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1 Introduction

Holography (gauge/gravity duality) has provided useful methods to study properties of
strongly coupled systems [1–4]. In particular, the holographic descriptions of the strongly
correlated (2+1) dimensional collective dynamics have been implemented to shed light
on long-standing condensed matter problems such as the quantum phase transition [5],
superfluidity [6, 7], high-temperature superconductivity [8, 9].1

One of the milestones for the strongly coupled (2+1) dimensional field theories in
holography is that the lowest quasi-normal modes of the (3+1) dimensional AdS black
holes are consistent with the predictions of (2+1) dimensional hydrodynamics, for instance,
the holographic model with the explicitly (or spontaneously) broken translational symme-
try [14–22] and the superfluid where the U(1) symmetry is broken spontaneously [23–30]
or pseudo-spontaneously [31].2

Comparing the quasi-normal modes with hydrodynamic predictions will be an impor-
tant and interesting research direction because it may not only provide more supporting
(indirect) evidence of holographic duality, but also gives us novel analysis for the transport
properties of strongly correlated systems.3 Note that hydrodynamics can tell which trans-
port coefficients appear in the theory and holography reveals the details of the transport
properties of such coefficients.

1For recent developments of the holographic study for the holographic superconductivity, see [10–13].
2See also [22, 32–37] for the study of the bound of diffusion constants from the linearized hydrodynamics

using quasi-normal modes.
3One can also utilize the fluid/gravity correspondence [38–43] to study the transport properties beyond

linearized hydrodynamics.
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In this paper, we study the (3+1) dimensional AdS black hole in the presence of exter-
nal magnetic fields at finite density, dyonic black holes (Einstein-Maxwell model), which is
dual to the (2+1) dimensional quantum field theory in external magnetic fields. In partic-
ular, we aim to compute the quasi-normal modes of dyonic black holes and compare them
with the viscous magneto-hydrodynamics proposed by Hartnoll-Kovtun-Müller-Sachdev
(HKMS) [5]. Thus, this paper is along the line of the developments of “the comparison
between the quasi-normal modes in (3+1) dimensions and the hydrodynamics in (2+1)
dimensions” in holography [14–31].

The dyonic black holes in (3+1) dimensions is one of well-studied black hole models in
holography from the thermodynamic properties [5, 44–47] to the transport properties [48–
51, 53–88] such as the Hall conductivity, Nernst Effect, diverse magneto-transport and
magnetic phase transition.4 However, surprisingly enough, a complete study of the quasi-
normal mode excitations in dyonic black holes has been still lacking up to date.

In [22], quasi-normal modes of magnetically charged black holes (i.e., zero density)
have been compared with the hydrodynamic theory only for the sound channel.5 As we
will describe in the main context, at zero density, there will be two decoupled channels: the
sound channel and the shear channel. In this paper, we fill the gap for the complete study of
quasi-normal modes of (3+1) dimensional dyonic black holes. In other words, we compute
the quasi-normal modes from all the channels (sound channel, shear channel) at zero density
as well as the case at finite density in which the sound channel is coupled with the shear
channel and compare all quasi-normal modes with the HKMS magneto-hydrodynamics [5].6

In addition to checking quasi-normal modes of dyonic black holes with the HKMS
magneto-hydrodynamics, we also study the transport property that appeared at finite wave
vector: the diffusion constant. In particular, we focus on the bound of the diffusion constant
of dyonic black holes and study its relation with the pole-skipping argument [22, 32].

This paper is organized as follows. In section 2, we revisit the HKMS magneto-
hydrodynamics in (2+1) dimensions in details. In section 3, we introduce (3+1) dimen-
sional dyonic black holes as well as the method for quasi-normal modes computation: the
determinant method. Then, implementing the determinant method, we compute the quasi-
normal modes of dyonic black holes and compare them with the hydrodynamic predictions
given in section 2. Also we study the bound of the diffusion constant and the pole-skipping.
Section 4 is devoted to conclusions.

4The magnetic susceptibility in holography turned out to be of order 1/T with temperature T , which
is different from the weakly coupled systems such as the free electron gas: the magnetic susceptibility is
independent of T . Thus, dyonic black holes in holography show the imprint of the strongly correlated field
theories at finite magnetic fields.

5For the quasi-normal modes of electrically charged black holes (zero magnetic fields), see [89–91].
6See also [92] for the quasi-normal mode analysis at zero density in the presence of the strength of

Coulomb interactions, [81, 85, 93, 94] for the magneto-phonon in which the translational invariance is
broken, and [95–99] for higher dimensional dyonic black holes.
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2 Magneto-hydrodynamics revisited

In this section, we revisit the viscous magneto-hydrodynamics in (2+1) dimensions in the
presence of the density (ρ) and the magnetic field (H), which is proposed by Hartnoll-
Kovtun-Müller-Sachdev (HKMS) [5].7

It will be instructive to note that the main interest in [5] is the transport properties
at zero wave vector such as conductivities [48–51, 53, 56, 57, 59–86, 88]. In this paper,
we study the properties of HKMS magneto-hydrodynamics at finite wave vector. Thus we
aim to study the complete analysis of the HKMS magneto-hydrodynamics. In particular,
we focus on the dispersion relations as well as the transport properties that appeared at
finite wave vector such as the diffusion constant.8 Note that, in the main context below,
we will revise two things about the dispersion relations given in the appendix of [5]: one
is a sign typo and the other is the prefactor in the gapless hydrodynamic mode, which is
important to be consistent with quasi-normal modes from holography.

