation)
can be written in terms of a set of Abelian S-type operations, which involve certain Wilson
defect operations. We will refer to this procedure as the abelianization of a non-Abelian
S-type operation. We would like to emphasize that this procedure should be thought of as
a convenient way of writing the matrix model integral for the sphere partition function,
and not as a QFT operation. In particular, this procedure does not extend naturally to
other supersymmetric observable, like the 3d superconformal index.

For concreteness, we will discuss the procedure in detail for the case of a gauging
operation. The argument can be readily extended to the other elementary operations, i.e.
flavoring-gauging, identification-gauging, and identification-flavoring-gauging operations
with/without defects.

Consider the action of an elementary gauging operation on a quiver gauge theory X at
a flavor node a. From equations (3.9)—(3.10), the partition function of the theory G%(X) is
given as

2P0 (%, im ) = \W\/ T duf Zen(u na) ZE5555 () 25 (00 i),

/Hdua 2mina ) L, uf Hsinhzw(uf—u;“)Z(X’P)(uo‘,'vo‘...;n).
1<j
(3.25)

Recall the following identity,

[[2sinhr(uf —ud) = 3 (—1)pe2mar v, (3.26)

1<J PESr,

where Sy is the permutation group of N distinct objects, wy =: (%, %, e —%),

(p)

and wy” denotes a vector whose entries are obtained from those of wy by an action of an

element p € Sy. Using this identity, the partition function can be written as

79X (v 1)
(p) (")

_ i‘ Z(—l)p—’—p/ / H du® e 27ina Y, u 627r (wm +wrh
Ta: 7
PP

) Z(X’P)(uo‘,vo‘...;n)

1 i Tox Ta . o T @ [
= 3 (et / [T due (] [ c2rineut ¢ Qmm“z) ZXP) (@ p% o), (3.27)
Ta: - .
p,p i=1 i=1

5In general, there is no guarantee that the dual of a non-Abelian operation produces a Lagrangian theory,

in contrast to the Abelian operation.
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Figure 21. Construction of the theory 6g . (X) for a linear quiver gauge theory X.

where the vector €, ;) = wﬁz) —I—wﬁil), with p, p’ € S,,,. The last equation can be rewritten as

o 1 P - ;
ZGP(X) = F“! Z(_l)p+p /Hdu? <H Zpr (u?J]a)ZWilson (u?, sz,p’)>> Z(X,P)(uoz’ CRNS ;77)7

p:p' i=1

(3.28)

i
(p.p")
for a U(1) gauge group parametrized by ug'.

where Zwiison (4, ) is the partition function contribution of an Abelian Wilson defect
i

(p.p")
To write it more clearly, let @75; denote a defect-gauging Abelian elementary S-type

of charge Q)

operation at a given node 5 of X:
b
Op = G o DI (X), (3.29)

where the defect operation involves turning on an Abelian Wilson line of charge ¢ for the
U(1) flavor node in U(Mpg) — U(1) x U(Mg — 1), and is followed by gauging the U(1) flavor
symmetry. Let us define the S-type operation @g’ﬁ (X):

such that 1 = 3, 2 corresponds to the flavor node U(Mg —1), B3 corresponds to the flavor
node U(Mp — 2), and so on, and the Abelian defect charge introduced in the i-th step is q.
Also, P denotes the effective permutation matrix which determines the choice of U(1)V
mass parameters from the original U(l)Mﬂ mass parameters. For a linear quiver X, the
quiver operation is shown in figure 21. The partition function of @g,ﬁ (X) is therefore given
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in terms of the partition function of X as:

AN.B Y du” . .
ZOP (X)('vﬂvan’nﬂkl):/l_[l_lz H ZFI(uiBanZ?)ZWilson(ulz‘Ban)Z(XJ))(uﬁ?,UB"';77)7
=1
(3.31)

77777

The partition function of the theory G%(X), as given in (3.28), can then be written as:

26300 = 321y 207 X (0% nal Qe ), (3.32)
PP’
where the FI parameters associated with the r, Abelian gauging operations are identical,
and set equal to n,. We would like to emphasize that all terms in the sum correspond to
the partition function of the same Lagrangian theory (i.e. with the same gauge group and
matter content) and differ only in the precise Wilson defect for the r, U(1) gauge nodes.

3.3 Elementary S-type operations on theories with defects

In this section, we discuss the action of S-type operations on quiver gauge theories with
half-BPS defects. Let X[D] denote the quiver gauge theory X in class U, decorated by a
line defect D of Type-A (Type-B). Also, let Y[DV] denote the mirror dual quiver gauge
theory Y, decorated by the dual line defect DV of Type-B (Type-A). Relabelling the mass
parameters of X[D] as in (3.2), we denote the resultant theory as (X [D], { Pg}). The mirror,
with the relabelled FI parameters, will be denoted as (Y [DV],{Ps}). We will treat the two
cases — D being a vortex and a Wilson defect, separately.

Vortex defect D. Let D = V}%(G) denote the vortex defect in a representation R of the
gauge group G for the theory X, which is realized by a specific 3d-1d system 3. The
partition function of the coupled 3d-1d quiver is given by:

X[VE 4P
ZOVE MY (), ) = tim [ [as] Zg, O e ) ) (39)
= lim 2D (), ), (3.34)

X[VE AP
where the precise form of the function Zi(nt[ rie P

formula (2.43):

(XIVE o] {Ps}) XAP
T SOT () 280D (s, (Y, ) T (s, (Y, 2lE). (3.35)

int

can be read off from the general

The action of an S-type operation on the 3d-1d quiver X[D] at a flavor node « gives a new
3d-1d quiver X'[D']:
0% : XD — X'[D'. (3.36)

Let us first consider the case where O% does not involve any defect operation. In this case,
the S-operation is realized at the level of the partition function as follows:

ZO%(X[DD(mO%, M M) = Z(X/[D/])(mo%, 3T Ma)

= lim [ [du®] Zog (x)(u, {u} g0, 10, mPP) - ZXPHED (0}, iml2),  (3.37)

z—1
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where the operator Zpg (x) is constructed from (3.9), and ZXPIAED (. |2) is defined
in (3.34). The new 3d-1d system X'[D’] can be read off from the matrix model formula in
the second line. Note that the r.h.s. of the above formula should be computed using the
analytic continuation prescription for z € iR, and taking the z — 1 limit in the final step.

Now, consider the case where the operation O% involves a defect operation D, which
needs to be of Type-A, so that the combined 3d-1d system still preserves the subalgebra
SQMy4. Let D = V%,,(U(Ta)) denote a vortex defect in a representation R’ of U(r,,) realized
by a 3d-1d system X’. Then, the map (3.36) can be realized at the level of the parition
function as follows:

Z2OPXED (Mm%, . im,na) = 2PV (Mm%, im )
= lim [ |du®] Zog () (u® (u”} g0 na, mOP 2|5) - ZEPHED () l2),
(3.38)
X[VE AP
where the Zpg (x) operator is given in (3.20), and the function Zi(nt[ wie B is given

in (3.34). As before, the new 3d-1d system X'[D’] can be read off from the matrix model
formula in the second line.

Wilson defect D. Let D = Wg(g) denote the vortex defect in a representation R of the
gauge group G for the theory X. The defect partition function has the following form:

2OV N (), ) = [ [as] 23O o ) (3.9

int

where the function Zi(jt([WR@)]’{PB D

Z_(X[WR(G)L{Pﬁ})

int

can be read off from (2.30):
XAP,
= Zi(nt ¢ B})(&{Uﬁ}a---ﬂ?) ZWilson(SaR)- (340)

The action of an S-type defect on a 3d quiver with a Wilson defect X [D] produces another
3d quiver with a Wilson defect X'[D'], i.e.

0% 1 X[D] — X'[D]. (3.41)

For an S-type operation O% which does not involve a defect operation, the operation is
realized at the level of the partition function as follows:

ZOSIIB(X[D])(mO%7 ..o, 7]&) = Z(X/[D/])(m0%7 -5, TIa)

= / [dua] Zoa (x) (U {t Y g0, 0, mOP) - ZEPHIBD (0P, i), (3.42)

where the operator ZO%( x) is constructed from (3.9), and the defect partition function
ZXPL{PsY s defined in (3.39). The new 3d quiver with a Wilson defect X'[D'] can be
read off from the matrix model formula in the second line. For an S-type operation O%,
which involves a Wilson defect Wgr(uy(r,)) for the new gauge node U(r,) in a representation
R/, the above formula can be generalized to the following form:

29PN (Mm%, imna) = 2PV (M%)
= [ "] Zog ) ({0 m O3 ) - ZEPHED (), ), (3.43)

where the Zogq (x) operator is given in (3.17), and the function ZXPLFsY) is given in (3.39).

— 37 —



To summarize: the action of an S-operation O% involving a vortex defect operation
D, on a 3d theory with a vortex defect X[D] is another 3d theory with a vortex defect
X'|D'], where D' is a line defect built out of the pair of defects (D, D). Schematically, we
can represent the action of the S-operation as:

0% : X[D]— X'[D)), D =L(D,D). (3.44)

For the system to preserve the SQM 4 or SQMp supersymmetry, the line defects (D, D)
must be of the same type. The action can be realized at the level of the 3d partition
function:

205 (XP) (1, 0

oimne) = Z8EEPD(mO% i), (3.45)

as discussed above in the individual cases, and the line defect L(D,D) can be read off from
the partition function expressions.

3.4 Dual operations and the new mirror map of defects

Let the theory dual to X[D] is denoted by Y [DV], which is the quiver gauge theory YV
decorated by a line defect DV of Type-A (Type-B), given that D is of Type-B (Type-A).
An S-type operation acts on a 3d quiver with a defect to give another 3d quiver with a
defect, as given in (3.44). Given an operation O% on X [D], one can define a dual operation
on Y[DV]:

0% :Y[D'] = Y'[DY], DY =LY(D",DY), (3.46)

such that the pair (X'[D'],Y'[D'V]) is IR dual. In this section, we discuss a systematic
procedure to read off the dual line defect LY (DY, DY), and thereby write down the mirror
map for the new defects L and LY constructed above. As before, we will treat the case of a
vortex defect and that of a Wilson defect, separately.

To begin with, the expectation values of the line defects in theory X and theory Y are
generically related as follows:

(D)x({u’},...im) = (DV)y (m" (m);n" ({u”}....), (3.47)

which implies that the defect partition functions are related as follows:
ZXPHED ((uf}, im) = Cxy ({6}, ,m) 20 PRI (mY ();n” ({wf},...)). (3.48)

To work out the dual partition functions, we will need a slightly refined version of the above
equality. Implementing the S-type operations involve performing integrals over {uﬁ} with
an appropriate measure. Therefore, one needs to make sure that the limit z — 1 is not
taken trivially for any z-dependent term that involves a pole for the variables {u”}. This
consideration is obviously not important for writing identities of the form (3.48), where the
{u?} are merely background gauge fields.
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Let D be a vortex defect and DV be a Wilson defect. In this case, the mirror symmetry
implies a z-dependent equality:

Z(X[D]v{PB})({UﬂL im|2)
= Cxy({w’},...,m) 20T HED (Y (); ¥ (), )]2)

= Cxy - [ [do" | 20V (o oY o ()02, (349)
.

where the function Z(XPIAPH (.. |2) is defined in (3.34) in terms of the vortex defect
partition function. The function ZY'P'I{Ps} (. |z) has the property that it reduces to
the Wilson defect partition function in the limit z — 1, i.e.

tim 20 PHED Y () ({u), ) |2) = 2D Y ()i ({u?), ).
(3.50)
Similarly, for the case where D is a Wilson defect and DV is a vortex defect, one can
write a z-dependent equality of the same form as (3.49), where Z(' [P (1 |2) is now
defined by (3.34), and the function Z(XPLiFsD (. |2) has the property that it reduces to
the Wilson defect partition function in the limit z — 1, i.e.

lim ZXPHPD ((ufY, .. m|z) = ZEPHPD ((ufY ) o). (3.51)
zZ—

Using the result (3.49), one can now write explicit formulae for the dual partition functions
in the two cases.

Dual of a vortex defect. Let D = V%(G) denote the vortex defect in a representation R
of the gauge group G for the theory X, which is realized by a specific 3d-1d system . The
dual Wilson defect DY is of the generic form:

DV _ Z ¢y WHlavor . Wﬁn(é)’ (3.52)

where Wﬁ @) is a Wilson defect in a representation R, of the gauge group G of the theory Y,

and f/IV/,gavor is a flavor Wilson defect associated with the hypermultiplets. The requirement
of IR duality for the pair (X'[D’],Y’[D’V]) implies that the defect partition functions are
related, up to certain contact terms, as follows:

ZOPX PV (mO% i, ne) = 290D (! (1, ) (mO%, ), (3.53)
Consider the case where the S-type operation does not involve any defect operation.
The operation is realized at the level of the partition function by (3.37). Using (3.37)

and (3.53), along with the mirror symmetry relation (3.49) and changing the order of
integration, the dual partition function is given by the following formula (up to certain
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contact terms):
6;;(Y[DV])(m/,n/)
_Zcﬁlgn/n da.’Y (’)O‘ Y)({O-’y} m Panaa )CXY({UB:0}7577)

T ()22 D oy o Y (=0} ).2), (354

Wﬁﬂavor (m

and the function Z~ can be read off from the

W flavor
are given by a formal Fourier transformation of

YW 1.{Ps})
where the integrand Z. w(@P

int

second line of (3.49). The functions Z%, )
P
the operator Zpg (x) defined in (3.9):

o%

« (03 Ilg jod 271 o P, +
Z5 ) = / {du ]ZO“P(X)(U Au }B;Aa,ﬁavmop)' 2 5951 '} Ps) 22 b'm)
(3.55)

If the dual theory Y’ is Lagrangian, then the expression on the r.h.s. of (3.54) can again
be identified as the partition function of a quiver gauge theory Y’, decorated by a Wilson
defect, which we can formally denote as LY(1,DY). The formula (3.54) can be readily
generalized to the case where the S-type operation involves a defect D, by simply replacing
in the integrand:

The latter functions are defined by the formal Fourier transform:

P o o o 2mi 0'7 Ps) ity
Z5av) = / [du }Zo%(x)(u A} gt Ty MO 2|5 - 2 2ip 05U 1P b ,
(3.57)

P

where the operator Zog(x) is defined in (3.20). The expression (3.54) will serve as the
working definition for the dual S-type operation acting on the quiver gauge theory Y,
decorated by a Wilson defect DV. For a Lagrangian Y’, the r.h.s. can be identified as a
Wilson defect partition function, and we denote the resultant Wilson defect as LY (D", DV).

Dual of a Wilson defect. Let D = Wg(q) denote the vortex defect in a representation R
of the gauge group G for the theory X. The dual vortex defect DV will have the generic form:

DV =3 ¢, Whe Vs (3.58)

where 175”(5) is a vortex defect in a representation R, for the gauge group G of the theory

K

Y, and Ws'g' is a Wilson defect for a combination of 3d topological symmetries of Y.
Let us first consider the case where S-operation does not involve any defect operation.
Following the same reasoning as before, the dual partition function can be written in the
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form (up to contact terms):
Za%(Y[DVD(m"n’)
=Sty f TT o] 250,10 % mocm) Zipe (" =0},

(Y[VEr ] {Ps}) ,
XCXY({U/B:O}?“'?T/) Zing Au@ ({oﬁ }7my(n)vny({uﬁ:0}7"')az))7 (3'59)

(Y[1~/~E" 5 1{Ps})
where the integrand Z; , for ()

is given by the formula (3.35), and the functions
Z5 are given by the following formula:

05 (Y)

Z6av) = / {dua} Zog () (w® {u’} 520 Ny mo%)

P

LM DOV PO g 1Py ), (3.60)

where Zfi, denotes the combined {u”}-dependent part of Zgbe and any {uf}-dependent

Y[VEr _
background Wilson defect term in Zl(nt[ "(G)]V{PB}). If the dual theory Y’ is Lagrangian,
then the expression on the r.h.s. of (3.59) can be identified as the partition function of a
quiver gauge theory Y’ decorated by a vortex defect, which we denote as LY (1,D"). The
formula (3.59) can be readily generalized to the case where the S-type operation involves a

defect D, by simply replacing in the integrand:
Z%%(Y)({O.’Y }7 m(’)f;‘,7 Na; M ) - ZOQ (Y) ({U’y }7 mO%’ Nas 77|R/) (361)

The latter functions are defined by:

Z5. O (v) /[dua} Zoa (x) (U {u} g0, 0, mOP|R) - Z5, ({u’},. )

s 2T 0 5 (a5 (Lo Pe) Y, blitm) w] ’ (3.62)

where the operator ZO%( x) is given in (3.17). The expression (3.59) will serve as the working
definition for the dual S-type operation acting on the quiver gauge theory Y, decorated
by a vortex defect DV. For a Lagrangian Y, the r.h.s. can be identified as a vortex defect
partition function, and we denote the resultant vortex defect as LY (DY, DV).