2.1 Equations of motion

The equations of motion for hydrodynamics are the conservation laws:

∂νTµν = FµνJ
ν , ∂µJ

µ = 0, (2.1)

where Fµν is the field strength of the electromagnetic field, Tµν is the stress tenser, and Jµ

is the current.9 In the case under consideration, we take Fµν to be magnetic as

Ftx = 0 , Fty = 0 , Fij = εijH , (2.2)

where i, j = (x, y). One can find the stress tensor Tµν at first order in derivatives as

Tµν = εuµuν + P∆µν + Πµν , (2.3)

where ε is the energy density, P is the pressure, and ∆µν = ηµν + uµuν with the fluid
velocity uµ. Πµν is the dissipative term given by

Πµν = −η
[
∆µα∆νβ(∂αuβ + ∂βuα)−∆µν∂γu

γ
]
, (2.4)

where η is the shear viscosity.10 Note that Πµν is vanishing at local equilibrium by defini-
tion.

7In this paper, we consider the magneto-hydrodynamics with the external magnetic field in (2+1) dimen-
sions as in [5]. However, it is also possible to consider a magneto-hydrodynamics with dynamical magnetic
field. For the former see section 3 in [180] and for the latter see section 4 in [180].

8Note that the magnetic field is assumed to be a fixed constant in the hydrodynamic limit in the
HKMS [5]. For interesting development for the case of vanishing magnetic fields in the hydrodynamic
regime, see [49–51].

9See [5] for the details of subtracting out the magnetization current.
10There could be a bulk viscosity in the dissipative term, which is irrelevant for the conformally invariant

theory considered in this paper. See details in [49] for the unbroken conformal invariance in the presence
of the gauge fields.
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Similarly, the current Jµ can also be expressed at first order as

Jµ = ρuµ + νµ , (2.5)

where ρ is the charge density and νµ is the dissipative part given by

νµ = σ∆µν
(
−∂νµ+ Fναu

α + µ

T
∂νT

)
, (2.6)

where σ is the conductivity, µ is the chemical potential, and T is the temperature.11

Choosing four independent variables (δui=x,y, δT, δµ), we study the fluctuations
around the equilibrium in which

uµ = (1, 0, 0) , T = constant , µ = constant . (2.7)

Based on (2.7), one can find that the relevant fluctuations for (2.3) and (2.5) are

δT tt =
(
∂ε

∂µ

)
T

δµ+
(
∂ε

∂T

)
µ
δT , δT ti = (ε+ P ) δui ,

δT ii =
(
∂P

∂µ

)
T

δµ+
(
∂P

∂T

)
µ
δT − η(2∂iδui − ∂γδuγ) , δT ij = −η(∂jδui + ∂iδuj) ,

δJ t =
(
∂ρ

∂µ

)
T

δµ+
(
∂ρ

∂T

)
µ
δT ,

δJ i = ρδui + σ

(
−∂iδµ+ µ

T
∂iδT +Hεijδuj

)
,

(2.8)

where εij is the Levi-Civita symbol. Plugging (2.8) into the equations of motion (2.1) and
also performing a Fourier transformation with the plane wave form e−iωt+ikx, we obtain
the four coupled equations:

0 = ω

[(
∂ε

∂µ

)
T

δµ+
(
∂ε

∂T

)
µ
δT

]
− k(ε+ P )δux ,

0 = ω(ε+ P )δux − k
[(

∂P

∂µ

)
T

δµ+
(
∂P

∂T

)
µ
δT

]
+ ik2η δux + iσH2δux − iHρδuy ,

0 = ω(ε+ P )δuy + kHσ

(
δµ− µ

T
δT

)
+ iHρδux + iσH2δuy + ik2ηδuy ,

0 = ω

[(
∂ρ

∂µ

)
T

δµ+
(
∂ρ

∂T

)
µ
δT

]
− kρδux − kσHδuy + ik2σ

(
δµ− µ

T
δT

)
,

(2.9)

which are consistent with equations in [5] where the thermodynamic relation ε+P = sT+µρ
holds. The equations of motion (2.9) can also be expressed as the matrix form,M·V = 0,
with

M :=



−k(ε+P ) ω
(
∂ε
∂T

)
µ

0 ω
(
∂ε
∂µ

)
T

ω(ε+P )+ ik2η+ iσH2 −k
(
∂P
∂T

)
µ

−iHρ −k
(
∂P
∂µ

)
T

iHρ −kHσµ
T ω(ε+P )+ ik2η+ iσH2 kHσ

−kρ ω
(
∂ρ
∂T

)
µ
− ik2σµ

T −kσH ω
(
∂ρ
∂µ

)
T

+ ik2σ


(2.10)

11Eq. (2.6) can be obtained by the argument with the positive entropy production [5].
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and the vector V := (δux, δT, δuy, δµ). Then one can obtain the dispersion relations,
ω = ω(k), by the determinant of (2.10):

0 = detM := M1 +M2 +M3 , (2.11)

where

M1=ωρH2
[
ik2σ(ε+P )

(
µ

(
∂ρ

∂µ

)
T

+T
(
∂ρ

∂T

)
µ

)
+ωρT

((
∂ε

∂T

)
µ

(
∂ρ

∂µ

)
T

−
(
∂ε

∂µ

)
T

(
∂ρ

∂T

)
µ

)]
,

M2=ik2TσX(Z−iH2σ)+ωTZ
(
X

(
∂ρ

∂µ

)
T

−Y
(
∂ρ

∂T

)
µ

)
+i Z

H2σ
M3, (2.12)

M3=k2H2σ

[
µσY−iωρT

((
∂ε

∂T

)
µ

(
∂P

∂µ

)
T

−
(
∂ε

∂µ

)
T

(
∂P

∂T

)
µ

)]
,

with

X = k2 (ε+ P )
(
∂P

∂T

)
µ
− ω Z

(
∂ε

∂T

)
µ
, Y = k2 (ε+ P )

(
∂P

∂µ

)
T

− ω Z
(
∂ε

∂µ

)
T

,

Z = ω (ε+ P ) + ik2η + iσH2 . (2.13)

In the following sections, we study the dispersion relations by (2.11)–(2.13) at zero density
in section 2.2 and at finite density in section 2.3, respectively.

Note that the highest order of ω in (2.12) isO
(
ω4) fromM2 so that one can solve (2.11)

to obtain ω(k) explicitly. However, the analytic expression of ω(k) is not so illuminating and
complicated so we do not show it here. Instead, we will display its plots when we compare
with quasi-normal modes from holography in the next section: see solid lines in figure 1 and
figure 2. Furthermore, for the analysis of hydrodynamic modes of ω(k), we will show the an-
alytic expression of the dispersion relation at the small k regime in the following subsections.

2.2 Zero density

Let us first consider the hydrodynamics with no density (ρ = 0).12 Moreover, motivated
by M2-brane magneto-hydrodynamics [49], we may set(

∂ρ

∂T

)
µ

=
(
∂ε

∂µ

)
T

=
(
∂P

∂µ

)
T

= 0 , (2.14)

which will be verified by holography in the next section.13

12At zero density, the chemical potential is also vanishing, µ = 0.
13The last equality in (2.14),

(
∂P
∂µ

)
T

= 0, can be understood with the grand potential Ω: note that
Ω = −P and its first variation is δΩ ∼ −ρδµ, thus

(
∂P
∂µ

)
T

= −
(
∂Ω
∂µ

)
T
is vanishing at zero density. The first

equality in (2.14) can be related to the susceptibility matrix. For instance, one can find T
(
∂ρ
∂T

)
µ

=
(
∂ε
∂µ

)
T

from the fact that the susceptibility matrix is symmetric: it is also related with the definition of the
thermodynamic quantities in the grand canonical ensemble. See [52] for the details. Although, it may not
be so straightforward to show

(
∂ρ
∂T

)
µ

= 0 or
(
∂ε
∂µ

)
T

= 0 at zero density unlike the last equality in (2.14),
one can verify it by the explicit holographic computations. We suspect that

(
∂ρ
∂T

)
µ

=
(
∂ε
∂µ

)
T

= 0 may be
associated with the fact that the fluctuation of charge density is decoupled from the fluctuations of energy
and momentum density at zero density.

– 5 –
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For the case of zero density with (2.14), one can check that M1 = M3 = 0 in (2.12)
so that (2.11) becomes

0 = M2 = X

[
Z

(
ik2σ + ω

(
∂ρ

∂µ

)
T

)
+ k2H2σ2

]
, (2.15)

where X and Z are given in (2.13). Note thatM2 in (2.15) is decoupled into two parts: one
from X and its rest. This reflects the fact that the coupled equations in (2.9) can be de-
coupled into two decoupled pairs at zero density [49–51]: i) (δux, δT ) sector in (2.9), called
the sound channel; ii) (δuy, δµ) sector in (2.9), called the shear channel.14 In particular,
the sound channel corresponds to X in (2.15) and the shear channel comes in its rest.

Sound channel. In the sound channel, depending on H, one can have the following ω(k)
in the small wave vector regime:

(H = 0) : ω = ±

√
∂P

∂ε
k − i

η

2(ε+ P ) k
2 , (2.16)

(H 6= 0) : ω = −i∂P
∂ε

ε+ P

σH2 k2 , ω = −i σH
2

ε+ P
. (2.17)

Thus, the sound mode (2.16) at H = 0 shows a drastic change into (2.17) at finite H: the
former is the energy diffusion mode and the later gapped mode is a damping frequency of
the cyclotron mode [5, 44].15 Note that it was shown [22, 35] that dispersions (2.16)–(2.17)
are matched with the quasi-normal modes in holography and the lower/upper bound of
the energy diffusion constant is investigated. See [22] to verify that the diffusion mode
in (2.17) corresponds to the energy diffusion.

Shear channel. Within the shear channel, similar to the sound channel, dispersions also
depend on H as follows:

(H = 0) : ω = −i σ(
∂ρ
∂µ

)
T

k2 , ω = −i η

ε+ P
k2 , (2.18)

(H 6= 0) : ω = −i η

H2
(
∂ρ
∂µ

)
T

k4 , ω = −i σH
2

ε+ P
. (2.19)

AtH = 0, there are two gapless mode in (2.18): the former is the charge diffusion mode and
the other the shear diffusion mode. Furthermore, as in the sound channel, the shear channel
has a gapless mode as well as the cyclotron mode at H 6= 0 in (2.19): the gapless mode is
called the subdiffusive mode.16 We will show dispersions (2.18)–(2.19) are consistent with
quasi-normal modes in holography in the next section.

For a summary of the dispersion relations from hydrodynamics at zero density, (2.16)–
(2.19), see table 1.

14Note that this decoupling can also be seen as a block-diagonalization in (2.10).
15This change is due to the fact that the small H limit does not commute with the hydrodynamic limit

of small ω and k [49, 50].
16Considering the sub-leading order correction O(k2), one can check that the gapped mode in (2.17) is

different from the one in (2.19). See also [100] for the sub-diffusive modes within fracton hydrodynamics.
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H = 0 H 6= 0
Sound mode (2.16), Energy diffusion (2.17),

Gappless mode Charge diffusion mode (2.18), Subdiffusive mode (2.19).
Shear diffusion mode (2.18).

Gapped mode None Cyclotron mode (2.17), (2.19).

Table 1. Summary of the dispersion relations from hydrodynamics at zero density.

2.3 Finite density

Next, let us study the dispersion relations at finite density (ρ 6= 0) in which (2.14) no longer
holds. One can notice thatMi in (2.12) are all non-zero at finite density in general. In other
words, the sound channel (2.16)–(2.17) are coupled with the shear channel (2.18)–(2.19) at
finite density.

The aim of this subsection is to study how the dispersion, (2.16)–(2.19), are changed
in the presence of a finite density. For this purpose, we analyze two cases, (H = 0) and
(H 6= 0), separately at finite density, i.e., we may follow a parallel analysis as in the zero
density case (2.16)–(2.19). Furthermore, for the case of H = 0, one can find the simplified
Mi even at finite density (M1 =M3 = 0).