To summarize the above results, the dual of the S-type operation generates a theory
Y’ decorated by a line defect LY built out of the pair (DY, DV), where LY, DV, DV are all
defects of the same type, i.e. they all preserve either the subalgebra SQM 4 or SQMp. The
line defect LY can be read off (in some cases, after some non-trivial manipulations of the
partition function) if the dual theory Y’ is Lagrangian. Schematically, we have:

@)

71DV 0% )= 20 PEPID /(1 o ); ! (mO%,.L)), (3.63)

m/(n,1);7 (m

where the precise forms of the defect partition functions are given by (3.54) and (3.59) for
D being a vortex defect and a Wilson defect respectively.
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The action of the S-type operation on the dual pair (X[D],Y[D"]) therefore leads to
the new duality statement:

(L(D. D)) x:(m%%,...sm,10) = (LY(DY, D))y (m';7), (3.64)

where m’ = m/(n,1.),n" = n'(m®?,...). Equation (3.64) allows one to directly read off
the mirror map between the line defect L(D, D) in the new quiver gauge theory X’ and
the line defect LY(DY, DY) in the dual theory Y’. We would like to emphasize that this
procedure should work whenever the pair (X', Y”) are Lagrangian, regardless of whether
the theories have a Hanany-Witten type description.

3.5 Simple illustrative example: Abelian S-type operations on T'(U(2))

In this section, we work out an explicit example which illustrates the basic points of the
construction described in section 3.3—section 3.4. We will study an elementary Abelian
flavoring-identification operation acting on a T(U(2)) theory” with defects, which leads to
another linear quiver with defects, and work out the mirror dual of the latter. Obviously, this
mirror map can be worked out using the Type IIB description of [9], but we present it here
to illustrate how the general procedure of section 3.3-section 3.4 works in simple examples.
T(U(2)) is a self-mirror, and its partition function obeys the following identity:

ZT(U(Z))(m; t) _ e?ﬂi(m1t1—m2t2) ZT(U(Q))(-[;7 _m)' (365)

Consider a vortex defect of charge k for the U(1) gauge group. The defect can realized as
two different 3d-1d quivers, shown as X [Vll,k] and X[V/;] in figure 22. The defect partition
functions for the two quivers are given as:

Z(X[Vllvk})(m;t) — 2mkty | hni ZTUR) (m + ikz,ma;t), (3.66)
zZ—r

Z(X[Vlr’k])(m7t) — eQTrktz . hnll ZT(U(2))(m17m2 — 'Lkz7t) (367)
zZ—r

Using the identity (3.65), one can rewrite the z-dependent functions on the r.h.s. of the
first equation as:

e27rkt1 . ZT(U(2))(m1 + z'k:z,mg;t) _ e27ri(m1t1—m2t2) Z(Y[Wk])(t; _m|z)

— eQm’(mltl—mQtz) /da e—2mioc(m1—my) 2rkoz .
coshm(o — t1) coshm(o — to)
(3.68)

The above equality is a special case of the equation (3.49), for the T'(U(2)) theory and the
vortex defect under consideration. Note that on taking the z — 1 limit, one gets the result:

ZXWVLD (s ) = e2milmati=mata) iy 70V We) (4. _yn2)
z—1

— 2mi(miti—mat2) Z(Y[ﬁ/k])(t; —m), (3.69)

"Recall that the theory T(U(2)) is obtained from T(SU(2)) by adding a decoupled theory which consists
of a mixed CS term involving a background U(1) vector multiplet and the U(1); twisted vector multiplet.
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Figure 22. The two 3d-1d systems that realize the 3d vortex operator V; ;, in a U(1) gauge theory
with two hypermultiplets. The mirror dual is a gauge Wilson defect of charge k.

leading to the mirror map:
(Vi) x(mst) = (Wi)y (¢, —m), (3.70)

which can also be read off from the Type IIB construction. Proceeding in a similar fashion,
one can similarly show that:

(Vi) x (mst) = (Wi)y (8, —m). (3.71)

Now, one can take the 3d-1d system (X[Vllk]) on the Lh.s. of figure 22, and implement
a flavoring-gauging operation on a U(1) flavor node, as shown in figure 23, following the
general procedure outlined in section 3.3. This corresponds to the following choice of the
parameters (u,v) and the permutation matrix P:

01
U= ma, v =mq, P = <1 0) ) (3.72)

The resultant theory is another 3d-1d quiver, which we denote as Op(X [Vllk]) The defect
partition function can be written down from the general expression (3.37) as follows:

2minu
ZOP(XIVL,]) _ 2mkty o Ji (/ du— " ZTU2) +z‘kz,u;t)>

21 cosh7(u —my)
2minu
ok . T(U(2 »!
= e t1 ll_% duds COShW(U — mf) in‘E ( ))(57U7u>t)l' (87’U>Z|§ > 0)

(3.73)

The matrix model integral in the last step can be identified as the partition function of the
3d-1d quiver X’[V{f,p] in figure 23.

The dual defect partition function can be obtained from the general expressions (3.54)—

(3.55). Firstly, one can compute the function Z@» (v) follows:
e2minu ) e2mimy (o+n—t2)
Z t)y=[d mi(o—to)u . (3.74
OP(Y)<U’U’mf’n’ ) / ucoshw(u—mf) ¢ coshm(o 4+ n —t2) (3:74)
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Figure 23. The construction of a vortex defect and its dual Wilson defect, using a flavoring-gauging
operation, with a pair of defects in T'(U(2)) as a starting point.

Using the above expression and (3.68) in the general expression (3.54), the defect partition
function can be written as:

e2mimy (o+n—t2) e~ 2miov 2mkoz

ZaP(Y[ﬁ/k]) — I d 2mivty
o1 ? cosh (o +n—t2) coshm(o — t1) coshm(o — to)

e2mi(my—v)o 2rko

— 627ri(vt1+m]c(777t2)) /dO’
coshm(o —t1) coshm(o — tg) coshm(o +n — t2)

—. e2mi(vtitmy(n—t2)) Z(Y/[Wé])’ (3.75)

where we can set 1 =t — t3, and v = m1, my = mo, to write the above partition function
in a more standard form. The matrix model in the second step can be identified as the
partition function of the theory Y’ — a U(1) gauge theory with three hypermultiplets of
charge 1 — with a gauge U(1) Wilson line of charge k inserted. The theory is denoted as

Z (v [W{]) in figure 23. The above computation then implies the mirror map:
Vi = (Wi (3.76)

One can similarly start from the 3d-1d system X[Vf:k] on the r.h.s. of figure 22, one
can implement a flavoring-gauging operation with

10
u=my, v=ms, P = <0 1) . (3.77)
The resultant dual system is shown in figure 24, which leads to the mirror map of the defect
operators:
(V= (Wi, (3.78)
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Figure 24. The second realization of the vortex defect in the theory X’ via a 3d-1d system.

k
®
L

X (v'[W))
Figure 25. The third realization of the vortex defect in the theory X’ via a 3d-1d system.

Finally, we can also take the 3d-1d quiver (X [Vllk]) in figure 22, and implement a
flavoring-gauging operation on the other U(1) flavor node, which corresponds to the following
choice of the parameters (u,v) and the permutation matrix P:

01
u=1mi, v=ma, P = <1 O) . (3.79)

The resultant dual system is shown in figure 25, which leads to the mirror map of the defect
operators:
(Vi) xr = W)y, (3.80)

From (3.76), (3.78), (3.80), we observe the fact that the vertex operator in X’ dual to the
gauge Wilson defect W,g in Y’ has three different realizations as a 3d-1d quivers. This is
also what one expects from the Type IIB description of the vortex operator in X’, where
the stack of k D1-branes can end on any one of the three NS5-branes, thereby leading to
the three 3d-1d systems.

4 Beyond linear quivers: D,, and IA)n quiver gauge theories

In this section, we will focus on deriving the mirror map of defects in quiver gauge theories
of the D,, and ﬁn type, as a concrete application of the general construction developed in
section 3.3-section 3.4. The D,, and D, quiver gauge theories discussed in this section can
be realized by a Type IIB construction involving configurations of D3-D5-NS5 branes with
one and two orbifold 5-planes respectively.
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Figure 26. A 3d mirror pair involving a D4 quiver gauge theory and an SU(2) gauge theory with
four flavors.

Figure 27. A pair of dual linear quivers with unitary gauge groups.

ZILLR
sz—@— M 47M4@7 M
(X[Virrl) (X[Virg))

Figure 28. A family of vortex defects Vs g in the theory X and the associated 3d-1d coupled
quivers.

4.1 Defects in a D4 quiver

In this section, we will discuss an example of mirror symmetry involving a D4 quiver gauge
theory with a gauge group G' = U(2) x U(1)? and a single fundamental hypermultiplet
charged under the U(2) factor, which is dual to an SU(2) gauge theory with Ny = 4 flavors,
as shown in figure 26.

Given the dual pair, we will explicitly construct the mirror map for a class of Wil-
son/vortex defects in the dual theories, starting from defects in a dual pair of linear quivers,
using Abelian S-type operations.

The starting point is the dual pair of linear quivers in figure 27. The mirror map of
defect operators for the dual pair above was discussed in detail in [9], using the S3 partition
function as well as the Type IIB brane construction. A set of vortex defects in quiver gauge
theory X, labelled as Vi g, can be realized as the coupled 3d-1d systems in figure 28, with
R being a representation of the gauge group U(2) of the form (2.19), and 0 < M < 4.

The coupled 3d-1d systems above are two equivalent ways of describing the same defect
V., r, and represent a hopping duality associated with the vortex defect. We will refer to
the two SQMs as LM% and ElM’R respectively.
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We will denote the dual Wilson defect in the quiver gauge theory Y generically as Wﬁ,
where R is related to the representation R, and the precise relation is part of the mirror
map between the defect operators. The dual Wilson defects were worked out in [9] and
have been reviewed in appendix A.2. The mirror maps for various choices of the integer M
can be enumerated as follows:

e M =0,4. These vortex defects are mapped to flavor Wilson defects in the theory Y.
Let U(2)s denote the flavor symmetry group of ¥ associated with the fundamental
hypermultiplets, and let U(1); x U(1)2 C U(2); be the maximal torus of U(2)s. Also,
let ngmr denote Wilson defects for U(1);=1,2 with charge ¢. The mirror maps are
then given as:

(Vo,r)x (m; 8) = (W) y (5 —m), (4.1)
(Va,p)x (m; 8) = (WHET)y (5 —m). (4.2)

e M =1,3. These vortex defects are mapped to a combination of flavor Wilson defects
and gauge Wilson defect in a U(1) subgroup of the gauge group G = U(1) x U(2) x U(1)
of the theory Y. The mirror maps are given as:

(Vir)x(mit) = (3 Wiz W)y (6 —m),
KEA

(Vi) (mst) = (3 Wior WD), (6 —m), (4.3)
KEA

where 17[7(1(13/:1’3) are gauge Wilson defects of charge ¢f for the U(1) gauge nodes,
labelled v/ = 1,3 in the quiver Y. The charges (¢f,q5) are obtained from the
decomposition of the representation R under the maximal torus U(1) x U(1) C U(2),
and A is the set of such charge doublets counted with degeneracies.

e M = 2. This vortex defect maps to a gauge Wilson defect WR in the same represen-
tation R of the central U(2) gauge node of the theory Y, i.e.

(Va.r)x(m;t) = (Wg)y (£ —m). (4.4)

One can similarly consider a Wilson defect W, labelled by a representation R of the
U(2) gauge group in the theory X. The dual object is a vortex defect ‘71 R, labelled by a
representation R of the central U(2) gauge group in the quiver gauge theory Y. The coupled
3d-1d systems, worked out in [9], that realize the vortex defect are given in figure 29.

The construction of the mirror map in terms of the partition function is reviewed in
section A.3, and is given as:

(Wr)x (m;t) = (Vi g)y (—t;m). (4.5)
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Figure 29. A family of vortex defects ‘717 gr in the theory Y and the associated 3d-1d coupled
quivers.

4.1.1 A vortex defect for the central node

We begin with an example where a gauge vortex defect in the Dy quiver gauge theory is
mapped to a gauge Wilson defect in the SU(2) theory. Consider the dual pair of defects
(V3 g WR) — the coupled 3d-1d system (corresponding to the right SQM) and its dual are
shown in the first line of figure 30. Let the fundamental masses in theory X be labelled as
{m;li = 1,...,4}, such that the U(2) flavor node identified with the 1d flavor symmetry
in X [V]@ gl is associated with the masses ms, my. Following the general prescription of
section 3.3, we implement an Abelian S-type operation on the system X [V; rl, consisting
of three elementary Abelian gauging operations, as follows:

Op(X[VIgl) = G, 0 G2 0 GR(X[VZ ), (4.6)

where a1 = «, and s is the residual U(1) flavor node from U(2), in the theory G3! (X).
The mass parameters corresponding to the U(1)? global symmetry are chosen as:

uyp = ms, U9 = My, us = msy. (47)

Note that the S-type operation is splitting the U(2), flavor node into two U(1) flavor nodes
and gauging them. From (3.37), the partition function of the resultant 3d-1d system can
then be written down as follows:

3
Op(X[Vy gD _ s (X)
A 2R E—%/Hdul Zl_[lZFI Wiy i) 2y (S, u,0, 1)
X Whg (8, R) T (5, u, 2[€ < 0), (4.8)
Zi(l‘ff)(s,u,v,t) = {Zi(lff)(s,m,tﬂmg = U1, M4 = Uz, M1 = U3, M = v}, (4.9)
Wi g (8, R) = e 2Rl (4.10)
IE’%’R(S,u,z\E < 0) Z H H coshm(s; — ;) , (4.11)

ey sl s coshm(s; + iw;z — u;)

where w = (w1, ws) is a weight of representation R of U(2). The expression on the r.h.s.
of (4.8) can be readily identified as the partition function of a coupled 3d-1d system, where
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Figure 30. The construction of a vortex defect in a flavored D4 quiver gauge theory and its dual
Wilson defect, using an Abelian gauging operation.

the 3d theory is a D4 quiver gauge theory X’ with a gauge group G’ = U(2) x U(1)3, and
the SQM is ¥2%. This 3d-1d quiver is denoted as X’[VQIFIQ] in figure 30 on the Lh.s. of the
second line. We claim that this 3d-1d quiver realizes a vortex defect in the representation
R of the central U(2) gauge node in the theory X’. In fact, we will find it convenient to

redefine the defect partition function by a global Wilson defect factor as follows:

Z XV —2m(ta -T2 R) ZOPXVERD (s ¢, ), (4.12)

where the superscript (/) denotes the specific 3d-1d system that arises in the construction
described above.

The dual system can be determined following the discussion of section 3.4. The dual
partition function can be read off from the general expressions (3.54)—(3.55) — the details
of the computation are summarized in appendix B.1. The dual partition function can be

written in the following form:

PR AAN)

¢~ 2n(t2= )R] 7 Op (Y [Wr]) (4.13)

’ /(1) _ o
20" — Oyt [ [do] 8(Tr) 2PN o m ) = 0) 3 TR
weR

(4.14)
C(’U,n,t) — eQWiU(U1+772+773+2(t1—t2))’ (4.15)
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where C(v,n,t) is a contact term, ZU@Ny=4

int

(o,m/(t,n),n) is the integrand for the
partition function of a U(2) gauge theory with Ny = 4 hypermultiplets, m/(t,n) are the
masses of the hypermultiplets, and 7 is the FI parameter for the U(2) gauge group.

The r.h.s. of (4.14) implies that the theory Y’[(VQ/J?)V] can be identified as an SU(2)
gauge theory with Ny = 4 flavors, along with a Wilson defect in a representation R of the
SU(2) gauge group, where the representation R is the restriction of the U(2) representation
R to an SU(2) subgroup. More explicitly, we have

U(2) — SU(2),
R—R. (4.16)

We denote the theory Y’ with the Wilson defect insertion as Y’ [W}%}, as shown on the
r.h.s. of the second line in figure 30. Normalizing the integrals with appropriate partition
functions, we obtain the following mirror map of line defects in the pair of dual theories
(X", Y'):

(Vo) () = (Wh)y (m (£, ), (4.17)
where the functions m/(t,n) can be read off from (B.11)-(B.14).

A second coupled 3d-1d quiver (X' [VQIFJI{I)]) which realizes the same vortex defect is
shown in figure 31. The Witten index for the coupled SQM in this case should be computed
in the chamber & > 0. One can read off this 3d-1d quiver directly by a change of variables
in the matrix integral of (4.8): s; — s; — twj z. It can also be obtained by implementing
the S-type operation (4.6), characterized by the choice of the U(1)? parameters (4.7), on
the theory (X [VQl r])- Note that the U(2) flavor node identified with 1d flavor symmetry is,
in this case, being split into two U(1) flavor nodes, of which only one is being gauged. The
defect partition function is again redefined by a global Wilson defect factor, i.e.

Z(X/[véf};1>]) :: 6—2W(t2—n1;n2)|R| ZOP(X[VQZYR])(U;t,n). (4.18)

Proceeding as before, the dual partition function can be worked out from (3.54)—(3.55)
leading to the relation:
ZMVE) (VI EHVD) (4.19)

)

’ /(1)
where 2 [(V2r)"D) i given in (4.14). Therefore, one concludes that the two 3d-1d coupled
systems X’ [VQIII%)] and X' [Vzlféf)] are both realizations of the same vortex defect in the theory

X'. This leads to the following mirror map:

V5 xo(tm) = (Vo) o (8m) = (W) (m (£, ). (4.20)
We will discuss how this hopping duality arises from the Type IIB description of defects in
D-type quivers in section 5.2.

One can ask what is the interpretation of the additional 3d-1d quivers which can be
obtained from (X'[Vy g]) (or (X' [VQI rl)) by an Abelian S-type operation of the same form
as Op in (4.6) but involving a different choice of the U(1)? global symmetry to be gauged.
These 3d-1d quivers can be shown to be identical to the quivers X’ [VQ/,(II%)] or X' [VQ/%I)] up
to a relabelling of the FI parameters.
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X%

Figure 31. Different 3d-1d systems which realize the same vortex defect VQ’ g in the Dy quiver
gauge theory X’. The Witten indices in the two cases are computed in the chambers ¢ < 0 and
& > 0 respectively. The system (I) is realized by starting with the right SQM for the defect V5 g in
a U(2) gauge theory with Ny = 4, while (II) is realized when one starts with the left SQM.

B A)

Figure 32. The construction of vortex defects in the flavored D, quiver gauge theory X', using an
Abelian S-type operation from X[V}, p] with M =0,1,3,4.

4.1.2 Other vortex defects in the D, theory

Let us now present a set of examples where a gauge vortex defect in the D, theory is mapped
to a flavor Wilson defect in the SU(2) theory. These can be constructed as follows. One can
implement the S-type operation (4.6)—(4.7) on the 3d-1d coupled quivers corresponding to
the vortex defects Vi g in the theory X, for M # 2. The resultant 3d-1d coupled quivers
are shown in figure 32, where we have again used the right 3d-1d quiver X [V]Q Rl as our
starting point.

For the case of generic M, the resultant vortex defect is defined as

ZXWVIERD (08, ) = e 2= PRI ZOPXIVRL 8D (4 ¢, ), (4.21)
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where the defect partition function Z Op (X [Vir,RD) being given as

79P(X Vi gD — hm/Hdm ds} HZFI uz,m)th (s,u,v,t) Wy, (8, R)IE (s u,z|€ <0),
=1
(4.22)

and the various constituent functions on the r.h.s. are given in (A.10)—(A.12). The dual
Wilson defects can be worked out in a fashion similar to the M = 2 case. We enumerate
the results below:

e M = 1. The dual defect partition function is given as:

ZWIVEDD _ =2n(ta="15"2)|R| 7O0p(Y [Wg))

=C(v,t,n) (Z e2mmy 62’”“27"5) Z) (m/ (t,n)), (4.23)

w

where C(v, t,n) is the contact term, and Z (Y") is the partition function of the quiver
Y’. The form of the partition function shows that the defect dual to V{ p is a flavor
Wilson defect. The mirror map can therefore be written as:

(Vi r)xr(t,m) = (D Wil Wiiaor)y (m/ (¢, m), (4.24)
KEA

where Wi”%%"or denotes a flavor Wilson defect with charge ¢ for the U(1); subgroup of
the full flavor group, embedded as U(1); x U(1)2 x U(1)3x U(1)4 C SO(8). The charges
(¢f,q5) are given by decomposing the representation R into U(1); x U(1)2 C U(2),
where U(1); x U(1) is the maximal torus of U(2) and A denotes the set of all the
charge doublets counted with degeneracies.

e M = 3. In this case, the dual defect partition function is given as:
ZMVEOYD) _ =2n(ta—"1E2)| R 7 Op(Y [Wi)
= Cv,t.m) (X @i @mema) 207 (ml (2, m)), (4.25)
w
which leads to the following mirror map:

(Vi r)xo(,m) = (> Witsrer wifaen)y (m/ (¢, m), (4.26)
KEA

where the notation of operators on the r.h.s. is the same as defined above for the
M =1 case.

e M =0,4. The dual partition functions in these cases are respectively given as:

/ 1(I) / !
Z0 Vo)D) = C (o, t,) (Z errtnteams ) 7070 (! (8, m)), (4.27)

/ /(1) /
2D — o0, 8,m) (Z 2 (wi+wa)m) ) Z0(m! (¢, m)), (4.28)
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Figure 33. The hopping duals associated with the vortex defect V1l, g for the quiver gauge theory
X’. The Witten indices in the two cases are computed in the £ < 0 and £ > 0 chambers respectively.

leading to the following mirror maps:

(Vo) (8,m) = (WSRO )y (m (8, m)), (4.29)
(Vi) (tm) = (W3R )y (m (8, m)), (4.30)

where the notation of the various flavor Wilson defects are the same as defined for
the M =1 case.

Each of the vortex defects listed above is realized by two inequivalent coupled 3d-1d
quivers. In exact analogy to the case treated in section 4.1.1, the second quiver can be
read off by implementing the S-type operation (4.6)-(4.7) on the left 3d-1d quiver X [VQI gl
Alternatively, one can read it off from the partition function Z (X,[Vfév]f)% ) by a simple change
of variables s; — s; —iwjz. The 3d-1d quivers associated with the M = 1 case are given
explicitly in figure 33. The Witten index of the SQM for Vllfl) is computed in the chamber

£ < 0, and that for V{%D is computed in the chamber & > 0.

4.1.3 A Wilson defect for the central node

Let us now consider an example where a gauge Wilson defect in the Dy theory is mapped
to a gauge vortex defect in the SU(2) theory. These defects and the associated mirror map
can be constructed as follows. Consider the dual pair of defects (W, ‘717" r) — the Wilson
defect and the coupled 3d-1d system which realizes the dual vortex defect are shown in
the first line of figure 34. We implement the Abelian S-type operation Op on the system
X [Wg], where Op is given as:

Op(X[Wr]) = G 0 G2 0 G (X [Wr)), (4.31)
which corresponds to the following choice of the U(1)? global symmetry to be gauged:

Uy = my, Us = Mg, U3 = My4. (4.32)
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The resultant defect partition function, following (3.43), is given as

ZOP(X[WR]) = /H du; [ds} H ZFI uzanz mt)(s,u,v,t) ZWilson(SaR)) (433)

Zi(rft()(sa u,v, t) = {Zl(lff)

ZWilson(37 R) = Z er % : (435)
weR

(s,m,t)|m; = ui, ma = ug, my = uz,m3 = v}, (4.34)

The defect partition function can be readily identified as the partition function of a D-type
quiver gauge theory X’ with a gauge group G’ = U(2) x U(1)3, with a Wilson defect labelled
by the representation R of U(2). The 3d theory with the defect inserted is denoted by
X'[Wp] and shown in figure 34.

Following the general expressions (3.59)—(3.60), the dual partition function can be
computed to read off the mirror map of the defects. The final answer takes the following
form (the details of the computation can be found in appendix B.2):

2RV — 7OP (V). (4.36)

20710V = €. Wiy lim / [do| 6(Txer) 2,y = (o, (£,m) 1)

T (o m 2 |€ < 0), (4.37)
C:= C(U,’f], ) — 27Tiv(771+772+7]3+2(t1—t2))’ Wb.g. = Wb.g. (’U,R) — 627T’U|R" (438)

- h '
7 (,m/ g <0)= Y H H coshm(0; —m;) (4.39)

chimlie coshm(oj+iwjz—m})’

where the masses m/(t,n) are given in (B.11)—(B.14). The coupled 3d-1d system so obtained
is denoted as the quiver Y’ [172’ E] in figure 34, where R is the restriction of the representation R
to SU(2). We interpret this C(;upled 3d-1d quiver as a vortex defect for the gauge group SU(2)
in the representation R (up to a global vortex defect), leading to the following mirror map:

(Wh)x(vit,m) = <‘72"§>Y'(m'(tﬂ7);v)- (4.40)

If one implements the dual S-operation on the quiver Y[W ] instead of Y[‘N/f: rl, it leads
to the same final 3d-1d quiver Y’ [V’ ] as shown in appendix B.2). The fact that the above
vortex defect does not admit a hopplng dual, analogous to the case with 3d unitary gauge
group, can also be seen from the Type IIB realization of these defects, as we discuss later.

4.2 Generalization I: mirror of an Sp(IN.) theory with N; flavors

In this section, we will generalize the results of section 4.1.1-section 4.1.3 to a mirror pair
involving a Dy -type quiver gauge theory X "and an Sp(N.) gauge theory with Ny flavors,
Y’. For concreteness, we will focus on the case N, = 2 and Ny = 6, but the extension
of our results for generic N, Ny, obeying Ny > 2N, + 1 (so that Y’ is a good quiver), is
straightforward.
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(X'[Wh]) YV

Figure 34. The construction of a Wilson defect in a flavored D4 quiver gauge theory and its dual
vortex defect, using an Abelian gauging operation.

3 6

(X) Y)

Figure 35. A 3d mirror pair involving linear quivers.

Using the general discussion of section 3.3—section 3.4 on constructing defects in generic
quiver gauge theories, one can work out the mirror map for defects in the dual pair
(X',Y'). As a starting point, we will choose the dual linear quiver pair (X,Y’) shown
in figure 35, and engineer the pair (X’,Y’) by implementing an elementary non-Abelian
gauging operation Op.

One can also work out these mirror maps using a Type IIB construction presented, as
we shall discuss later in section 5.2.

Vortex defects. Let us focus on a specific class of vortex defects in the Dg quiver gauge
theory X' in figure 36 — vortex defects for the U(4) gauge node at the bifurcated tail. Vortex
defects for the gauge nodes away from the bifurcated tail can be handled in a fashion similar
to defects in a linear quiver. Consider the vortex defect V5 g in X, realized by the 3d-1d
quivers X [Vgl gl and X[V5 g|, and the dual Wilson defect Wr in Y, as shown in figure 37.
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Figure 36. Sp(2) gauge theory with Ny = 6 flavors and its mirror dual.

Figure 37. The vortex defect V5 g, realizegiv by the deformation of two different 3d-1d quivers —
X[V4 gl and X[VJ g]. The dual quiver is Y [Wg].

Let the fundamental masses in theory X be labelled as {m;|i = 1,...,3}, such that the
U(2) flavor node identified with the 1d flavor symmetry in X [ij4 | is associated with the
masses m1,mg. The U(1) flavor node identified with the 1d flavor symmetry in X[Vy; gl is
associated with the mass ms.5
Following the general prescription of section 3.3, let us implement an S-type operation

Op on the quiver X [VQZ rl, where Op consists of a single gauging operation:
Op(X[Virgl) = GH(X[Vis gD, (4.41)

with the operation G% gauging the U(2) flavor node labelled o in X [V]@ rl- The mass
parameters associated with U(2) factor to be gauged are therefore chosen as:

Ul = mq, Uy = M. (4.42)

From the general formula (3.37), the partition function Z Op(XI2 5D can be identified as the

partition function of a coupled 3d-1d quiver X’ [VQ/%)] in figure 38. The 3d quiver is a Dg

quiver gauge theory and the SQM is Z?’R, with the Witten index being computed in the
chamber & > 0. As before, we will redefine the partition function of the new 3d-1d quiver
by a global Wilson defect factor, i.e.

ZX'VED

=2 (BR ZOP(XIVarD) (g ). (4.43)

8Here, we are considering the theory X along with a background Fl-type coupling to a U(1) x U(1)
symmetry. The Higgs branch and the Coulomb branch symmetries of the combined theory are then
Gu = U(3) and G¢ = U(6) respectively. The U(3) flavor node can then be split as U(3) — U(2) x U(1),
where the U(2) factor talks to the SQM in X[V}, ] and the U(1) factor does the same for X[V} z].
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The dual partition function

ZIVSOYD) _ 25| 7 Op(Y[Wa)) (4.44)
can be computed from the general expressions (3.54)—(3.55), and the abelianization for-
mula (3.32).” The computation, although somewhat tedious, is a straightforward exercise,
and we will only state the result here (see appendix C for details):

U(4),Nr=6
200D — (o 1) [ [de] AP STL T Zit "N ol (8, m), o = 0)

sinh wo13 sinh wo14 sinh woog sinh wooy

% < Z e27rzjwjgj>,

weR
= C.n,t) [ [do] 601 +32) 8003 + o) Zon N (o, s} )
x ( 3 “’J"’J‘), (4.45)
weR

4),N;=6 . .
U(4).Ny 61s the matrix

model integrand for a U(4) gauge theory with Ny = 6 flavors, and ZiSnIE(Q)’Nf:G is the
analogous function for an Sp(2) gauge theory with Ny = 6 flavors. The dual of the 3d-1d

where C(v,m,t) is a contact term and o;; = 0; — 0. The function Z,;

coupled system can now be read off from the partition function above. It is given by the
quiver Y’ [Wfé] in figure 38, where Y’ is an Sp(2) gauge theory with Ny = 6 flavors and VNV»’]%
is a Wilson defect for the gauge group Sp(2). The representation R is the restriction of the
representation R of U(4) to the subgroup Sp(2), i.e.

U(4) = Sp(2),

R— P R.=R, (4.46)
KEA
where A denotes the set of all representations R, that appear in the decomposition of
R with degeneracies. Normalizing the integrals with appropriate partition functions, we
obtain the following mirror map of line defects in the pair of dual theories (X', Y”):

Vol o (8m) = (37 Wh )y (m! (t,m)). (4.47)
KEA

A second coupled 3d-1d quiver (X’ [VZIJI%I)]) which realizes the same vortex defect can

be obtained by implementing the S-type operation (4.41) on the quiver (X[V5 g]) instead.
The resultant quiver is shown in figure 39, where the Witten index of the SQM should be
computed in the chamber & < 0. Following the same procedure as above, one can show that
the dual defect is given by Y’ [Wé] This leads to the mirror map:

Vo xr(tm) = (Vo) o (8,m) = (3 Wh Dy (m (£, m)). (4.48)
KEA

Tt is also possible to perform the computation without resorting to the abelianization formula, as we
show in appendix C.2.
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(X'V3)) (Y'[W2])

Figure 38. The construction of a vortex defect in the bifurcated quiver gauge theory X', labelled by
a representation R of the gauge node U(4). It is dual to a Wilson defect in the theory Y’ (an Sp(2)
gauge theory with Ny = 6), labelled by a representation R of Sp(2), where R is the restriction of the
representation R for Sp(2) C U(4). The S-type operation Op is a non-Abelian gauging operation.

(X' BIA)

Figure 39. Different coupled 3d-1d quivers realizing the same vortex defect in the bifurcated quiver
X', which is dual to the Wilson defect W}i in the Sp(2) gauge theory Y'. The Witten indices for
the SQMs in the two cases are computed in the £ > 0 and € < 0 chambers respectively.

Alternatively, the 3d-1d quiver (X'[V,% (1) ]) can be read off by a change of variables in the
( )

model integration variables in the Cartan of the U( ) gauge group of the theory X'.

matrix integral on the r.h.s. of (4.43). ( )+ iw; z, where 52 denote the matrix

Wilson defects. Analogous to the case of the vortex defect, we will focus on Wilson
defects for the U(4) gauge node. The starting point is the Wilson defect Wg in the theory
X and the dual vortex defect V, kR in'Y — realized by the two 3d-1d quivers Y[V4 r) and
[V47 rl, as shown in figure 40.
We now implement the non-Abelian S-type operation Op on the quiver X [Wg]:

Op(X[Wr]) = GH(X[Wg]), (4.49)

where $ labels the U(3) flavor node of X[Wg], and Gg is a gauging operation which splits
the U(3) node as a U(2) x U(1) and gauges the U(2). The mass parameters associated with
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Figure 40. A gauge Wilson defect in the theory X and the dual vortex defect, realized by the
deformation of two different 3d-1d quivers — Y[V] ] and Y[sz’ rl-

the gauged U(2) are chosen (by an appropriate choice of P) as
uy =mu, ug = May. (4.50)

This S-operation on the quiver X[Wg] leads to the defect quiver X'[W}] in figure 41.

The dual operation on the 3d-1d quiver Y[‘N/{ rl leads to a vortex defect in the theory

Y’. The defect can be read off from the dual partition function following the general

expressions (3.59)—(3.60), and the abelianization formula (3.32). After a straightforward

but tedious computation, we find

8(01 +02) 805 + 04) Zing " (o, (£,m), 1 = 0)
sinh wo13 sinh mo14 sinh wo9g sinh w9y

X Izﬁ’R(a,m',z\.S <0),

201V = 0 W,y - limy [ [do]

z—1

= O Way. - lim [ [do|6(01 +02) 8(os +04) Zu ™" ({o1, 03}, m)
x T (o, m/, 2]¢ < 0), (4.51)

where C' and W), are a contact term and a background Wilson defect respectively, while
the 1d index 75" is given by

Zzﬁ’R(a,m’, z|€ < 0) Z H H coshm(g; —m;) . (4.52)

/
ey st e cosh(a; + iw;z — mj)

The coupled 3d-1d quiver which realizes the dual vortex defect can be read off
from (4.51)—(4.52), and is given by Y’[VAL’,R] in figure 41. If one implements the dual
S-operation on the quiver Y[‘N/Zf, ) instead, it leads to the same final 3d-1d quiver Y’ [174’ zl,
as was the case in the D4 example studied earlier. One therefore has a mirror map of the
following form:

(Wh)xr(v3t,m) = (Vi g)y (m/ (£,1);0). (4.53)
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Figure 41. The construction of a Wilson defect in the bifurcated quiver gauge theory X', labelled
by a representation R of the gauge node U(4). It is dual to a vortex defect in the theory Y’ (an
Sp(2) gauge theory with Ny = 6), realized by a 3d-1d system labelled by the representation R for
U(4). The Witten index of the SQM in (Y’ [IN/Z{,R]) should be computed in the chamber &€ < 0.