Zero magnetic field (H = 0). For the case of H = 0 at finite density, (2.11) becomes

0 =M2 =Z

[
X

(
ik2σ+ω

(
∂ρ

∂µ

)
T

)
+ωk2ρ

((
∂P

∂µ

)
T

(
∂ε

∂T

)
µ
−
(
∂P

∂T

)
µ

(
∂ε

∂µ

)
T

)
(2.20)

−ωY
(
∂ρ

∂T

)
µ
− i µ

T

(
ωk2σ

(
Z− iH2σ

)( ∂ε
∂µ

)
T

−k4σ(ε+P )
(
∂P

∂µ

)
T

)]
,

where X, Y , and Z are given in (2.13). One can notice that (2.20) becomes (2.15) together
with (2.14) at ρ = H = 0. Similar to (2.15), (2.20) is also decoupled into two parts, one
from Z and its rest, which reflects that the coupled equations (2.9) are decoupled into two
sectors at H = 0: i) (δux, δT, δµ) sector; ii) (δuy) sector.17

17At (ρ = 0, H = 0), equations consist of three sectors: (i) δµ sector; (ii) (δux, δT ) sector; (iii) δuy sector.
For (ρ = 0, H 6= 0), (i) is coupled to (iii) as in (2.15), while (i) is coupled to (ii) at (ρ 6= 0, H = 0) (2.20).
At (ρ 6= 0, H 6= 0), all sectors are coupled together.

– 7 –
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From (2.20), one can find the dispersions at leading order in small wave vector as

ω=±

√√√√√√√
−
(
∂P
∂T

)
µ

(
∂ρ
∂µ

)
T

(ε+P )+ρ

((
∂P
∂T

)
µ

(
∂ε
∂µ

)
T

+
(
∂ρ
∂T

)
µ
(ε+P )

)
−ρ2

(
∂ε
∂T

)
µ((

∂ε
∂µ

)
T

(
∂ρ
∂T

)
µ
−
(
∂ε
∂T

)
µ

(
∂ρ
∂µ

)
T

)
(ε+P )

k , (2.21)

ω=
−i(ε+P )

(
T
(
∂P
∂T

)
µ

+µ
(
∂P
∂µ

)
T

)
σ

(ε+P )T
(
∂P
∂T

)
µ

(
∂ρ
∂µ

)
T
−T

(
∂P
∂µ

)
T

(
(ε+P )

(
∂ρ
∂T

)
µ

+
(
∂P
∂T

)
µ

(
∂ε
∂µ

)
T
−
(
∂P
∂µ

)
T

(
∂ε
∂T

)
µ

) k2 ,

(2.22)

ω=−i η

ε+P
k2 , (2.23)

in which Z in (2.20) produces the shear diffusion mode (2.23). At zero density with (2.14),
one can check that (2.21) reduces to (2.16) and (2.22)–(2.23) become (2.18).18

Finite magnetic field (H 6= 0). When the system has both a density and a magnetic
field, we cannot find a simple equation for (2.11), such as (2.15) or (2.20), because all the
equations are coupled, i.e., (2.11) consists of all non-zero Mi given in (2.12). For such a
case, the corresponding dispersions at small wave vector are

ω = i

(
∂ρ
∂µ

)
T

(ε+ P )2 σ

T

[(
∂ε
∂µ

)
T

(
∂ρ
∂T

)
µ
−
(
∂ε
∂T

)
µ

(
∂ρ
∂µ

)
T

]
(ρ2 +H2σ2)

k2 , (2.24)

ω = −i η

H2
(
∂ρ
∂µ

)
T

k4 , ω = ± Hρ

ε+ P
− i σH

2

ε+ P
. (2.25)

Note that we find the prefactor
(
∂ρ
∂µ

)
T
of the diffusion mode (2.24) in its numerator, which

was not shown in [5].19 We will show that this prefactor will be important to match with
quasi-normal modes of dyonic black holes in the next section. Furthermore, note also
that (2.24) becomes the energy diffusion mode (2.17) at zero density together with (2.14)
only when this prefactor is considered.20

For a summary of the dispersion relations from hydrodynamics at finite density, (2.21)–
(2.25), see table 2. Comparing table 2 with table 1, one can notice three things about the
finite density effect in dispersion relations.

First, the density does not generate new modes. In other words, the density only comes
in the coefficients of dispersions such as the sound velocity of (2.21), diffusion constants
of (2.22) and (2.24). Second, the density does not change the functional form of the shear
modes: i) shear diffusion (2.18), (2.23); ii) subdiffusive mode (2.19), (2.25), i.e., the shear
modes are intrinsic function for a density. Third, the cyclotron mode (2.25) gets its real

18One may also try to find the sub-leading correction O(k2) in (2.21) in the presence of finite density,
which becomes the attenuation constant in (2.16) at vanishing density.

19We also correct the overall sign in all gapless mode in (2.24)–(2.25).
20Also the thermodynamic relation ε+ P = sT + µρ is being used.
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H = 0 H 6= 0
Sound mode (2.21), Diffusion mode (2.24),

Gappless mode Diffusion mode (2.22), Subdiffusive mode (2.25).
Shear diffusion mode (2.23).

Gapped mode None Cyclotron mode (2.25).

Table 2. Summary of the dispersion relations from hydrodynamics at finite density.

part Hρ
ε+P due to the finite density, called the cyclotron frequency, which is consistent with

the zero wave vector analysis [5, 44].

3 Quasi-normal modes in dyonic black holes

3.1 Holographic setup

We consider the dyonic black holes in (3+1) dimensions as

S =
∫

d4x
√
−g

(
R + 6 − 1

4F
2
)
, (3.1)

where F = dA is the field strength of the gauge field A and we set units such that the
gravitational constant 16πG = 1 and the AdS radius L = 1.