3 1 A

Figure 42. 3d mirror of a flavored D, quiver.

4.3 Adding flavors to the D4 quiver

In this section, we incorporate the Abelian flavoring-gauging operation in our discussion.
This S-operation will allow us to study defects in more general D4 quiver gauge theories,
by adding hypermultiplets to one or more of the gauged flavor nodes. As a simple example,
we will study defects for the dual pair given in figure 42.

The label A in the quiver Y’ denotes a hypermultiplet in the rank-2 antisymmetric
representation of U(2). Note that in contrast to the examples encountered previously in
this section, the dual of the D-type quiver gauge theory is a U(2) gauge theory (as opposed
to SU(2) or Sp(/V) more generally).

Vortex defects. As before, we will focus on vortex defects for the central U(2) gauge
node of the Dy quiver. Consider again the dual pair of defect quivers — X[V p] and
Y [Wg], as shown in the first line of figure 30, and let us implement the following Abelian
S-operation Op on X|[Vy p:

Op(X[V3 g]) = G, 0 G2 o (G o F)F (X[V3 g)), (4.54)
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Figure 43. A 3d-1d system which realizes a vortex defect in the flavored D4 quiver, and the dual
Wilson defect in the U(2) gauge theory.

where a1 = «, and s is the residual U(1) flavor node from U(2), in the theory G3! (X).
The mass parameters corresponding to the U(1)? global symmetry are chosen as:

Uy = ms, U = My, us = msy. (455)
(XIVZrD can be identified as

the partition function of a coupled 3d-1d quiver X’ [VQIS’?], where the 3d quiver is the Dy

From the general formula (3.37), the partition function Z or

quiver gauge theory X’ and the SQM is shown explicitly in figure 43. The Witten index for
the SQM is computed in the chamber & < 0. Redefining the partition function of the new
3d-1d quiver by a global Wilson defect factor, i.e.

X'V ED =2t —15"2) R ZOP(X[VQﬁR])(U,m%);tm)’ (4.56)

where v = mo and mg) are masses of the fundamental hypers in X', the dual partition

function B 5 #7
Z(Y,[(V2/,<R>)V]) _ 67271-(1‘27%)']%” ZO’P(Y[WR]) (457)

can be computed from the general expressions (3.54)—(3.55), as we did in the previous
examples. The dual 3d-1d coupled system, which can be read off from the partition function,
is given by the quiver Y’ [Wl’%] in figure 43, where Y’ is a U(2) gauge theory with Ny =4
fundamental hypers and a single rank-2 antisymmetric hyper, and Wzlz is a Wilson defect in
a representation R for the gauge group U(2). Normalizing the integrals with appropriate
partition functions, we obtain the following mirror map of line defects in the pair of dual
theories (X', Y"):

(Ve xr(o,m st m) = (Wh)y (m! (8, 1), 0 (v, m))). (4.58)

/

A second coupled 3d-1d quiver (X'[V,
be obtained by implementing the S-type operation (4.54) on the quiver (X [Vzl r]) instead.

(]I%[)]) which realizes the same vortex defect can
The resultant quiver is shown in figure 44, and the Witten index should be computed in

the chamber £ > 0. Following the same procedure as above, one can show that the dual
defect is given by Y/[W}]. The mirror map therefore assumes the final form:

Vo xo (o, mPstom) = (V) o (0,m B t,m) = (Whhy (m (8,m), 1 (0,m). (4.59)
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Figure 44. Two different realizations of a vortex defect as 3d-1d systems in a flavored D4 quiver.
The Witten index for the SQM in the first case should be computed in the chamber & < 0, while for
the second case it should be computed in £ > 0.

Wilson defects. We will focus on Wilson defects for central U(2) gauge node of the Dy
quiver X’. The starting point is the dual pair of defects — the Wilson defect Wg in the
theory X and the vortex defect ‘71, g in the theory Y, where the latter is realized by as
a deformation of the right 3d-1d quiver. The pair (W, 171’; ) is shown in the first line of
figure 34. We implement the Abelian S-type operation Op on the system X[Wg], where
Op is given as:

Op(X[Wrl) = G 0 G2 o (G o F)P (X [Wr)), (4.60)
which corresponds to the following choice of the U(1)? global symmetry to be gauged:
Uy = msa, U = may, us = my. (4.61)

This S-operation on the quiver X[Wg] leads to the defect quiver X'[W}] in figure 45.
The dual S-operation acting on the 3d-1d quiver Y[Vlf r| leads to another 3d-1d quiver,
which can be read off from the dual partition function computed from (3.59)—(3.60).

20V = 70p(V Vi g]). (4.62)

2V VD) = ¢ W, hm/ |do| 2 Z{0 (o, m! (8, 0), 7 (v,m))

X I "o,m ' 2|€ < 0), (4.63)
C = C(’U,n,t) _ 627riv(771+772+773+2(t1—t2))’ ng = Wb,g_(’U,R) — 627rU|R\7 (464)
707 _ sinh? m(o1 —o2)e 2ri(miy) ~)Tro (4.65)
nt " cosh 7T(Tr0') I1; Hi 1 coshm(o; —m/(t, n))’ ‘
~n cosh (o '(t n))
IEr / 0 J ? . 466
G wezmnmnlC()ShTr i i e (4.66)

The resultant 3d-1d quiver can be read off from the r.h.s. of (4.63), and is given by Y’ [171/7(1?]
in figure 45.

Again, one could have used the dual pair (W, 1711 ) instead as a starting point. The
dual partition function can be written directly from (3.59)—(3.60), or by a change of variables
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Figure 45. Wilson defect in a flavored D4 quiver, and its dual vortex defect in a U(2) gauge theory.

'R g

Figure 46. Two different realizations of the vortex defect dual to the Wilson defect in the flavored
D, quiver. The Witten index for the SQM in the first case should be computed in the chamber
& < 0, while for the second case it should be computed in & > 0.

0j — 0 —iw; z in the matrix integral (4.63):
ZV(WR)V]) — 70p(Y V] R]) (4.67)

2D < 0wt [ [do] 200 0, (0 mip)
Z—r

’i/l,R /

XTI (o,m' z|€ >0), (4.68)

C = C(v,m, t) = 2Tvmtm+m+2(ti—t2), Wi, = Wé.g_(mg), R) = 627rm5,1>|R\,
(4.69)
R L L Sl )

coshm(Tro) T]; I1, lcoshw(aj —m/,(t,m))
S/1LR cosh(Tro) coshr(oj —ml(t,n))

IZ / 0) = J__ ’ .

to(om e < 0) Z + coshm(Tro — i|R| 2) H H coshm(o; —iwjz —ml(t,n))
(4.71)

The dual defect is given by the 3d-1d quiver Y’[Vl( )} as shown in figure 46. This leads to
the following mirror map:

(W@X/(v,mg);t,n) = <‘71/,(11{)>Y’ (—m/(t,n);n'(v,mg)»
= (5 (=)’ (0,m()) (4.72)
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Figure 47. 3d mirror of an affine D4 quiver.

4.4 Generalization II: affine D-type quivers

In this section, we extend our analysis to affine D-type quiver gauge theories with additional
flavors. In our previous examples involving D-type quivers, we studied vortex and Wilson
defects for gauge nodes located at the bifurcated tail. An affine D-type quiver consists of
two such bifurcated tails, and therefore defects in these theories can be studied without
introducing any new ingredient. For concreteness, we will study a 54 quiver X’ with gauge
group G = U(2) x U(1)* and two fundamental hypermultiplets and its mirror dual Y, which
is a U(2) gauge theory with Ny = 4 fundamental flavors and two additional hypermultiplets
in the rank-2 antisymmetric representation of U(2). The quiver gauge theories are shown in
figure 47.

We will focus on vortex defects and Wilson defects for the central U(2) gauge node of
the D, quiver and their mirror duals. Other defects can be addressed using our general
construction in a similar fashion. The partition function computations are very similar to
the analogous ones in section 4.3, and therefore we simply state the final results.

Vortex defect. The starting point is the dual pair of defect quivers — X[V ] and
Y [Wg], as shown in the first line of figure 30. The fundamental masses in theory X be
labelled as {m;|i = 1,...,4}, such that the U(2)s and the U(2), flavor nodes in X[V | are
associated with the masses (mq,msy) and (ms, m4). Let us implement the following Abelian
S-operation Op on X|[Vy p:

Op(X[Vsg]) = Gg o (Go F)p o (G)i o (G o F)F(X[VEg]), (4.73)

where a1 = «, and az is the residual U(1) flavor node from U(2), in the theory G5! (X).
Similarly, 51 = /3, and By is the residual U(1) flavor node from U(2)g. The mass parameters
corresponding to the U(1)* global symmetry to be gauged are chosen as:

Uy = mas, U = My, uz =1msi, Uy = TNY. (4.74)

The partition function Z OP(XIV3rD) can be identified as the partition function of a coupled
3d-1d quiver X’ [VQI%)], where the 3d quiver is the 154 quiver gauge theory X', and the SQM
is shown in figure 43. The Witten index for the SQM is computed in the chamber £ < 0. We
redefine the partition function of the new 3d-1d quiver by a global Wilson defect factor, i.e.

Z XMWV 2t )| R] Op(X[V 5] (m;}%m;@;t,n) 7 (4.75)
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Figure 48. A 3d-1d system which realizes a vortex defect in the flavored 134 quiver, and the dual
Wilson defect in a U(2) gauge theory.

A X'V

Figure 49. Two different realizations of a vortex defect as 3d-1d systems in a flavored ﬁ4 quiver,
dual to a Wilson defect in the U(2) gauge theory of figure 48. The Witten index for the SQM in the
first case should be computed in the chamber & < 0, while for the second case it should be computed
in & > 0.

where mg),mg) are masses of the fundamental hypers in X’ for the U(1); and the U(1)3
respectively. The dual defect is given by the quiver Y’ [W}’%] in figure 48, where Wl’% is a
Wilson defect in a representation R for the gauge group U(2). A second coupled 3d-1d
quiver (X’ [1/2'(}131)]) which realizes the same vortex defect can be obtained by implementing
the S-type operation (4.73) on the quiver (X [VZI r]) instead. The 3d-1d quiver is shown in
figure 49, where the Witten index for the SQM should be computed in the chamber & > 0.
Computing the dual partition function, one can again show that the dual defect is given

by Y’ [Wj’z] This leads to the following mirror map:

V) o mid) 2 t,m) = (VD)o (mid) D t,m)

= (Why (m(t.m),1/ (m,m)). (4.76)

Wilson defect. Consider Wilson defects for central U(2) gauge node of the Dy quiver X'
The starting point is the dual pair of defects — the Wilson defect Wg in the theory X and
the vortex defect ‘71, R in the theory Y, where the latter is realized by as a deformation of two
3d-1d quivers ‘N/{ r and ‘71l r- The pair (Wg, ‘N/{ ) is shown in the first line of figure 34. We
implement the Abelian S-type operation Op on the system X[Wg|, where Op is given as:

Op(X[WR]) = G, o (G o F)g o Gl o (G o F)3: (X[WR]), (4.77)
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Figure 50. Wilson defect in a flavored 134 quiver, and its dual vortex defect in a U(2) gauge theory.

'R 5

Figure 51. Hopping duals for the vortex defect mirror dual to the Wilson defect W, in the flavored
Dy, quiver X’. The Witten index for the SQM in the first case should be computed in the chamber
& < 0, while for the second case it should be computed in & > 0.

which corresponds to the following choice of the U(1)* global symmetry to be gauged:
UL =my, Uy =g, U3=TM3, Us=M4. (4.78)

This S-operation on the quiver X [Wg] leads to the defect quiver X'[W7] in figure 50.
The dual vortex defect can be read off from the dual partition function as before, and is
given by the 3d-1d quiver Y’ [‘71,7(1?], where the Witten index of the 1d quiver is computed
in the chamber & < 0. Starting from the dual pair (W, 1711 r) instead, the dual defect is
given by the 3d-1d quiver Y’ [171/’(1{3[)], as shown in figure 51. In this case, the Witten index
of the 1d quiver is computed in the chamber & > 0. This leads to the following mirror map:

/ ) _ D) ’ . _ (paon ’ )

<WR>X/ (Ua mp;t, n) = <V1,R >Y/(_m (t7 n)v U(Ua mF)) = <V17R >Y’(_m (tv 77)7 77(1}7 mF))v
(4.79)
where mp = (mg),mg’)) collectively denotes the fundamental masses in the Dy quiver
gauge theory.

4.5 Adding defects to the D4 quiver

In this section, we incorporate S-type operations involving defect operations in our discussion.
These S-type operations can act non-trivially on the coupled SQM, in addition to the 3d
quiver and its coupling to the SQM. We will focus on an example where we introduce a
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Figure 52. Construction of a 3d-1d system which realizes a vortex defect in the flavored D4 quiver
and the dual Wilson defect in the mirror U(2) gauge theory, using an Abelian S-type operation Op.
The S-type operation, in this case, involves a Type-A defect operation.

vortex defect in the Dy quiver gauge theory encountered in section 4.3 and then use the
general prescription of section 3.4 to find the dual defect. A Wilson defect can be addressed
in a similar fashion, as discussed in section 3.4.

The starting point is the dual pair of defects (V3. f/IV/R) for the theories X and Y
respectively, as shown in the first line of figure 52. Let the fundamental masses in theory
X be labelled as {m;|i = 1,...,4}, such that the U(2) flavor node labelled o in X[V} gl
is associated with the masses ms, my4. Following the general prescription of section 3.3,
we implement an Abelian S-type operation Op on the system X [Vz’: rl, consisting of three
elementary Abelian ones — two gauging operations and a single flavoring-defect-gauging
operation:

Op(X[V3p]) = Gp, 0 G2 o (Go Do F)F(X[V3g)), (4.80)

where a1 = «, and as is the residual U(1) flavor node from U(2), in the theory (Go Do
F )%11 (X). The mass parameters corresponding to the U(1)? global symmetry are chosen as:

U =ms, Us =My, U3= M. (4.81)

We will choose the defect operation D such that it introduces a vortex defect of charge k
for the U(1); gauge node of the Dy quiver — we denote it as Vll(,i ). From the equation (3.38)
(where both D and D are now non-trivial), the partition function of the 3d-1d quiver
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Op(X[Vy g]) can then be written down as follows:

ZOP( [ 2R] = hm/Hdul ds} Z@P(u n,mF,z|2/kz) ( [ QR] P)(s,u,v,t,z),
(4.82)
2P g w0t 2) = 289 (5, w, 0, )W (8, R (5,1, 2[€ < 0), (4.83)

where the functions ZX) Wh.g., and =" are given in (4.9)—(4.11). The function Zp,, can

int

be assembled from (3.10), (3.11) and (3.21), as follows:

3
ZO'P (u?n7mF7Z’E,rk) = H ZFI(“?U) Z1y1§§;(ul»m%)) Wb g. (t n, k)IETk (ulvmgﬁl‘)v'ﬂf/ < 0)7
=1

(4.84)
where W, . is a global Wilson defect, and Z%" is the Witten index of a SQM ik — a U(k)
gauge theory with a single adjoint chiral and a single fundamental and anti-fundamental
chiral. Explicitly, we have

Wi (8,1, k) = ¢2mhCla—m—m), (4.85)
1)

coshm(ug —mp’)

(1)

IZ/k(uhmF ,Z|f < O) . :
coshm(uy — mp’ + ikz)

(4.86)

The expression on the r.h.s. of (4.82) can be readily identified as the partition function of a
3d-1d system, where the 3d theory is the D4 quiver gauge theory X’ with a gauge group
G' =U(2) x U(1)3, with a pair of coupled SQM X2% and ¥/*. Let us denote the resultant
vortex defect as VQI%) . Vll,(kl ). VII%(Q, and define the defect partition function as:
1(I) + T
X' VD) . p—2n(t2—572) R ZOP(X[VQ,R])(U m(F)7 n). (4.87)
The dual partition function can be computed following the general expressions (3.54)—
(3.55), and can be written as:

Z(Y’[(Vé(i))v]) — CX/Y/ / |:d0-:| e27ri(m 7’0)Trt72(y ) (0_’ m,(t, n)) eZTrk;Tro' < Z 6271' Z] chrj> 7

1-loop
weER
(4.88)

(1)

where Y is the quiver in figure 52, with Cx/y- (v,mf ,m,t) and A being a contact

1-loo

term and the 1-loop contribution to the partition function of Y’. The dupal defect can now
be read off from the r.h.s. of the above equation: it is a product of a Wilson defect W},% for
the gauge group U(2) of Y’ in a representation R and a Wilson defect I//Iv/,g of charge k in
the U(1) subgroup of U(2). We denote the combined Wilson defect as 17[//}’% - This leads to

the following mirror map:

(Vi o (w,mis ) = (Wh oy (m (8, m), ' (v, mi)). (4.89)
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The above 3d-1d quiver can be recast in the standard form, where the 3d theory is
coupled with a single SQM of the form of given in figure 4. This can be seen by the following
change of variables in the matrix integral (4.82):

up — uy — ik z, Uy — Uy — 1k 2, (4.90)

such that the partition function can be recast in the form:

ZOP( 2R] —hm/Hduz dS HZFI u,n Zl}{g(i;( (F}))Z'(X)(Sauan?t) Wl/)g(t?k7R)

int

R,k

X I (s,u,z|£<0). (4.91)
The background Wilson defect and the Witten index contribution on the r.h.s. are given as:

W g (t, k, R) = 2T CRHIRD 2, (4.92)

IE%R’}C(S,u,zK <0) Z H H coshm(s; — ui) (4.93)

ek il 1 coshm(s; +i(wj + k)2 —u;)

There are multiple ways of writing down the resultant SQM X2%F from the original SQM
»21 as a quiver, where the different quivers are related by 1d Seiberg duality. A convenient
choice for the quiver would be the following. Given Y% of the form figure 4, the SQM /2%
can be obtained by substituting np — np + 2k, keeping all the other {n;} fixed. Analogous
to the previous examples, this 3d-1d quiver will have a standard hopping dual, which can be

read off at the level of the matrix integral by the change of variables s; — s; —i(w;j + k) 2

5 Interlude: Type IIB construction of defects in quiver gauge theories

In this section, we discuss the Type IIB construction of vortex and Wilson defects in D-type
quivers with unitary gauge groups, and the S-dual configurations which allow one to read
off the mirror map of line defects. In section 5.1, we discuss configurations without any
defects, before incorporating them in section 5.2.

5.1 Type IIB configurations involving orbifold/orientifold planes

5.1.1 D3-branes ending on orbifolds

Let us extend our discussion of section 2.2.1 to 3d quivers for which the Type IIB configura-
tion involves D3-branes ending on orbifold 5-planes, in addition to the NS5 and D5-branes.
Generically, these boundary conditions lead to bifurcated/D-type 3d quiver gauge theories
with unitary gauge groups.

Given a Type IIB configuration of D3-D5-NS5-branes oriented as (2.14), consider an
Zy-orbifolding operation of the form Z, (—1)Z, where

Ty A0 3456 (5.1)

and (—1)fr counts the number of left-moving worldsheet fermions modulo 2. The fixed
point of the orbifolding operation is the 5-plane located at the point 2*%56 = 0 in the
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transverse direction, and we denote the 5-plane as Orb5. The supersymmetry preserved on
Orbb is the same as that preserved on the NS5-brane [7]. The respective world-volumes of
the D3, D5, NS5-branes and the Orbb-plane can be summarized as:

D3: R*' x L x {X}a56 x {Y}rs0
D5: R x {X3} x R} 56 x {Y'} 789
NS5: R*! x {X35} x {X'}as6 x Rigy,
Orb5:  R*' x {0}3456 x R? g . (5.2)

Consider a stack of IV semi-infinite D3-branes ending on the Orb5-plane. The orbifold
action on the bosonic fields in the D3 world-volume (which form the bosonic part of an 4d
N = 4 vector multiplet) are given as follows:

A (x, —2®) = ~(g) A (m,2%) v(9) ", p=0,1,2. (5.3)
XA,(cc, —2%) = —(9) XAl(cc,:c?’) v(g)™t, A'=3,4,5,6, (5.4)
YA(mv_:ES) = 7(9) YA(walB) 7(9)_17 A=1738,9, (5'5)

where ¢ is the odd element of Zo, and v(g) is a N x N matrix which acts on the Chan-Paton
factors associated with the N D3-branes. The most general form for v(g) is a diagonal
matrix with entries

vii(g) = diag(1,...,1,—1,...,-1), (5.6)

where ¢,7 =1,..., N, with N, entries being +1, N_ entries being -1, and N = N, + N_.
Restricting these equations to 23 = 0, we obtain a set of boundary conditions for the bosonic
fields at the orbifold plane. The boundary conditions imply that gauge field A* and the
scalars Y4 combine to give the bosonic field content of a 3d A = 4 vector multiplet with a
gauge group U(N) x U(N_). The scalars X A" on the other hand, combine to give the field
content of a 3d N/ = 4 hypermultiplet in the bifundamental representation of U(N4)x U(N_).
We will be mostly interested in D3-branes on a finite line segment stretched between an
NS5-brane on the one side, and an orbifold plane on the other. The NS5-brane imposes
Dirichlet boundary condition on the scalars X4, and Neumann boundary conditions on
the remaining scalars. Therefore, the bifundamental hypermultiplets become massive on
KK-reduction, and do not appear in the 3d Lagrangian. The brane configuration and the
associated 3d quiver are shown in figure 53.

Now, let us consider the scenario where one has also M D5-branes coincident at the
orbifold fixed point. The orbifold action on the hypermultiplet scalars, arising from the

D3 — D5 massless open string spectrum, is given as:

hy (@,0) = 7i5(9) b (2,0) 757 (9), (5.7)

where a = 1,2 is the SU(2) g index, i,j = 1,..., N are the CP indices for the D3-branes,
and I, J are the CP indices for the D5-branes. Here, one has to distinguish two cases —
one can either have M “full” D5-branes which are free to move off the orbifold fixed point,
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Figure 53. Type IIB realization of the bifurcated tail of a D-type quiver with unitary gauge groups.
The blue circular nodes denote NS5-branes, while the blue rhombus denotes an Orb-5 plane. The
D3-branes are denoted by black horizontal lines.

Figure 54. Type IIB configuration for a bifurcated tail of a D-type quiver with an additional
Db5-brane (denoted by a red vertical line). The associated 3d quiver is shown on the right.

or they can be stuck at the fixed point as fractional branes. In the first case, the matrix
~v17(g) is given by the regular representation of a Zg-orbifold, i.e.

’)/[J(g) :diag (+1,...,+1,—1,...,—1), (58)

where I,J =1,...,2M, and the number of +1 entries is M in each case. In this case, the
orbifold projection implies that the gauge groups U(N,) and U(N_) have M fundamental
hypers each. For M = 1, the brane configuration and the associated quiver is shown in
figure 54.

For the fractional D5-branes, the matrix v7;(g) is given as

’)/[J(g) :diag(l,...,l,*l,...,*l), (5.9)

where I,J = 1,..., M, and with M, entries being +1, M_ entries being —1, and M =
M, + M_. In this case, the orbifold projection implies that the gauge groups U(/Ny) and
U(N-) will have M, and M_ fundamental hypers respectively. The brane configuration
for M =1, My =1, and M_ = 0, and the associated quiver is shown in figure 55.

5.1.2 S-dual configurations: D3-branes ending on orientifolds

Let us now extend our discussion to 3d quivers for which the Type IIB configuration involves
D3-branes ending on orientifold 5-planes, in addition to the NS5 and D5-branes. Generically,
these boundary conditions lead to linear quiver gauge theories with unitary as well as
symplectic gauge groups.
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Figure 55. Type IIB configuration for a bifurcated tail of a D-type quiver with a fractional
D5-brane (denoted by a red vertical line) stuck at the orbifold fixed plane. The associated 3d quiver
is shown on the right.

Given a Type IIB configuration of D3-D5-NS5-branes oriented as (2.14), consider an
orientifolding operation Z, §2, where

Ty a¥T89 y _pBT80 (5.10)

and € is the worldsheet orientation reversal operation. The fixed plane of the orientifolding

3789 — () in the transverse direction. The

operation is the 5-plane located at the point z
gauge group for the world-volume theory on a stack of M D5-branes, coincident with this
fixed plane, can be Sp(M) or O(2M). In the former case, the fixed plane has a D5-brane
charge —1, and is therefore referred to as the O5 -plane. In latter case, the D5-brane
charge +1, and the corresponding fixed plane is denoted as O5%. An orientifold 5-plane
preserves the same supersymmetry as a parallel D5-brane. The respective world-volumes of

the D3, D5, NS5-branes and the O5™-plane can be summarized as:

D3: R*' X L x {X}yis56x{Y}rs09
D5 R*!' x {X3} x Ri54 x {Y }rsp
NS5: R*' x {X5} x {X'}as6 x R gy,
057 : R*' x{0}3750 x R} 5. (5.11)

To begin with, consider a stack of 2N D3-branes ending on an O5™-plane at one of the
boundaries and an NS5-brane at the other boundary. The boundary conditions imply that
gauge field A* and the scalars Y4 combine to give the bosonic field content of a 3d A = 4
vector multiplet with a gauge group Sp(/N). The NS5-brane imposes Dirichlet boundary
condition on the scalars X3, X4" at one end, so that they do not figure in the 3d Lagrangian.
Additionally, if there are D5-branes in the D3-brane chamber, then the massless states from
the D3-D5 strings give hypermultiplets in the fundamental representation of the gauge
group Sp(IV).

In this work, we shall encounter two distinct boundary conditions involving orientifold
5-planes, which in turn arise on S-dualizing boundary conditions involving orbifold 5-
planes. The first case is the S-dual of 2N D3-branes ending on an orbifold 5-plane with
N, = N_ = N [7]. This is given by 2N D3-branes ending on an O5~-plane with a single
coincident D5-brane — a combination we will refer to as an O5°-plane, where the superscript
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indicates the zero total D5-brane charge. For a D3-brane stack between an O5%-plane
and an NS5-brane, the associated 3d theory has an Sp(N) vector multiplet and a single
fundamental hypermultiplet.

The second case is the S-dual of 2N D3-branes ending on an orbifold 5-plane with M
fractional D5-branes, and N;. = N_ = N as before. This is given by 2N D3-branes ending
on an O5%plane with M NS5-branes stuck at the O5 -plane. Similar to the first case,
we would be interested in D3-branes ending on an NS5 at the other boundary of z3. In
case of M = 1, the associated 3d theory can be shown to be a U(2N) gauge theory with a
hypermultiplet in the antisymmetric representation and the fundamental representation
of the gauge group respectively [22, 23]. Presence of additional D5-branes will contribute
to fundamental hypermultiplets for the gauge group in the 3d theory. For M > 1, the
associated 3d theory can again be read off from the brane configuration — it turns out to
be a linear quiver of unitary gauge nodes with a symplectic gauge node at the end.

Along with the standard D3-NS5-D5 system, the two boundary conditions with orbifold
5-planes (and their S-duals) are sufficient to engineer the D-type and the affine D-type
quivers (and their mirror duals) we are interested in. The only exception will be the
mirror pair discussed in section 6 where the S-dual boundary condition involving orientifold
5-planes give a bad 3d quiver.

5.2 Type IIB configurations with defects and S-duality

In this section, we discuss the Type IIB brane configurations associated with vortex and
Wilson defects in D-type and affine D-type quiver gauge theories with unitary gauge groups.
Such configurations will generically involve introducing D1-branes and F1-strings respectively
in a D3-D5-NS5 setting with one or two orbifold 5-planes. For each representative case,
one can obtain the dual defect by S-dualizing this configuration, which will lead to a
configuration with F1-strings and D1-branes respectively in a D3-D5-NS5 setting with one
or two orientifold 5-planes. We will restrict ourselves to Type IIB configuration of figure 53,
where there are no D5-branes between the orbifold 5-plane and the nearest NS5-brane.

A generic D-type quiver gauge theory, engineered by such a Type IIB configuration,
has a bifurcated tail, and the terminal gauge nodes at the tail do not have any fundamental
matter. Away from the tail, the vortex/Wilson defects will have features similar to the
linear quivers. Therefore, we will focus on defects for gauge groups around the bifurcated
tail and study their S-dual counterparts. For concreteness, we will choose the ranks of the
gauge group and the matter content as shown in figure 56.

The integers P, M, M’, N are chosen such that every gauge node is either balanced or
overbalanced. In addition, we will set M’ = 0 and M = 1, for simplifying the presentation.

5.2.1 Vortex defects in the presence of orbifold 5-planes

Consider a vortex defect labelled by a representation R = ®la:18k(a) ®é/:1 Ay for the
gauge node U(2N) of the D-type quiver. Note that this is precisely the type of vortex defect
we encountered in section 4.1.1 for a Dy quiver (see figure 30) and in section 4.2 for a Dg
quiver (see figure 38). The defect can be introduced in a fashion similar to the linear quiver,
reviewed in section 2.2.2. We introduce stacks of D1-branes stretching between the 2N
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Figure 56. A D-type quiver gauge theory with unitary gauge groups.

k
N
=t
6 P 2N N

L.

Figure 57. Type IIB configuration corresponding to a vortex defect for the U(2N) gauge group in
the generic D-type quiver discussed above. The green vertical lines denote ki,...,ky Dl-branes

respectively, where k1 4+ ... + kxy = k. The configuration corresponds to a vortex defect in a
representation R = Sy of U(2N).

D3-branes on one end and additional NS5 and/or NS5-branes (displaced in the z%-direction)
on the other. The D1 stacks ending on the NS5-branes and the NS5’-branes correspond to
the symmetric factors S and the antisymmetric factors A ) in the representation R
respectively.

The special case for R = Sy, is shown in figure 57. In this case, k; D1-branes (denoted
by vertical green lines) stretch between an NS5-brane and the i-th D3-brane such that
ki + ...+ kn = k, with {k;} unrestricted. The set of integers {k;} are in one-to-one
correspondence to the weights of the representation R = Sy of U(2N). The configuration
for a more general representation can be written down in an analogous fashion following
the rules in section 2.2.2.

The vortex defect can be realized as deformations of two different coupled 3d-1d systems
obtained by moving the stack of £ D1-branes to end either on the right NS5-brane or the
left NS5-brane in figure 57. The brane configurations and the associated coupled 3d-1d
systems, which can be manifestly read off from the brane configurations, are shown in
figure 58. For N = 2 and P = 3, this is precisely the hopping duality we found in figure 39
of section 4.2 for the Dg quiver gauge theory. The coupled systems X’ [VQ/(I)} and X [‘/2/7({%])]
in figure 39 were shown to describe the same vortex defect by arguing that the partition
functions of the two systems are equal. The configurations in figure 58 give a Type IIB
brane description of the hopping duality.

For N =1 and P =1, the configurations of figure 58 reproduce the hopping duality
found in figure 31 of section 4 for a D4 quiver.
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Figure 58. Vortex defects for the U(2N) gauge group of the generic D-type quiver can be understood
as the deformation of at least two 3d-1d coupled quivers. The two coupled quivers as well as the
corresponding Type IIB realizations are shown.

To construct the dual defect and read off the mirror map, we consider the S-dual of
the brane configuration presented above in figure 57. As reviewed in section 5.1.2, D5
and NS5-branes are exchanged, D3-branes remain invariant, D1-branes become F1 strings,
and the orbifold 5-plane becomes an O5%plane. One now needs to subject this brane
configuration to a Hanany-Witten move where the NS5-brane is moved across the D5-brane
to the immediate right. After the move, one can have 2N D3-branes in the rightmost
chamber stretching between the NS5-brane and the O5°-plane, while no D3-brane ends on
the D5. The final configuration is given by figure 59, from which the dual theory as well
as the dual defect can be read off. As reviewed in section 5.1.2, the 3d theory associated
with 2N D3-branes between the NS5-brane and the O5%plane is an Sp(IV) gauge theory.
The D5-branes in the chamber as well as the D3-branes stretching between the NS5 and
D5-branes to the left will give fundamental hypermultiplets for Sp(/V). From the brane
configuration, one can check that the total number of fundamental and bifundamental
hypermultiplets of Sp(V) is 2N + 2, i.e. M + N = 2N in the quiver. The precise integers
M , N will depend on the details of the linear quiver tail. For the examples of the D-type
quivers we have considered in this paper, M =2N and N = 0.

As shown in figure 59, the defect is realized by a stack of k Fl-strings (denoted by
vertical black dotted lines) stretched between a D5 and 2N D3-branes — k; Fl-strings end
on the i-th D3-brane such that k1 + ...+ ky = k, with 0 < k; < k. Recall that the set of
integers {k;} are in one-to-one correspondence to the weights of the representation R = S,
of U(2N). The configuration for a generic R can be obtained in an analogous fashion.
The configuration of F1l-strings then generates a Wilson defect for the Sp(N) gauge group,
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Figure 59. S-dual of the Type IIB configuration in figure 57. The red rhombus denotes an
O5%-plane. The associated quiver with the Wilson defect is shown on the right.
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Figure 60. Type IIB configuration corresponding to a Wilson defect for the U(2N) gauge group in
the generic D-type quiver discussed above. The blue dot-dashed line denotes the Orb5-plane. The
black dotted vertical lines denote ky, ..., kx Fl-strings respectively, where k; + -+ + ky = k. The
configuration corresponds to a Wilson defect in a representation R = Sy of U(2N).

labelled by a representation }NY, where R is the restriction of the representation R of U(2N)
to the subgroup Sp(N) C U(2N). Combined with the discussion of hopping duality, this
leads to a mirror map of the form (4.48), which was obtained for the mirror pair involving
the Dg quiver and the Sp(2) gauge theory from sphere partition function analysis.