Within (3.1), we consider the following ansatz for the background

ds2 = −f(r) dt2 + 1
f(r) dr2 + r2(dx2 + dy2) , A = At(r) dt− H

2 y dx + H

2 x dy , (3.2)

where H is the magnetic field. The blackening factor f(r) and the temporal component of
the gauge field At(r) are

f(r) = r2 − m0
r

+ µ2r2
h +H2

4 r2 , m0 = r3
h

(
1 + µ2r2

h +H2

4 r4
h

)
,

At(r) = µ

(
1− rh

r

)
,

(3.3)

where µ is the chemical potential, rh is the horizon radius. m0 is determined by f(rh) = 0.
Thermodynamic quantities [5, 44, 56, 62] including the temperature T with the density

ρ read

T = 1
4π

(
3 rh −

µ2r2
h +H2

4 r3
h

)
, ρ = µ rh , s = 4π r2

h ,

ε = 2r3
h + µ2rh

2 + H2

2rh
, P = r3

h + µ2rh
4 − 3H2

4rh
,

(3.4)

where (s, ε, P ) are the entropy, energy and pressure density, respectively. Note that (3.4)
satisfies the thermodynamic relation

ε+ P = s T + µρ , (3.5)
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Furthermore, using (3.4), one can also find other thermodynamic quantities(
∂ρ

∂µ

)
T

,

(
∂ρ

∂T

)
µ
,

(
∂ε

∂µ

)
T

,

(
∂ε

∂T

)
µ
,

(
∂P

∂µ

)
T

,

(
∂P

∂T

)
µ
, (3.6)

which are non-vanishing functions in terms of (T, µ, H) in general. However, one can easily
check that some of them, (2.14), could be zero at ρ = µ = 0.

3.2 Fluctuations and the determinant method

In order to study quasi-normal modes of dyonic black holes (3.1), we consider the fluctua-
tions δgµν and δAµ

gµν → gµν + δgµν , Aµ → Aµ + δAµ , (3.7)
where gµν and Aµ are the background fields (3.2). To proceed, it is convenient to consider
the radial gauge

δgtr = δgrr = δgxr = δgyr = 0 , δAr = 0 . (3.8)
In order to be consistent with the hydrodynamics given in previous section, we also consider
all fluctuations to be functions of (t, r, x), i.e.,

δgµν = hµν(r) e−i ω t+i k x , δAµ = aµ(r) e−i ω t+i k x . (3.9)

Equations of motion for quasi-normal modes. Using (3.9), at the linearized fluctua-
tion level of the Einstein equations and Maxwell equations, one can find nine second-order
equations and five first-order constraints. This implies that there are four independent
fluctuations associated with the diffeomorphism invariance together with the gauge invari-
ance [101]. We find them to be

ZH1 := k hyt + ω hyx ,

ZA1 := k at + ω ax −
iH ω

k
hyx −

k r

2 A′t h
y
y ,

ZH2 := 4k
ω
hxt + 2hxx −

(
2− k2

ω2
f ′(r)
r

)
hyy + 2k2

ω2
f(r)
r2 htt ,

ZA2 := ay + iH

2k
(
hxx − hyy

)
,

(3.10)

in which the index of the metric fluctuation is raised with (3.2). Note that (3.10) is
consistent with [89, 90, 102–105] at (H = 0, At 6= 0), and [22, 35, 49–51] at (H 6= 0, At = 0).
To our knowledge, the independent fluctuation variables (3.10) in the presence of both H
and At (or µ) was not shown in previous literature. Also note that, at zero density (At = 0),
the fluctuation variables (3.10) can be decomposed into two sectors: i) (ZH1 , ZA1); ii)
(ZH2 , ZA2). In the field theory language given in section 2.2, the former one corresponds
the shear channel and the other is the sound channel.

Then, one can obtain four second-order equations for (3.10) in the following form:

0 = Z ′′H1 +
∑

aAi Z
′
Ai +

∑
aHi Z

′
Hi +

∑
ãAi ZAi +

∑
ãHi ZHi ,

0 = Z ′′A1 +
∑

bAi Z
′
Ai +

∑
bHi Z

′
Hi +

∑
b̃Ai ZAi +

∑
b̃Hi ZHi ,

0 = Z ′′H2 +
∑

cAi Z
′
Ai +

∑
cHi Z

′
Hi +

∑
c̃Ai ZAi +

∑
c̃Hi ZHi ,

0 = Z ′′A2 +
∑

dAi Z
′
Ai +

∑
dHi Z

′
Hi +

∑
d̃Ai ZAi +

∑
d̃Hi ZHi .

(3.11)
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Since the coefficients of (3.11),
(
aA,Hi , ãA,Hi , bA,Hi , b̃A,Hi , cA,Hi , c̃A,Hi , dA,Hi , d̃A,Hi

)
, are

lengthy and not illuminating we will not write them in the paper.

Determinant method. Next, we solve the equations (3.11) with the boundary condi-
tions: one from the horizon and the other at the AdS boundary. Near the horizon (r → rh),
the variables (3.10) behave as

ZHi = (r − rh)ν±
(
Z

(0)
Hi

+ Z
(1)
Hi

(r − rh) + . . .
)
,

ZAi = (r − rh)ν±
(
Z

(0)
Ai

+ Z
(1)
Ai

(r − rh) + . . .
)
,

(3.12)

where ν± := ±iω/4πT and we choose ν− which satisfies the incoming boundary condition
at the horizon. Plugging (3.12) into equations (3.11), one can check that higher-order
horizon coefficients are determined by four independent horizon variables:

(
Z

(0)
Hi
, Z

(0)
Ai

)
.

Near the AdS boundary (r →∞), the variables (3.10) are expanded as

ZHi = Z
(S)
Hi

r0 (1 + . . . ) + Z
(R)
Hi

r−3 (1 + . . . ) ,

ZAi = Z
(S)
Ai

r0 (1 + . . . ) + Z
(R)
Ai

r−1 (1 + . . . ) ,
(3.13)

where the superscripts denote that (S) is the source and (R) is the response term according
to the holographic dictionary.

Then, employing the determinant method [106], we can compute the quasi-normal
modes. In particular, solving equations (3.11) together with boundary conditions (3.12)–
(3.13), one can construct the matrix of the sources, S-matrix, as follows:

S =



Z
(S)(I)
H1

Z
(S)(II)
H1

Z
(S)(III)
H1

Z
(S)(IV )
H1

Z
(S)(I)
A1

Z
(S)(II)
A1

Z
(S)(III)
A1

Z
(S)(IV )
A1

Z
(S)(I)
H2

Z
(S)(II)
H2

Z
(S)(III)
H2

Z
(S)(IV )
H2

Z
(S)(I)
A2

Z
(S)(II)
A2

Z
(S)(III)
A2

Z
(S)(IV )
A2


. (3.14)

Note that the S-matrix is a 4× 4 matrix composed of four independent shooting variables
at the horizon (3.12). Note also that I(II, III, IV ) in (3.14) means that the source terms
are evaluated by the I(II, III, IV )-th shooting. Finally, the dispersion relations, ω(k), of
the dyonic black holes (3.1) can be obtained by the value of (ω, k) at which the determinant
of the S-matrix (3.14) vanishes [106].

3.3 Quasi-normal modes and hydrodynamics

Transport coefficients in holography. In order to compare quasi-normal modes with
the dispersion relations from hydrodynamics in the previous section, we need to identity
the transport coefficients (σ , η) in addition to thermodynamic quantities (3.4), which read

σ =
(

sT

ε+ P

)2
, η = s

4π , (3.15)
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where the conductivity σ is given in [5, 44, 56, 62].21 The shear viscosity η in (3.15)
implies that the KSS bound [107, 108] is not violated in the presence of both a density and
a magnetic field.

The shear viscosity can be evaluated holographically from the low frequency behavior
of the shear correlator in the standard way [109–111]22 where the shear correlator can be
computed from the shear equation at zero wave vector. One can easily check that the shear
equation of the dyonic black hole (3.1) with the background (3.2) is

[
r2f(r)hyx′(r)

]′
+ ω2 r2

f(r)h
y
x(r)−M2(r)hyx = 0 , M2(r) = 0 , (3.16)

where M2 is the effective graviton mass. The vanishing graviton mass in (3.16) implies
that the KSS bound is not violated [108, 111, 119] so that η is (3.15).23

Quasi-normal modes at zero density. Then, using the determinant method, the ther-
modynamic quantities (3.4), and the transport coefficients (3.15), one can compute the
quasi-normal modes of the dyonic black holes and compare them with dispersion relations
from hydrodynamics.

In figure 1, we first display the quasi-normal modes at zero density (µ/T = 0) together
with the dispersion relations from hydrodynamics: see also table 1.

For the H = 0 case, (a) and (d), the green data corresponds to the sound mode (2.16),
the red data is the charge diffusion mode (2.18), and the blue data is the shear diffusion
mode (2.18).

For the finite H case, (b) and (e) (or (c) and (f)), the green data consists two dis-
persions (2.17): the energy diffusion mode (gapless mode), the cyclotron mode (gapped
mode). The red data is another cyclotron mode (2.19) and the blue data is the subdiffu-
sive mode (2.19).

Note that quasi-normal modes have the deviation from dispersion relations of hydro-
dynamics as the magnetic field increases, e.g., see the cyclotron mode (green or red) in
(f). This implies that dispersion relations of hydrodynamics is supposed to be valid in
the coherent regime in which the momentum dissipation rate Γ (the damping frequency
in cyclotron mode (2.19)) is small as Γ/T � 1 (or H/T � 1) [5, 44, 56, 62]:24 the same
argument also applies to the case where the energy diffusion mode appears due to the scalar
(axion) field [14], i.e., m/T � 1, m is the coefficient from the scalar field. Note also that
the red and green data in figure 1 are the reproduction of [22].

Quasi-normal modes at finite density. Next, let us discuss the case at finite density.
We display the representative quasi-normal mode data at µ/T = 5 at figure 2 and compare

21See also [80, 84, 86] for the recent development of magneto-transport properties in which the magnetic
field is no longer taken to be of order one in derivatives.

22See also [19, 112–114] for the case with spontaneous symmetry breaking and [115–118] for the explicit
breaking case.

23For the higher dimensional case [120–124], the KSS bound can be violated at finite magnetic fields.
24Thus, we consider all the hydrodynamic dispersion relations in section 2 to be only valid at small

magnetic fields. This may also imply that we assume the corrections in the thermodynamics due to the
magnetic field is ignored in the HKMS magneto-hydrodynamics given in this paper. See also footnote (21).
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(a) Re(ω) at H/T 2 = 0.
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(b) Re(ω) at H/T 2 = 5.
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(c) Re(ω) at H/T 2 = 10.
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(f) Im(ω) at H/T 2 = 10.