5.2.2 Wilson defects in the presence of orbifold 5-planes

Next, we consider a Wilson defect labelled by a representation R = ®f1:18k(a) ®é’:1 Ao
for the gauge node U(2N) of the D-type quiver. Note that this is precisely the type
of Wilson defect we encountered in section 4.1.3 for a Dy quiver (see figure 34) and in
section 4.2 for a Dg quiver (see figure 41). The defect can be introduced in a fashion
similar to the linear quiver, reviewed in section 2.2.2. We introduce stacks of F1-strings
stretching between the 2N D3-branes on one end and additional D5 and/or D5’-branes
(displaced in the z5-direction) on the other. The F1 stacks ending on the D5-branes and
the D5’-branes correspond to the symmetric factors S, and the antisymmetric factors
A in the representation R respectively.

The special case for R = Sy is shown in figure 60. In this case, k; Fl-strings (denoted
by vertical black dotted lines) stretch between a D5-brane and the i-th D3-brane such that
ki + ...+ ky =k, with 0 < k; < k for all i. The set of integers {k;} are in one-to-one
correspondence to the weights of the representation R = Sy of U(2N). The configuration
for a more general representation can be written down in an analogous fashion following
the rules in section 2.2.2.
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Figure 61. S-dual of the configuration in figure 60. The red dot-dashed vertical line is an O5°-plane.
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The Type IIB configuration realizes a vortex defect for the Sp(IN) gauge group. This vortex defect
can be understood as a deformation of a 3d-1d coupled quiver, which is shown on the right.

To construct the dual defect and read off the mirror map, we consider the S-dual of
the brane configuration presented above in figure 60. Under S-duality, D5 and NS5-branes
are exchanged, D3-branes remain invariant, F1 strings become D1-branes, and the orbifold
5-plane becomes an O5°-plane. One now needs to subject this brane configuration to a
Hanany-Witten move where the NS5-brane is moved across the D5-brane to the immediate
right (exactly what we did while S-dualizing the vortex configuration above). After the
move, we can arrange the 2N D3-branes in the rightmost corner to stretch between the
NS5-brane and the O5%plane. The final configuration is given in figure 61, from which the
dual 3d theory and the dual defect can be read off as before.

From figure 61, one can see that the dual vortex defect is realized by a stack of k
D1-branes (denoted by vertical green lines) stretched between an NS5 and 2N D3-branes —
k; D1-branes end on the i-th D3-brane such that k1 4+ ...+ ky = k, with 0 < k; < k. The
coupled 3d-1d system corresponding to this vortex defect can be obtained by moving the
stack of D1-branes to the left so that they all end on the NS5-brane. Then, using the rules
reviewed in section 2.2.2, the gauge group and the matter content of the coupled SQM
can be read off — the result is shown in figure 61. The case of a generic representation
can be handled in an analogous fashion. One therefore arrives at a mirror map between
a Wilson defect in the bifurcated quiver and a vortex defect in the quiver containing an
Sp(IN) gauge group. In the special case of Sp(2) gauge theory with Ny = 6 and its mirror
dual, the mirror map reduces to (4.53), which was obtained in section 4.2 using sphere
partition functions. The coupled quiver in figure 61 clearly reduces to the coupled quiver in
figure 41 for the special case of M = 2N and N = 0.

An interesting feature of the vortex defect realized in figure 61 is that it admits a single
3d-1d quiver, as opposed to two — the left and the right — for a linear quiver with unitary
gauge groups. This is because there is only a single NS5-brane in figure 61 that the stack
of D1-branes can approach without encountering a D5-brane. This is something that was
found in section 4.1 and section 4.2 using the sphere partition function argument. The
brane construction gives a more physical and intuitive understanding of this fact.
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Figure 62. The Hanany-Witten dual of the theory X’ and the good dual. The former is a bad
theory since the SU(2) node without fundamental hypers is a bad node.

6 Beyond Hanany-Witten: a flavored 54 quiver

In this section, we consider an example of mirror symmetry which is not directly realized by
a Type IIB construction. Consider the Dy quiver gauge theory X' in figure 62, which can
be constructed by a Hanany-Witten configuration of the type discussed in section 5.1. The
set-up involves D3-D5-NSb5-branes and a pair of orbifold 5-planes, one of which contains a
pair of fractional D5-branes responsible for engineering the two fundamental hypermultiplets
in X’. The S-dual of the configuration leads to the quiver Y}y in figure 62. This quiver is
evidently bad in the Gaiotto-Witten sense, and therefore does not give the correct mirror
dual of X'. A careful analysis of the IR physics of Yy, reveals a good quiver gauge theory
dual to X’ [24] — which we denote as Y’ in figure 62. Alternatively, the theory Y’ can also
be obtained by implementing an S-type operation on an appropriate linear quiver X to
engineer X', and then reading off the dual from the partition function construction of [1].

Note that the good quiver Y’ consists of two decoupled quiver gauge theories — an
SU(2) gauge theory with Ny = 4 flavors (Y{) and a T'(U(2)) theory (Y3). We will study
vortex and Wilson defects in the theory X’ and determine the mirror maps, demonstrating
in particular how the dual defect “factorizes” among the two decoupled theories.

6.1 Vortex defects in the Dy quiver

Let us consider vortex defects in the central U(2) gauge node in the Dy quiver. The starting
point is the dual pair of defect quivers — X[Vy g] and Y [Wg], as shown in the first line of
figure 63. The fundamental masses in theory X be labelled as {m;|i = 1,...,4}, such that
the U(2)s and the U(2), flavor nodes in X[Vy 5] are associated with the masses (m1,m2)
and (mg3, m4). We implement the following Abelian S-operation Op on X[Vy p]:

Op(X[V3g]) = G 0 G 0 (G)% o (G o F)% (X[VE ), (6.1)

where a1 = a, 1 = 3, @ is the residual U(1) flavor node from U(2), in the theory G5! (X),
and [ is the residual U(1) flavor node from U(2)g. The flavoring operation in (G o F')*!
adds two fundamental hypermultiplets. The mass parameters corresponding to the U(1)?
global symmetry to be gauged are:

UL =ms, Uy =My, U3=M1, Ug=Ms3. (6.2)

The partition function Z OP(XIV3 8D can be identified as the partition function of a coupled 3d-
1d quiver X' [Vzl (II{)], shown in figure 63, where the 3d quiver is the D, quiver gauge theory X’
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Figure 63. Construction of a vortex defect in the central U(2) gauge node of the theory X’ and its
dual Wilson defect.

and the SQM is 2. The Witten index for the SQM is computed in the chamber & < 0. We
redefine the partition function of the new 3d-1d quiver by a global Wilson defect factor, i.e.

ZX VIR e~ 2t IR] ZOP XNV (4 it ), (6.3)

where mp = (mq g, mg ) are masses of the fundamental hypers in X’ for the U(1); gauge
node. The dual 3d-1d coupled system is then given by the quiver Y’ [W/E] in figure 63, where

Y’ consists of two decoupled sectors as shown. The defect Wfé is a gauge Wilson defect in a

representation R for the gauge group SU(2), where Ris given by restricting the representation
R to a subgroup SU(2) C U(2). A second coupled 3d-1d quiver which realizes the same vortex
defect can be obtained by implementing the S-type operation (6.1) on the quiver (X [VQZ rl)

— the resultant quiver (X’ [VQ’%I)]) is shown in figure 64. The Witten index for the SQM
should be computed in the chamber & > 0. Computing the dual partition function, one can
again show that the dual defect is given by Y’/[W7]. This leads to the following mirror map:

<‘/;,(1§1)>X'(mF;t,n) = (‘/2/,(11%)>X’(mF;tan) = <W§>Y{ “(Lyy, (6.4)
where 1 denotes a trivial Wilson defect in the theory Y3.

6.2 Wilson defects in the 54 quiver

Let us consider Wilson defects for the central U(2) gauge node of the Dy quiver X’. The
starting point is the dual pair of defects — the Wilson defect Wg in the theory X and the
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Figure 64. Two different realizations of a vortex defect for the central U(2) gauge node in the
quiver X',

vortex defect \71 gr in the theory Y, where the latter is realized by as a deformation of two
3d-1d quivers V{ p and Vll g~ The pair (Wg, V] g) is shown in the first line of figure 65. We
implement the Abelian S-type operation Op on the system X[Wg|, where Op is given as:

Op(X[WR]) = G% 0 G 0 G52 0 (G o F)F (X[WR]), (6.5)

where a1 = «, and the flavoring operation in (Go F')* adds two fundamental hypermultiplets.
The mass parameters corresponding to the following choice of the U(1)* global symmetry
to be gauged:

up = ms, U = My, uz =msy, Uy = TNY. (6.6)

This S-operation on the quiver X[Wg] leads to the defect quiver X'[W},] in figure 65.
The dual vortex defect can be read off from the dual partition function and, after manipu-

lations similar to previous examples, reduce to the following form:

ViV, D Z V3V )

VMWD — 0. 7 LRl (6.7)
2" =t [ o] 6(130) 205 0 m O 1,m). ) T om0, < 0),

(6.8)

204D — mimar R iy [ de 28O (. an/ (1,m) ) 7 (@), 2 < 0),

(6.9)

where C' = C(mp,n,t) is a contact term and m/(Y), m/®) are mass parameters of the
quivers Y{ and Y respectively. The FI parameters of Y3 are given by mp = (mip, mar),
which are the fundamental masses in the Dy quiver gauge theory. Finally, the Witten

indices are given as:

_ 2 2 wilo: —m' W
IE}”’R(U,m’(l),Z]E <0)= Z H H o8 7T(UJ. M )/(1) :
weER j=1i=1 COShT['(O’j + 1wz —m; )
cosh7r(T - m/1(2)>

cosh7r<7' +i|R|z — m/1(2)> .

(6.10)

S LIR|
-

IZ

(r,m'®), 2|€ < 0) = (6.11)

— 80 —



O ORE ) @
]

2 2 1 1 1
O © e L

(X'[W]) ) (V3V} )

Figure 65. Wilson defect in the central gauge node of the 34 quiver X', and the dual vortex
defect Y.

The r.h.s. of (6.7) shows that the dual defect factorizes into a vortex defect for the SU(2)
gauge group'’ in the 3d quiver Y{ (denoted as Y/ [Vl’ ED’ and a vortex defect the U(1) gauge

group of the 3d quiver Y3 (denoted as Y3[V{"|p ]). The 3d-1d quiver is shown in the bottom
right of figure 65. We therefore have the following mirror map:

(Wr)x(mp;t,n) = <‘~/1,7§>Y1’ : (ijR|>Y2!- (6.12)

The dual of Wilson defects for the other gauge and flavor nodes can be similarly determined.
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A Line defects in a U(2) gauge theory with N; = 4 flavors

A.1 Mirror symmetry and partition functions
The partition function of the quiver X is

d2s 627riTrs(t1—t2) sinh? 71'(51 _ 82)

(m; t) 21 2 TI2_, coshm(s; — my)

)

107Up to a global vortex defect.
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where m1, me, ms, my are the hypermultiplet masses, while the FI parameter of the gauge
group is 1 = t1 — to. Using Cauchy determinant identity:

sinh (21 — 22) sinh7(y; — y2) _ Z (—1)° 1 (A.2)

Hi,j cosh W(xi - y]) pESs Hz cosh 7T($i — yp(l)) ’

the above integral can be decomposed into a sum of terms each involving Abelian integrals.
Evaluating the Abelian integrals explicitly, we have the expression:

ZX) (m;t)
(627rim177 _ e2m’m377) (627rim277 _ e27rim477) (627rim177 _ e27rim477) (627rim277 _ e27rim377)
| sinhw(m; —ms) sinhw(mg —my)  sinhw(mi — my) sinhw(mg — ms)
1
X (A.3)

sinh 7w(m; — mg) sinh 7(ms — my) sinh? 7y’
Similarly, the partition function of the quiver Y is

sinh? 7 (07 —03)

12, coshm(o! —0?)[[2_; coshm(c? —t,) coshm (o3 —0?)

(A.4)
where t1 and to are the masses of the fundamental hypermultiplets in the middle node, and

5 e2m'crl (m1—m2) eZm'Tra'2 (ma2—ms3) 627ri03 (m3—ma)

Z0) (t;m) = / do' |do?| do

the FI parameters of the three gauge nodes are 11 = mi —mo, 72 = My — M3, N3 = M3 — My.
Performing the o; and o3 integrals, the matrix integral can be reduced to a sum over terms
each involving Abelian integrals, and after evaluating the latter, we have

z) (t;m) =

(627rit1(m1—m4) _ e27rit2(m1—m4)) (627rit1(m2—m3) _ 627rit2(m2—m3))
sinh w(m1 — my) sinh 7(mg — ms3)

(627rit1(m1—m3) _ 627rit2(m1—m3)) (627rit1(m2—m4) _ e27rit2(m2—m4))

sinh w(m; — mg) sinh 7(mg — my)

1
X . A5
sinh 7w(my — mg) sinh w(ms — my) sinh? w(t; — to) (A.5)

Using the explicit expressions for the two matrix integrals, one can check that
ZX)m;t] = Cxy (m, t) ZV)[t; —m] = Cxy (m,t) 23 [—t; m], (A.6)

ny(m, t) _ 627rit1(m1+m2)e—27rit2(m3+m4)' (A?)

The expressions agree exactly (i.e. the contact term vanishes) when one imposes the
constraints t1 + to = 0, m1 +mo + mg +my = 0.

A.2 The vortex defects Vi g and the dual defects
Using the “right” SQM realization, the defect partition function is given as:
Z(X[V]&’R})(m;t) = Whg(t, R) - ll_{Ii/ [ds} Zi(rft()(s,m,t) -IEy’R(s,m,zK <0), (A.8)

= Wi (6. F) - lim [ [ds] Zy ) (5,208 < 0), (A.9)
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where the constituent functions are given as:

Wi (t, R) = e*™2IFl, (A.10)
Z(X)(S m,t) = e2miTrs(ti—t2) sinh? (s — s9) (A.11)
it AT TR H?:l [T, cosh m(sj —mi) '
MR 2 M cosh7(s; —my)
=" (s,m,z|€ <0) = Z F(sj,2) H H (A.12)

. )
o 5 i (5 cosh (s + iwjz — my)

and the explicit form of the Witten index = depends on the value of M, with 0 < M < 4.
The function F(s;, z) is given as

S],

HHSlnh w(si—sj+aztz+£K/2)) (A13)
vy sinhm(s; —sj +az+k/2) '

with «, k taking real values which depend on the weights w. The poles of the function
F(sj,z) have vanishing residues in the limit z — 1, and therefore the limit can be taken
trivially, which gives an overall sign. The defect partition function can then be written as

2OV ) (mit) = Why g (6, R)- Y 25 Wirm) () (A.14)
weR

627riTrs(t1 —t2) Sinh2 7T(.5’1 _ 52)
i1 = Mcoshr(s;j—m;) H?:(E)—M) coshm(sj+iw;z—m;)
(A.15)

(X3 2) _
20ViraD (m: tfw) = lim |ds| —

We now list the dual Wilson defects for different values of M as follows.

The case of M = 2. Using the Cauchy determinant (A.2), we obtain the relation:

AL R])(m tlw) = Z AS ml,mg,mg — 1Wp(1), M4 — 1Wy(2); ). (A.16)
0652
Using the fact that Ss is the Weyl group of the U(2) gauge group, we obtain

Z(X[VQTvRD(m;t) ng t R Z Z ASY) ml,mg,mg - iwp(l), my — iwp(g);t)
w pESQ

= Wb.g‘ (t, R) . Z Z(X) (ml, mo, ms — i’LUl, myg — iwg; t). (A17)
Using the mirror symmetry relation (A.6)—(A.7), the above equation can be written as
Z(X[VQT,RD(m;t) =Whe (t,R) Z Z) (my,mg,ma—iwy, my—iws;t)

w

=Cxy(m,t) > ZV)(t;—my, —ma, —(mg—iwy), —(ma—iws)). (A.18)

We now show that this vortex defect is mirror dual to the Wilson defect WR, associated
with the central U(2) gauge node of the quiver Y in the same representation R. The latter
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defect has the following partition function:

Z0WaD (8 m) = / do' [do?] do® 2 ({07}t m) - Zuwinon(0™ ). (A.19)
=3 Z0VRD (g mw), (A.20)
wER

where the constituent functions are given as

627ri01 (m1 —m2)627riTra'2 (ma2 —m3)627ri03 (ms—ma4) sinh? 7.[.( 2 2)

729 (LaMY 8, m) = 17%2) (A2
(1) ) 17, coshm(o! —o?)[I2_; cosh (07 —t,) coshm (a3 —a?) ( )
Zwion(@2,R) = 3 (77 24"07). (A.22)
weER
Integrating over o3 and manipulating the resultant expression, one can show that
v 1 . .
Z(Y[WRD('IZ; m|w) = 5 Z Z(Y) (t; mi, Mg, M3 + zwp(l), my + Z’U)p(z)). (A.23)
p'ES2

Again, recognizing that Sy is the Weyl group of the U(2) gauge group, we obtain

Z(Y[WRD(t; m) = Z ASS, (t;my, ma, mg + twy, my + iws). (A.24)

wER

Using (A.24) in the equation (A.18), we obtain the following relation between the two
defect partition functions, i.e.