Figure 1. Quasi-normal modes vs dispersion relations from hydrodynamics at zero density (µ/T =
0). Left: (a) and (d) at H/T 2 = 0. Center: (b) and (e) at H/T 2 = 5. Right: (c) and (f) at
H/T 2 = 10. All figures: colored dots are numerically computed quasi-normal modes and solid
lines are dispersion relations from hydrodynamics by (2.11). For (a) and (d): the green data
corresponds to the sound mode (2.16), the red data is the charge diffusion mode (2.18), and the
blue data is the shear diffusion mode (2.18). For (b) and (e) (or (c) and (f)): the green data consists
two dispersions (2.17): the energy diffusion mode, the cyclotron mode. The red data is another
cyclotron mode (2.19) and the blue data is the subdiffusive mode (2.19).

them with dispersion relations from hydrodynamics: see also table 2. For H = 0, (a)
and (d), the green and red data correspond to (2.21) and (2.22), respectively. The blue
data is the shear diffusion mode (2.23). For H 6= 0, (b) and (e), (or (c) and (f)) have
the diffusion mode (2.24) (red data), the subdiffusive mode (2.25) (blue data), and the
cyclotron mode (2.25) (green data). Note that, as in the zero density case, quasi-normal
modes are well approximated with hydrodynamics at small magnetic fields. Note also that
the cyclotron mode at finite density has a real gap as well as an imaginary gap.

As we demonstrated in the section 2, the prefactor
(
∂ρ
∂µ

)
T
of the diffusion mode (2.24)

in its numerator was not shown in [5]. Thus, it will be instructive to compare (2.24) with
the one given in [5]. See figure 3. One can find that the prefactor is important to match
quasi-normal modes with hydrodynamics.

3.4 Diffusion bounds at finite density

We close this section with the investigation of the transport properties of the gapless
modes: the diffusion constant from the diffusion mode (2.24) and the subdiffusive constant
from the subdiffusive mode (2.25).25 In particular, we focus on the bound of the diffusion

25For the transport properties of the gapped mode, i.e., the cyclotron mode in (2.25), see [5].
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(a) Re(ω) at H/T 2 = 0.
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(b) Re(ω) at H/T 2 = 5.
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(c) Re(ω) at H/T 2 = 10.
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(d) Im(ω) at H/T 2 = 0.
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(e) Im(ω) at H/T 2 = 5.
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(f) Im(ω) at H/T 2 = 10.

Figure 2. Quasi-normal modes vs dispersion relations from hydrodynamics at finite density (µ/T =
5). Left: (a) and (d) at H/T 2 = 0. Center: (b) and (e) at H/T 2 = 5. Right: (c) and (f) at
H/T 2 = 10. All figures: colored dots are numerically computed quasi-normal modes and solid lines
are dispersion relations from hydrodynamics by (2.11). For (a) and (d): the green and red data
correspond to (2.21) and (2.22), respectively. The blue data is the shear diffusion mode (2.23). For
(b) and (e) (or (c) and (f)): the green data corresponds to the cyclotron mode (2.25), the red data
is for the diffusion mode (2.24), and the blue data is the subdiffusive mode (2.25).

Figure 3. Gapless modes at µ/T = 5, H/T 2 = 10: figure 2f. All dots are quasi-normal modes.
Red dashed line is the diffusion mode (2.24) and the blue dashed line is subdiffusive mode (2.25).
Black dashed line is the diffusion mode given in [5].
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Figure 4. Diffusion bounds at µ/T = (0, 3, 5) (red, green, blue). The diffusion constant D can
have the lower bound (3.17) at H/T 2 � 1, while the subdiffusive constant Dshear does not.

constants.26 It was proposed [125, 126] that the diffusion constant D may have the lower
bound as

D ≥ v2
B/λL , (3.17)

which is associated with the properties from quantum chaos [125, 129–131]:

v2
B = πT

rh
, λL = 2πT , (3.18)

where vB is the butterfly velocity and λL is the Lyapunov exponent. The proposal (3.17)
has been checked in many models [22, 70, 132–146].

In figure 4, we found that the diffusion constant from (2.24) can respect the lower
bound (3.17) in the presence of both a density and a magnetic field, while the subdiffusive
constant Dshear := η

H2
(
∂ρ
∂µ

)
T

in (2.25) may not.27

Note also that the neutral case (red data) in figure 4a, is the reproduction for the result
in [22].

Further comments on the diffusion constant. We make two further comments on
the diffusion constant D in (2.24). First, it is instructive to check if D is related to the
energy diffusion constant DE at finite density, since D at zero density was found to be the

26It was proposed [147] that the diffusion constant D may have the lower bound as D ≥ v2τ where v
is a certain velocity scale, τ the time scale. The well-known example may be the Kovtun-Son-Starinets
(KSS) bound [148] which can be expressed by setting D to be the diffusion constant of the shear mode,
v to be the speed of light, and τ the Planckian time. The lower bound (3.17) was conjectured [125, 126]
by analogy with the KSS bound using quantum chaos properties (3.18) as (v , τ) = (vB , 1/λL). For a
comprehensive review of the holographic studies of the bound of the diffusion constant, we refer the readers
to [34] and references therein: in particular, from the aforementioned reference, one can also find the review
of the upper bound of the diffusion constant (e.g., set by the local equilibration time or the breakdown of
hydrodynamics [33, 127, 128]) as well as the lower bound of the diffusion constant. See also [149, 160] for
the recent development of the bound of the diffusion constant imposed by univalence.

27In [160], it was recently proposed that the theory of univalent functions may be used to bound higher-
order transport coefficients that appear in hydrodynamic dispersion relations. It may be interesting to
explicitly check such a proposal with the subdiffusive constant.
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Figure 5. Diffusion bounds at µ/T = 3. Solid line is from (2.24) and dashed line is from (3.19).

same as DE [22]. The energy diffusion constant for the dyonic black hole was given [62, 70]
as follows

DE = κ

cρ
, κ = s2TH2

H4 + ρ2H2 , cρ = T

(
∂s

∂T

)
ρ
, (3.19)

where thermodynamic quantities are (3.4).
In figure 5, we display both the diffusion constant in (2.24) and the energy diffusion

constant (3.19) at finite density. One can see that the diffusion (a solid line), (2.24), is
different from the energy diffusion (a dashed line), (3.19), in general at finite density.