ZXVEED (i t) = Cxy (m, £) 20 WVRD (8 ). (A.25)

Normalizing by the respective partition functions, the expectation values of the two defects
are related as:
(Var)x(m;t) = (Wr)y (t; —m). (A.26)

The case of M = 1,3. Consider the M = 1 case first. The expression on the r.h.s.
of (A.15) can rewritten using the identity,

sinhm(s; — sp +i(w1 —wg)z) Z (1) o~ (8p(1) Fiw,(1)—ma)
cosh (s (1) + iwpy1) — Ma)

) . (A27)

H?:l cosh 7(s; + iw;z — my) pES2

The resultant expression can be massaged into the following form:

Z(X[VITRD(m;ﬂw) = = (=1)wrtw2 Z ZX) (my, mg, ms, my — iwp(1); t)- (A.28)

pES2

DO =

Summing over all w € R, and using the fact that Ss is the Weyl group for the U(2) gauge
group, we get

ZEVERD) (mit) = 3 Wayg (8, R) (—1)“1+%2 200 (g mg, ma, my — iwns ). (A.29)
weER
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Using the mirror symmetry relation (A.6)—(A.7), the above equation can be rewritten as

20D (mit) = Cocy (mt) (1)1 37 22 200 (4 =, =, —mg, —(ma = fwn)).

(A.30)
Mirror symmetry maps the vortex defect Vi g to a Wilson defect WE in the theory Y:

W~ _ Z W2avor W( )

aor i), (A.31)
KEA

where I/Vﬂavor is a flavor Wilson defect of charge ¢5 under a U(1);, subgroup of the U(2)

flavor symmetry of Y, embedded as U(1);, x U(1)s, C U(2)¢, and Wq(,l‘:)) is a gauge Wilson
defect of charge ¢f for the rightmost U(1) gauge node in the quiver Y. The charges
(¢¥, ¢5) are obtained from the decomposition of the representation R under the subgroup
U(1) x U(1) € U(2), and A is the set of such charge doublets counted with degeneracies.
This mirror map can be directly read off from (A.30) as follows. Firstly, note that

20t =y, —ma, —mg, —(my — iwn)) = 20T (¢ m), (A.32)

while the first factor in the summand on the r.h.s. of (A.30) can be identified as the
contribution of the flavor Wilson defect VVﬂavor Putting them together, we get

ZXVERD (s t) = Cxey (mat) 3 Zuwitson (2, ws) Z0 VD (£ —m) (A.33)
weER
wy VIV
= Cxy(m,t) > Zwison(t2.45) Z (t; —m). (A.34)
KEA

Normalizing by the respective partition functions, the expectation values of the two defects
are related as:
3)
(VI p)x = (> Wi W)y (4 —m). (A.35)
KEA
The case of the vortex defect Vyj;  for M = 3 can be handled in a similar fashion. Note
that the r.h.s. of (A.15) can be rewritten, after a change of variables s; — s; — tw;z, in the
following fashion:
2R (s tfw) = o (—1yvrter erlerte (o) ST 700 (g 4wy, ma, ms, mas 6).
pPES?

N | —

(A.36)

Summing over the weights w € R, as before, yields

Z(X[V;,R])(m; t) = Z (—1)wrtwz e2mti(witws) 7(X) (mq + iwy, ma, mg, my; t). (A.37)
weER
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Proceeding in the same fashion as before, we obtain

20V (i) = Oy (mat) 30 2Rt we) 20T (6 —m) - (A39)
weR
ﬂavor ¥ [~(1)])
= CXY(’ITL, t) Z 1lson(t17 Q2) zZ (t - ) (A39)
KEA
where Z82¥0r (#) w,) is the contribution of a flavor Wilson defect and ng)ll) is a Wilson

defect for the leftmost U(1) gauge node in quiver Y. The charges (¢f, ¢5) and the set A are
defined as in the M = 1 case. This leads to the mirror symmetry map

(Vi p)x = (3" Wimer Wiy (8 —m). (A.40)
KEA
The case of M = 4,0. Similar to the M = 3 case, we implement a change of variables

— sj = s; —iwjz — on the r.h.s. of (A.15), leading to the expression

ZXVERD (mit) = Wiy (8, R) - Y (—1)wrtwe e2rlwitu)(ti=te) 7 (mig) - (A41)

weR

= ( > (1)t e2ﬂ1<w1+w2>) 73X (m;t). (A.42)

wER

Following the procedure as above, this leads to the mirror map:
(Vig)x(mst) = (W) y (8 —m), (A.43)

where Wﬁﬂ"or is a flavor Wilson defect of charge |R| in a U(1);, subgroup of the U(2) flavor
symmetry of the quiver Y, embedded as U(1);, x U(1), C U(2)y.

The M = 0 defect also maps to a flavor Wilson defect in Y, which can be directly read
off from (A.10)-(A.12). In this case, one can directly take the z — 1 limit, since the residue
of the z-dependent pole vanishes. The resultant mirror map is

(V) x (mst) = (W) y ( —m). (A.44)

A.3 The Wilson defect Wg and the dual defects

Consider the Wilson defect W for the U(2) gauge node in the theory X in the representation
R. The defect partition function has the following form:

ZXIWRD (. ) — / [ds] 25 (s.m.1) - Zwion(s, ) (A.45)
— Z ZXWERD (s tw), (A.46)
wER

where the constituent functions are given as

eQm’Trs(tl—tQ) Sinh2 7'('(81 _ 82)

7(X)
2 1
i=1 1=y coshm(s; —m;)

int

(s,m,t) = . Zwison(s, R) = Z (627rzj sz;‘)_

wER
(A.47)
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Using the Cauchy determinant identity twice to reduce Z(XWrD (1m; ¢jw) in terms of Abelian
integrals, and then performing those Abelian integrals, we obtain

(_1)w1+w2 H27 (627rimp(i)(77—iwi) _627"im2+;<i) (ﬁ—iwi))

ZXWVED (. tw) = Z(_l)p+p

o sinhmo sinh wmsy sinh? 7n H __,sinh7(m M (4 —m2+~pv(i))

(A.48)

where mis = m1 — mo, m3q = Mg — my, n = t; — to, and p, p are elements of Ss.

The dual of the Wilson defect Wg in the theory X, is the vortex defect ‘71 Rr in the
theory Y, where R is a representation of the central U(2) gauge group. The defect partition
function for the latter, using a right SQM realization, is given by

7 Vi.e) (t;m) = Wy, 4 (m, R) il—% do! [do’ﬂ do® Zi(n}:)({avl},t,m)
T ({07 Y hAlE <0),  (A49)
: 121 ,OYVERD o
=t Wig.(m, R) - lim [ do |do?] Zi ({07}, 8, m, 2€ < 0). (A.50)

Using similar arguments as above, the defect partition function can be rewritten as
20NV (#m) = Wiy (m, R) - S 20D (8 mw), (A.51)
weR

where the individual functions can be written as

Wi g (8, R) = e2™mslfl, (A.52)

}d 3th ({07} t,m)[[;coshm(c?—ty)coshm(o®—0?)
[1; coshm(o? +iw;z—t2) coshm (o3 — o2 —iw;z)
(A.53)

9

Z(Y[V17;R])(t;m|w) = lim /dUl [
z—1

27io! (m1—mg)627riTro'2(m2—m3)627rio3 (ms—my) sinh?2 7T(O'% _ 0_%)

12, coshm (ol —0?)[[2_; coshm(c? —t,) cosh (a3 —c?)

(&

ZM o7 Y tm) =

int

(A.54)
Performing the Abelian integrals over o1 and o3, Z (Y[Vf’RD(m; tlw) can be recast in the
following form:

20 VIR (¢ mw)

|: (71)101 +wso eZﬂimggTro'Q (627rio'%m12 7e2ﬂiogm12)(62ﬁi(a%+iw1 z)msq 7627ri(o'§+iwgz)mg4)
do }

= lim

21 sinh mm2 sinh wmsa Hicoshﬂ(oeriwizftg) coshm(o2—t1)

(A.55)

Finally, performing the Abelian integrals over o2 and ¢32, and manipulating the resultant

expression, we obtain:

Z(Y[ T R])(t m|w) - e—27rm3(w1+w2) 627rit1(m1+m2) e—27rit2(m3+77’L4) Z(X[WR])(m, —t|w)
(A.56)

— &7 —



The defect partition functions are therefore related as
ZXWRD (s £) = Oy (m, 8) 20 VirD (Zt;m), (A.57)
which leads to the following mirror map:

(Wr)x(m;t) = (V] gy (—t;m). (A.58)
B Abelian gauging: defects in the D, quiver gauge theory

B.1 Vortex defects

Let us first consider the vortex defect, discussed in section 4.1.1, which can be constructed
from the defect Vs g for M = 2 in the quiver X by an S-type operation. The S-type oper-

ation Op is specified in (4.6)—(4.7), and the corresponding partition function is given as:!'!

7OP(XIViRD hm/l_[duZ ds} HZFI ul,nZ)Zl(nt)(s u,v,t) Wy o (t, R)
=1

75" (s,u,z[€ <0), (B.1)
Z-(X)(s,u,v,t) = {Z-(X)

ot i (8, m t)|mg = uy, my = ug,my = u3, Mg = v}, (B.2)

WbAg.(t’ R) = 627rt2|R‘ (B3)

IE?"R(s,u,z\ﬁ < 0) Z H H coshm(s; — u) (B.4)

ey Jrs L cosh (s +dwjz —u;)

We will identify the resultant 3d-1d quiver as a vortex defect in the Dy quiver gauge theory
X', and will denote it as X'[V/(I)}

Z(X/[VQI,(JQD . efzn(trw)m\ ZOP(X[V;R])(U,t n),
— 27( (1572)|R| hm/l_[duz ds HZFI Wiy 1;) mt)(s u,v,t)

x 750" (s,u, 2l <0). (B.5)
Mirror symmetry for the 3d defects X[V5 | and Y [Wg] leads to the following identity:

int

( ) 22,1?,
/[ds}Z (s,u,v,8) Wy, (t,R) I (s,u,2[£ <0)

h e —
= Z Whe (t, R) sinh (w1 —up —iwn z+iws2) Z(X)(u;g,v,ul—iwlz,u2—iw2z;t)
sinh 7 (ug —ug)

wER
b o :
_ Z iy (w,0.) sin 7r(u.1 ug — w1 z+iwyz) 7 Y)(t;7u3’7v’7ul+iwlzﬁu2+iwzz)
sinh 7 (ug —ug)

weR

=Cxy(u,v,t / H do' Zl(n}: ({07}, 8, —u3, —v, —u1, —uy) Z 2D Witz
weR

=:Cxy(u,v,t / H d v Zl(gg (W) ({07} 8, —us, —v, —uy, —ug, ). (B.6)

"TFor the subsequent analysis in this section, we will drop the factors F(s;, z) for reasons noted in the
main text of the paper.
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This is a concrete example of the identity (3.49) for the dual pair (X,Y), D = Vo is a
vortex defect and DV = WR is a Wilson defect.

We can now compute the dual defect partition function, following the recipe given

by (3.54)—(3.55). From (3.55), the function Z

Op(v) is given as

Zép(y)({a'yl},t,n) = 5(m + Tro® — 0% —t9) 6(ne — ta +03) 5(n3 +t1 — o). (B.7)

The general expression in (3.54) for the dual defect partition function reduces to the
following expression:

%%w@w@nv__mn/Ildg (o} tem) Cxy (w = 0,0, 8)

XZWWMM@MLLUZOfWJ% (B.8)

int

where the function Z.* [WR])(. ..,z) can be read off from (B.6):

int

20D (7Y o = 0, v, 2) = 2

({O"Y} t,u=0,-v) Z 2T 2 Wit 7, (B.9)
weR

Since there are no z-dependent poles in the integrand, the z — 1 limit can be taken at this

stage. Using the expression for Z5P ¥’

integration variables appropriately, we obtain

implementing the delta functions and after shifting

Z0P(WaD (¢ . )

+
=Cmt 2 / (o] 6(Tra®) Z}56p (o) 2155, ("27773 ++ 2 2 772)

wER

n 1= n 1+ 12 wio?
X Z{I—llo%p ( g > H Z{ulo(ip <027ta + ! 2 ! o t2> 6271-22 wmla

=:C(v,m,1t) / {da }(5(Tr0' )ZEE )Ny=4 (a2, m/(t,n),n =0) Z e2m 2 wio} (B.10)
weR
where 1) = t; — t, and C(v,n, t) = e2mv(m+n2tns+2(t1—t2))  The masses m/ of the theory Y’

are given in terms of the FI parameters of X’ as follows:

m’1=773+77+m—;772, (B.11)
m’zZ?Hw, (B.12)
mly =" —;m’ (B.13)
nﬁ::WI;WQ. (B.14)

The above expression (B.10) reproduces the defect partition function in (4.14).
The vortex defects which are constructed from the defect Vs g for M # 2 in quiver X
can be analyzed in a similar fashion as above.
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B.2 Wilson defects

Let us now consider a Wilson defect, discussed in section 4.1.3, which can be constructed
from the defect Wg in the quiver X by an S-type operation Op specified in (4.31)—(4.32).
The starting point is the dual pair of defects X[Wg| and Y[f/f; | discussed in section A.3.
The partition function Op(X[Wg]|) is given as:

3 3
70P(XIWrl) :/Hdui (ds] TT Zex(ui,m) Zi53 (s, w,0,8) Zwison(s, B),  (B.15)
i=1 =1

Zi(n),f)(s u,v,t) = {Zi(lfg)(s m,t)|m1 = ui, ma = ug, My = uz, Mg = v}, (B.16)
ZWllson S, R Z ez A (B17)
weR

Mirror symmetry of the defects X[Wg| and Y[‘N/{ ] imply the following z-dependent
identity:

/[ds} Zi(rfthR])(s,u,v,t, z) =: / [ds} 1(nt (s,u,v, Z 0o Wisi

weR

— Cxy(u, v, t) / do" [do?] do® W (v, R) 2OV (o ), (BAS)

where the contact term Cxy and the background Wilson defect W}, o are given as

CXY(’LL v t) 27rzt1(u1+u2) 727rit2(U3+v)’ WbAg.(UaR) — e27rv|R|‘ (Blg)

The integrand Z( v R])

int

n (B.18) is given as

Y&T ! ! = > /
z! LR”({GV botu,v,2) =200 (07 6w, o) T5 " ({07 )8, 2]€ < 0), (B.20)
2miot (u1 —u2) ,27iTro? (ug—v) ,2mio3 (v—ug) h?2 2_ 2
(o7} tu0) = -5 S L GV
[[;=1coshm(ol —0F)[[5=1 coshm(os —1t,) coshm(c? — o)
(B.21)

[1; coshm (a3 —t3) coshm(oF—0?)

h(oF+iwjz—t2) coshm(oF +iwjz—a3)

5 ({07}, 8, 216 < 0) = Z o (B.22)

The identity (B.18) is another concrete example of the general identity (3.49) for the dual
pair (X,Y), D = Wg is a Wilson defect and DV = V1 r is a vortex defect.
Following the general discussion around (3.59)-(3.60), the dual partition function

Z(Y’[(‘ZT,R)V]) ZOP(Y[ R])(t 7;v) can be written as:

ZOP(Y[V{’RD (tv n; /U) = ll_% dal {do’ﬂ d0_3 Z@,,,(y) ({07/}7 t’ 77) CXY (u = 05 U,t) ng.(”? R)

><Z~(1:[V£R])({le}7_t’u:O’U’z)' (B23)

1m

Finally, the function Z can be computed from the general formula (3.60):

Op(Y)
Z@p(Y)({UW,}, t,n) =0(m +ot +t1)0(ng — o' +Tro? +t1)5(nz —ta — o). (B.24)
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Putting together the different ingredients on the r.h.s. of (B.23) and integrating over o' and

o2, we obtain the following expression for the dual partition function (after some trivial

shifts in the integration variable):

int

Z070V0D = € W, - timy / (do| (o) Zp ™ = (o, (8,m) )

x> (o,m', z|€ < 0), (B.25)
C = Clv,m,t) = 27riv(771+772+773+2(t1—t2))7 Whg. i= Wi (v, R) = e2ﬂv\R|’ (B.26)

SLR cosh(o; —m})
IZ’I‘ /’ < 0 J L R B27
(o, 2[¢ u;”l_[“l_[lcoshwo +iwjz —m}) ( )

where the masses {m/};=1 .4 are given in (B.11)—(B.14). The 3d-1d quiver Y’[YN/LE] in
figure 34 can be read off from the r.h.s. of (B.25).

One can similarly implement the S-type operation (4.31)—(4.32) on the dual pair X [Wg]
and Y[YN/II r]. Mirror symmetry then implies the following z-dependent identity:

/[ds] Zl(n)t([WRD(s,u,v,t,z) ::/[ds} l(nt (s,u,v, Z 25 wisi®

weR
= Cxv(wo.t) [ dot [do?] do* Wi (un, B) Zoo ({07 ) ~towv2), (B.28)

int

where the contact term Cxy and the background Wilson defect W, 4. are given as

CXY(ua v, t) = 627”;151(“14_“2) e—27rit2(u3+v)’ Wb.g.(UQa R) = 62”U2‘R|' (B29)
VIV RD) :
The integrand Z; , n (B.18) is given as
~l ! ! = Bl /
Zy (0 Y tw,2) = 200 (7 L) T (07 2l > 0), (5.30)

IL COSh7T(O'2—t1) coshw(o*]?—a?’)
I, COShW(O'j —iwjz—t1) COShT((UJQ

5 ({07 )t 2> 0)= 3 (B.31)

i —o3)
i iwjz—o3)

(Y) .

int

is given above. The dual partition function zv VLR"D) = ZOP(Y[VllvR])(t, 7;v)

can be written as:

where Z.

ZOP(Y[VlZ’RD(t, n;v) = lir% do? {daﬂ do® Z@ ({o’yl},t,n) Cxy(u =0,v,t)
z—

X Z-(Y[ 1)

int

{o"}, —t,u=0,v,2), (B.32)

where the function Z Op(yv) AN be computed from the general formula (3.60):

Zap(y)({a'yl},t, n) =0(n +o' +t1)8(n2 — o' +Tro? +t; —i|R|2) 6(n3 — t2 — ). (B.33)

Note that the form of Z3 (V) is different from what we got in the case of the right SQM.

Now, performing a change of variables 0]2. — a? + iw; z on the r.h.s. of (B.32), and then
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integrating over o! and o2, we can rewrite the dual partition function (after some trivial
shifts in the integration variable) in the following form:

ZoP( V] S el Wi .o - hm/ dU TrU)Zi[IJlt(z)’Nf:4(0',m'(t,n),n/)zg’{ﬂ(avmlvZ|£<0)a
(B.34)

where C, W, ¢, and 75" are functions given above. The final 3d-1d quiver is therefore
identical to the one that we obtained in the earlier case.

C Non-Abelian gauging: defects in the Dg quiver

In this section, we explicitly construct the mirror map in figure 38, which involves a vortex
defect in the Dg quiver on the one hand and a Wilson defect in the Sp(2) gauge theory
on the other. The starting point is the pair of linear quivers with defects in figure 37, as
shown in figure 66, where we implement the S-type operation (4.41) on the 3d-1d system

(X[V gD

5
726 XWVaR)) = iy (du] TT [ds"] Zap (u,n®) 257 ({7}, 4,0, 8) Wi g (£, R)

z—1 int
=1

x I%" (81, 82, u, 2|€ > 0), (C.1)

where the label v of the gauge nodes of X increases from the left to the right. The constituent

functions appearing in the matrix integral above — ZGa , Wh.e. and 750" are given as

mt ’

Zaa (u,n™) = 2 00F2) ginh? 1 (ug —uy), (C.2)
Zi P ({7 w0, ) = 25 ({87}, my = uy,ma = ug, ms = v, t), (C 3)
Wi (t, R) = 221 Rl C.4)

IEZQ’R(SI,S2,’U,,Z|£>O) _ Z ﬁ (13[ COShﬂ'( —st) )(ﬁ coshm(s )

it coshm(s? —iw;z—s}.) 1cosh7r(3 —zw]z u;)

Mirror symmetry implies that one can write down an identity of the form (3.49)
involving the z-dependent partition functions of X and Y. In the present case, this identity
takes the form:

5
7OV (0, 1]2) = / 1 [d57] ZG 7 ({87} u,0,8) W (8, R)TZ " (51, 8,0, 216 > 0)

/H doﬁ mt {0' },t,f —v) Ze%z wjaz (C.6)

weER
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Figure 66. Construction of a vortex defect in a D-type quiver gauge theory by an S-type operation.

C.1 Non-Abelian gauging via abelianization of the partition function

The non-Abelian gauging operation can then be Abelianized following the procedure
of (3.28):

ZGH(X[V} 5]

2
_ liH% /H du; e27ri77a(u1+u2) (627ru1 o 2mu2 +6727ru1 e2Tu2 _2) Z(X[VleR}’P)(u,U,t‘Z)
2—

1

. 707 XW (4 ¢11, 1) 4 207 KXWVaRD (4 ¢~ 1,1)— 2207 XV (4 110,0),  (C.7)

—2.8 !

where we have used the notation of (3.31). The function Z O (X[V2 5D (v, t|q1, q2) corresponds
to the partition function of a theory obtained from the quiver X [VQZ rl by a sequence of two
Abelian defect-gauging S-type operations of the Wilson type, and is given as

Coa 2
7" VAR (v, 1]g1, g2) = lim / [T du e2rineturtun) g2ravus 2raus Z(XNVamlP) (g 1)),
z—r
i=1
(C.8)

To evaluate a partition function of the above form, we will use an analytic continuation
trick of the following form:

-=2,a 1
ZOP (X[VQ’RD (’U, t|¢]17 QQ)
2
— lim H du; 627rina(u1+uz) 627rq1ulz/ 627rq2u2z’ Z(X[ViR],P) (U, v, t‘Z), (Cg)

z—1 .
21" =1

where we compute the integral assuming 2z’ € iR and then take the 2/ — 1 limit.
The partition function of the dual theory G% (Y [Wg]) can then be written as

~2,« ~2,a

~ ~ ~2,a ~ =~ ~ =~ ~
ZGPYWal) — 70» VIWeD (4 )1, 1) 4+ 29 WrD(y ¢ —1,1) — 2297 VWD (4 ¢)0,0),
(C.10)
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where the dual partition function for the Abelian S-type operation can be computed
following the general prescription of (3.54)—(3.55). Explicitly, we have

Z@%O‘(X) _ e27ri17a(u1+u2) 627rq1u1z/ 627rq2u22” (Cll)
2 2 { /}
oa — . N 2mi g; ({7 },P) u;
Z@i’ (v) /g dulz@i’ (X) 1;[ €
= 5( — Trot + 1o — iqlz'> (S(TM'1 —Tro? + 1o — iqu’), (C.12)

where the functions g;({c'}, P) are given by
g({e"},P) = -Tre',  g({o”'},P) =Tro' — Tra?. (C.13)

In writing the above formula for Z~2. , we have ignored the u-dependent contact terms,

P
for the sake of simplifying the computation. These can be easily reinstated and will lead to
contact terms and some additional background Wilson defect. However, the latter can be
absorbed by an appropriate redefinition of the vortex defect.

From the general expression (3.54), one can write down the dual partition function
~2,« ~
z97 YIWRD (4 t|q1, g2) as follows:

~2,« 2

797 (Y[Wr) — l,l—%l /'ynl [do’“q 5(7Tr0'1+77a7iq12') 5(Tr0'17Tr0'2+77a7iq22')
z2 = =

/ 52
«Z0 ({7}t —u=0,—v) 3 2 2 (C.14)
weR
The limit z — 1 can be trivially implemented at this stage. After a change of integration
variables o} — o} +1,/2 — iq12'/2, one can rewrite the above partition function as follows:

~2,a

700 (Y[Wr])

= lim / ﬁ [doﬁl} 5(Tr0'1) (5(Tr0'1 — Tro? + 2, — i(q1 + QQ)ZI) 2rivTro?

z/—1

. 21 wio?
X H FSeop(07) Zop (0!, 0%, =00 /2 + iq12 [2) Z10(0%8) D e 2507
wER
(C.15)

Since q1 + g2 = 0 in the present case, z’-dependent term drops off from the delta function.
In addition, performing a change of variables 0]2- — 0]2- + 7a/2, the above integral can be
rewritten as (up to contact terms)

~2,«
Op (Y[Wr]) _ 2\ 27| R|(na/2) ~'
79r (Y[WE]) Zthl/H da"Y (Tra' )5(Tr0') IRl (na/2) H Z{Seop(@™)
=
X Zloop(@"s 0117 [2) Zilioep(0% 8 = ma/2) 3 62”3“”"1» (C.16)
weER
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Now, let us focus the o'-dependent part of the integral, which can be written in the
following form:

1i= [ [do'] 8(Tro") Zifp (") Zihp(o o™, idn2'/2)
= [ d¢ [ao] N Z5 (o) 20 0 i 2)
_/dgz 2N =) (62 1 g1 /2, €). (C.17)

Using the result for the partition function of a U(2) gauge theory with Ny = 4 flavors
n (A.3), we get

27rwl & 6271'1035) (6271'1'(7%5 _ 627ri¢72§) (627'(‘2'0'%5 _ 6271'1'(725) (627riz7§§ _ e27ria§§)
I=/d —
/ $ l sinh7(0f—02) sinh (03 —03) sinh7 (03 —03) sinh (05 —03) ]

e 2mq12'€

X
sinh7(0f —03) sinh (02 —07) sinh? ¢

; 1 1
—[d 2mig(o2+03) +627TZ§(U§+UZ) -
/ at [ ) sinhmo?; sinhwo, sinh7wof, sinhmod,

e2mié(of+03) e2mi&(o5+03) e2mi&(o7+03) e2mi&(o5+07) 1

—= : —= : +— : +— :
sinhmo?; sinhwo3, sinhwoi, sinhmo3, sinhmo?, sinhmol,  sinh7wo?, sinhwody

=2z’

X
sinh7(0f,) sinh7(02,) sinh? 7¢

_ / d§ [_ (6271'1'{(0%-‘,-0%) +e?m’§(0§+ai)) ( sinh WU%Z sinh 7TO-§4 >

sinhmo?, sinh o3, sinh o, sinh o,

e27ri§(o%+oi) eQwiﬁ(o%—i—og) 627”'5(0%4-0%) 627ri§((r§+ai)
- . - : . ; += ;
sinhmo?, sinhwo3, sinhwoiy sinhmo3, sinhmo?, sinhmo3;  sinhwod, sinhwod,

e—2rq1 2'¢

(C.18)

sinh7(0%,) sinh7(03,) sinh?r¢
One can now take the 2’ — 1 limit trivially, since there are no z’-dependent poles in
the integral. Performing the sum over the terms in (C.10) gives a sinh? 7¢ factor in the
numerator which cancels against the sinh? 7¢ factor in the denominator. The integration
over £ then gives a delta function and the dual partition function assumes the form:

2OV _ p=2rlRI(na/2) 7 G (Y (W)

o2
_ / [d0?] 5(Tro?) 2155, (0) 253 (0% t—na/2) 3 2722517
weR

sinh o2, sinh wo?
x[—(d(a%%—ag)—l—é(ag%—@%))( 912 SN TO34 )

sinhmo?, sinh o3, sinh oy sinhwo,

6(of +03) 8(03+03) 6(0f +03) 8(03+03)
sinh7mo?, sinhwo3, sinhmoiy sinhmo3, sinhmo?, sinhmo3,  sinh7woi, sinhmod,
1

. C.19
" sinh m(0y) sinh(o3,) (C.19)
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Note that the terms inside the { } brackets have different delta function coefficients. We now
make a change of variables such that each term has the same delta coefficient 6(0? + o3).
For example, in the second term this is achieved by the change of variables 03 <+ o3 and
02 ¢ 03, and so on. Note that the integrand in the first line on the r.h.s. of (C.19), including
the Wilson defect factor >, cp " 2w , is invariant under these change of variables.
Factoring out the common delta function coefficient, the r.h.s. of the matrix integral can
then be simplified as follows:

’ 1(I)yv )
20D = [ (a0 (120%) 235 pl0?) Zipty 0t = maf2) Y 627500
weER

1
2, 2
X |0(o7 + 0 . : : .
[ (1 2) (smh mo3s sinh o3, sinh wo?, sinh o,

2 2 2 2 2y fund (2 21y w;o]
= [ 40| 603 + 03) 603 + o) 2B (0t~ maf2) o T2
weR
X [sinh2 T 0%y sinh wo?y sinh o3, sinh wo?, sinh wos, sinh? 7 O'§4} .

(C.20)

Choosing = = 07 and y = 03, the term in the parenthesis (after implementing the delta
functions) can be identified as the 1-loop contribution of an Sp(2) vector multiplet, i.e.

[simh2 T oty sinhwols sinh o3, sinh wo?, sinh mos, sinh? 7 o2, }
— sinh? 7 2 sinh? 7w 2y sinh? 7 (x + y) sinh? 7 (x — y) =: Zf_eli)’i?(Q)(UZ). (C.21)

Therefore, the final form of the matrix integral is given as:

1-loop 1-loop

x 3 P (C.22)

wEeR

/ /(I)\v
zwmbD:/pﬁp@+ﬁW@+ﬁme%ﬁmmwa¢ﬂwm

which reproduces (4.45) in the main text.!

The mirror map between the Wilson defect in the Dg quiver and vortex defect in
the Sp(2) quiver can be similarly worked out by starting from the pair in figure 40 and
implementing an S-type operation on X [Wg]. As before, the procedure involves abelianizing
the S-type operation and then computing the dual partition function following (3.59)—(3.60).

C.2 Non-Abelian gauging without using abelianization

Let us now perform the non-Abelian gauging operation without resorting to the abelianiza-

tion procedure. The gauging operation on the defect partition function of X [‘/2(2] is given

. . . o . (I
by (C.1), which manifestly gives the defect partition function of X’ [‘/2,(1%)]‘

2Tn performing the computation above, we haven’t carried over the overall numerical /combinatorial factors
in the intermediate steps to make the presentation less cumbersome. They have, however, been reinstated in
the final answer and one can readily check that the matrix integrals have the correct Weyl factors.
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The dual partition function can be constituted from the general expression (3.54), as

follows:
é W _ 27rz w; O’ z
2GR W) ;;ml/H (407 25, o ({07 1) 250 (107 ) tu=0,—0) 3 272
weR
(C.23)
where the limit z — 1 can be trivially implemented at this stage. The function Z, v) is
given as: i
~ d*u 2 27rzgl({a"Y HP) us
Zé%(y)({o' b)) = jz X) U, Na) 1_[1 €
1=
d2 —2mi(u1—u2) Tro! —2miug Tro?
= a1 ZG“ (X)( 777a)e € ) (0'24)
with the functions Zga (x), g; and Zl(nt) being
ZGa(x) (w,1q) = 2™Ma(1F2) Ginh2 74y — uy), (C.25)
a({e”},P)=-Tre',  g({o”},P) = Tro' — Tro?, (C.26)
2
Zi (o7 Y tou = 0,—v) = @V [T 2155, (07) 2P (0! 0%, 0) 25, (02, ).
y'=1
(C.27)

Given the expression in (C.23), we will first perform the integration over o!. Isolating
the ol-dependent part of the matrix integral, and using the result (A.3), we have

1 vec 1 bif 1 2 —2mi(uy —u2) Trot
/[do— } 1—loop(0 )Zl—loop(a 1 70)6 (1 ~uz)

[ (6271’1'0'% (ug—u1) _ 627rio'?2) (uzful)) (627”'0'% (ug—u1) _ eZm’ai(uzfm))

sinhm(o?;) sinh7(o3,)

(6271'2'0'% (ug—u1) _ 627”0‘% (ug—u1 )) (627”'0'% (ug—u1) _ 627T’L'0'§ (ug—u1 ))
sinhm(o},) sinh7(o3;)
1

X

sinh7(07,) sinh7(02,) sinh? 7 (ug —u1)

: 2 2
— | _ (eQWi(uz—ul)(U%+U§) +€27ri(u2—u1)(0§+az)) sinh 0719 SlIlh7TO'34
sinhmo?, sinh o3, sinh o, sinh o,

e27ri(u2—u1)(c7%+oi) e27ri(u2—u1)(o§+o§) 6271'7:(’[142—’[1,1)(0'%—‘1-0';) e27ri(u2—u1)(o§+ai)
= ; = ; . ; += :

sinh7mo?, sinhwo3, sinhmoiy sinhmo3, sinhmo?, sinhmo3,  sinhwol, sinhmod,

1

X , (C.28)

sinh7(0f,) sinh7(02,) sinh? 7 (ug —u1)

where for the second equality, we have simply rearranged the terms within the parenthesis.
The next step is to perform the integral over the variables {u;}. First, note that the factor
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1/sinh? 7(ug — uy1) in (C.28) exactly cancels the sinh? term in Zge,(x)(w,7a), and therefore
u1, ug only appear in the exponential terms of the integrand. It is convenient to redefine the
integration variables as u} = u; — ug, uh = ug (the resultant determinant of the Jacobian
matrix is unity). Performing the integration over u} and u}, and shifting the 2 variables as
0]2- — 0'32 +1na/2 (j =1,...,4), one arrives at the following expression for the dual partition
function:

2OV _ p=2nlRI(na/2) 7 G (Y (W)

:/ {daﬂ (5<T1"0'2> gvec (0_2>qund (O_Q,t_na/Q) Z 627rzjwjaj2.

1-loop 1-loop
weER
9 9 9 9 sinh o?, sinh o3,
x| =(0(oi+03)+d(05+0%)) | = Lol snhrol. sinhro?. sinhro2
sinh wo{s sinh7os, sinh oy, sinhmog,
2, .2 2, .2 2, .2 2, .2
B (o1 +01) B 6(03+03) 6(oi+03) 6(o3+07)
sinh7mo?, sinhwo3, sinhmoiy sinhmo3, sinhmo?, sinhmo3,  sinh7woi, sinhmod,
1
(C.29)

sinh7(0?,) sinhw(03,)’
which is identical to (C.19). Then, after performing an identical sequence of manipulations

of the matrix model integral, one arrives at the final answer (C.22), which reproduces the
result (4.45) in the main text.
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