Note that DE could be finite even at vanishing magnetic field (i.e., translational in-
variance is not broken) when the system has a density, since κ in (3.19) at H → 0 is finite
if ρ 6= 0. Note also that D ∼ DE at H/T 2 � 1 may be consistent with [70] stating that
the diffusion process is governed by the energy diffusion in the low temperature limit of
finite density fixed points.28

Thus, comparingD (2.24) withDE (3.19) may not only show how muchD can be differ-
ent fromDE by the finite density effect (e.g., see the deviation between the solid line and the
dashed line in figure 5), but also be used to explicitly confirm the argument given in [70].

Second, from the recent development of quantum chaos, it was also suggested [32] that
the lower bound of the diffusion constant, (3.17), may be associated with the phenomena
from the ill-defined Green’s function, called pole-skipping [32, 150, 151]. In particular,
pole-skipping states that there is a special point in the momentum space as

ω = ω∗ , k = k∗ , (3.20)

in which the Green’s function G(ω∗, k∗) ∼ 0
0 , i.e., ill-defined or not uniquely determined.29

In [22], it has been found that the leading pole-skipping point (3.20) of the gravitational
sound channel for the generic holographic model including the dyonic black holes (3.1) is

ω∗ = i λL , k∗ = i
λL
vB

, (3.21)

28It may also be consistent with axion models [145] in which the diffusion constant at finite density can
be identified with the energy diffusion constant in the incoherent regime (m/T � 1). Here m is the axion
charge describing the strength of momentum relaxation.

29See [22, 140, 152–179] for the recent development of pole-skipping.
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Figure 6. Pole-skipping and diffusive mode at µ/T = 5. All dots are quasi-normal mode, a dashed
line is (2.24), and the star is the pole-skipping point (3.21).

where the quantum choas properties are (3.18). With (3.21), the lower bound of the dif-
fusion constant (3.17) was realized by that the hydrodynamic diffusion mode, ω = −iDk2,
e.g. (2.24), is passing through the pole-skipping point (3.21) at low temperature as

ω∗ = −iD k2
∗ → D = v2

B/λL . (3.22)

To the best of our knowledge, the pole-skipping argument (3.22) for the lower bound of
the diffusion constant only has been confirmed at zero density cases in literature: the energy
diffusion with the axion model [32] or with a magnetic field [22], the crystal diffusion [22].

Thus, in order to develop the proposal (3.22) further, it will be important to check if
such an argument holds even at finite density. For this purpose, we investigate if the lower
bound of the diffusion constant found in figure 4 can be related to the pole-skipping (3.21).

In figure 6, we find that the pole-skipping argument (3.22) holds even at finite den-
sity: as H/T 2 � 1 (low temperature limit) from figure 6a to figure 6b, the pole-skipping
point (3.21) is passing through the diffusive mode (2.24). One may consider figure 6 to be
a direct generalization of [22] to the case of a finite density.

4 Conclusion

We have studied the quasi-normal modes of the dyonic black holes in (3+1) dimensions.
In particular, we also revisited the Hartnoll-Kovtun-Müller-Sachdev (HKMS) magneto-
hydrodynamics in (2+1) dimensions [5] and checked that the quasi-normal modes of
dyonic black holes are consistent with the dispersion relations from HKMS magneto-
hydrodynamics.

Furthermore, from the detailed analysis of the HKMS magneto-hydrodynamics we
slightly corrected the dispersion relation given in previous literature [5], which is important
for the matching with quasi-normal modes. Within the quasi-normal mode computations
in holography, we also found the relevant independent fluctuation variables (3.10) of the
dyonic black holes, which was not present in previous literature. For the summary of the
dispersions of dyonic black holes, see table 1 (the neutral case) and table 2 (finite density
case).
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Our work not only provides another successful example showing the consistency be-
tween quasi-normal modes in (3+1) dimensions and the hydrodynamic predictions in (2+1)
dimensions along the line of [14–31] in holography, but also is useful for the complete un-
derstanding of the dyonic black holes in that our work extends the previous works, the
thermodynamic properties or the transport properties at zero wave vector, of the dyonic
black holes [5, 44–51, 53–88] for the case at finite wave vector.

In addition to matching quasi-normal modes with the hydrodynamic theory, we also
investigated the transport property at finite wave vector: the diffusion constant. We
found that the diffusion constant from the dyonic black hole can have a lower bound
at low temperature and show that such a lower bound can also be understood as the pole-
skipping. In particular, our work confirmed the relation between the diffusion bound and
pole-skipping at a finite density for the first time.

One of the interesting future directions from this paper will be to investigate the
dynamical gauge fields of dyonic black holes. In particular, following [180] considering the
(3+1) dimensional hydrodynamics of the dynamical gauge fields, one can also study the
(2+1) dimensional hydrodynamics together with the dynamical gauge field and compare it
with the quasi-normal modes of dyonic black holes [181].30

It may also be interesting to study the quasi-normal modes of the dyonic black holes
in the presence of the explicitly broken translational invariance. For instance, the dyonic
black holes with the axion model [56] produce the DC conductivities (i.e., zero wave vector
property)

(m = 0) : σxxDC = σyyDC = 0 , σxyDC = −σyxDC = ρ

H
,

(H = 0) : σxxDC = σyyDC = 1 + µ2

m2 , σxyDC = −σyxDC = 0 ,
(4.1)

where m is the strength of the translational symmetry breaking, H is the magnetic field.
One can see that the two limits given in (4.1) do not commute. This implies that magneto-
hydrodynamics with the broken translational symmetry may also give different dispersion
relations (i.e., the finite wave vector property) depending on whether we take m = 0 first
or H = 0 first. Thus, the interplay between HKMS magneto-hydrodynamics, the first line
in (4.1), and hydrodynamics with broken translational invariance, the second line in (4.1),
may not be a trivial subject. Note that one can also study similar topics with spontaneously
broken symmetry [81]. We leave these subject as future work and hope to address it in the
near future.
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